Стало быть, как в своей нижней части, так и в своей верхней части прямая EF перпендикулярна прямой АВ, а сказать так — то же, что сказать, что прямая АВ перпенди-кулярна прямой EF, поскольку предположить, что прямая АВ наклонна к прямой EF, означало бы предположить, что прямая EF наклонна к прямой АВ, поскольку прямые занимают по отношению друг к другу одинаковое положение. Но прямая EF, будучи продолжена до точки Н, следует направлению, заданному двумя точками Е, G, и является прямой по всей своей длине. Если это так, то сказать, что прямая CD параллельна прямой АВ,— значит сказать, что она образует с пря- 19 18 мой ЕН углы, подобные углам, которые образует прямая АВ с той же самой прямой; а сказать, что она образует два подобных угла,— значит сказать, что она образует прямые углы. В самом деле, если бы мы допустили противоположное, мы допустили бы, что она наклонна по отношению к прямой ЕН; а предположив в ней наклон, которого лишена прямая АВ, мы допустили бы, что она не параллельна прямой АВ. Ведь сказать, что прямая CD образует с прямой ЕН прямые углы,— значит сказать, что прямая ЕН образует прямые углы с прямой CD, а сказать, что прямая ЕН образует прямые углы с прямой CD,— значит сказать, что она образует прямые углы с прямой АВ. Таким образом, доказано, что прямая, перпендикулярная другой прямой, перпендикулярна всем прямым, параллельным этой второй прямой, или что она образует со всеми прямыми, параллельными последней, прямые углы. Следовательно, если эта прямая наклонна к одной из параллельных, она будет одинаково наклонна ко всем другим параллельным, ибо предположить, что она не одинаково к ним наклонна,— значит предположить, что она не прямая или что прямые, которые она пересекает, не параллельны. Следовательно, прямая FG одинаково наклонна к прямой АВ (рис. 6 ) и к прямой CD. Ведь сказать, что она одинаково наклонна к обеим,— значит сказать, что она образует с той стороны, в которую она отклоняется, равные углы на каждой параллели; что угол q, внешний двум параллелям, равен внутреннему углу и и что внутренний угол s равен внешнему углу у. Очевидно также, что с другой стороны прямой FG внешний угол р равен внутреннему углу t, а внешний угол х — внутреннему углу r. Чтобы сделать это явным, нужно лишь перевернуть рисунок. Впрочем, если на первом рисунке прямая, которая перпендикулярно пересекает две параллели, образует на каждой два прямых угла, то на втором рисунке прямая, пересекающая их наклонно, образует на каждой два угла, сумма которых равна двум прямым. Ибо наклонность линии FG, образующая, например, угол q, не равный углу р, не может изменить суммарную величину этих двух углов. В самом деле, чтобы заметить тождество суммы двух углов на втором рисунке и суммы двух углов на первом, достаточно принять во внимание, что на обоих рисунках — 12 —
|