|
Поскольку цветные экраны не могут влиять на аккомодацию, все описанные далее эксперименты проводились с учетом других функций глаза. Для этой цели использовался микроскоп, один оборот колеса тонкой подстройки которого поднимал или опускал объектив на 1/100 дюйма. Колесо имело десять делений, каждое из которых соответствовало смещению объектива на 1/1000 дюйма. В таблице III это смещение обозначено буквами «mi» (от англ. milliinches — миллидюймы). В экспериментах использовался самый слабый окуляр и полуторадюймовый объектив. Цветные экраны изготавливались путем заполнения стеклянных ячеек слабыми водными растворами различных красителей: карминового (carmine), желтого (К yellow), метиленового синего (methylene blue) и генцианового фиолетового (gentian violet) соответственно. Насыщенность цвета, по-видимому, не играет никакой роли, главное, чтобы экраны были не слишком темными и обеспечивали достаточную освещенность объекта на предметном столике. Последнее условие, к сожалению, несколько нарушает чистоту эксперимента, поскольку светлые экраны пропускают большое количество белого света. Эксперимент выполнялся в такой последовательности. При выставленной на ноль шкале колеса тонкой подстройки наблюдатель, вращая только колесо грубой подстройки, фокусировался как можно точнее на выбранную им в поле зрения щетинку в хоботке мясной мухи (далее для краткости — объект). Добившись максимальной резкости, он отводил взгляд на одну-две секунды в сторону, а затем как можно скорее возвращался к объективу, чтобы проверить точность фокусировки. Если после расслабления глаз резкость оказывалась неудовлетворительной, проводилась дополнительная подстройка фокуса. Такая процедура повторялась два-три раза для гарантированного исключения эффектов аккомодации. Затем между зеркалом микроскопа и объектом помещался цветной экран и наблюдатель заново подстраивал фокус на выбранную щетинку, используя на этот раз только колесо тонкой подстройки (с описанными выше мерами предосторожности для исключения эффектов аккомодации). Измерения проводились по очереди с каждым из фильтров-экранов, и каждый раз положение колеса тонкой подстройки, дающее наилучшую резкость, записывалось. На следующем этапе наблюдатель смотрел через темный дицианиновый экран на свет около 30 секунд, после чего вся серия экспериментов повторялась в той же последовательности: сперва фокусировка на объект в белом свете, затем через каждый из фильтров-экранов попеременно. Приведем детальный отчет об одном из таких экспериментов. Наблюдатель А. (см. таблицу III) с описанными выше мерами предосторожности сфокусировал микроскоп на щетинку с помощью колеса грубой подстройки при выставленном в нулевое положение колесе тонкой подстройки. Результат обозначили как 0. Затем под объект поместили желтый экран, который не потребовал перефокусировки. Значит, результат снова 0. Теперь пришла очередь красного фильтра. В красном свете щетинка оказалась не в фокусе, и для восстановления резкости объектив пришлось приподнять над объектом, повернув колесо тонкой подстройки на одну десятую оборота. Результат обозначили как -1 mi. После замены экрана на синий колесо тонкой подстройки пришлось вращать снова. На этот раз лучшая резкость соответствовала его повороту на одно деление от нуля в противоположную сторону, при этом объектив приблизился к объекту. Результат обозначили как +1 mi. С фиолетовым фильтром резкости удалось добиться, дополнительно приблизив объектив к объекту еще на два деления. В итоге смещение колеса тонкой подстройки от нулевого положения составило три десятых оборота, или +3 mi. — 45 —
|