Логика случая

Страница: 1 ... 140141142143144145146147148149150 ... 370

Для всей последующей эволюции эукариот критически важным и, очевидно, неизбежным следствием возникновения ядра стало радикальное снижение уровня ГПГ, если не полное его прекращение. Хотя имеются многочисленные сообщения о захватах бактериальных генов одноклеточными эукариотами, уровень ГПГ трудно сравнивать с тем, который наблюдается у непаразитических бактерий и архей (Keeling and Palmer, 2008). Большая часть ДНК, которая попадает в эукариотическую клетку, разрушается, даже не успев войти в ядро и достичь хроматина. Такое резкое замедление ГПГ подсказывает естественный ответ на вопрос, который иначе ставит в тупик: почему эукариоты утратили все опероны своих прокариотических предков? (Архейный хозяин, несомненно, обладал типичной оперонной организацией генов, как и эндосимбионт.) Вспомним концепцию эгоистичного оперона: как только происходит эффективный ГПГ, храповик приводится в движение; значит, коль скоро оперон разрушен, вероятность его воссоздания посредством рекомбинации, а затем сохранения отбором становится чрезвычайно мала. Фактически этот оперон безвозвратно утрачивается в данной линии. Видимо, этот храповой механизм уничтожил все прокариотические опероны на ранних стадиях эволюции эукариот. Опероны, все-таки существующие у некоторых эукариот, таких как нематоды, не имеют ничего общего с прокариотическми оперонами; по всей видимости, они возникли de novo и не были зафиксированы в далеко разошедшихся эукариотических линиях.

Данный сценарий приводит к простому, но неожиданному предсказанию: те гены, которые могут функционировать только внутри оперонов, но оказывают повреждающее действие, оказавшись вне контекста оперона, будут полностью утрачены у эукариот. Замечательно, что это в точности соответствует случаям систем токсин – антитоксин и рестрикции – модификации, которые повсеместно распространены у бактерий и архей (см. гл. 5), но, по-видимому, полностью отсутствуют у эукариот.

Почти полная элиминация ГПГ также дает эволюционный стимул для широкомасштабной дупликации генов, которая является главным механизмом инновации у эукариот (Lespinet et al., 2002). Популяционное «бутылочное горлышко», обусловленное размножением эндосимбионтов, сделало возможным взрыв дупликаций во время фазы ствола (Makarova et al., 2005; также см. гл. 8), но в более общем смысле дупликации замещают ГПГ как главный источник обновлений в течение всей эволюции эукариот.

Последнее по порядку, но, конечно, не по значению – это то, что низкий уровень ГПГ у эукариот можно считать принципиальным фактором, обусловившим возникновение полового размножения с использованием мейоза, одного из определяющих биологических процессов у эукариот. Действительно, у эукариот вредные мутации обычно не могут быть скомпенсированы горизонтально перенесенными генами, и это давление должно способствовать эволюции системы регулярной рекомбинации, которая бы предупреждала накопление таких мутаций и последующий мутационный крах . Такая система, противодействующая храповику Мёллера, развилась в форме мейоза и полового размножения. Это мог быть и не единственный фактор, который послужил движущей силой в эволюции полового размножения, но он, несомненно, важен (мы не имеем возможности обсуждать подробно данную проблему, чрезвычайно популярную среди эволюционных биологов [de Visser, Elena, 2007]). Учитывая, что снижение ГПГ в большой степени является следствием эволюции ядра, «изобретение» мейоза и полового размножения – на базе систем репарации и деления клеток у архей – по-видимому, является частью цепи инициированных вторжением интронов адаптаций, направленных на защиту и контроль повреждений (см. рис. 7–6).

— 145 —
Страница: 1 ... 140141142143144145146147148149150 ... 370