|
Взяв за основу гипотезу ККО, мы с Юрием Вольфом разработали обобщенную, но детализированную модель возникновения трансляционной системы в мире РНК (Wolf and Koonin, 2007). Эта модель включает в себя как дарвиновский отбор, так и аспекты конструктивной нейтральной эволюции (см. гл. 8), наряду с экзаптацией и субфункционализацией. Отправной точкой всех сценариев происхождения трансляции является реплицирующийся ансамбль эгоистичных кооператоров, состоящий из молекул РНК с различными рибозимными активностями и существующий в сети неорганических ячеек (см. дальнейшее обсуждение в следующем разделе). Эти рибозимы исполняют, в числе прочих функций, и функцию репликазы; вероятно, представлены и другие функции, такие, например, как синтез предшественников РНК. Наш эволюционный сценарий включает в себя следующие этапы (см. рис. 12-4). 1. Рибозим R является частью ансамбля эгоистичных кооператоров в ячейке. Этот рибозим достаточно сложен для катализа реакции (X ? Y), скорость которой влияет на приспособленность ансамбля, и имеет определенное число позиций, способных к эволюции, так что возможна эволюция новых функций. Две или более абиогенных аминокислоты, присутствующие в ячейке, связываются с R. Избирательное связывание аминокислот обеспечивается активным центром, случайно присутствующим в R . Участие стереохимического протокода (кодон/антикодон) на данном этапе возможно, но не повлияет на ситуацию существенным образом. Присоединенные аминокислоты стимулирует реакцию X ? Y, катализируемую R. In vitro были получены рибозимы, сильно стимулируемые пептидами что дает экспериментальное обоснование этому принципиальному шагу (Robertson et al., 2004). В контексте эгоистично-кооперативной эволюции (см. гл. 11) естественный отбор будет отбирать аминокислоты, стимулируемые R , приводя к постепенному совершенствованию пространственного выравнивания аминокислот на R и отбору последовательности и структуры оптимальных для связывания аминокислот. Рис. 12-4. Концептуальный сценарий происхождения трансляционной системы посредством экзаптации и субфункционализации. Шаги модели, описанные в тексте, обозначены цифрами в скобках. 2. R приобретает дополнительную активность лигазы пептидной связи, формируя олигопептид P из соседних аминокислот, связанных с R . Отбором in vitro были получены рибозимы с высокой активностью пептидной лигазы, хотя и с низкой избирательностью. По-видимому, рибозимы этого класса способны синтезировать только короткие пептиды, состоящие из, самое большее, четырех или пяти аминокислот. Селекционным преимуществом этого новоприобретения будет повышение стабильности реактивного комплекса, приводящее к дальнейшему усилению реакции X ? Y . Естественно задаться вопросом, откуда на этом шаге берется энергия, необходимая для формирования пептидной связи. В экспериментально описанных рибозимных пептидных лигазах один из субстратов является активированным производным (аминоацил-аденилат), так что используется энергия эфирной связи. Это напоминает современную трансляцию, в которой АРСазы используют аминоацил-аденилаты для аминоацилирования специфической тРНК, а высокоэнергетичная эфирная связь аминоацил-тРНК используется для транспептидации. Гипотетические древнейшие пептид-лигазы, возможно, действовали таким же образом, используя аминоацил-аденилаты или другие активированные производные аминокислот, произведенные другими рибозимами. И действительно, были получены рибозимы, катализирующие каждую из этих реакций, от аденилирования аминокислот до синтеза пептидов (см. табл. 12-1). Эти рибозимы, несомненно, зависят от энергии фосфодиэфирной связи в АТФ или иной формы энергии. — 253 —
|