Дважды два = икс?

Страница: 1 ... 6061626364656667686970 ... 141

– Неверно!.. – убеждённо говорит ребёнок. – Потому что вы взяли для числа 2 другую мерку. А надо взять одинаковые мерки.

– Допустим. Какое число больше: два или один?

– Конечно, два.

– На сколько?

– На единицу. На одну мерку.

– На сколько пять больше двух?

– На три мерки.

– А сколько можно чисел откладывать на такой линии?

– Много… Да ведь и саму линию можно удлинять на сколько угодно.

– Вот, оказывается, где живут числа, – лукаво говорит учитель, – на таких отрезках. Может нам помочь их местожительство узнать что-нибудь новое о числе?

– Может. Например, узнать, как добираться от одного числа к другому… Линия наводит порядок в числах.

– А как, по-вашему, назвать такую линию?

– Можно назвать безграничной, потому что у неё нет границ, – заявляет малыш.

– Другие предложения есть?

Конечно, есть. Весь класс тянет вверх ручонки, и нас поражают острота и индивидуальность видения и понимания того математического материала, с которым только что работали дети.

– Я назвал бы её циферблатной!..

– Бесконечной…

– Линейкой для цифр.

– Разве это цифры? – немедленно реагирует учитель. – Что такое цифры?

– Значки для обозначения чисел.

– Значит, как назвать?

– Линейкой для чисел.

– Многомерная линия.

– Числовая счётная линия.

– Прямочисленная линия.

– Она – рабочая линия.

– Числовая ось!..

– Что такое ось?

– Это линия, которая что-то на себе держит. Колёса, например. А здесь держит числа.

Учитель улыбается: молодцы!..

Ну как не восхититься образной детской мыслью, раскрепощённой поиском и радостью труда!

Найден не только точный термин, найдено определение красивое, разумное, ясное. Числовая ось держит числа!

В конце концов для него станет очевидным, что любой шаг на луче может соответствовать любому числу, которое он обозначит буквой, и тогда предыдущие и последующие числа будут отличаться на единицу в меньшую или большую сторону.

Но самое важное, что числовой ряд сразу возникает перед ним как бесконечный и поэтому обозначение и запись чисел становится проблемой, которую надо решать. Поиск ответа приведёт ребёнка к счёту группами. Например, десятками. А далее новая проблемная ситуация: как выйти за пределы 10 десятков. И перед глазами ребёнка раскрывается новая математическая реальность – система разрядов, в которой каждый последующий разряд содержит 10 единиц предыдущего.

Так всё более уточняется и обобщается исходное общее отношение между величинами, выражаемое числом, и способ его обнаружения детьми. И когда во втором классе наступает самый драматический момент всего начального курса обучения математике – переход к дробным числам, то для детей это не абсолютно новое явление, требующее пересмотра их прежних представлений о целых числах, а лишь дальнейшая конкретизация понятия числа.

— 65 —
Страница: 1 ... 6061626364656667686970 ... 141