|
6. Среднее отклонение-это более точный показатель разброса, чем диапазон распределения. Для расчета среднего отклонения вычисляют среднюю разность между всеми значениями данных и средней арифме- Cinciiniu тики и обработки дачных 313 тической, или, упрощенно, Среднее отклонение = 7. Еще один показатель разброса, вычисляемый из среднего отклонения,-это варианса (дисперсия), равная среднему квадрату разностей между значениями всех данных и средней: Yd2 Варианса = ——. п 8. Наиболее употребительным показателем разброса служит стандартное отклонение, равное квадратному корню из вариансы. Таким образом, это квадратный корень из суммы квадратов всех отклонений от средней: Стандартное отклонение = или п V п - 1 9. Важное свойство стандартного отклонения заключается в том. что независимо от его абсолютной величины в нормальном распределении оно всегда соответствует одинаковому проценту данных, располагающихся по обе стороны от средней: 68% результатов располагаются в пределах одного стандартного отклонения в обе стороны от средней, 95%-в пределах двух стандартных отклонений и 99,7%-в пределах трех стандартных отклонений. 10. С помощью перечисленных выше показателей можно осуществить оценку различий между двумя или несколькими распределениями, позволяющую проверить, насколько эти различия могут быть экстраполированы на популяцию, из которой взяты выборки. Для этого применяют методы индуктивной статистики. II. Индуктивная статистика 1. Задача индуктивной статистики заключается в том, чтобы оце-' нить значимость тех различий, которые могут быть между двумя распределениями, с целью выяснить, можно ли распространить найденную закономерность на всю популяцию, из которой были взяты выборки. 2. Для того чтобы определить, достоверны ли различия между распределениями, следует выдвинуть гипотезу, которую нужно будет затем проверить статистическими методами. Нулевой гипотезой называют предположение, согласно которому различие между распределениями недостоверно, тогда как альтернативная гипотеза утверждает противоположное. 3. В том случае, если данных достаточно, если эти данные количественные и подчиняются нормальному распределению, для проверки гипотез используют параметрические критерии. Если же данных мало либо они .44Приложение Б — 266 —
|