Об искусстве рассуждения

Страница: 1 ... 910111213141516171819 ... 196

Невозможность непосредственно сравнить дефиницию слова измерять и дефиницию слова треугольник — вот что поставило Вас перед необходимостью предпринять в речи различные преобразования одной и той же идеи.

Но чтобы пройти таким образом через ряд следующих друг за другом предложений и открыть тождество первой дефиниции с заключением рассуждения, необходимо в совершенстве знать все вещи, которые Вам нужно сравни­вать. Вы не докажете теорему о площади треугольника, если не имеете точных и полных идей того, что такое измерять прямоугольник, площадь, сторона, диагональ. Составьте же полные идеи каждой фигуры, и среди них не окажется такой, какую Вы не смогли бы точно измерить. Метод, которому мы следовали, применим ко всем случаям, когда мы не испытываем недостатка в идеях; и Вы можете предвидеть, что все математические истины суть лишь различные выражения этой первоначальной дефиниции.

Измерять — значит последовательно прилагать ко всем частям измеряемой величины определенную величину. Таким образом, математика представляет собой необозри­мую по своему объему науку, которая заключается в идее, выражаемой одним словом .

Нельзя всегда, как в примере, который я Вам только что привел, проделать с первой дефиницией все необходимые преобразования; но есть методы, позволяющие преодолеть эту трудность; чего невозможно сделать с целой идеей, можно последовательно проделать со всеми ее частями.


Тождество

явственно выступает в арифметике

Например, большое число может быть выражено только одним способом, и арифметика не предоставляет средст­ва варьировать его выражение. Но если, рассматривая непосредственно два больших числа, я не могу установить, в чем они тождественны, я могу открыть тождество, существующее между их частями, и благодаря этому способу я узнаю все их отношения. Имен­но на этом и основаны четыре действия арифметики, кото­рые можно даже свести к двум — сложению и вычитанию. Стало быть, когда я говорю шесть плюс два равно восьми, это то же, как если бы я сказал шесть плюс два равно шести плюс два; а когда я говорю шесть минус двй равно четырем, это опять-таки то же самое, как если бы я сказал шесть минус два равно шести минус два, и т. д.

Значит, арифметическая очевидность состоит в тожде­стве, и, если шести и двум я даю наименование восьми, а шести минус два — наименование четырех, я изменяю выражение лишь для того, чтобы облегчить сравнения и сделать тождество заметным.

Таким образом, доказательства всегда производятся лишь при помощи ряда тождественных предложений, производим ли мы действия с целыми идеями или последовательно с каждой их частью 7.

— 14 —
Страница: 1 ... 910111213141516171819 ... 196