Что такое психология (том 2)

Страница: 1 ... 258259260261262263264265266267268 ... 321

309

Статистика и обработка данных



Коэффициент Браве - Пирсона

Для вычисления этого коэффициента применяют следующую форму­лу (у разных авторов она может выглядеть по-разному):

_ (SXYj - nXY (п - 1)^5у

где XX У-сумма произведений данных из каждой пары;

и-число пар;

Х-средняя для данных переменной X;

У-средняя для данных переменной У;

Дд. - стандартное отклонение для распределения х;

sy- стандартное отклонение для распределения у. Теперь мы можем использовать этот коэффициент для того, чтобы установить, существует ли связь между временем реакции испытуемых и эффективностью их действий. Возьмем, например, фоновый уровень контрольной группы.


Испытуемые

Эффектив­ность (X)

XY

Время

реакции (Y)



Д1

Д2

дз

19 10 12

152 150 156


Ю822 14 308

3142

/I XY = 15-15,8- 13,4 = 3175,8;

(n- 1)V,= 14-3,07-2,29 =98,42;

3142-3175,8 -33,8 r = ———————— = ——— = -0,34.

98,42 98,42

Отрицательное значение коэффициента корреляции может означать, что чем больше время реакции, тем ниже эффективность. Однако величина его слишком мала для того, чтобы можно было говорить о достоверной связи между этим двумя переменными.

Теперь попробуйте самостоятельно подсчитать коэффициент корре­ляции для экспериментальной группы после воздействия, зная, что ЕХУ= 2953:

nXY=..... {п- l),^Sy= .....


Приложение Б

Какой вывод можно сделать из этих результатов? Если вы считаете что между переменными есть связь, то какова она-прямая или обраг-ная? Достоверна ли она [см. табл. 4 (в дополнении Б. 5) с критическими значениями г]?

Коэффициент корреляции рангов Спирмена г,

Этот коэффициент рассчитывать проще, однако результаты полу­чаются менее точными, чем при использовании г. Это связано с тем, что при вычислении коэффициента Спирмена используют порядок следо­вания данных, а не их количественные характеристики и интервалы между классами.

Дело в том, что при использовании коэффициента корреляции рангов Спирмена (г,) проверяют только, будет ли ранжирование данных для какой-либо выборки таким же, как и в ряду других данных для этой выборки, попарно связанных с первыми (например, будут ли одинаково «ранжироваться» студенты при прохождении ими как психологии, так и математики, или даже при двух разных преподавателях психологии?). Если коэффициент близок к + 1, то это означает, что оба ряда практи­чески совпадают, а если этот коэффициент близок к — 1, можно говорить о полной обратной зависимости.

Коэффициент ^ вычисляют по формуле

— 263 —
Страница: 1 ... 258259260261262263264265266267268 ... 321