|
Свойства дроби легко обнаруживаются детьми в уже привычной работе с разными мерками при одной и той же величине. Вначале они убеждаются, что любой остаток можно выразить числом при помощи новой единицы, меньшей, чем задана раньше. Но с двумя разными мерками работать неудобно, значит, надо соотнести их между собой, выразить остаток через старую мерку, которая берётся за целое. При сравнении дробей с разными знаменателями детям становится очевидно, что увеличивая, например, знаменатель, мы берём меньшую часть старой единицы. Естественно, приходят они и к раскрытию основного свойства дроби: изменить мерку – это значит изменить и числитель и знаменатель в одно и то же число раз. Правило «если числитель и знаменатель изменяются в одно и то же число раз, величина дроби не изменяется» они, естественно, формулируют сами. Им нет необходимости искать его в учебнике. Правило – результат их мысли, действия, работы с понятием числа, которое всё более обретает черты подлинной научности. Вот он, фундамент всего здания школьного математического образования, утверждает В. Давыдов. Целью такого образования является создание развёрнутой и полноценной концепции действительного числа, в основе которого лежит понятие о величине. Мы убедились, как оригинально и последовательно решается первая задача: перевести житейские математические представления детей на рельсы научных понятий. Предмет математики – количественные отношения. Увести ребёнка от непосредственности восприятия, от конкретных тел в область математической абстракции, но чтобы он сохранил с ними живую, действительную связь, – вот задача, которую надо было решить в данном эксперименте. Понятие числа, которое получает ребёнок, для него оказывается необходимым и сознательным. Это сознательное понятие. У него формируется новый «математический» взгляд на вещи – при необходимости он может посмотреть на них и с этой количественной точки зрения. Вещь многогранна, количественная сторона – лишь одна её сторона. Это не утилитарный взгляд, а научный, объективный, тот уровень абстрактного мышления, который ориентируется на скрытые от прямого наблюдения зависимости. Но тогда как следствие такого обучения обнаруживается удивительная картина: способность осуществлять формальные операции, возникновение которой Ж. Пиаже относил к 11-12 годам, здесь формируется уже в семилетнем возрасте: дети рассуждают о сложных математических отношениях без предметов в чисто словесном плане. Феномены Пиаже преодолеваются как бы сами собой в ходе принципиально другого способа обучения – теоретического. Упорный труд коллектива психологов Ф. Боданского, Г. Микулиной, Г. Минской, Л. Фридмана и других под руководством В. Давыдова доказал такую возможность. Правда, пока лишь в результате многолетнего психологического эксперимента. — 66 —
|