|
где (/-разность между рангами сопряженных значений признаков (независимо от ее знака), а и-число пар. Обычно этот непараметрический тест используется в тех случаях, когда нужно сделать какие-то выводы не столько об интервалах между данными, сколько об их рангах, а также тогда, когда кривые распределения слишком асимметричны и не позволяют использовать такие параметрические критерии, как коэффициент г (в этих случаях бывает необходимо превратить количественные данные в порядковые). Поскольку именно так обстоит дело с распределением значений эффективности и времени реакции в экспериментальной группе после воздействия, можно повторить расчеты, которые вы уже проделали для этой группы, только теперь не для коэффициента г, а для показателя г,. Это позволит посмотреть, насколько различаются эти два показателя. Статистика и обработка данных 311
428 * Следует помнить, что 1) для числа попаданий 1-й ранг соответствует самой высокой, а 15-й-самой низкой результативности, тогда как для времени реакции 1-й ранг соответствует самому короткому времени, а 15-и-самому долгому, 2) данным ex aequo придается средний ранг. 6-428 153- 15 == 1 2568 3360 = 0,24. Таким образом, как и в случае коэффициента г, получен положительный, хотя и недостоверный, результат. Какой же из двух результатов правдоподобнее: г = —0,48 или г, = +0,24? Такой вопрос может встать лишь в том случае, если результаты достоверны. Хотелось бы еще раз подчеркнуть, что сущность этих двух коэффициентов несколько различна. Отрицательный коэффициент г указывает на то, что эффективность чаще всего тем выше, чем время реакции меньше, тогда как при вычислении коэффициента г, требовалось проверить, всегда ли более быстрые испытуемые реагируют более точно, а более медленные - менее точно. Поскольку в экспериментальной группе после воздействия был получен коэффициент г,, равный 0,24, подобная тенденция здесь, очевидно, не прослеживается. Попробуйте самостоятельно разобраться в данных для контрольной группы после воздействия, зная, что ^_d2 = 122,5: — 264 —
|