Дважды два = икс?

Страница: 1 ... 5859606162636465666768 ... 141

Ребёнок в недоумении застывает, и точно так же недоумённо смотрит на учителя весь класс.

Дети поставлены в ситуацию, которую, оказывается, нельзя решить известными им способами прямого сравнения величин. Нужен новый неизвестный способ. Дети думают, и вот вскоре появляется догадка:

– Надо измерить чем-нибудь образец…

– Чем?

– Например, тетрадкой… А потом той же тетрадкой измерить деревянную планку в коридоре.

Хитрый приём – ввести величину-посредницу.

– Хитрецы! – говорит учитель.

Дети довольны, они нашли выход.

Так они начинают «хитрить» в процессе обучения. Но это не та хитрость, которая сродни обману других или себя самого. Это хитрость научного метода, с помощью которого обнаруживаются новые действительные связи и отношения между явлениями и предметами.

Ребёнок устанавливает, что перейти от одного к другому можно только через опосредующее звено, через нечто «третье». Нахождение такого опосредующего звена всегда составляет главную трудность любой задачи. Но здесь как раз и обнаруживается, как пишет Э. Ильенков, наличие ума, ибо «третье» всегда обладает ярко выраженными диалектическими свойствами. «Средний член», поскольку он должен иметь прямое отношение и к одной и к другой стороне явления, соединяет их в единую действительную систему. Он – непосредственное единство противоположностей.

Ребёнок не просто получил возможность решить конкретно-практическую задачу – измерение двух величин через третью. Он, так же как и его гениальный предок, обнаруживший способ раскалывать дерево через третье звено – камень-колун, нашёл общий диалектический приём движения мысли. Естественно, он ещё не осознал значения своего открытия: для этого необходимо время. Но важно, что он сделал первый шаг не только в математике. На математическом материале он сделал шаг в мышлении вообще. Впрочем, в действительности всё происходит гораздо проще. Идёт ведь урок математики, а не диалектики.

Другая задача: отрезать кусок верёвки, равный длине линии, нарисованной на доске. Всю верёвку в класс, естественно, приносить нельзя. Дети ищут способы решения конкретных задач, предлагают разные меры измерения, пробуют и делают вывод: уравнение и измерение может осуществляться не только непосредственно, но и опосредованным путём, с помощью выбранной заранее мерки. Оказывается, мерку можно выбрать любую, но если выбрал, дальше работай только с ней.

Итак, в отрезке уложилось три карандаша. Как зафиксировать выполненное действие?

Проще всего буквами, дети к этому давно уже привыкли. Планка – А, карандаш (мерка) – С. Отношение между этими величинами, установленное путём измерения, равно трём.

— 63 —
Страница: 1 ... 5859606162636465666768 ... 141