Дважды два = икс?

Страница: 1 ... 5657585960616263646566 ... 141

И нам внезапно становится ясен замысел эксперимента: начать с того, чтобы показать, что между абстрактным математическим миром и конкретным миром, близким и понятным ребёнку, есть связь. Эта связь не случайна, она осмысленна, ребёнок сам её устанавливает.

Для него нет голых математических абстракций, есть необходимость отвлечения от предметного мира, не замена его, а обобщение. Понятие величины, которую ребёнок измерил, есть живая абстракция, показавшая ему, что за теорией стоит движение материальной действительности.

Эту практичность теории сразу же схватывают малыши. Теория здесь вообще поначалу не отделена от практики, точно так же, как она была вплетена в неё на заре человечества. Впрочем, до подлинной математической теории числа ещё далеко, но здесь её начало, живое, деятельное, не привнесённое извне умными учебниками, а созданное собственным умом ребёнка. Пока он не пришёл к понятию числа, не пропустил его через себя, свои чувства, не выделил его в своём сознании как закономерный объект деятельности, не обследовал его своей мыслью, нельзя идти вперёд.

Поэтому так долго, не день, не два, а месяцы занимаются дети как будто далёкими от обычной школьной математики вещами. Но они занимаются важнейшими с точки зрения формирования математического мышления делом: дети овладевают собственными действиями, с помощью которых обнаруживают параметры в вещах, имеющих характер величин (длин, объёмов, высот и т. п.).

Овладение собственным действием! Разве им нужно овладевать? Оказывается, необходимо, чтобы действие это было именно твоим, а не чужим. Вначале он осторожно пробует его совершить: а вдруг не получится. Получилось, но, может, это случайность, нужно повторить. И снова удача. Тогда стоит обследовать каждый сделанный тобой шаг, чтобы осознать весь процесс движения, чтобы ничего не пропустить, сориентироваться. Ещё проверка при полной ориентировке, и снова – да, всё правильно, можно действие взять на вооружение. Отработать его так, чтобы довести до уровня автоматизма, сначала всё быстрее «работая» с реальными предметами, а потом и с воображаемыми. И тогда в один прекрасный день твоё действие становится актом мысли, не осознаваемым в тот момент, когда оно совершается. И совершается оно как будто само собой, как будто он и родился с умением умножать, делить…

Процесс овладения собственными действиями, превращения их в действие мысли, который мы сейчас в очень упрощённом виде описали, и составляет сущность гальперинской теории планомерного формирования умственных действий, с помощью которой может быть зримо представлен процесс усвоения знаний.

— 61 —
Страница: 1 ... 5657585960616263646566 ... 141