Д. С. Горбунов, В. А. Рубаков

ВВЕДЕНИЕ В ТЕОРИЮ РАННЕЙ ВСЕЛЕННОЙ

ТЕОРИЯ ГОРЯЧЕГО БОЛЬШОГО ВЗРЫВА

Однородная изотропная Вселенная • Динамика расширения Вселенной • ЛСDM: космологическая модель с темной материей и темной энергией • Термодинамика в расширяющейся Вселенной • Рекомбинация • Реликтовые нейтрино • Первичный нуклеосинтез • Темная материя • Фазовые переходы в ранней Вселенной • Генерация барионной асимметрии • Топологические дефекты и солитоны во Вселенной

Д. С. Горбунов, В. А. Рубаков

ВВЕДЕНИЕ В ТЕОРИЮ РАННЕЙ ВСЕЛЕННОЙ

Теория горячего Большого взрыва

Настоящее издание осуществлено при финансовой поддержке Российского фонда фундаментальных исследований (проект № 07–02–07015)

Горбунов Дмитрий Сергеевич, Рубаков Валерий Анатольевич

Введение в теорию ранней Вселенной: Теория горячего Большого взрыва. — М.: Издательство ЛКИ, 2008. — 552 с., цв. вкл.

Настоящая книга написана в значительной мере с точки зрения связи космологии с физикой микромира. В ней излагаются результаты, относящиеся к однородной изотропной Вселенной на горячей стадии ее эволюции и на последующих космологических этапах. В основных разделах рассматриваются установившиеся представления о ранней и современной Вселенной; эти разделы могут служить современным введением в данную бурно развивающуюся область науки. Для облегчения чтения основных разделов в приложениях приведены необходимые сведения из общей теории относительности и теории элементарных частиц. Кроме того, в книге рассматриваются гипотезы (зачастую альтернативные друг другу), относящиеся к нерешенным проблемам космологии, таким как проблемы темной материи, темной энергии, асимметрии между веществом и антивеществом и т. д.

Предполагается, что в дальнейшем будет написано продолжение, посвященное теории развития космологических возмущений, инфляционной теории и теории постинфляционного разогрева.

Для научных работников, аспирантов и студентов, специализирующихся в области физики элементарных частиц и в области космологии.

Издательство ЛКИ. 117312, г. Москва, пр-т Шестидесятилетия Октября, д. 9. Печать офсетная. Формат 70 × 100/16. Печ. л. 34,5. Тираж 1200 экз. Заказ № 1212.

Отпечатано в полном соответствии с качеством предоставленных диапозитивов в ОАО «Дом печати — ВЯТКА». 610033, г. Киров, ул. Московская, 122

ISBN 978-5-382-00657-4

© Издательство ЛКИ, 2008

Все права защищены. Никакая часть настоящей книги не может быть воспроизведена или передана в какой бы то ни было форме и какими бы то ни было средствами, будь то электронные или механические, включая фотокопирование и запись на магнитный носитель, а также размещение в Интернете, если на то нет письменного разрешения владельца.

Оглавление

Предисловие	8
Глава 1. Космология. Краткий обзор	10
1.1. О единицах измерения	10
1.2. Вселенная сегодня	13
1.2.1. Однородность и изотропия	13
1.2.2. Расширение	14
1.2.3. Время жизни Вселенной и размер ее наблюдаемой части.	18
1.2.4. Пространственная плоскостность	19
1.2.5. «Теплая» Вселенная	20
1.3. Баланс энергий в современной Вселенной	24
1.4. Вселенная в будущем	32
1.5. Вселенная в прошлом	34
1.5.1. Рекомбинация	35
1.5.2. Первичный нуклеосинтез	36
1.5.3. Закалка нейтрино	37
1.5.4. Фазовые переходы во Вселенной	37
1.5.5. Генерация барионной асимметрии	38
1.5.6. Генерация темной материи	40
1.6. Образование структур во Вселенной	40
1.7. Инфляционная стадия	42
Глава 2. Однородная изотропная Вселенная	45
2.1. Однородные изотропные пространства	45
2.2. Метрика Фридмана—Робертсона—Уокера	48
2.3. Красное смещение. Закон Хаббла	50
2.4. Замедление относительного движения	55
2.5. Газы свободных частиц в расширяющейся Вселенной	57
Глава 3. Динамика расширения Вселенной	61
3.1. Уравнение Фридмана	61
3.2. Примеры космологических решений. Возраст Вселенной.	
Космологический горизонт	65
3.2.1. Нерелятивистское вещество («пыль»)	66
3.2.2. Ультрарелятивистское вещество («радиация»)	68

4	Оглавление

	3.2.3. Вакуум	70
	3.2.4. Уравнение состояния $p = w \rho$	73
3.3.	Решения с реколлапсом	75
Глава	а 4. АСDМ: космологическая модель	,
	с темной материей и темной энергией	77
4.1.	Современный состав Вселенной	77
4.2.	Общие свойства эволюции Вселенной	80
4.3.	Переход от замедления к ускорению	82
4.4.	Переход от радиационно-доминированной к пылевидной стадии	83
4.5.	Возраст современной Вселенной и размер горизонта	85
4.6.	Соотношение «видимая яркость — красное смещение»	
	для удаленных стандартных свеч	89
4.7.	Угловые размеры удаленных объектов	98
4.8.	Квинтэссенция	99
	4.8.1. Осооенности эволюции однородного скалярного поля в расширяющейся Вселенной	99
	4.8.2. Ускоренное расширение Вселенной	,,
	за счет скалярного поля	104
3	4.8.3. Следящее поле	105
Глава	а 5. Термодинамика в расширяющейся Вселенной	109
5.1.	Функции распределения бозонов и фермионов	109
5.2.	Энтропия в расширающейся Вселенной	
	Энтропия в расширяющенся вселенной.	
	Барион-фотонное отношение	117
5.3.	 Барион-фотонное отношение	117
5.3.	Барион-фотонное отношение	117 122
5.3. 5.4.	 Барион-фотонное отношение *Модели с промежуточной пылевидной стадией: генерация энтропии *Неравновесные процессы 	117 122 127
5.3. 5.4. Глава	Барион-фотонное отношение * *Модели с промежуточной пылевидной стадией: генерация энтропии *Неравновесные процессы • 6. Рекомбинация	 117 122 127 133
5.3. 5.4. Глава 6.1.	Барион-фотонное отношение * * Модели с промежуточной пылевидной стадией: генерация энтропии * * Неравновесные процессы * • 6. Рекомбинация * Температура рекомбинации *	 117 122 127 133 133
5.3. 5.4. Глава 6.1. 6.2.	Барион-фотонное отношение * *Модели с промежуточной пылевидной стадией: генерация энтропии *Неравновесные процессы • 6. Рекомбинация Температура рекомбинации Последнее рассеяние фотонов	 117 122 127 133 133 139
5.3. 5.4. Глава 6.1. 6.2. 6.3.	Барион-фотонное отношение * * Модели с промежуточной пылевидной стадией: генерация энтропии * * Неравновесные процессы * • 6. Рекомбинация * Температура рекомбинации * • Выполнение условий термодинамического равновесия *	 117 122 127 133 139 141
5.3. 5.4. Глава 6.1. 6.2. 6.3. 6.4.	Барион-фотонное отношение * * Модели с промежуточной пылевидной стадией: генерация энтропии * Неравновесные процессы • 6. Рекомбинация Температура рекомбинации Последнее рассеяние фотонов * Выполнение условий термодинамического равновесия Горизонт на момент рекомбинации и угол, под которым он виден	 117 122 127 133 139 141
 5.3. 5.4. Глава 6.1. 6.2. 6.3. 6.4. 	Барион-фотонное отношение * * Модели с промежуточной пылевидной стадией: reнерация энтропии * * Неравновесные процессы * • 6. Рекомбинация * Последнее рассеяние фотонов * * Выполнение условий термодинамического равновесия * Горизонт на момент рекомбинации и угол, под которым он виден сегодня. Пространственная плоскостность Вселенной *	 117 122 127 133 139 141 146
5.3. 5.4. Глава 6.1. 6.2. 6.3. 6.4. Глава	Барион-фотонное отношение * * Модели с промежуточной пылевидной стадией: reнерация энтропии * Неравновесные процессы • 6. Рекомбинация Последнее рассеяние фотонов * Выполнение условий термодинамического равновесия Горизонт на момент рекомбинации и угол, под которым он виден сегодня. Пространственная плоскостность Вселенной • 7. Реликтовые нейтрино	 117 122 127 133 139 141 146 152
 5.3. 5.4. Глава 6.1. 6.2. 6.3. 6.4. Глава 7.1. 	Барион-фотонное отношение	 117 122 127 133 139 141 146 152
 5.3. 5.4. Глава 6.1. 6.2. 6.3. 6.4. Глава 7.1. 7.2. 	Барион-фотонное отношение * * Модели с промежуточной пылевидной стадией: reнерация энтропии * Неравновесные процессы • 6. Рекомбинация Последнее рассеяние фотонов * Выполнение условий термодинамического равновесия Горизонт на момент рекомбинации и угол, под которым он виден сегодня. Пространственная плоскостность Вселенной • 7. Реликтовые нейтрино • Эффективная температура нейтрино.	 117 122 127 133 139 141 146 152 152
5.3. 5.4. Глава 6.1. 6.2. 6.3. 6.4. Глава 7.1. 7.2.	Барион-фотонное отношение	 117 122 127 133 139 141 146 152 154 152

\sim			
	rnga	noL	11/10
\sim	лав	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Iric.

Глава	18. Первичный нуклеосинтез	163
8.1.	Закалка нейтронов. Нейтрон-протонное отношение	163
8.2.	Начало нуклеосинтеза. Направление термоядерных реакций	167
8.3.	Кинетика нуклеосинтеза	173
	8.3.1. Горение нейтронов, $p + n \rightarrow D + \gamma \dots \dots \dots \dots$	174
	8.3.2. Горение дейтерия	175
	8.3.3. *Образование первичных ³ Не и ³ Н	179
`	8.3.4. *Образование и горение наиболее тяжелых ядер	
	первичной плазмы	181
8.4.	Наблюдаемая распространенность первичных элементов	184
Глава	9. Темная материя	189
9.1.	Холодная, горячая и теплая темная материя	190
9.2.	Закалка тяжелых реликтовых частиц	193
9.3.	Слабовзаимодействующие массивные частицы (WIMPs)	198
9.4.	Другие применения результатов раздела 9.2	203
	9.4.1. Остаточная плотность барионов	
	в барион-симметричной Вселенной	204
0.5	9.4.2. * Іяжелые нейтрино	204
9.5.	Новые частицы — кандидаты на роль темной материи	205
9.6.	Стабильные частицы в суперсимметричных теориях	206
	9.6.1. Неитралино	209
	9.6.2. Снеитрино	220
07	9.6.3. Травитино	221
9.7.		244
	9.7.1. Аксионы и другие легкие долгоживущие частицы	244
	9.7.2. Сверхтяжелые реликтовые частицы	200
	9.7.5. Экзопика	202
Глава	10. Фазовые переходы в ранней Вселенной	264
10.1.	Типы фазовых переходов	266
10.2.	Эффективный потенциал в однопетлевом приближении	276
10.3.	Инфракрасная проблема	288
Глава	11. Генерация барионной асимметрии	293
11.1.	Необходимые условия генерации асимметрии	294
11.2.	Несохранение барионного и лептонных чисел	
	во взаимодействиях частиц	297
	11.2.1. Электрослабый механизм	298
	11.2.2. Нарушение барионного числа в теориях Большого объединения	305

6	Оглавление	
*	11.2.3. Несохранение лептонных чисел и майорановские массы нейтрино	315
11.3.	Генерация асимметрии в распалах частии	317
11.4.	Барионная асимметрия и массы нейтрино: лептогенезис	326
11.5.	Электрослабый бариогенезис	333
	11.5.1. Условия нарушения термодинамического равновесия	334
	11.5.2. * Генерация барионной асимметрии на толстой,	
	медленно движущейся стенке	337
	11.5.3. *Бариогенезис на тонкой стенке	341
11.6.	* Механизм Аффлека—Дайна	350
	11.6.1. Скалярные поля, несущие барионное число	350
	11.6.2. Генерация асимметрии	352
11.7.	Заключительные замечания	359
Глав	а 12. Топологические дефекты и солитоны во Вселенной	360
12.1.	Образование топологических дефектов в ранней Вселенной	361
12.2.	*Монополи т'Хоофта-Полякова	364
	12.2.1. Монополи в калибровочных теориях	364
	12.2.2. Механизм Киббла	368
	12.2.3. Остаточная концентрация: проблема монополей	369
12.3.	*Космические струны	372
	12.3.1. Струнные конфигурации	372
	12.3.2. Газ космических струн	379
	12.3.3. Дефицит угла	382
	12.3.4. Струны во Вселенной	388
12.4.	*Доменные стенки	395
12.5.	*Текстуры	399
12.6.	* Гибридные топологические дефекты	403
12.7.	*Нетопологические солитоны: Q -шары	404
	12.7.1. Модель с двумя полями	404
	12.7.2. Модели с плоскими направлениями	410
Прил	тожение А. Элементы общей теории относительности	421
A.1.	Тензоры в искривленном пространстве-времени	421
A.2.	Ковариантная производная	425
A.3.	Тензор кривизны	431
A.4.	Уравнения гравитационного поля	435
A.5.	Конформно-связанные метрики	439
A.6.	Взаимодействие материи с гравитационным полем.	
	Тензор энергии-импульса	442
A .7.	Движение частиц в гравитационном поле	448

C-mainte

ŕ

А.8. Ньютоновский предел в общей теории относительности	450
А.9. Линеаризованные уравнения Эйнштейна	
на фоне пространства Минковского	453
А.10. Макроскопический тензор энергии-импульса	454
А.11. Обозначения и соглашения	455
Приложение В. Стандартная модель физики частиц	457
В.1. Описание Стандартной модели	457
В.2. Глобальные симметрии Стандартной модели	469
В.3. С-, Р-, Т-преобразования	471
В.4. Смешивание кварков	472
В.5. Эффективная теория Ферми	477
В.6. Особенности сильных взаимодействий	479
В.7. Эффективное число степеней свободы в Стандартной модели	480
Приложение С. Осцилляции нейтрино	482
С.1. Смешивание нейтрино и осцилляции	482
С.1.1. Вакуумные осцилляции	482
С.1.2. Осцилляции трех типов нейтрино в частных случаях	486
С.1.3. Эффект Михеева—Смирнова—Вольфенштейна	489
С.2. Наблюдения нейтринных осцилляций	491
C.2.1. Солнечные нейтрино и KamLAND	491
С.2.2. Атмосферные нейтрино, К2К и MINOS	498
C.2.3. CHOOZ: ограничение на $ U_{e3} $	501
С.3. Значения параметров осцилляций	501
С.4. Дираковские и майорановские массы. Стерильные нейтрино	504
С.5. Прямые поиски масс нейтрино	511
Приложение D. Квантовая теория поля при конечных температурах	512
D.1. Бозонные поля: евклидово время и периодические	
граничные условия	512
D.2. Фермионные поля: антипериодические условия	516
D.3. Теория возмущений	520
D.4. Однопетлевой эффективный потенциал	523
D.5. Дебаевская экранировка	528
Монографии, обзоры	532
Литература	537
Предметный указатель	540

Предисловие

Современная космология тесно связана с физикой микромира, изучающей элементарные частицы и их взаимодействия на наиболее фундаментальном уровне. Именно с этой точки зрения и написана эта книга. В ней излагаются результаты, относящиеся к однородной изотропной Вселенной на горячей стадии ее эволюции и на последующих космологических этапах. Эту область космологии нередко называют теорией горячего Большого взрыва. Предполагается, что в дальнейшем будет написана вторая часть книги, посвященная инфляционной теории, теории постинфляционного разогрева и теории развития космологических возмущений, т. е. неоднородностей во Вселенной.

В основу книги положен курс лекций, читавшийся в течение ряда лет на кафедре квантовой статистики и теории поля физического факультета Московского государственного университета им. М. В. Ломоносова студентам, специализирующимся в области теоретической физики. Мы сочли целесообразным, однако, добавить ряд более специальных разделов, помеченных в книге звездочкой. Дело в том, что в космологии имеются проблемы (природа темной материи и темной энергии, механизм образования асимметрии между веществом и антивеществом и т. д.), которые еще не нашли своего однозначного решения. Бо́льшая часть дополнительных разделов как раз и посвящена обсуждению соответствующих гипотез, зачастую альтернативных друг другу. При первом чтении эти разделы можно опустить.

Для чтения книги достаточно, в принципе, знания материала, обычно излагаемого в курсах общей физики. Поэтому основные разделы книги должны быть доступны студентам старших курсов университетов. Необходимые для их чтения сведения из общей теории относительности и теории элементарных частиц помещены в приложениях, не претендующих, разумеется, на скольконибудь полное изложение этих самостоятельных направлений физики. В то же время, в некоторых разделах, помеченных звездочкой, используются методы классической и квантовой теории поля, а также неравновесной статистической физики, так что для их чтения желательно владение соответствующими методами.

Сколько-нибудь полный библиографический обзор по обсуждаемым темам выходил бы далеко за рамки этой книги. Для ориентировки читателя мы поместили в конце книги перечень монографий и обзоров, в которых рассматриваются затронутые нами вопросы. Разумеется, этот перечень далеко не полон. По ходу изложения мы также приводим ссылки на оригинальную литературу, откуда мы почерпнули те или иные частные результаты.

Наблюдательная космология, как и экспериментальная физика частиц, быстро развивается. Приведенные в книге наблюдательные и эксперимен-

тальные данные и результаты их обработки (значения космологических параметров, ограничения на массы и константы связи новых гипотетических частиц и т. д.), скорее всего, будут уточнены уже до выхода книги в свет. Восполнить этот пробел поможет, например, обращение к регулярно обновляемым материалам Particle Data Group (http://pdg.lbl.gov).

Мы хотели бы поблагодарить наших коллег из Института ядерных исследований РАН Ф. Л. Безрукова, С. В. Демидова, В. А. Кузьмина, Д. Г. Левкова, М. В. Либанова, Г. И. Рубцова, Д. В. Семикоза, П. Г. Тинякова, И. И. Ткачева, С. В. Троицкого за участие в подготовке курса лекций и многочисленные полезные обсуждения и ценные замечания. Мы особенно признательны С. Л. Дубовскому, принимавшему участие в работе над книгой на начальном этапе. Мы глубоко благодарны В.С Березинскому, А. Боярскому, А. Виленкину, М. Б. Волошину, М. И. Высоцкому, А. Д. Долгову, С. Л. Дубовскому, Д. И. Казакову, Д. Г. Левкову, И. Д. Новикову, Э. Я. Нугаеву, К. А. Постнову, М. В. Сажину, Д. В. Семикозу, А. Ю. Смирнову, А. А. Старобинскому, А Н. Тавхелидзе, П. Г. Тинякову, С. Ю. Хлебникову и М. Е. Шапошникову за многочисленные полезные замечания и критику на предварительную версию этой книги.

КОСМОЛОГИЯ. КРАТКИЙ ОБЗОР

Цель этой Главы — дать беглый обзор вопросов, которыми мы будем заниматься на протяжении всей книги. Разумеется, обсуждение здесь будет носить качественный характер и не может претендовать на полноту. Наша задача состоит в том, чтобы пояснить место, которое занимает в космологии тот или иной ее раздел. Однако прежде всего договоримся о единицах измерения физических величин.

1.1. О единицах измерения

Мы будем часто пользоваться «естественной» системой единиц, в которой постоянная Планка, скорость света и константа Больцмана полагаются равными единице,

$$\hbar = c = k_B = 1.$$

В этой системе единиц масса, энергия и температура имеют одинаковую размерность (поскольку $[E] = [mc^2]$, $[E] = [k_BT]$). В качестве единицы измерения массы и энергии удобно выбрать 1 эВ или 1 ГэВ = 10⁹ эВ; масса протона тогда равна $m_p = 0.938$ ГэВ, а 1 К соответствует примерно 10^{-13} ГэВ. Время и длина в естественной системе единиц имеют размерность M^{-1} (поскольку $[E] = [\hbar\omega], [\omega] = [t^{-1}]$ и [l] = [ct]). При этом 1 ГэВ⁻¹ ~ 10^{-14} см и 1 ГэВ⁻¹ ~ 10^{-24} с. Для дальнейших ссылок мы приводим переводные коэффициенты в табл. 1.1 и 1.2.

Задача 1. Убедиться в справедливости соотношений, собранных в табл. 1.1 и 1.2. Найти, чему равны 1 Вольт (В), 1 Гаусс (Гс), 1 Герц (Гц) и 1 Ангстрем (Å) в естественной системе единиц.

В естественной системе единиц ньютоновская гравитационная постоянная G имеет размерность M^{-2} . Это следует из формулы для гравитационной потенциальной энергии $V = -Gm_1m_2/r$, поскольку [V] = M, $[r^{-1}] = M$. Удобно ввести планковскую массу M_{Pl} соотношением

$$G = rac{1}{M_{Pl}^2}.$$

Численно

$$M_{Pl} = 1,2 \cdot 10^{19} \text{ FsB}, \tag{1.1}$$

Таблица 1.1

Переводные коэффициенты из естественной системы единиц в систему СГС

Энергия	1 Гэ $B = 1,6 \cdot 10^{-3}$ эрг
 Масса	$1 \ \Gamma \Im B = 1.8 \cdot 10^{-24} \ \Gamma$
Температура	1 ГэB = $1,2 \cdot 10^{13}$ К
Длина	1 ГэВ ⁻¹ = 2,0 · 10 ⁻¹⁴ см
Время	$1 \ \Gamma \Im B^{-1} = 6,6 \cdot 10^{-25} \ c$
 Плотность числа частиц	1 ГэВ $^3 = 1,3 \cdot 10^{41}$ см $^{-3}$
 Плотность энергии	1 ГэВ ⁴ = 2,1 \cdot 10 ³⁸ эрг \cdot см ⁻³
Плотность массы	1 ГэВ ⁴ = 2,3 · 10 ¹⁷ г·см ⁻³
1	1

Таблица 1.2

Переводные коэффициенты из системы единиц СГС в естественную систему

Энергия	1 эрг = $6,3 \cdot 10^2$ ГэВ
Масса	$1 \ \Gamma = 5.6 \cdot 10^{23} \ \Gamma 3B$
Температура	$1 \text{ K} = 8,6 \cdot 10^{-14} \text{ GB}$
Длина	$1 \text{ cm} = 5,0 \cdot 10^{13} \text{ FbB}^{-1}$
Время	$1 c = 1.5 \cdot 10^{24} \ \Gamma_{2} B^{-1}$
Плотность числа частиц	$1 \text{ cm}^{-3} = 7, 7 \cdot 10^{-42} \text{ FbB}^3$
Плотность энергии	1 эрг·см ⁻³ = 4,8 · 10 ⁻³⁹ ГэВ ⁴
Плотность массы	1 г·см ⁻³ = 4,5 · 10 ⁻¹⁸ ГэВ ⁴

а планковские длина, время и масса в системе СГС равны соответственно

$$l_{Pl} = \frac{1}{M_{Pl}} = 1,6 \cdot 10^{-33} \text{ см},$$

$$t_{Pl} = \frac{1}{M_{Pl}} = 5,4 \cdot 10^{-44} \text{ c},$$

$$M_{Pl} = 2,2 \cdot 10^{-5} \text{ r}.$$
(1.2)

Слабость гравитационных взаимодействий связана с большим значением M_{Pl} .

Задача 2. Убедиться в справедливости соотношений (1.1) и (1.2).

Задача 3. Во сколько раз гравитационное взаимодействие двух протонов слабее их кулоновского взаимодействия?

В космологии традиционной единицей измерения длины является мегапарсек,

$$1 \text{ M}\pi\kappa = 10^6 \pi\kappa = 3,1 \cdot 10^{24} \text{ см.}$$

Договоримся еще об обозначении, которое мы будем использовать в этой книге. Подстрочным индексом 0 мы будем обозначать современные значения тех величин, которые могут зависеть от времени. Например, если $\rho(t)$ — средняя плотность энергии во Вселенной как функция времени, то $\rho_0 \equiv \rho(t_0)$ — современная средняя плотность энергии.

В астрономии используются несколько единиц длины, в зависимости от размеров исследуемых астрофизических объектов и масштабов рассматриваемых явлений. Кроме традиционной метрической системы единиц (метр и его производные) используются также:

астрономическая единица (а. е.) — среднее расстояние от Земли до Солнца,

1 a.e. =
$$1,5 \cdot 10^{13}$$
 cm;

световой год (св. г.) — расстояние, проходимое фотоном за один земной год,

1 год =
$$3,16 \cdot 10^7$$
 с, 1 св. г. = $3 \cdot 10^{10} \frac{\text{см}}{\text{с}} \cdot 3,16 \cdot 10^7$ с = $0,95 \cdot 10^{18}$ см;

парсек (пк) — расстояние, с которого объект размером 1 а.е. виден под углом одна секунда,

$$1 \ \pi \kappa = 2,1 \cdot 10^{5} a.e. = 3,3 c.r. = 3,1 \cdot 10^{18} c.m.$$

Для иллюстрации иерархии пространственных масштабов во Вселенной мы перечислим ниже расстояния до некоторых известных астрономических объектов, выраженные в этих единицах длины.

10 а.е. — среднее расстояние до Сатурна, 30 а.е. — среднее расстояние до Плутона, 100 а.е. — условная граница, до которой могут долететь массивные частицы, испускаемые Солнцем (солнечный ветер). Это же расстояние отвечает максимальному удалению земных космических аппаратов (Pioneer 10, Voyager 1, Voyager 2). Далее можно отметить Облако Оорта — источник наиболее удаленных комет, находящийся от нас на расстоянии $10^4 - 10^5$ а.е. ~ 0,1–1 пк.

На расстоянии 1,3 пк от Солнца располагаются ближайшие звезды — Проксима и Альфа созвездия Центавра. Арктур и Капелла удалены более чем на 10 пк, около 100 пк до Канопуса и Бетельгейзе, 2 кпк до Крабовидной туманности — остатка вспышки сверхновой, видимого невооруженным глазом.

Следующая примечательная точка в шкале расстояний — 8 кпк. Именно на такое расстояние удалено Солнце от центра Галактики. Наша Галактика — Млечный Путь — спирального типа, светящееся вещество в ней формирует четыре рукава, образующие диск диаметром примерно 30 кпк и толщиной около 250 пк. На удалении в 30 кпк от центра Галактики расположены ближайшие карликовые галактики — спутники нашей Галактики. Всего таких спутников известно тринадцать, и на расстояние 50 кпк удалены наиболее крупные из них — Большое и Малое Магеллановы Облака, размер каждого из которых около 1 кпк. В настоящее время активно ведется поиск новых

спутников, менее ярких, чем уже известные (до 1994 года было известно всего восемь карликовых галактик — спутников Млечного Пути).

Плотность вещества в обычных галактиках примерно в 10⁵ раз превышает среднюю по Вселенной. Ближайшая к нам обычная галактика — спиральная галактика M31 — расположена в созвездии Андромеды и удалена от Солнца на 800 кпк. Несмотря на вроде бы большое удаление от Земли, эта галактика занимает заметную площадь на небесной сфере — ее угловой размер превышает угловой размер Луны! Следующая спиральная галактика расположена в созвездии Треугольника. Наша Галактика, галактики Андромеды и Треугольника вместе со своими спутниками, а также еще около 35 более мелких галактик образуют так называемую местную группу — гравитационно связанный конгломерат из полусотни галактик.

Следующий масштаб в этом списке — размер скопления галактик, 1–3 Мпк. В богатых скоплениях насчитываются тысячи галактик. Плотность вещества в скоплениях в сотни и даже тысячи раз превосходит среднюю по Вселенной. Расстояние до центра ближайшего скопления, расположенного в созвездии Девы, — около 15 Мпк. Его угловой размер на небесной сфере составляет около пяти градусов. Скопления являются самыми крупными гравитационно связанными образованиями во Вселенной.

1.2. Вселенная сегодня

Наш беглый обзор мы начнем с краткого обсуждения современного состояния Вселенной (точнее, наблюдаемой ее части).

1.2.1. Однородность и изотропия

На больших масштабах видимая часть современной Вселенной однородна и изотропна. Размеры самых больших структур во Вселенной — сверхскоплений галактик и гигантских «пустот» (voids) — достигают десятков мегапарсеков¹⁾. Области Вселенной размером 100 Мпк и более выглядят все одинаково (однородность), при этом выделенных направлений во Вселенной нет (изотропия). Эти факты сегодня надежно установлены в результате глубоких обзоров, в которых наблюдались сотни тысяч галактик.

Сверхскоплений известно более 20. Местная группа входит в состав сверхскопления с центром в скоплении Девы. Размер сверхскопления около 40 Мпк, и помимо скопления Девы в него входят скопления из созвездий Гидра и Центавр. Эти наиболее крупные структуры уже очень «рыхлые»: плотность галактик в них всего в 2 раза превышает среднюю. До центра следующего сверхскопления, расположенного в созвездии Волосы Вероники, около сотни мегапарсеков.

В настоящее время ведется работа по составлению наиболее крупного каталога галактик и квазаров — каталога SDSS (Sloan Digital Sky Survey). В его основе лежат данные, полученные с помощью 2,5-метрового телескопа, способного одновременно в 5 частотных диапазонах (длины волн света $\lambda = 3800-9200$ Å, область видимого диапазона) измерять спектры 640 объектов. На этом телескопе предполагалось измерить положение и светимость более двухсот миллионов астрономических объектов и определить расстояния до более 10⁶ галактик и более 10⁵ квазаров. Полная зона

¹⁾ Средние размеры определены несколько условно: наиболее аккуратные оценки получаются из изучения корреляционных функций галактик (скоплений), а они имеют степенное поведение.

наблюдения составила почти четверть небесной сферы. На сегодняшний день обработана бо́льшая часть экспериментальных данных, что позволило определить спектры около 675 тыс. галактик и более 90 тыс. квазаров. Результаты проиллюстрированы на рис. 1.1 (на цветной вклейке), где приведены ранние данные SDSS: положения 40 тыс. галактик и 4 тыс. квазаров, обнаруженных на участке небесной сферы площадью 500 квадратных градусов. Хорошо различимы скопления галактик и пустоты, изотропия и однородность Вселенной начинают проявляться на масштабах порядка 100 Мпк и больше. Цвет точки определяет тип объекта. Доминирование того или иного типа обусловлено, вообще говоря, процессами образования и эволюции структур это асимметрия временна́я, а не пространственная.

Действительно, с расстояния 1,5 Гпк, на которое приходится максимум в распределении ярких красных эллиптических галактик (красные точки на рис. 1.1), свет летел до Земли около 5 миллиардов лет. Тогда Вселенная была другой (например, Солнечной системы еще не было). Эта временная эволюция становится заметной на больших пространственных масштабах. Еще одной причиной выбора объектов наблюдения является наличие у регистрирующих приборов порога чувствительности: на больших расстояниях регистрируются только яркие объекты, а самыми яркими постоянно излучающими свет объектами во Вселенной являются квазары.

1.2.2. Расширение

Вселенная расширяется: галактики удаляются друг от друга²⁾. Образно говоря, пространство, оставаясь однородным и изотропным, растягивается, в результате чего все расстояния увеличиваются.

Для описания этого расширения вводят понятие масштабного фактора a(t), который увеличивается с течением времени. Расстояние между двумя удаленными объектами во Вселенной пропорционально a(t), а плотность частиц убывает как $[a(t)]^{-3}$. Темп расширения Вселенной, т. е. относительное увеличение расстояний в единицу времени, характеризуется параметром Хаббла

$$H(t)\equiv rac{\dot{a}(t)}{a(t)}.$$

Параметр Хаббла зависит от времени; для его современного значения применяем, как обычно, обозначение H_0 .

Из-за расширения Вселенной увеличивается и длина волны фотона, испущенного в далеком прошлом. Как и все расстояния, длина волны растет пропорционально a(t). В результате фотон испытывает красное смещение. Количественно красное смещение z связано с отношением длин волн фотона в момент испускания и в момент поглощения

$$\frac{\lambda_{\text{погл.}}}{\lambda_{\text{исп.}}} \equiv 1 + z. \tag{1.3}$$

Разумеется, это отношение зависит от того, когда фотон был испущен (считая, что поглощается он на Земле сегодня), т. е. от расстояния между источником и Землей. Красное смещение — непосредственно измеряемая величина:

²⁾ Разумеется, это не относится к галактикам, находящимся в одном скоплении и гравитационно связанным друг с другом; речь идет о галактиках, достаточно удаленных друг от друга.

длина волны в момент излучения определяется физикой процесса (например, это длина волны фотона, испускаемого при переходе атома водорода из первого возбужденного состояния в основное), а $\lambda_{\text{погл.}}$ прямо измеряется. Таким образом, идентифицировав набор линий испускания (или поглощения) и определив, насколько они смещены в красную область спектра, можно измерить красное смещение источника.

Реально идентификация осуществляется сразу по нескольким линиям, наиболее характерным для объектов того или иного типа (см. рис. 1.2). Если в спектре найдены линии поглощения (провалы, как в спектрах на рис. 1.2), это означает, что объект, у которого определяется красное смещение, расположен между источником излучения (например, квазаром) и наблюдателем³⁾. Если же в спектре обнаружены линии излучения (пики в спектре), то объект сам является излучателем.

Для $z \ll 1$ справедлив закон Хаббла

$$z = H_0 r, \quad z \ll 1, \tag{1.4}$$

где r — расстояние до источника, а H_0 — современное значение параметра Хаббла. При бо́льших z зависимость расстояния от красного смещения усложняется, что будет подробно обсуждаться в этой книге.

Определение абсолютных расстояний до удаленных источников — весьма непростое дело. Один из методов состоит в измерении потока фотонов от удаленного объекта, чья светимость заранее известна. Такие объекты в астрономии иногда называют *стандартными свечами*.

Систематические ошибки в определении H_0 не очень хорошо известны и, по-видимому, довольно велики. Достаточно отметить, что величина этой постоянной, определенная самим Хабблом в 1929 году, составляла 550 км/(с·Мпк). Современные методы измерения параметра Хаббла дают [3–5]

$$H_0 = (73^{+4}_{-3}) \frac{\kappa_M}{c \cdot M_{\Pi \kappa}}.$$
 (1.5)

Задача 4. Связать красное смещение с расстоянием до объекта, выраженным в Мпк. \blacktriangleleft

Проясним смысл традиционной единицы измерения параметра Хаббла, фигурирующей в (1.5). Наивная интерпретация закона Хаббла (1.4) состоит в том, что красное смещение обусловлено радиальным движением галактик от Земли со скоростями, пропорциональными расстояниям до галактик,

$$v = H_0 r, \quad v \ll 1. \tag{1.6}$$

Тогда красное смещение (1.4) интерпретируется как продольный эффект Допплера (при $v \ll c$, т. е. $v \ll 1$ в естественных единицах, допплеровское смещение z = v). В связи с этим параметру Хаббла H_0 приписывают размерность [скорость/расстояние]. Подчеркнем, что интерпретация космологического красного смещения в терминах эффекта Допплера необязательна,

³⁾ Фотоны вполне опредленных частот испытывают резонансное поглощение на атомах и ионах (с последующим изотропным переизлучением), что и приводит к провалам в спектре интенсивности излучения в направлении на наблюдателя.

Рис. 1.2. Линии поглощения в спектрах далеких галактик [2]. На верхней диаграмме приведены результаты измерений дифференциального потока энергии от далекой (z = 2,0841) галактики. Вертикальные линии указывают расположение атомных линий поглошения, идентификация которых позволила определить красное смещение галактики. В спектрах более близких галактик эти линии лучше различимы. Диаграмма со спектрами таких галактик, уже приведенными в сопутствующую систему отсчета с учетом красного смещения, представлена на нижнем рисунке

а в ряде случаев неадекватна. Наиболее правильно использовать соотношение (1.4) в том виде, в каком оно написано.

Задача 5. Рассмотрим систему многих точек в ньютоновской механике. Показать, что она пространственно однородна и изотропна тогда и только тогда, когда плотность точек постоянна в пространстве, а скорость относительного движения каждой пары точек *i* и *j* связана с расстоянием между ними «законом Хаббла»

$$v_{ij} = H_0 r_{ij},$$

где H_0 не зависит от пространственных координат.

Величину H_0 традиционно параметризуют следующим образом:

$$H_0 = h \cdot 100 \ \frac{\mathrm{KM}}{\mathrm{c} \cdot \mathrm{M} \mathrm{n} \mathrm{\kappa}},$$

где h — безразмерная величина порядка единицы (см. (1.5)),

$$h = 0.73^{+0.04}_{-0.03}$$

Мы будем пользоваться значением h = 0.7 в дальнейших оценках.

Для измерения параметра Хаббла в качестве стандартных свеч традиционно используют цефеиды — переменные звезды, чья переменность связана известным образом со светимостью. Связь эту можно выявить, изучая цефеиды в каких-нибудь компактных звездных образованиях, например, в Магеллановых Облаках. Поскольку расстояния до всех цефеид внутри одного компактного образования с хорошей степенью точности можно считать одинаковыми, отношение наблюдаемых яркостей таких

Рис. 1.3. Диаграмма Хаббла, построенная по наблюдению удаленных цефеид [6]. Сплошной линией показан закон Хаббла с параметром $H_0 = 75 \text{ км/(с} \cdot \text{Мпк})$, определенным в результате этих наблюдений. Пунктирные линии отвечают экспериментальным погрешностям в величине постоянной Хаббла

Глава 1. Космология. Краткий обзор

объектов в точности равно отношению их светимостей. Период пульсаций цефеид может составлять от суток до нескольких десятков суток, за это время светимость изменяется в несколько раз. В результате наблюдений была построена зависимость светимости от периода пульсаций: чем ярче звезда, тем больше период пульсаций.

Цефеиды — гиганты и сверхгиганты, поэтому их удается наблюдать далеко за пределами Галактики. Изучив спектр удаленных цефеид, находят красное смещение по формуле (1.3), а исследуя временную эволюцию, определяют период пульсаций светимости. Затем, используя известную зависимость переменности от светимости, определяют абсолютную светимость объекта и далее вычисляют расстояние до объекта, после чего по формуле (1.4) получают значение параметра Хаббла. На рис. 1.3 приведена полученная таким образом диаграмма Хаббла — зависимость красного смещения от расстояния.

Помимо цефеид, имеются и другие яркие объекты, используемые в качестве стандартных свеч, например сверхновые типа Ia.

1.2.3. Время жизни Вселенной и размер ее наблюдаемой части

Параметр Хаббла в действительности имеет размерность $[t^{-1}]$, поэтому современная Вселенная характеризуется временным масштабом

$$H_0^{-1} = \frac{1}{h} \cdot \frac{1}{100} \frac{c \cdot M\pi\kappa}{\kappa M} = \frac{1}{h} \cdot 3 \cdot 10^{17} c = \frac{1}{h} \cdot 10^{10} \text{ Jet} \approx 1.4 \cdot 10^{10} \text{ Jet}$$

и космологическим масштабом расстояний

$$H_0^{-1} = \frac{1}{h} \cdot 3000 \text{ Mmk} \approx 4.3 \cdot 10^3 \text{ Mmk}.$$

Грубо говоря, размер Вселенной увеличится вдвое за время порядка 10 млрд лет; галактики, находящиеся от нас на расстоянии порядка 3000 Мпк, удаляются от нас со скоростями, сравнимыми со скоростью света. Мы увидим, что время H_0^{-1} по порядку величины совпадает с возрастом Вселенной, а расстояние H_0^{-1} — с размером видимой части Вселенной. Мы будем уточнять представления о возрасте Вселенной и размере ее видимой части на протяжении этой книги. Здесь отметим, что прямолинейная экстраполяция эволюции Вселенной в прошлое (согласно уравнениям классической общей теории относительности) приводит к представлению о моменте Большого взрыва, с которого началась классическая космологическая эволюция; тогда время жизни Вселенной — это время, прошедшее с момента Большого взрыва, а размер видимой части (размер горизонта) — это расстояние, которое проходят с момента Большого взрыва сигналы, движущиеся со скоростью света. При этом размер всей Вселенной значительно превышает размер горизонта; в классической общей теории относительности пространственный размер Вселенной может быть и бесконечным.

Независимо от космологических данных, имеются наблюдательные ограничения снизу на возраст Вселенной t_0 . Различные независимые методы приводят к близким ограничениям на уровне

 $t_0 \ge 14$ млрд лет = $1, 4 \cdot 10^{10}$ лет.

Один из методов, с помощью которых получено последнее ограничение, состоит в измерении распределения белых карликов по светимости. Белые карлики — компактные звезды большой плотности с массами, примерно совпадающими с массой Солнца, постепенно тускнеют в результате охлаждения посредством излучения. В Галактике встречаются белые карлики самых разных светимостей, однако начиная с некоторой низкой светимости число белых карликов резко падает, и это падение не связано с чувствительностью аппаратуры наблюдения. Объяснение состоит в том, что даже самые старые белые карлики еще не смогли настолько охладиться, чтобы стать такими тусклыми. Время охлаждения можно определить, изучая баланс энергии при охлаждении звезды. Это время охлаждения — возраст старейших белых карликов является ограничением снизу на время жизни Галактики, а значит, и всей Вселенной.

Среди других методов отметим изучение распространенности радиоактивных элементов в земной коре и в составе метеоритов, сравнение эволюционной кривой звезд главной последовательности на диаграмме Герцшпрунга—Рассела («светимость — температура» или «яркость — цвет») с распространенностью старейших звезд в обедненных металлами шаровых скоплениях звезд⁴⁾, изучение состояния релаксационных процессов в звездных скоплениях, измерение распространенности горячего газа в скоплениях галактик.

1.2.4. Пространственная плоскостность

Однородность и изотропия Вселенной не означают, вообще говоря, что в фиксированный момент времени трехмерное пространство представляет из себя 3-плоскость (трехмерное евклидово пространство), т. е. что Вселенная имеет нулевую пространственную кривизну. Наряду с 3-плоскостью, однородными и изотропными являются 3-сфера (положительная пространственная кривизна) и 3-гиперболоид (отрицательная кривизна). Фундаментальным результатом наблюдений последних лет стало установление того факта, что пространственная кривизна Вселенной если и отлична от нуля, то мала. Мы будем неоднократно возвращаться к этому утверждению, как для того, чтобы сформулировать его на количественном уровне, так и для того, чтобы изложить, какие именно данные свидетельствуют о пространственной плоскостности Вселенной. Здесь достаточно сказать, что этот результат получен из измерений анизотропии реликтового излучения и на качественном уровне сводится к тому, что радиус пространственной кривизны Вселенной заметно больше размера ее наблюдаемой части, т. е. заметно больше H_0^{-1} .

Отметим также, что данные по анизотропии реликтового излучения согласуются и с предположением о тривиальной пространственной топологии. Так, в случае компактного трехмерного многообразия с характерным размером порядка хаббловского на небесной сфере наблюдались бы круги со схожей картиной анизотропии реликтового излучения — пересечения сферы последнего рассеяния фотонов, оставшихся после рекомбинации (образования атомов водорода), с образами этой сферы, получившимися в результате действия группы движения многообразия. Если бы пространство

⁴⁾ Шаровые скопления — внутригалактические структуры диаметром около 30 пк, включаюшие сотни тысяч и даже миллионы звезд. Термин «металлы» в астрофизике относится ко всем элементам тяжелее гелия.

имело, например, топологию тора, то на небесной сфере наблюдалась бы пара таких кругов в диаметрально противоположных направлениях. Таких свойств реликтовое излучение не обнаруживает [7].

Задача 6. Как повлияет на картинку со схожими кругами факт движения локального наблюдателя относительно реликтового излучения?

1.2.5. «Теплая» Вселенная

Современная Вселенная заполнена газом невзаимодействующих фотонов — реликтовым излучением, предсказанным теорией Большого взрыва и обнаруженным экспериментально в 1964 году. Плотность числа реликтовых фотонов составляет примерно 400 штук на кубический сантиметр. Распределение фотонов по энергиям имеет тепловой планковский спектр (рис. 1.4), характеризуемый температурой

$$T_0 = 2,725 \pm 0,001 \text{ K.}$$
 (1.7)

(согласно анализу [9]). Температура фотонов, приходящих с разных направлений на небесной сфере, одинакова на уровне примерно 10⁻⁴; это — еще одно свидетельство однородности и изотропии Вселенной.

В то же время, экспериментально установлено, что эта температура все же зависит от направления на небесной сфере. Угловая анизотропия темпера-

Рис. 1.4. (Цветную версию рисунка см. на вклейке.) Измерения спектра реликтового излучения. Компиляция данных выполнена в [8]. Пунктирной кривой показан планковский спектр (спектр «черного тела»). Недавний анализ [9] дает значение температуры (1.7), а не T = 2,726 K, как на рисунке

Рис. 1.5. (Цветную версию рисунка см. на вклейке.) Данные WMAP [5]: угловая анизотропия реликтового излучения, т. е. зависимость температуры фотонов от направления их прихода. Средняя температура фотонов и дипольная компонента (1.8) вычтены; изображенные вариации температуры находятся на уровне $\delta T \sim 100 \,\mu$ K, т. е. $\delta T/T_0 \sim 10^{-4} - 10^{-5}$

туры реликтовых фотонов на данный момент хорошо измерена (см. рис. 1.5) и составляет, грубо говоря, величину порядка $\delta T/T_0 \sim 10^{-4} - 10^{-5}$. Тот факт, что спектр является планковским во всех направлениях, контролируется проведением измерений на разных частотах.

В этой книге мы будем неоднократно возвращаться к анизотропии (и поляризации) реликтового излучения, поскольку, с одной стороны, она несет ценнейшую информацию о ранней и современной Вселенной, а с другой стороны, ее измерение возможно с высокой точностью.

Отметим, что наличие реликтового излучения позволяет ввести во Вселенной выделенную систему отсчета: это та система отсчета, в которой газ реликтовых фотонов покоится. Солнечная система движется относительно реликтового излучения в направлении созвездия Гидры. Скорость этого движения определяет величину дипольной компоненты анизотропии [10]

$$\delta T_{\rm диполь} = 3,346 \text{ MK.}$$
 (1.8)

Задача 7. Исходя из величины дипольной компоненты анизотропии реликтового излучения определить скорость Солнечной системы относительно реликтового излучения.

Задача 8. Оценить годовую вариацию анизотропии реликтового излучения, связанную с вращением Земли вокруг Солнца.

Глава 1. Космология. Краткий обзор

Современная Вселенная прозрачна для реликтовых фотонов⁵: сегодня их длина свободного пробега велика по сравнению с размером горизонта H_0^{-1} . Это не всегда было так: в ранней Вселенной фотоны интенсивно взаимодействовали с веществом.

Задача 9 (Эффект Грейзена–Зацепина–Кузьмина). Известно, что при взаимодействии фотона с протоном при достаточно высоких энергиях возможно поглощение фотона с рождением π -мезона. Пусть сечение этого процесса в системе центра масс фотона и протона, где сумма импульсов фотона и протона равна нулю, имеет вид (для данной задачи это, в действительности, неплохое приближение):

$$\sigma = egin{cases} 0 & ext{при} & \sqrt{s} < m_\Delta, \ 0,5 ext{ мбарн} & ext{при} & \sqrt{s} > m_\Delta, \end{cases}$$

где \sqrt{s} — суммарная энергия фотона и протона, $m_{\Delta} = 1200 \text{ МэВ}$ (масса Δ -резонанса), 1 мбарн $= 10^{-27} \text{ см}^2$.

Найти длину свободного пробега протона в современной Вселенной по отношению к указанному процессу. На каком расстоянии от источника высокоэнергичный протон потеряет 2/3 своей энергии? Фотоны, излученные небесными телами, не учитывать.

Поскольку температура реликтового излучения T зависит от направления \vec{n} на небесной сфере, то для изучения этой зависимости удобно использовать разложение по сферическим функциям (гармоникам) $Y_{lm}(\mathbf{n})$, образующим полный набор базисных функций на сфере. Под флуктуацией температуры δT в направлении \vec{n} понимают разность

$$\delta T(\mathbf{n}) \equiv T(\mathbf{n}) - T_0 - \delta T_{\text{диполь}} = \sum_{l,m} a_{l,m} Y_{lm}(\mathbf{n}),$$

где для коэффициентов $a_{l,m}$ выполняется соотношение $a_{l,m}^* = (-1)^m a_{l,-m}$, являющееся необходимым следствием вещественности температуры. Угловые моменты l соответствуют флуктуациям с типичным угловым масштабом π/l . Существующие наблюдения позволяют изучать различные угловые масштабы, от самых крупных до масштабов меньше $0,1^\circ$ ($l \sim 1000$, см. рис. 1.6).

Наблюдательные данные согласуются с тем, что флуктуации температуры $\delta T(\mathbf{n})$ представляют собой случайное гауссово поле, т.е. коэффициенты $a_{l,m}$ статистически независимы для различных l и m,

$$\left\langle a_{l,m}a_{l',m'}^{*}\right\rangle = C_{lm}\cdot\delta_{ll'}\delta_{mm'}, \qquad (1.9)$$

где под угловыми скобками подразумевается усреднение по ансамблю вселенных, подобных нашей. Коэффициенты C_{lm} в изотропной Вселенной не за-

⁵⁾ В действительности «прозрачности» разных частей Вселенной различаются. Например, горячий газ ($T \sim 10 \text{ кэB}$) в скоплениях галактик рассеивает реликтовые фотоны, которые приобретают при этом дополнительную энергию. Этот процесс приводит к «подогреву» реликтовых фотонов — эффекту Зельдовича—Сюняева. Величина этого эффекта невелика, но вполне заметна при современных методах наблюдений.

Рис. 1.6. (Цветную версию рисунка см. на вклейке.) Результаты измерений угловой анизотропии реликтового излучения различными экспериментами [5]. Теоретическая кривая получена в рамках модели ΛCDM, описанной в Главе 4. Подробное обсуждение см. во второй части книги

висят от m, $C_{lm} = C_l$, и определяют корреляцию между флуктуациями температуры в разных направлениях:

$$\langle \delta T(\mathbf{n}_1) \delta T(\mathbf{n}_2) \rangle = \sum_l \frac{2l+1}{4\pi} C_l P_l(\cos \theta),$$

где P_l — полиномы Лежандра, зависящие только от угла θ между векторами \mathbf{n}_1 и \mathbf{n}_2 . В частности, для среднеквадратичной флуктуации получаем:

$$\langle \delta T^2 \rangle = \sum_l \frac{2l+1}{4\pi} C_l \approx \int \frac{l(l+1)}{2\pi} C_l \ d \ln l.$$

Таким образом, величина $\frac{l(l+1)C_l}{2\pi}$ характеризует суммарный вклад угловых моментов одного порядка. Результаты измерения именно этой величины приведены на рис. 1.6.

Важно отметить, что измерение угловой анизотропии реликтового излучения дает не одно экспериментально измеренное число, а целый набор

данных, т. е. значения C_l при различных l. Этот набор определяется целым рядом параметров ранней и современной Вселенной, поэтому его измерение дает много космологической информации.

1.3. Баланс энергий в современной Вселенной

Размерную оценку плотности энергии во Вселенной можно получить следующим образом. При плотности энергии ρ_0 плотность «гравитационного заряда» равна по порядку величины $G\rho_0$, где G — ньютоновская постоянная. Поскольку именно гравитационные взаимодействия определяют эволюцию Вселенной, величина $G\rho_0$ должна быть каким-то образом связана с наблюдаемым темпом расширения Вселенной. Она имеет размерность M^2 ; такую же размерность имеет H_0^2 . Поэтому естественно ожидать, что

$$ho_0 \sim H_0^2 G^{-1} = M_{Pl}^2 H_0^2.$$

Действительно, мы увидим, что современная плотность энергии в *простран*ственно-плоской Вселенной равна

$$ho_c = rac{3}{8\pi} H_0^2 M_{Pl}^2.$$

С точностью не хуже 2 % это и есть плотность энергии в современной Вселенной. Численно

$$\rho_c = 1,05 \cdot h^2 \cdot 10^{-5} \frac{\overline{\Gamma B}}{\mathrm{cm}^3} \approx 0,53 \cdot 10^{-5} \frac{\overline{\Gamma B}}{\mathrm{cm}^3}.$$

Согласно данным космологических наблюдений, которые мы будем обсуждать в этой книге, вклад барионов (протонов, ядер) в полную современную плотность энергии составляет⁶⁾ примерно 4.2%.

$$\Omega_B \equiv rac{
ho_B}{
ho_c} = 0,042.$$

Вклад реликтовых нейтрино всех типов еще меньше: космологическое ограничение на него составляет

$$\Omega_{\nu} \equiv \frac{\sum \rho_{\nu_i}}{\rho_c} < 0.016,$$

где суммирование идет по трем типам нейтрино ν_e , ν_{μ} , ν_{τ} и антинейтрино $\vec{\nu}_e$, $\vec{\nu}_{\mu}$, $\vec{\nu}_{\tau}$. Подчеркнем, что речь здесь идет именно об ограничении: скорее всего, вклад известных нейтрино в действительности заметно меньше 1,6%. Другие известные стабильные частицы — электроны и фотоны — дают сегодня пренебрежимо малый вклад в полную плотность энергии. Таким образом, основной материал в современной Вселенной — это «неизвестно что».

⁶⁾ Отметим, что в звездах собрано лиць около 10 % всех барионов (протонов и нейтронов). Считается, что основная часть барионов сосредоточена в облаках горячего газа, что подтверждается наблюдениями за распространенностью звезд и горячего газа в скоплениях галактик.

Имеются самые серьезные основания утверждать: «неизвестно что» состоит по крайней мере из двух фракций, одна из которых имеет способность собираться в сгущения (кластеризоваться), а другая — нет. Первую компоненту традиционно называют «темной материей» (dark matter). Ее вклад в плотность энергии оценивается на уровне 20 %.

В этой книге мы будем обсуждать результаты (первичный нуклеосинтез, спектр анизотропии реликтового излучения, образование структур во Вселенной и др.), которые показывают, что темная материя не может состоять из известных частиц. Скорее всего, она состоит из новых стабильных массивных частиц, которые были нерелятивистскими в далеком прошлом и остаются нерелятивискими сейчас (холодная темная материя). Это — одно из немногих экспериментальных указаний на существование новой физики вне рамок Стандартной модели физики частиц. Упомянем в связи с этим, что прямое детектирование частиц темной материи — одна из важных и нерешенных задач физики частиц.

Согласно принятой сегодня точке зрения, оставшаяся часть энергии в современной Вселенной — около 75 % — «разлита» равномерно по всему пространству. Это не какие-то известные или неизвестные частицы, а достаточно непривычная форма энергии вакуумного типа. Ее называют по-разному: темная энергия (dark energy), вакуумоподобная материя, квинтэссенция, космологический Λ -член. Мы будем использовать термин «темная энергия» и понимать под квинтэссенцией и Λ -членом темную энергию с конкретными свойствами: в случае Λ -члена плотность энергии не зависит от времени, а для квинтэссенции такая зависимость, хотя и слабая, имеется.

Вообще говоря, не исключено, что наблюдательные данные, свидетельствующие в пользу темной материи, можно объяснить иными способами. Один из примеров — возможное отличие теории гравитации от общей теории относительности на космологических масштабах длин и времен. Хотя теоретические работы в этом и подобных направлениях ведутся, рассмотрение таких возможностей выходило бы далеко за рамки этой книги. В этой книге мы всюду предполагаем, что гравитационные взаимодействия описываются общей теорией относительности.

Возможную природу темной энергии и наблюдения, свидетельствующие о ее существовании, мы будем подробнее обсуждать в этой книге. Сейчас отметим тот факт, что вклад нерелятивистских частиц (барионов и холодной темной материи) в полную плотность энергии падает с расширением Вселенной обратно пропорционально кубу масштабного фактора. Поэтому на некотором этапе эволюция Вселенной начинает определяться не нерелятивистскими частицами, а темной энергией, чей вклад в плотность энергии не зависит (или слабо зависит) от масштабного фактора. Именно такой переход от одной стадии эволюции к другой и произошел при $z \simeq 0,5$.

Плотность барионного вещества и темной материи в скоплениях галактик определяют, измеряя различными методами гравитационный потенциал в скоплении, т. е. распределение массы в нем. В качестве примера на левой половине рис. 1.7 приведено

Рис. 1.7. (Цветную версию рисунка см. на вклейке.) Скопление СL0024 + 1654 [11]

распределение массы в одном из скоплений галактик, полученное методом гравитационного линзирования. Идея этого метода состоит в том, что лучи света, приходящего от галактик, расположенных за скоплением, искривляются гравитационным полем скопления⁷⁾, что приводит к наблюдаемым искажениям образов удаленных галактик (см. правую половину рис. 1.7). Таким образом, этот метод позволяет измерять гравитационный потенциал в скоплении вне зависимости от того, какое вещество его создает — светящееся или нет. Результат состоит в том, что светящееся вещество (обычные звезды, суммарную массу которых можно определить независимо) составляет малую часть массы скоплений; в основном масса определяется темной материей. Эта темная материя кластеризована, т. е. ее плотность распределена неоднородно по Вселенной. В предположении, что отношение плотностей темной материи и светящегося вещества в целом во Вселенной такое же, как в скоплениях галактик⁸, получается, что плотность массы темной материи и барионов вместе составляет около 25% полной энергии во Вселенной,

$$\rho_M \approx 0.25 \rho_c. \tag{1.10}$$

Помимо гравитационного линзирования, существует ряд других наблюдений, указывающих на существование темной материи.

В частности, наблюдения скоплений галактик в рентгеновском диапазоне выявили, что заметная часть барионов сосредоточена в облаках горячего газа в межгалактической среде⁹⁾. На самом деле, непосредственным источником рентгеновского излучения являются, конечно, электроны. Точность рентгеновских телескопов позволяет найти пространственные распределения плотности $n_e(\mathbf{r})$ и температуры $T(\mathbf{r})$

⁷⁾ Отметим, что гравитационная линза приводит к усилению сигнала, чем пользуются при поиске наиболее удаленных галактик.

⁸⁾ Это предположение — отнюдь не безобидное, поскольку большинство галактик *не* расположены в скоплениях: в скоплениях находится около 10% галактик и, скорее всего, около 10% темной материи.

⁹⁾ Количество барионов в этих облаках в десяток раз превосходит количество светящегося вещества, наблюдаемого в галактиках, образующих скопления.

электронов в облаках газа. В предположении сферической симметрии отсюда можно получить распределение полной гравитирующей массы в скоплении $\rho(r)$, воспользовавшись условием гидростатического равновесия

$$\frac{dP}{dR} = -\mu n_e(R) m_p \frac{GM(R)}{R^2}, \quad M(R) = 4\pi \int_0^\infty \rho(r) r^2 \, dr, \quad (1.11)$$

R

где $\mu n_e(R)$ — плотность числа барионов в газе, а давление газа P определяется в основном электронной компонентой и следует из уравнения состояния идеального газа $P(R) = n_e(R)T_e(R)$. При этом мы учли, что основной вклад в массу барион-электронного облака дают барионы и что среда электронейтральна, поэтому локальные плотности барионов и электронов совпадают с точностью до численного множителя μ , зависящего от химического состава облака. Все величины кроме M(R), входящие в уравнение (1.11), определяются из наблюдений, так что имеется возможность найти M(R). Из сравнительного анализа распределений массы в скоплениях, полученных таким образом, и распределений видимого вещества в скоплениях вытехает необходимость дополнительной гравитирующей компоненты в скоплениях галактик — темной материи.

Аналогичный вывод о существовании темной материи следует и из изучения движений галактик в группах, а также галактик и групп в скоплениях. Предположив, что релаксационные процессы для галактик в скоплениях уже завершены, можно использовать теорему вириала для определения массы скопления:

$$3M\langle v_r^2 \rangle = G \cdot \frac{M^2}{R}.$$
 (1.12)

Здесь M и R — масса и размер скопления, а $\langle v_r^2 \rangle^{1/2}$ — дисперсия проекций скоростей галактик на луч наблюдения. Величину этой дисперсии можно оценить, изучая спектр скопления: спектральные линии от различных галактик будут смещены друг относительно друга из-за продольного эффекта Допплера¹⁰⁾. Если спектры отдельных галактик различимы, то проекции их скорости вдоль луча наблюдения определяются непосредственно, если же они неразличимы, то относительные смещения линий приведут в суммарном спектре скопления к уширению линий излучения (поглощения), по которому и определяют $(v_s^2)^{1/2}$. Теорема вириала (1.12) позволяет определить массу скопления М. Наблюдения показывают, что полученные таким образом массы скоплений значительно (в сотни раз для центральных областей скопления) превышают массу светяшегося вещества, которую можно оценить, измерив полную светимость скопления и используя средние значения для отношения массы к светимости, полученные из наблюдений близких звезд и скорректированные с учетом распространенности различных типов звезд и их эволюции. Даже с учетом темных гало галактик массы скоплений существенно превышают суммы масс входящих в них галактик, т. е. большую часть массы составляет темная материя, непрерывно распределенная внутри скоплений.

Как уже упоминалось выше, измерение дипольной компоненты анизотропии спектра реликтового излучения позволяет определить скорость Солнечной системы относительно выделенной системы отсчета — реликтового излучения. Вся местная группа, к которой принадлежит наша Галактика, движется по направлению к скоплению Девы. Считая, что это «падение» обусловлено гравитационным потенциалом

¹⁰⁾ Поперечный эффект Допплера пропорционален квадрату поперечной компоненты скорости объекта и поэтому мал для нерелятивистских объектов, таких как звезда или галактика.

скопления галактик, можно оценить массу скопления. Эти оценки¹¹⁾ также показывают, что одних галактик явно недостаточно, и для объяснения наблюдаемого движения требуется дополнительная материя.

Особенно убедительный аргумент в пользу существования темной материи в скоплениях следует из наблюдения сталкиваюшихся скоплений. Результат этого наблюдения [12] представлен на рис. 1.8. Светлые области на нижней диаграмме показывают распределение горячей плазмы, испускающей рентгеновские лучи, зарегистрированные с помощью телескопа Chandra. В горячей плазме содержится примерно 90 % всех барионов обоих скоплений. Оставшиеся 10 % барионов содержатся в галактиках, образующих скопления. Измеренный с помощью линзирования гравитационный потенциал показан линиями, которые соответствуют эквипотенциальным поверхностям. Видно, что его источником отнюдь не служит горячий газ, в котором в основном сосредоточено обычное вещество. На самом деле он создается темной материей. Пространственное распределение галактик находится в полном соответствии с гравитационным потенциалом. Темная материя и галактики в этом столкновении выступают в роли бесстолкновительных частиц, а облака плазмы рассеиваются друг на друге, что приводит к уменьшению их относительной скорости и, как следствие, отставанию от центров масс соответствующих скоплений.

Гипотеза о существовании темного вещества позволяет объяснить и наблюдаемое движение звезд на периферии галактик. Так, в предположении кругового движения, распределение скоростей v(R) в зависимости от расстояния R от центра галактики до звезды следует из закона Ньютона

$$oldsymbol{v}(R) = \sqrt{Grac{M(R)}{R}}, \quad M(R) = 4\pi \int\limits_{0}^{R}
ho(r)r^2 dr.$$

Здесь $\rho(r)$ — плотность массы. Экспериментально для областей, не слишком близких к центру галактики, v(R) = const, в то время как учет только вклада светящегося вещества давал бы $v(R) \propto \sqrt{R}$ для областей, заполненных светящимся веществом, и $v(R) \propto 1/\sqrt{R}$ для периферии галактики. Такое различие можно объяснить, предположив, что видимое вещество галактики погружено в облако большего размера — гало галактики, — состоящее из вещества, не взаимодействующего с фотонами. Такой же вывод следует из наблюдений за движением облаков холодного водорода вокруг нашей и ближайших галактик (см. рис. 1.9). Скорости облаков определяются при этом по допплеровскому уширению эмиссионной линии $\lambda = 21$ см. О существовании темного гало свидетельствуют и измерения скоростей шаровых скоплений звезд и карликовых галактик — спутников нашей Галактики и спутников галактик, близких к нашей.

Кластеризующуюся темную материю может имитировать и обычное вещество барионы и электроны, находящиеся в состоянии, обеспечивающем их «пассивность» по отношению к электромагнитному излучению. В частности, таким свойством обладает вещество в нейтронных звездах, белых и коричневых карликах. Это — очень плотные объекты небольшого размера. Для объяснения наблюдений такие объекты должны заполнять не только область диска нашей Галактики, но быть основным компонентом гало (аналогичное распределение должно быть и в других галактиках). Плотность числа таких объектов можно определить из наблюдений. Попав на луч между

¹¹⁾ Как и результаты локального измерения «постоянной Хаббла» в направлении на центр скопления Девы.

Рис. 1.8. Результат наблюдения [12] сталкивающихся скоплений 1E0657-558: замкнутыми линиями показан гравитационный потенциал, в основном создаваемый темной материей, Светлые области на нижней диаграмме показывают распределение горячей плазмы, белым отрезком показан масштаб 200 кпк в сопутствующей системе (z = 0,296)

Рис. 1.9. Распределение скоростей облаков водорода в галактике NGC 6503 [13]. Разными линиями показаны вклады трех основных компонент, формирующих гравитационный потенциал галактики

Землей и источником излучения (например, звездой из карликовой галактики), такие объекты привели бы к гравитационному линзированию. Это линзирование звезд наблюдается, однако не настолько часто, чтобы утверждать, что такие компактные плотные объекты могут давать заметный вклад в плотность темной материи. Кроме того, многие из рассматриваемых кандидатов не подходят и по другим причинам. Так, нейтронные звезды являются остатками взрывов сверхновых — источников основной массы кислорода, кремния и прочих тяжелых элементов. Распространенность этих элементов в галактиках хорошо известна. Если они не вымываются в межзвездную среду, то допустимого количества «скрытых» нейтронных звезд в гало явно недостаточно, чтобы заменить темную материю. Аналогичная ситуация имеет место и для белых карликов, где роль индикатора играет углерод.

В пользу того, что темная энергия действительно существует во Вселенной, говорят несколько наблюдательных результатов. Во-первых, как мы уже говорили, Вселенная с хорошей степенью точности пространственно плоская, а это означает, что полная плотность энергии в ней с точностью не хуже 2% совпадает с критической плотностью ρ_c . В то же время, оценки плотности энергии кластеризованной материи дают значение (1.10), которое заметно ниже ρ_c . Недостающий вклад — это и есть вклад темной энергии.

Независимое свидетельство в пользу существования темной энергии состоит в следующем. Мы увидим, что темп расщирения Вселенной в прошлом зависел от того, какие формы энергии и в каком количестве в ней присутствуют и присутствовали. От того, как расширялась Вселенная, зависит, в свою очередь, соотношение «красное смещение — яркость» для удаленных стандартных свеч. В качестве последних сравнительно недавно стало возможным использовать сверхновые типа la¹²). Результат наблюдений сверхновых состоит в том, что далекие сверхновые выглядят тусклее близких. Это может быть интерпретировано¹³) как свидетельство ускоренного расширения Вселенной (сейчас и в не слишком далеком прошлом). Ускоренное расширение в общей теории относительности возможно только при наличии темной энергии, плотность которой слабо зависит (или вообще не зависит) от времени.

Имеется и ряд других соображений, основанных, в частности, на возрасте Вселенной, генерации структур, спектре угловой анизотропии реликтового излучения. Все они согласуются с представлением о том, что темная энергия существует и дает вклад в полную плотность энергии современной Вселенной на уровне $0,75\rho_c$. Можно рассчитывать на то, что будущие наблюдения позволят прояснить природу и свойства этой компоненты энергии во Вселенной.

Одним из кандидатов на роль темной энергии служит вакуум. В физике частиц энергию вакуума обычно не рассматривают, поскольку она служит началом отсчета энергии, а интерес представляют массы и энергии возбуждений над вакуумом — частиц. Другая ситуация имеет место в общей теории относительности: вакуумная энергия, так же как любая другая форма энергии, участвует в гравитационных взаимодействиях. Если гравитационные поля не слишком сильны, вакуум везде одинаков и его плотность энергии постоянна в пространстве и во времени. Другими словами, вакуумная энергия не способна кластеризоваться, так что вакуумная энергия — идеальный кандидат на роль темной энергии. Следует сказать, что в теории имеется фундаментальная трудность, связанная с оценкой величины вакуумной энергии. Плотность энергии вакуума в естественных единицах имеет размерность M^4 , и можно было бы ожидать, что она по порядку величины равна четвертой степени характерного энергетического масштаба фундаментальных взаимодействий. Такими масштабами являются 1 ГэВ для сильных взаимодействий, 100 ГэВ для электрослабых взаимодействий и $M_{Pl} \sim 10^{19}$ ГэВ для самих гравитационных взаимодействий. Таким образом можно было бы оценить соответствующие вклады в плотность энергии вакуума:

 $\rho_{vac} \sim 1 \ \Gamma \ni B^4$ (сильные взаимодействия); $\sim 10^8 \ \Gamma \ni B^4$ (электрослабые взаимодействия);(1.13) $\sim 10^{76} \ \Gamma \ni B^4$ (гравитационные взаимодействия).

Любая из этих оценок на много порядков превышает реальную плотность темной энергии

$$\rho_{\Lambda} \sim \rho_c \sim 10^{-5} \frac{\Gamma \Im B}{c M^3} \sim 10^{-46} \Gamma \Im B^4.$$
(1.14)

¹²⁾ В основе их «стандартности» — выявленная по наблюдениям близких сверхновых связь между абсолютной светимостью в максимуме блеска и характером временной эволюции свечения: яркие сверхновые дольше затухают.

¹³⁾ В предположении, что светимость этих стандартных свеч не изменяется с красным смещением в интервале 0 < z < 2.

В этом и состоит теоретическая проблема, которую часто называют проблемой космологической постоянной: совершенно непонятно, почему плотность энергии вакуума практически равна нулю по сравнению с оценками (1.13), и еще более загадочно то, что она все же отлична от нуля (если темная энергия — это энергия вакуума) и составляет чрезвычайно малую величину (1.14). Без преувеличения можно сказать, что проблема темной энергии (или проблема космологической постоянной) — одна из главных, если не самая главная, проблема теоретической физики. Здесь много загадок и совпадений, требующих точной подстройки параметров разной природы. Например, Вселенная с отрицательной космологической постоянной порядка возможного вклада сильных взаимодействий в плотность энергии вакуума коллапсировала бы, не просуществовав и десятка микросекунд после Большого взрыва. Другое совпадение, требующее своего объяснения, — соизмеримость вкладов в современную плотность энергии трех основных компонент: темной энергии, темной материи и барионов. У каждого из этих вкладов свой собственный источник, за каждым стоит свой механизм, и a priori они должны были бы давать вклады разных порядков величины.

Подчеркнем, что энергия вакуума — не единственный кандидат на роль темной энергии. В литературе обсуждаются другие, не менее экзотические кандидаты; о некоторых из них мы упомянем в этой книге.

1.4. Вселенная в будущем

Будущее Вселенной определяется ее геометрией и свойствами темной энергии.

Мы увидим, что вклад пространственной кривизны в эффективную плотность энергии обратно пропорционален квадрату масштабного фактора. Поэтому для расширяющейся Вселенной с ненулевой пространственной кривизной наступит такой момент, когда вклад кривизны в энергию станет доминировать над вкладом нерелятивистской материи.

В перспективе конкурировать будут вклады пространственной кривизны и темной энергии. Если последняя зависит от времени, и в далеком будущем достаточно быстро произойдет ее релаксация до нуля, то для Вселенной с положительной кривизной (замкнутая Вселенная) расширение начнет постепенно замедляться, потом сменится сжатием, и жизнь Вселенной завершится коллапсом. Для Вселенной с отрицательной кривизной (открытая Вселенная) расширение будет продолжаться вечно, хотя его темп будет постепенно замедляться. Скопления галактик будут все дальше и дальше «разлетаться» друг от друга. Такая же судьба постигнет галактики, не входящие в состав скоплений. Все гравитационно несвязанные структуры исчезнут. Аналогично выглядит судьба пространственно-плоской Вселенной с нулевой темной энергией (правда, расширение в этом случае будет происходить медленнее). Если же темная энергия не зависит от времени (как это имеет место для энергии вакуума¹⁴⁾), или эта зависимость слабая, то именно темная энергия и будет определять будущее. Положительная энергия вакуума приведет к экспоненциально раздувающейся Вселенной; Вселенная будет вечно расширяться с постоянным ускорением.

Не исключена и возможность того, что плотность темной энергии в далеком будущем станет отрицательной и постоянной во времени. В этом случае отрицательная темная энергия сначала вызовет замедление расширения Вселенной, а потом и сжатие — эволюция завершится коллапсом.

Если при интерпретации современных экспериментальных данных использовать простейшие космологические модели, то вполне вероятной перспективой является сценарий экспоненциально расширяющейся Вселенной. Действительно, вклад кривизны в эффективную плотность энергии уже сейчас не превышает 2 %, причем он уменьшается с ростом масштабного фактора. Основную роль играет темная энергия, и если ее вклад постоянен во времени, то он и будет поддерживать экспоненциальное расширение. Вселенная будет существовать вечно.

Подчеркнем, что уверенно предсказать судьбу Вселенной в далеком будущем на основании только космологических наблюдений невозможно в принципе. Эти наблюдения позволяют, вообще говоря, выяснить зависимость (или независимость) от времени темной энергии *в прошлом*, и на их основании о поведении темной энергии *в будущем* можно строить лишь более или менее правдоподобные гипотезы. Для предсказания далекого будущего Вселенной необходимо знание природы темной энергии (или, в более широком контексте, природы ускоренного расширения Вселенной в современную эпоху). Можно ли получить такое знание, и если да — то на каком пути, сегодня сказать трудно.

В литературе обсуждается и возможность того, что эффективная плотность темной энергии в будущем будет расти. Если этот рост будет достаточно быстрым, то Вселенную ожидает «большой разрыв» (Big Rip): через конечное время масштабный фактор станет равным бесконечности, взаимодействия между частицами (даже электромагнитные и сильные) будут недостаточны для удержания их в связанном состоянии, и все связанные системы, включая атомы и ядра, развалятся на свои составляющие, которые улетят на бесконечное расстояние друг от друга.

В то же время, сегодня можно достаточно уверенно экстраполировать эволюцию Вселенной на ближайшие 10–20 миллиардов лет. В течение этого времени Вселенная будет расширяться, причем темп ее расширения будет сравним с современным.

¹⁴⁾ Мы не обсуждаем здесь возможность фазового перехода во Вселенной, который мог бы изменить баланс между различными составляющими полной энергии и таким образом повлиять на всю дальнейшую космологическую эволюцию.

1.5. Вселенная в прошлом

Простой факт, что Вселенная расширяется, сразу приводит к представлению о том, что в прошлом Вселенная была более горячей и более плотной. Мы увидим, что экстраполяция современного состояния Вселенной назад во времени на основе общей теории относительности и стандартной термодинамики показывает, что на все более ранних стадиях эволюции вещество во Вселенной характеризовалось все более высокой температурой и плотностью, причем на большинстве этапов космологического расширения выполнялись условия термодинамического равновесия. Двигаясь назад по времени, и, соответственно, поднимаясь по шкале температур, можно отметить не-

Рис. 1.10. Этапы эволюции Вселенной

сколько характерных «моментов» (точнее, более или менее длительных этапов) в эволюции Вселенной, см. рис. 1.10.

Кратко обсудим некоторые из них.

1.5.1. Рекомбинация

При относительно низких температурах обычное вещество во Вселенной представляло собой нейтральный газ (в основном водород). На более ранней стадии, т. е. при более высоких температурах, энергии связи в атоме водорода было недостаточно для того, чтобы удержать электроны в атомах, и вещество находилось в фазе электрон-фотон-протонной плазмы. Температура рекомбинации — перехода из плазменного в газообразное состояние — определяется, грубо говоря, энергией связи атома водорода, 13,6 эВ. Мы увидим, что в действительности рекомбинация происходила при несколько меньшей температуре, около 0,3 эВ. Этот момент важен в связи с тем, что он представляет собой момент последнего рассеяния реликтовых фотонов: до этого момента фотоны интенсивно взаимодействовали с электронами плазмы (рассеивались, поглощались, испускались), а после рекомбинации нейтральный газ стал прозрачен для фотонов¹⁵⁾. Таким образом, реликтовое излучение несет непосредственную информацию о состоянии Вселенной в то время. когда ее температура составляла около 0,27 эВ ≈ 3100 К; время жизни Вселенной составляло тогда около 270 тыс. лет.

Упоминавшаяся выше высокая степень изотропии реликтового излучения прямо говорит о степени однородности Вселенной в момент рекомбинации: тогда Вселенная была гораздо однороднее чем сейчас, неоднородности плотности $\delta \rho / \rho$ были сравнимы с флуктуациями температуры и составляли величину порядка 10^{-5} . Тем не менее, именно эти неоднородности привели в конечном итоге к возникновению структур во Вселенной — сначала первичных галактик, потом галактических скоплений и т. д.

На самом деле, как указывают наблюдения, оптическая толщина (вероятность рассеяния) для фотонов после рекомбинации отлична от нуля и составляет $\tau \simeq 0,06-0,12$. Причиной этого является вторичная ионизация газа во Вселенной, начавшаяся на той стадии, когда образовывались и исчезали первые звезды, $z \leq 20$.

Тот факт, что водород во Вселенной почти полностью ионизован $(n_H/n_p < 10^{-5})$ при $z \leq 6$, был известен из наблюдений эмиссионных линий водорода от далеких квазаров: если бы на своем пути это излучение проходило через облака водорода, то оно бы полностью поглотилось ими. Действительно, красное смещение изменяет частоту падающего излучения, однако, вследствие разброса скоростей молекул газа, всегда найдется большое количество молекул, движущихся от источника излучения так, что для них рассеяние будет происходить в резонансе, а значит поглощение будет очень интенсивным. Наоборот, отсутствие эмиссионных линий гелия в спектре излучения квазаров свидетельствует в пользу того, что основная часть гелия во Вселенной находилась в нейтральном состоянии.

¹⁵⁾ Точнее, при температуре около 0,3 эВ произошло последовательно сразу три события: рекомбинация — образование атомов водорода, прекращение процессов рассеяния фотонов на электронах и «закалка» водорода — прекращение процессов ионизации водорода фотонами.
В пользу именно ранней ионизации, $z \sim 10$, свидетельствует спектр анизотропии реликтового излучения, а также тот факт, что это излучение имеет поляризацию. Поляризацию можно объяснить, предположив, что часть реликтовых фотонов на пути к наблюдателю (Земле) рассеялась на свободных электронах. Чтобы обеспечить необходимое количество свободных электронов (ту самую оптическую толщину в 5–10%), требуется ионизовать весь водород при $z \simeq 8-13$ или только часть водорода, но несколько раньше.

1.5.2. Первичный нуклеосинтез

Еще один важный этап эволюции Вселенной характеризуется гораздо более высокими температурами, масштаб которых, грубо говоря, определяется масштабом энергии связи ядер, т.е. 1-10 МэВ. По причинам, которые мы обсудим в Главе 8, существенные для нуклеосинтеза температуры на самом деле несколько ниже. В любом случае, при высоких температурах нейтроны и протоны существовали в космической плазме по отдельности, но в результате охлаждения Вселенной за счет ее расширения становилось термодинамически выгодным объединение нейтронов и протонов в ядра. В результате наряду с водородом во Вселенной образовался в основном первичный ⁴Не (наиболее сильно связанное легкое ядро), а также небольшое количество дейтерия (²H), гелия-3 (³He) и лития-7 (⁷Li); более тяжелые элементы в ранней Вселенной не образовывались¹⁶⁾. Эта эпоха первичного нуклеосинтеза важна и интересна тем, что она является самой ранней стадией эволюции горячей Вселенной, для которой сегодня возможно прямое сравнение теории с наблюдениями: вычисление количества образовавшихся легких ядер основывается, помимо общей теории относительности, на известной микроскопической физике (физике ядра и слабых взаимодействий), а измерение этого количества — хотя и трудная, но вполне решаемая задача.

Прекрасное согласие теории первичного нуклеосинтеза с наблюдениями является одним из краеугольных камней теории горячей Вселенной. Подчеркнем, что эпоха первичного нуклеосинтеза охватывает период примерно от 1 до 300 секунд с момента Большого взрыва, соответствующие температуры — от 1 МэВ до 50 кэВ.

Трудность экспериментального определения состава первичной плазмы состоит в том, что большинство вещества в современной Вселенной было переработано в звездах, и его ядерный состав сильно отличается от состава первичной плазмы. Тем не менее, удается найти такие области во Вселенной, про вещество в которых с боль-

¹⁶⁾ Тяжелые элементы, присутствующие в современной Вселенной, образовались в результате эволюции звезд. В частности, важнейшее звено звездного нуклеосинтеза, углерод, образовался в результате слияния трех ядер ⁴ Не — процесса, возможного лишь при очень высокой плотности, достигаемой в центральных областях звезд после выгорания водорода. Все последующие элементы синтезировались из углерода: относительно легкие элементы, включая железо, образовались в термоядерных реакциях внутри звезд. Более тяжелые элементы образовались в результате захвата нейтронов в звездах и при вспышках сверхновых, а часть, по-видимому, в результате захвата протонов или позитронов.

шой долей уверенности можно сказать, что оно не подвергалось переработке в звездах и его состав соответствует первичному.

1.5.3. Закалка нейтрино

Если фотоны испытывают последнее рассеяние при температуре около 0,27 эВ, то нейтрино, как мы увидим в этой книге, перестают взаимодействовать с космической плазмой при температуре 2–3 МэВ. До этого момента нейтрино находились в термодинамическом равновесии с остальным веществом, а после него — свободно распространяются во Вселенной. В дальнейшем мы остановимся на вычислении температуры и плотности числа реликтовых нейтрино, а сейчас отметим только, что по порядку величины они совпадают соответственно с температурой и плотностью числа реликтовых фотонов. К сожалению, прямое наблюдение реликтовых нейтрино представляет собой чрезвычайно сложную, а возможно, и вообще неразрешимую экспериментальную проблему.

Задача 10. Если в природе существуют источники нейтрино сверхвысоких энергий, то возможно рассеяние таких нейтрино на реликтовых нейтрино. Сечение рассеяния нейтрино в Стандартной модели физики частиц очень мало. Максимального значения, $\sigma_{\nu\nu} = 0,15 \ \mu$ барн $= 1.5 \cdot 10^{-31} \ cm^2$, это сечение достигает при энергии в системе центра масс $\sqrt{s} \approx M_Z \approx 90$ ГэВ, когда нейтрино аннигилируют с резонансным образованием Z-бозона, который затем быстро распадается. Обнаружение продуктов этого распада позволило бы получить косвенное подтверждение существования реликтовых нейтрино.

Найти длину свободного пробега нейтрино сверхвысоких энергий в современной Вселенной по отношению к этому процессу. Стоит ли ожидать обрезания спектра нейтрино сверхвысоких энергий, аналогичного обрезанию, предсказанному для спектра протонов сверхвысоких энергий (см. задачу 9)?

По-видимому, роль нейтрино в современной Вселенной невелика. Тем не менее, плотность нейтрино в ранней Вселенной является важным параметром теории нуклеосинтеза. Образование элементов происходило в процессе расширения Вселенной, а присутствие нейтринной компоненты влияло на темп расширения и, соответственно, на скорость остывания космической плазмы. От этой скорости зависели неравновесные процессы в плазме, приводящие к образованию легких ядер. Успех теории нуклеосинтеза в предсказании концентрации реликтовых ядер дает твердую уверенность в том, что реликтовые нейтрино действительно существуют во Вселенной.

Нейтрино также играют роль в процессе образования структур во Вселенной и в формировании спектра анизотропии реликтового излучения на малых угловых масштабах. В этой книге мы будем возвращаться к нейтрино, чтобы подробнее исследовать их роль в ранней Вселенной.

1.5.4. Фазовые переходы во Вселенной

Двигаясь еще дальше назад по времени, мы попадаем в область экстраполяций, пока не подтвержденных наблюдениями. Наиболее естественно предположить, тем не менее, что теория горячей Вселенной может быть продолжена назад во времени до температур порядка сотен ГэВ, и, вполне вероятно, до еще более высоких температур. Интересные, по крайней мере с теоретической точки зрения, эпохи эволюции Вселенной при столь высоких температурах связаны с фазовыми переходами в космической плазме:

- Переход кварк-глюонная плазма адроны. Температура этого фазового перехода¹⁷⁾ определяется энергетическим масштабом сильных взаимодействий и составляет около 200 МэВ. При более высоких температурах кварки и глюоны ведут себя, грубо говоря, как свободные частицы, а при меньших температурах они заключены в адроны — бесцветные связанные состояния кварков и глюонов. Примерно при этой же температуре происходит фазовый переход с нарушением киральной симметрии.
 - Электрослабый переход. Упрощая ситуацию, можно сказать, что при температурах выше 100 ГэВ — масштаба слабых взаимодействий — хиггсовский конденсат отсутствует, а W- и Z-бозоны имеют нулевые массы. Имеющаяся сейчас фаза с нарушенной электрослабой симметрией, ненулевым хиггсовским конденсатом и массивными W- и Z-бозонами возникает в результате электрослабого перехода¹⁸⁾, происходящего при температуре порядка 100 ГэВ.
 - Переход Большого объединения. Имеются определенные указания на то, что при энергиях и температурах выше 10^{16} ГэВ различия между сильными, слабыми и электромагнитными взаимодействиями отсутствуют и фундаментальная физика описывается теорией Большого объединения всех взаимодействий, кроме гравитационного. Если это так, и если во Вселенной реализовывались столь высокие температуры, то при температуре Большого объединения $T_{GUT} \sim 10^{16}$ ГэВ должен был происходить соответствующий фазовый переход. Отметим, однако, что максимальная температура во Вселенной вполне могла и не достигать T_{GUT} (в частности, во многих инфляционных моделях температура разогрева значительно ниже T_{GUT}), т. е. фаза Большого объединения во Вселенной могла не реализовываться.

1.5.5. Генерация барионной асимметрии

В современной Вселенной имеются барионы (протоны, нейтроны) и практически нет антибарионов. Количественно концентрацию барионов в современной Вселенной можно охарактеризовать отношением плотности числа барионов к плотности числа фотонов; исследования первичного нуклеосинтеза

¹⁷⁾ Не исключено, что вместо фазового перехода имест место гладкий кроссовер.

¹⁸⁾ В действительности ситуация в электрослабой теории более сложная: параметр порядка в ней отсутствует (по крайней мере, в рамках Стандартной модели физики частиц), и фазового перехода в ней может и не быть (и действительно, в Стандартной модели, с учетом имеюшихся ограничений на массу бозона Хиггса, вместо фазового перехода имеет место гладкий кроссовер).

и анизотропии реликтового излучения дают

$$\eta_B \equiv \frac{n_B}{n_{\gamma}} = 6.1 \cdot 10^{-10} \tag{1.15}$$

с точностью около 5%. Барионное число сохраняется при не слишком высоких энергиях и температурах, и мы увидим, что отношение n_B/n_{γ} в ранней Вселенной совпадало по порядку величины со значением (1.15). Таким образом, барионная асимметрия η_B — один из важных параметров ранней Вселенной.

При температурах порядка сотен МэВ и выше интенсивно происходят процессы рождения и аннигиляции кварк-антикварковых пар. Поэтому, в отличие от современной Вселенной, где частиц с отрицательным барионным числом практически нет, в ранней Вселенной присутствовали как кварки (положительное барионное число), так и антикварки (отрицательное барионное число). Простые термодинамические соображения, которые мы будем рассматривать в этой книге, показывают, что при высоких температурах число кварк-антикварковых пар по порядку величины совпадает с числом фотонов, поэтому барионную асимметрию в ранней Вселенной можно охарактеризовать отношением¹⁹⁾

$$\frac{n_q - n_{\bar{q}}}{n_q + n_{\bar{q}}} \sim \eta_{\scriptscriptstyle B} \sim 10^{-10}; \tag{1.16}$$

здесь n_q и $n_{\bar{q}}$ — плотности числа кварков и антикварков соответственно. Мы заключаем, что в ранней Вселенной примерно на десять миллиардов кварк-антикварковых пар приходился один «лишний» кварк. Именно эта маленькая асимметрия ответственна за то, что в современной Вселенной есть обычное барионное вещество: в процессе расширения и охлаждения Вселенной антикварки аннигилируют с кварками, а избыточные кварки остаются и в конечном итоге образуют протоны и нейтроны.

Одна из задач космологии — объяснить само существование барионной асимметрии, а также ее величину (1.15). Совершенно невероятно, что слабый избыток кварков над антикварками (1.16) существовал во Вселенной с самого начала, т. е. представлял собой начальное данное космологической эволюции; гораздо более правдоподобно, что «вначале» Вселенная была барион-симметричной. К такому же выводу приводит инфляционная теория. Асимметрия (1.16) *образовалась* в процессе эволюции Вселенной в результате процессов с несохранением барионного числа. В этой книге мы будем обсуждать возможные механизмы генерации барионной асимметрии, но нужно сразу подчеркнуть, что однозначного ответа на вопрос о происхождении барионной асимметрии пока нет. Здесь мы заметим только, что барионная асимметрия образовалась, по-видимому, при весьма высоких температурах по крайней мере 100 ГэВ, а скорее всего заметно выше, хотя возможны механизмы ее генерации и при более низких температурах.

¹⁹⁾ Мы учли, что соотношение между кварк-антикварковой асимметрией и η_B справедливо с точностью одного порядка величины.

Проблема барионной асимметрии не может быть решена в рамках Стандартной модели физики частиц. Это — еще одно указание на существование «новой физики», которое следует из космологии.

1.5.6. Генерация темной материи

Из каких частиц состоит кластеризованная небарионная темная материя — экспериментально неизвестно. Можно ожидать только, что это — стабильные или практически стабильные новые частицы, отсутствующие в Стандартной модели физики частиц. С одной стороны, само существование темной материи представляет собой сильный аргумент о неполноте Стандартной модели, что делает детектирование частиц темной материи и экспериментальное изучение их свойств интереснейшей задачей. С другой стороны, отсутствие на сегодня экспериментальной информации о свойствах этих частиц не дает возможности однозначно ответить на вопрос о механизме образования темной материи в ранней Вселенной. Мы будем обсуждать различных кандидатов на роль частиц темной материи в этой книге, а здесь ограничимся одним замечанием. Мы увидим, что гипотетические стабильные частицы с массой порядка сотен ГэВ, сечение аннигиляции которых сравнимо со слабыми сечениями, не успевают полностью проаннигилировать в процессе эволюции Вселенной, и плотность массы таких частиц в современной Вселенной естественным образом оказывается сравнима с критической плотностью ρ_c . Поэтому такие частицы — хорошие кандидаты на роль частиц темной материи, тем более что они имеются в ряде расширений Стандартной модели, включая Минимальную суперсимметричную стандартную модель и ее обобщения. Частицы, о которых идет речь, получили название WIMPs (weakly interacting massive particles). «Закалка» частиц темной материи, т. е. прекращение их взаимной аннигиляции, в случае WIMPs происходит при температуре, несколько меньшей их массы, т. е. $T \sim 10-100$ ГэВ.

Разумется, кроме WIMPs имеется целый ряд других кандидатов на роль частиц темной материи, таких как аксион, гравитино и т.д.

1.6. Образование структур во Вселенной

В предыдущих разделах мы кратко рассмотрели наиболее важные этапы развития Вселенной. Каждый этап, будь то нуклеосинтез или рекомбинация, имеет конечную продолжительность. Во Вселенной, однако, существует процесс, начавшийся, по-видимому, на самом раннем этапе ее развития и продолжающийся до сих пор. Речь идет об образовании структур — галактик, скоплений, сверхскоплений. При этом первичными (по времени появления) образованиями считаются галактики.

Теория, описывающая образование этих структур, основана на так называемой джинсовской нестабильности — гравитационной неустойчивости возмущений плотности материи. При этом нужно, разумеется, предполагать, что на самых ранних стадиях эволюции неоднородности плотности уже существовали, хотя и были малыми по величине. Отметим, что теория горячего Большого взрыва не только не дает форму спектра этих первичных возмущений, но и вообще не может объяснить их появление. Для объяснения их возникновения требуется привлекать дополнительные механизмы, наиболее изящный из которых имеется в инфляционной теории. Замечательно, что инфляционный механизм согласуется со всей совокупностью космологических наблюдательных данных.

Для теории возникновения галактик источник первичных возмущений в общем-то не важен. Быстрый рост возмущений плотности начался на том этапе эволюции Вселенной, когда она уже настолько остыла, что плотность энергии в ней в основном стала определяться нерелятивистским веществом. Это произошло через 80 тыс. лет после Большого взрыва. В это время возмущения плотности имели небольшую амплитуду, $\delta \rho / \rho \sim 10^{-5}$. Островки повышенной плотности стали источниками дополнительного гравитационного поля. Они притягивали к себе окружающее вещество, в результате чего плотность в них еще более увеличивалась. В этом и состоит физическая причина гравитационной неустойчивости²⁰⁾. При достижении достаточно большой плотности островки стали гравитационно связанными и стали «жить своей жизнью», в частности, их размеры не увеличивались, несмотря на продолжающееся расширение Вселенной. Более того, гравитационная динамика внутри этих локальных образований привела к тому, что они, наоборот, сжимались: частицы, стремясь друг к другу, стекались к общему гравитационному центру. В результате основной объем такого островка становился практически пустым, свободным от частиц, зато в центре образовывался новый объект протогалактика с большим относительным контрастом плотности, $\delta \rho / \rho > 1$. Формирование протогалактик происходило при красных смещениях порядка нескольких десятков.

Размер структуры — галактики, скопления и т. п. — связан с пространственным размером первичного островка повышенной плотности, а значит, со спектром возмушений. Именно от него зависят плотности числа галактик и скоплений и их распределение по массе. Измерение этих характеристик позволяет определить спектр первичных возмущений. Имеющиеся на сегодняшний день наблюдательные данные с неплохой точностью соответствуют простейшему «плоскому» спектру первичных флуктуаций, получившему название спектра Гаррисона—Зельдовича. Отличительной особенностью этого спектра является отсутствие выделенного масштаба длины.

Неоднородности, имевшиеся в космической среде в эпоху рекомбинации, приводят к анизотропии реликтового излучения. Поэтому спектр анизотропии реликтового излучения является ценным источником информации о спектре первичных флуктуаций материи. В частности, из спектра анизотропии реликтового излучения определяются амплитуда первичных флуктуаций плотности $\delta \rho / \rho$ и наклон спектра.

²⁰⁾ Для релятивистских частиц (например, нейтрино), описываемый механизм не работает, поскольку слабое гравитационное поле не способно удержать такие частицы внутри островка.

Образование структур дает еще один аргумент в пользу существования темной материи: без последней флуктуации плотности начали бы расти слишком поздно и к настоящему моменту времени просто не успели бы достаточно развиться. Кроме того, из теории образования структур следует, что основная часть темной материи должна быть *холодной*, т. е. состоять из частиц, которые перестали взаимодействовать с плазмой уже будучи нерелятивистскими. Если бы основная часть темной материи была, наоборот, *горячей*, т. е. состояла бы из частиц, которые перестали взаимодействовать с плазмой еще будучи релятивистскими²¹⁾, то образование структур протекало бы несколько по-другому: как один из результатов, первичными структурами были бы скопления галактик. Из наблюдения структур с размерами порядка десятка Мегапарсек и меньше следует, что горячая темная материя не дает большого вклада в полную плотность энергии Вселенной: во Вселенной, чья плотность энергии в основном определялась бы горячей темной материей, структур относительно небольших размеров было бы значительно меньше.

Во второй части этой книги мы будем рассматривать образование структур во Вселенной и роль различных компонент первичной плазмы в этом процессе.

1.7. Инфляционная стадия

Теория горячего Большого взрыва, о которой шла речь в предыдущих разделах, имеет внутренние трудности. Часть из них связана с тем, что в рамках этой теории для успешного описания ранней и современной Вселенной требуется наложить определенные начальные условия для космологической эволюции, причем эти начальные условия имеют весьма специальный и «неестественный» вид. Мы будем детально обсуждать проблему начальных данных в теории горячей Вселенной во второй части книги, а здесь приведем лишь одно соображение, поясняющее, о проблемах какого рода идет речь.

Как мы уже говорили, современная Вселенная — «теплая», и, следовательно, она может характеризоваться энтропией. Плотность энтропии по порядку величины равна плотности числа фотонов; в современной Вселенной

$$s \sim 10^3 \text{ cm}^{-3}.$$

Оценим энтропию видимой части Вселенной, которая имеет размер $R_0 \sim 10^4$ Мпк $\sim 10^{28}$ см:

$$S \sim s R_0^3 \sim 10^{88}$$
.

Это огромное безразмерное число — одна из характеристик нашей Вселенной. Почему Вселенная имеет столь большую энтропию? В теории горячего

42

²¹⁾ В действительности последнее свойство имеет как горячая, так и «теплая» темная материя. Для горячей темной материи характерно еще и то, что ее составляют частицы, остававшиеся релятивистскими в начале этапа доминирования нерелятивистской материи. Примером горячей темной материи являются нейтрино с массами $m_{\nu} \sim 1 - 10^{-3}$ эВ. Отметим, что вариант теплой (а не холодной) темной материи пока нельзя исключить на основе наблюдательных данных.

Большого взрыва на этот вопрос ответа нет, поскольку в ее рамках энтропия сохраняется (или, точнее, почти сохраняется). Огромную энтропию Вселенной приходится закладывать «руками» в качестве начального данного. Это неудовлетворительное положение дел получило название «проблемы энтропии». Таких трудностей в теории горячего Большого взрыва несколько; на качественном уровне все они сводятся к тому, что эта теория не объясняет, почему Вселенная такая большая, горячая, пространственно-плоская, однородная и изотропная.

Другая трудность теории горячего Большого взрыва — проблема начальных неоднородностей. На горячей стадии Вселенная не была абсолютно однородной: неоднородности плотности в ней составляли величину $\delta \rho / \rho \sim 10^{-5}$. В рамках теории горячего Большого взрыва механизма образования начальных неоднородностей нет: их также приходится закладывать «руками» в качестве начального данного космологической эволюции.

Оба этих круга проблем находят изящное решение в инфляционной теории, Согласно этой теории, горячей стадии развития Вселенной предшествовала стадия экспоненциально быстрого расширения (стадия инфляции). Во время этой стадии первоначально малая область Вселенной (размер которой был сравним, скажем, с планковской длиной l_{Pl}) растянулась до огромных размеров: вполне возможно, что современный размер этой области на много порядков превышает всю наблюдаемую часть Вселенной! Это в конечном итоге и объясняет плоскостность, однородность и изотропию наблюдаемой Вселенной. Благодаря экспоненциальному характеру расширения достаточно, чтобы инфляционная стадия продолжалась короткое время: первый круг проблем теории горячего Большого взрыва находит свое решение, если длительность инфляции составляла $(50\div70)H_{infl}^{-1}$, где $H_{infl} \sim 10^{-4}M_{Pl}$ параметр Хаббла во время инфляции (Hinfl может быть и заметно меньше $10^{-4} M_{Pl}$). Таким образом, минимальная длительность инфляции — порядка $10^{6} t_{Pl} \sim 10^{-37}$ с. Скорее всего, инфляционная стадия продолжалась гораздо дольше, но в любом случае вполне вероятно, что мы имеем дело с микроскопическим временным масштабом.

Для реализации режима экспоненциального расширения требуется, чтобы плотность энергии во Вселенной очень слабо зависела от времени. Плотность энергии обычной материи — газа частиц — таким свойством не обладает. Поэтому все модели инфляции используют гипотетические новые поля ²²⁾.

При определенных условиях это новое поле — инфлатон — является пространственно-однородным и достаточно медленно меняется со временем в области, испытывающей инфляцию. Медленно меняется и потенциальная энергия инфлатона, что и обеспечивает экспоненциальный режим расширения.

В некоторый момент условия, необходимые для экспоненциального расширения, нарушаются, и инфляционная стадия заканчивается. Наступает период разогрева Вселенной, в течение которого энергия инфлатона переходит

²²⁾ Другая возможность — включение новых слагаемых в действие гравитационного поля, — как правило, эквивалентна введению новых полей.

в энергию обычного вещества. В итоге Вселенная разогревается до высокой температуры и входит в горячую стадию. Процессы разогрева сопровождаются генерацией энтропии, что дает решение упомянутой выше проблемы энтропии.

Первоначально инфляционная теория была предложена для решения первого круга упомянутых выше проблем, но довольно скоро выснилось, что в ней находит решение и проблема начальных неоднородностей. Изначальным источником неоднородностей служат вакуумные флуктуации полей, в простых вариантах — флуктуации самого инфлатонного поля. На инфляционной стадии эти вакуумные флуктуации многократно усиливаются благодаря быстрому изменению гравитационного поля Вселенной во времени. По окончании инфляции они перерабатываются в возмущения плотности вещества. Амплитуда возмущений плотности зависит от неизвестных параметров модели, однако спектр (зависимость от длины волны) однозначно вычисляется в каждой конкретной модели инфляции. Замечательно, что большинство моделей предсказывают спектр, близкий к плоскому (т.е. к спектру Гаррисона— Зельдовича), что соответствует наблюдательным данным по анизотропии реликтового излучения и крупномасштабной структуре Вселенной. В то же время, характерным для инфляционных моделей является предсказание небольшого наклона спектра (т. е. отличие от спектра Гаррисона—Зельдовича), который может быть обнаружен космологическими наблюдениями.

Другим предсказанием многих моделей инфляции является наличие реликтовых гравитационных волн. Они также возникают в результате усиления на инфляционной стадии вакуумных флуктуаций, в этом случае гравитационного поля. Во многих моделях амплитуды гравитационных волн с длинами, сравнимыми с размером видимой части Вселенной, составляют величину порядка $10^{-5}-10^{-6}$. Такие гравитационные волны оказывают влияние на свойства реликтового излучения — его анизотропию и поляризацию. Эти эффекты еще не обнаружены, но будут доступны наблюдению в будущих экспериментах. Открытие эффектов, обусловленных реликтовыми гравитационными волнами, не только будет служить сильнейшим аргументом в пользу инфляционной теории, но и позволит определить важнейшие параметры инфляционной стадии, такие как темп расширения Вселенной $H_{in\,fl}$.

К настоящему времени инфляционная теория хорошо разработана. Мы будем довольно подробно изучать различные ее аспекты во второй части этой книги.

В заключение нашего беглого обзора отметим, что за его рамками остался целый ряд вопросов, которые мы будем изучать в этой книге. Надеемся, тем не менее, что после этого введения содержание книги стало более или менее обозримым.

ОДНОРОДНАЯ ИЗОТРОПНАЯ ВСЕЛЕННАЯ

В этой книге мы будем использовать основные понятия и уравнения общей теории относительности, см. Приложение А. Сответствующие обозначения и соглашения приведены в разделе А.11.

2.1. Однородные изотропные пространства

С высокой степенью точности наша Вселенная пространственно однородна и изотропна на достаточно больших масштабах. Это означает, что в фиксированный момент времени геометрия пространства — это геометрия однородного и изотропного трехмерного многообразия. Таких многообразий существует всего три¹⁾ (с точностью до общих растяжений): трехмерная сфера, трехмерное евклидово пространство (3-плоскость) и трехмерный гиперболоид. Геометрию трехмерной сферы проще всего понять, представив себе ее вложенной в (фиктивное с точки зрения физики) четырехмерное евклидово пространство и записав уравнение 3-сферы в виде

$$(y^{1})^{2} + (y^{2})^{2} + (y^{3})^{2} + (y^{4})^{2} = R^{2},$$

где y^a (a = 1, ..., 4) — координаты четырехмерного евклидова пространства, а R — радиус 3-сферы. Введем на 3-сфере сферические углы χ , θ и ϕ , так что

$$y^{1} = R \cos \chi,$$

$$y^{2} = R \sin \chi \cos \theta,$$

$$y^{3} = R \sin \chi \sin \theta \cos \phi,$$

$$y^{4} = R \sin \chi \sin \theta \sin \phi.$$

(2.1)

Тогда расстояние между двумя точками на 3-сфере, имеющими координаты (χ, θ, ϕ) и $(\chi + d\chi, \theta + d\theta, \phi + d\phi)$, будет равно

$$dl^2 = (dy^1)^2 + (dy^2)^2 + (dy^3)^2 + (dy^4)^2 =$$

¹⁾ Существенно при этом, что трехмерная метрика имеет евклидову сигнатуру, иначе говоря, локально может быть приведена к стандартному виду $dl^2 = (dx^1)^2 + (dx^2)^2 + (dx^3)^2$. Мы не приводим здесь доказательства того, что других типов однородных и изотропных трехмерных пространств нет.

$$= R^{2} \Big\{ \Big[d(\cos \chi) \Big]^{2} + \Big[d(\sin \chi \cos \theta) \Big]^{2} + \Big[d(\sin \chi \sin \theta \cos \phi) \Big]^{2} + \Big] \Big\} + \Big[d(\sin \chi \sin \theta \sin \phi) \Big]^{2} \Big\}.$$
(2.2)

После простого вычисления получим, что метрика трехмерной сферы имеет вид

3-c pepa:
$$dl^2 = R^2 \left[d\chi^2 + \sin^2 \chi \left(d\theta^2 + \sin^2 \theta \, d\phi^2 \right) \right].$$
(2.3)

Отметим, что в этой формуле не осталось следов от вспомогательного четырехмерного евклидова пространства, как и должно быть.

Аналогично 3-сфере, трехмерный гиперболоид удобно представлять себе вложенным в фиктивное четырехмерное пространство Минковского с метрикой

$$ds^2 = -(dy^1)^2 + (dy^2)^2 + (dy^3)^2 + (dy^4)^2,$$

при этом уравнение гиперболоида имеет вид

$$(y^{1})^{2} - (y^{2})^{2} - (y^{3})^{2} - (y^{4})^{2} = R^{2}, \qquad (2.4)$$

и нас интересует одна из компонент связности $y^1 > 0$.

Задача 1. Убедитесь, что гиперболоид действительно является однородным и изотропным пространством. *Указание*: Начните с того, что дайте четкое определение того, что понимается под однородным и изотропным пространством.

Координаты на 3-гиперболоиде можно ввести по аналогии с (2.1):

$$y^{1} = R \operatorname{ch} \chi,$$

$$y^{2} = R \operatorname{sh} \chi \cos \theta,$$

$$y^{3} = R \operatorname{sh} \chi \sin \theta \cos \phi$$

$$y^{4} = R \operatorname{sh} \chi \sin \theta \sin \phi$$

Вычисление расстояния между двумя точками на гиперболоиде вполне аналогично (2.2) и дает

3-гиперболоид:
$$dl^2 = R^2 \left[d\chi^2 + \operatorname{sh}^2 \chi \left(d\theta^2 + \sin^2 \theta \, d\phi^2 \right) \right].$$
 (2.5)

Для полноты запишем и метрику 3-плоскости (трехмерного евклидова пространства):

3-плоскость:
$$dl^2 = (dx^1)^2 + (dx^2)^2 + (dx^3)^2.$$
 (2.6)

Одним из характерных свойств однородных и изотропных пространств является то, что все ковариантные геометрические величины выражаются через метрический тензор γ_{ij} и, возможно, тензоры δ_i^j и E_{ijk} , существующие в любом римановом пространстве, см. Приложение A (здесь i, j = 1, 2, 3; мы обозначаем метрический тензор трехмерного пространства символом γ_{ij} , чтобы отличать его от метрического тензора $g_{\mu\nu}$ четырехмерного пространства-

времени). При этом коэффициенты перед соответствующими комбинациями тензора γ_{ij} не зависят от координат. В частности, тензор Римана трехмерного однородного изотропного пространства равен

$$^{(3)}R_{ijkl} = \frac{\varkappa}{R^2} (\gamma_{ik}\gamma_{jl} - \gamma_{il}\gamma_{jk}), \qquad (2.7)$$

где мы ввели параметр $\kappa = 0, \pm 1$, различающий 3-плоскость, 3-сферу и 3-гиперболоид:

Из (2.7) сразу следует, что тензор Риччи равен

$$^{(3)}R_{ij}=2\frac{\varkappa}{R^2}\gamma_{ij},\qquad(2.9)$$

а скаляр кривизны постоянен в пространстве и равен $6\kappa R^{-2}$.

Задача 2. Получить соотношения (2.7) и (2.9) прямым вычислением.

Метрикам 3-сферы, 3-плоскости и 3-гиперболоида можно придать унифицированный вид. Для этого заметим сначала, что, введя координату $\rho = R\chi$ для сферы и гиперболоида и сферические координаты (ρ , θ , ϕ) для плоскости, метрики (2.3), (2.5) и (2.6) можно представить в виде

$$dl^{2} = d\rho^{2} + r^{2}(\rho) (d\theta^{2} + \sin^{2}\theta \, d\phi^{2}), \qquad (2.10)$$

где

$$r(\rho) = \begin{cases} R \sin (\rho/R), & 3\text{-сфера;} \\ \rho, & 3\text{-плоскость;} \\ R \sin (\rho/R), & 3\text{-гиперболоид.} \end{cases}$$
(2.11)

Интерпретация величин, входящих в формулу (2.10), очевидна: ρ — это геодезическое (кратчайшее) расстояние от (произвольно выбранного) начала координат до точки с координатами (ρ , θ , ϕ), а $r(\rho)$ — определяет площадь двумерной сферы, находящейся на расстоянии ρ от начала координат, $S = 4\pi r^2(\rho)$. Ясно также, что отрезок длины l, находящийся на расстоянии ρ от начала координат, виден оттуда под углом

$$\Delta heta = rac{l}{r(
ho)}$$

В качестве радиальной координаты можно вместо ρ выбрать r, тогда получим, например, для 3-гиперболоида

$$d
ho^2 = rac{dr^2}{{
m ch}^2(
ho/R)} = rac{dr^2}{1+r^2/R^2},$$

так что метрика приобретает вид

$$dl^{2} = \frac{dr^{2}}{1 - \kappa r^{2}/R^{2}} + r^{2} (d\theta^{2} + \sin^{2} \theta \, d\phi^{2}), \qquad (2.12)$$

где параметр \varkappa — тот же, что в (2.8). Отметим, что координаты (r, θ, ϕ) покрывают лишь половину 3-сферы, поскольку область $0 \le r < R$ — это часть 3-сферы от начала координат (полюса) до поверхности максимальной площади (экватора 3-сферы). Отсюда и координатная сингулярность в метрике (2.12) при $\varkappa = 1$ и r = R.

2.2. Метрика Фридмана-Робертсона-Уокера

Расширяющаяся однородная изотропная Вселенная описывается метри-кой

$$ds^{2} = dt^{2} - a^{2}(t)\gamma_{ij} dx^{i} dx^{j}, \qquad (2.13)$$

где $\gamma_{ij}(x)$ — метрика единичной 3-сферы (метрика (2.3) с R = 1), единичного 3-гиперболоида или 3-плоскости. Метрику (2.13) называют метрикой Фридмана—Робертсона—Уокера (FRW) и говорят о замкнутой Вселенной (пространство — это 3-сфера, $\varkappa = +1$), открытой и плоской Вселенной (пространство — это 3-гиперболоид и 3-плоскость, $\varkappa = -1$ и $\varkappa = 0$ соответственно). В случаях замкнутой и открытой Вселенной масштабный фактор a(t) в каждый фиксированный момент времени имеет смысл радиуса кривизны пространства. В случае же пространственно плоской Вселенной сам по себе масштабный фактор физического смысла не имеет, поскольку в фиксированный момент времени времени любому наперед заданному числу (например, единице) растяжением пространственных координат. Физический смысл в плоской Вселенной имеет отношение масштабных факторов в различные моменты времени ($a(t_1)/a(t_2)$) и, в частности, параметр Хаббла

$$H(t)=\frac{\dot{a}(t)}{a(t)}$$

Здесь и далее точка означает производную по времени.

Отметим, что в случаях замкнутой и открытой Вселенной пространственные координаты x^i , фигурирующие в (2.13), безразмерны, а масштабный фактор имеет размерность длины. В случае же пространственно-плоской Вселенной, наоборот, удобно считать, что x^i имеют размерность длины, а масштабный фактор — безразмерный.

Метрика однородной изотропной Вселенной имеет вид (2.13) в определенной системе отсчета, которая выделена тем, что в каждый фиксированный момент времени пространство выглядит одинаково в разных областях Вселенной. Эта система отсчета является к тому же сопутствующей: мировые линии частиц, покоящихся в этой системе отсчета, являются геодезическими, т. е. такие частицы свободны. Прежде чем убедиться в этом, заметим еще, что для таких частиц $ds^2 = dt^2$, т. е. временная координата t имеет смысл собственного времени покоящихся частиц. В современной Вселенной в качестве таких покоящихся частиц выступают галактики, если отвлечься от их локального (как говорят, пекулярного) движения, обусловленного локальными гравитационными потенциалами (например, созданными близкими галактиками).

Покажем, что мировая линия $x^{i} = \text{const}$ удовлетворяет уравнению геодезической в метрике (2.13),

$$\frac{du^{\mu}}{ds} + \Gamma^{\mu}_{\nu\lambda} u^{\nu} u^{\lambda} = 0, \qquad (2.14)$$

где u^{μ} — четырехскорость (см. Приложение А). Вычислим для этого символы Кристоффеля

$$\Gamma^{\mu}_{\nu\lambda} = \frac{1}{2} g^{\mu\sigma} \left(\partial_{\nu} g_{\lambda\sigma} + \partial_{\lambda} g_{\nu\sigma} - \partial_{\sigma} g_{\nu\lambda} \right).$$
(2.15)

Ненулевые компоненты метрического тензора равны

$$g_{00} = 1, \quad g_{ij} = -a^2(t)\gamma_{ij}(x),$$

а для обратного тензора имеем

$$g^{00} = 1, \quad g^{ij} = -rac{1}{a^2(t)}\gamma^{ij}(x).$$

Очевидно, что

$$\Gamma_{00}^0 = 0, \quad \Gamma_{0i}^0 = 0, \quad \Gamma_{00}^i = 0$$

(в выражении в скобках в (2.15) по крайней мере два индекса должны принимать нулевое значение, но $g_{0i} = 0$, $\partial_{\mu}g_{00} = 0$). Для Γ_{0i}^{j} имеем

$$\Gamma_{0j}^{i} = \frac{1}{2} g^{ik} \partial_0 g_{jk} = \frac{\dot{a}}{a} \delta_j^{i}.$$
 (2.16)

Для остальных символов Кристоффеля имеем в результате столь же простого вычисления

$$\Gamma^0_{ij} = a\dot{a}\gamma_{ij}, \qquad (2.17)$$

$$\Gamma^{i}_{jk} = {}^{(3)}\Gamma^{i}_{jk}, \qquad (2.18)$$

где ${}^{(3)}\Gamma^i_{jk}$ — символы Кристоффеля, вычисленные по трехмерной метрике γ_{ij} .

Обратимся к уравнению (2.14). Единственной отличной от нуля компонентой четырехскорости $u^{\mu} = dx^{\mu}/ds$ для покоящейся частицы является

$$u^0 = \frac{dx^0}{ds} = \frac{dt}{dt} = 1$$

Уравнение (2.14) с очевидностью удовлетворяется, поскольку $du^{\mu}/ds = 0$ и $\Gamma_{00}^{\mu} = 0$ для любого μ . Мировые линии частиц, покоящихся в выбранной системе отсчета, действительно являются геодезическими.

Задача 3. Если выбрать временную координату не совпадающей с собственным временем покоящихся частиц, то FRW-метрика будет иметь вид

$$ds^2 = N^2(t) dt^2 - a^2(t)\gamma_{ij} dx^i dx^j.$$

Показать непосредственным вычислением, что и в этой метрике мировые линии покоящихся частиц — геодезические (это, конечно, заранее очевидно, поскольку это те же линии, что и в тексте).

В заключение этого раздела отметим, что и для замкнутой, и для открытой модели нередко бывает возможно пренебречь пространственной кривизной и использовать пространственно-плоскую метрику

$$\gamma_{ij} = \delta_{ij}.\tag{2.19}$$

Это во всяком случае законно, если рассматриваются пространственные расстояния, много меньшие радиуса пространственной кривизны a(t). Мы уже упоминали в Главе 1, что наблюдательные данные свидетельствуют о том, что Вселенная и сейчас, и в прошлом — пространственно плоская с хорошей степенью точности, поэтому приближение (2.19) в действительности является очень хорошим. Мы еще будем уточнять это утверждение в дальнейшем.

2.3. Красное смещение. Закон Хаббла

С течением времени масштабный фактор a(t) увеличивается, так что расстояния между точками с фиксированными пространственными координатами x^i увеличиваются — Вселенная расширяется. Из-за этого длина волны фотона, испушенного в прошлом удаленным источником, увеличивается при движении фотона к наблюдателю, т. е. фотон испытывает красное смещение. Чтобы описать это явление количественно, запишем действие свободного электромагнитного поля в искривленном пространстве-времени с метрикой $q_{uv}(x)$:

$$S = -\frac{1}{4} \int d^4x \sqrt{-g} g^{\mu\nu} g^{\lambda\rho} F_{\mu\lambda} F_{\nu\rho}, \qquad (2.20)$$

где, как обычно,

$$F_{\mu
u} =
abla_{\mu}A_{
u} -
abla_{
u}A_{\mu} = \partial_{\mu}A_{
u} - \partial_{
u}A_{\mu}$$

и A_{μ} — вектор-потенциал электромагнитного поля. Действие (2.20) — простейшее ковариантное обобщение действия максвелловской электродинамики; множитель $\sqrt{-g}$ обеспечивает инвариантность элемента четырехмерного объема (см. Приложение А). В принципе к действию (2.20) можно было бы добавить другие инвариантные слагаемые, обращающиеся в нуль в случае плоского пространства-времени, например

$$\delta S = \frac{\alpha}{M_{Pl}^2} \int d^4x \, \sqrt{-g} \, g^{\mu\nu} R^{\lambda\rho} F_{\mu\lambda} F_{\nu\rho}, \qquad (2.21)$$

где $R^{\lambda\rho}$ — тензор Риччи, α — безразмерная константа, а множитель M_{pl}^{-2} включен из размерных соображений. Однако слагаемые типа (2.21) пренебрежимо малы по сравнению с (2.20), если кривизна пространства-времени

50

мала по сравнению с планковским значением, $|R_{\mu\nu}| \ll M_{Pl}$, а константа α не слишком велика. Поэтому на всех этапах классической эволюции Вселенной, когда ее параметры далеки от планковских, фотоны можно описывать действием (2.20) (если, конечно, можно пренебречь взаимодействием фотонов с веществом).

Рассмотрим свободное распространение фотона в однородной изотропной Вселенной и ограничимся случаем, когда длина волны фотона много меньше радиуса пространственной кривизны (если Вселенная — открытая или замкнутая). Тогда Вселенную можно считать пространственно-плоской и использовать метрику

$$ds^{2} = dt^{2} - a^{2}(t)\delta_{ij} dx^{i} dx^{j}. \qquad (2.22)$$

Удобно ввести вместо временной координаты t конформное время η , такое что

$$dt = a \, d\eta, \tag{2.23}$$

т. е.

$$\eta = \int rac{dt}{a(t)}.$$

В терминах новой временной координаты метрика имеет вид

$$ds^{2} = a^{2}(\eta) \left[d\eta^{2} - \delta_{ij} dx^{i} dx^{j} \right]. \qquad (2.24)$$

Иными словами,

$$g_{\mu\nu} = a^2(\eta)\eta_{\mu\nu}, \qquad (2.25)$$

где $\eta_{\mu\nu}$ — метрика Минковского. В связи с тем, что метрика (2.25) отличается от плоской метрики только общим растяжением (зависящим от времени), говорят, что в координатах (η, x^i) метрика имеет конформно-плоский вид. В этих координатах имеем

$$g^{\mu
u}=rac{1}{a^2}\eta^{\mu
u},\quad \sqrt{-g}=a^4.$$

Подставив эти выражения в (2.20), получим, что в координатах (η, x^i) действие электромагнитного поля совпадает с действием в плоском пространствевремени:

$$S = -\frac{1}{4} \int d^4x \ \eta^{\mu\nu} \eta^{\lambda\rho} F_{\mu\lambda} F_{\nu\rho}. \tag{2.26}$$

Такое свойство характерно именно для безмассовых векторных полей; для других полей действие в конформных координатах (η , x^i) к «плоскому» действию, вообще говоря, не сводится. В связи с этим говорят, что свободное электромагнитное поле — это конформное поле, а другие поля конформными, вообще говоря, не являются.

Из (2.26) сразу следует, что решения уравнений свободного электромагнитного поля во Вселенной с метрикой (2.22) (или, что то же самое, с метрикой (2.24)) являются суперпозициями плоских волн

$$A^{(\alpha)}_{\mu}=e^{(\alpha)}_{\mu}\mathrm{e}^{ik\eta-i\mathbf{kx}},$$

где k — постоянный вектор (вектор координатного импульса), $k = |\mathbf{k}|$, а $e_{\mu}^{(\alpha)}$ — обычные векторы поляризации фотона, $\alpha = 1,2$. Подчеркнем, что k не является физическим импульсом фотона, а k не является физической частотой, поскольку dx и d\eta не совпадают с физическими расстоянием и промежутком времени. Величина $\Delta x = 2\pi/k$ — это координатная длина волны фотона; физическая же длина волны фотона в момент времени t равна в соответствии с (2.22)

$$\lambda(t) = a(t)\Delta x = 2\pi \frac{a(t)}{k}.$$
(2.27)

Аналогично, $\Delta \eta = 2\pi/k$ — это период электромагнитной волны в конформном времени, а период волны в физическом времени²⁾ *t* равен, в соответствии с (2.23),

$$T = a(t)\Delta\eta = 2\pi \frac{a(t)}{k}.$$
 (2.28)

Таким образом, физический импульс **р** и физическая частота фотона в момент времени t равны

$$\mathbf{p}(t) = \frac{\mathbf{k}}{a(t)}, \quad \omega(t) = \frac{\mathbf{k}}{a(t)}. \tag{2.29}$$

В расширяющейся Вселенной a(t) растет со временем, физическая длина волны фотона (2.27) соответственно растет, а его физические частота и импульс уменьшаются — фотон испытывает красное смещение. Если фотон был испущен с определенной длиной волны λ_i в момент времени t_i (например, в результате перехода атома водорода с возбужденного на основной уровень), то на Земле он будет наблюдаться с длиной волны

$$\lambda_0 = \lambda_i \frac{a_0}{a(t_i)} \equiv \lambda_i (1 + z(t_i)). \tag{2.30}$$

Как обычно, индекс 0 относится к величинам в настоящий момент времени. Величина

$$z(t) = \frac{a_0}{a(t)} - 1$$
 (2.31)

называется красным смещением. Чем дальше от нас объект, излучающий фотоны, тем дольше эти фотоны летят по Вселенной и тем меньшее значение имеет $a(t_i)$ — более отдаленные объекты имеют бо́льшее красное смещение. Красное смещение объекта — непосредственно измеримая величина: ее измерение сводится к идентификации линии или системы линий излучения (или поглощения) атомов и определению того, насколько они смещены в область длинных волн, см. Главу 1.

Подчеркнем, что формулы (2.30) и (2.31) имеют общий характер и справедливы при любых z.

²⁾ Отметим, что здесь мы предполагаем, что период T значительно меньше характерного времени изменения масштабного фактора a(t). Это предположение, конечно, прекрасно выполняется в современной Вселенной.

Для не слишком далеких объектов разность $(t_0 - t_i)$ — время хода фотонов — не слишком велика, и можно записать

$$a(t_i) = a_0 - \dot{a}(t_0)(t_0 - t_i).$$

В терминах параметра Хаббла

$$H(t) = \frac{\dot{a}(t)}{a(t)}$$

и его современного значения

 $H_0 = H(t_0)$

получим

$$a(t_i) = a_0[1 - H_0(t_0 - t_i)].$$

Поэтому в линейном порядке по $(t_0 - t_i)$ справедливо

$$z(t_i) = H_0(t_0 - t_i).$$

Наконец, время хода равно расстоянию до объекта, с точностью до поправок порядка $(t_0 - t_i)^2$,

 $r=t_0-t_i.$

Отсюда имеем закон Хаббла

$$z = H_0 r, \quad z \ll 1. \tag{2.32}$$

При его выводе мы считали, что $(t_0 - t_i)$ невелико; это соответствует небольшим красным смещениям, что и отмечено в формуле (2.32).

Параметр Хаббла H_0 — один из фундаментальных космологических параметров, характеризующих современную Вселенную. Его измерение связано с довольно деликатной задачей измерения абсолютного расстояния до объектов во Вселенной, что уже обсуждалось в Главе 1. Принято использовать параметризацию

$$H_0 = h \cdot 100 \frac{\mathrm{KM}}{\mathrm{c} \cdot \mathrm{M}\mathrm{n}\mathrm{K}},\tag{2.33}$$

где *h* — безразмерная величина. Измерения дают

$$h = 0.73_{-0.03}^{+0.04}, \tag{2.34}$$

так что

$$H_0 = (73^{+4}_{-3}) \frac{\kappa_M}{c \cdot M_{\Pi K}}$$
(2.35)

В дальнейшем для оценок мы будем использовать значение h = 0,7, если не оговорено противное.

Как мы упоминали в Главе 1, с параметром H_0 связаны характерные масштабы времени и расстояния

$$H_0^{-1} = h^{-1} \cdot 1, 0 \cdot 10^{10} \text{ лет} =$$
 (2.36)

$$= h^{-1} \cdot 3000 \text{ Mnk.}$$
 (2.37)

Для h = 0,7 имеем

$$H_0^{-1} = 1.4 \cdot 10^{10} \text{ ner} =$$
(2.38)

Мы увидим, что эти величины дают грубую оценку возраста Вселенной и размера ее наблюдаемой части.

В заключение этого раздела сделаем следующее замечание. Наш вывод формул (2.27)-(2.29) и, соответственно, (2.30) основывался на том, что свободное электромагнитное поле является конформным, т. е. в координатах (η, x^i) его действие сводится к действию в плоском пространстве-времени. Однако эти формулы имеют более общий характер и справедливы для любых безмассовых частиц.

Рассмотрим, например, безмассовое скалярное поле с действием

$$S = \frac{1}{2} \int d^4x \, \sqrt{-g} \, g^{\mu\nu} \partial_\mu \phi \, \partial_\nu \phi. \tag{2.40}$$

В конформных координатах (η, x^i) явный вид действия в пространстве-времени с метрикой (2.24) — это

$$S = \frac{1}{2} \int d^3x \, d\eta \, a^2(\eta) \eta^{\mu\nu} \partial_\mu \phi \, \partial_\nu \phi \qquad (2.41)$$

Скалярное поле с действием (2.40) не является конформным: действие (2.41) не сводится к плоскому заменой переменных. Из (2.41) варьированием по ϕ получим уравнение для безмассового скалярного поля в метрике (2.24)

$$\frac{1}{a^2}\partial_\eta(a^2\partial_\eta\phi) - \partial_i\partial_i\phi = 0.$$
(2.42)

(суммирование по i = 1, 2, 3 подразумевается, так что $\partial_i \partial_i$ — это лапласиан в плоском трехмерном пространстве). Заметим прежде всего, что оператор в левой части этого уравнения — ковариантный даламбертиан — не зависит от x^i , поэтому решение можно искать в виде разложения по трехмерным плоским волнам

$$\phi = \frac{1}{a(\eta)} f(\eta) \mathrm{e}^{-i\mathbf{k}\mathbf{x}}.$$

Множитель $a^{-1}(\eta)$ выделен для удобства: с его учетом получаем, что уравнение (2.42) приводится к уравнению для $f(\eta)$, не содержащему первой производной по времени:

$$\partial_{\eta}^{2} f - \frac{\partial_{\eta}^{2} a}{a} f + \mathbf{k}^{2} f = 0.$$
(2.43)

Если темп расширения Вселенной и его производная по времени невелики по сравнению с частотой безмассовой скалярной частицы, то вторым слагаемым в уравнении (2.43) можно пренебречь, поэтому решением уравнения

с.é

(2.43) является $f = e^{ik\eta}$, а решения для скалярного поля — это линейные суперпозиции плоских волн

$$\phi = \frac{1}{a(\eta)} e^{ik\eta - i\mathbf{k}\mathbf{x}}.$$
 (2.44)

Координатные частота и импульс, k и k, вновь не зависят от времени, что вновь приводит к соотношениям (2.27)–(2.29), в чем мы и хотели убедиться. Отметим, что множитель $a^{-1}(\eta)$ в решении (2.44) компенсирует множитель $a^{2}(\eta)$ в лагранжиане (2.40); иначе говоря, для поля $f(\mathbf{x}, \eta)$, определенного соотношением

$$\phi(\mathbf{x},\eta) = \frac{1}{a(\eta)}f(\mathbf{x},\eta),$$

действие (2.40) сводится к «плоскому» действию безмассового скалярного поля с точностью до поправок, содержащих производные масштабного фактора по времени.

Задача 4. Сформулировать количественно условия, при которых второе слагаемое в уравнении (2.43) мало по сравнению с третьим. Выразить их в терминах физической частоты волны, параметра Хаббла и его производной по физическому времени t.

Задача 5. Рассматривая в качестве примера фотоны и безмассовые скалярные частицы (действие (2.20) и (2.40) соответственно) показать, что соотношение (2.31) между красным смещением и масштабными факторами остается справедливым и в случаях отклытой и замкнутой Вселенной, если длина волны $\lambda(t)$ мала по сравнению с радиусом пространственной кривизны a(t) в течение всего времени движения частицы.

2.4. Замедление относительного движения

Уменьшение физического импульса по закону

$$\mathbf{p} = \frac{\mathbf{k}}{a(t)},\tag{2.45}$$

где **k** — не зависящий от времени координатный импульс, характерно и для массивных свободных частиц. Чтобы убедиться в этом, рассмотрим уравнение геодезической

$$\frac{du^{\mu}}{ds} + \Gamma^{\mu}_{\nu\lambda} u^{\nu} u^{\lambda} = 0, \qquad (2.46)$$

которому подчиняются четырехскорости свободных частиц

$$u^{\mu}=rac{dx^{\mu}}{ds}$$

(см. Приложение А). Заметим сразу, что u^i — это еще не физические значения пространственных компонент четырехскорости: поскольку физические расстояния dX^i связаны с координатными соотношением

$$dX^i = a(t) \, dx^i,$$

физические компоненты равны

$$U^i = \frac{dX^i}{ds} = a(t)u^i.$$

Как обычно в релятивистской физике, физические импульсы выражаются через эти компоненты,

$$p^i = mU^i$$
,

а обычные скорости

$$v^i = rac{dX^i}{dt}$$

связаны с U^i соотношением

$$U^{i} = \frac{v^{i}}{\sqrt{1 - v^{2}}}.$$
 (2.47)

Действительно, четырехскорости u^{μ} удовлетворяют соотношению

$$g_{\mu\nu}u^{\mu}u^{\nu}=1.$$

В метрике (2.25) оно выглядит следующим образом:

$$(u^0)^2 - a^2 u^i u^i = 1$$

(суммирование по *i* подразумевается) или

$$\left(\frac{dt}{ds}\right)^2 - \left(U^i\right)^2 = 1$$

Поэтому

$$v^i = rac{dX^i}{dt} = rac{dX^i}{ds} rac{ds}{dt} = rac{U^i}{\sqrt{1+U^2}},$$

откуда и следует соотношение (2.47).

Вернемся к уравнению геодезической (2.46). В метрике (2.22) отличны от нуля только компоненты связности (2.16) и (2.17). Для пространственных компонент уравнения (2.46) (т. е. при $\mu = i = 1, 2, 3$) имеем поэтому

$$rac{du^i}{ds}+\Gamma^i_{0j}u^0u^j+\Gamma^i_{j0}u^ju^0=0,$$
 или $rac{du^i}{ds}+2rac{\dot{a}}{a}rac{dt}{ds}u^i=0.$

В терминах физических компонент последнее уравнение имеет вид

$$rac{dU^i}{dt} = -rac{\dot{a}}{a}U^i.$$

Поэтому скорости свободных массивных частиц убывают со временем как

$$U^i=\frac{\mathrm{const}}{a(t)},$$

т. е. справедлив закон (2.45).

Таким образом, скорости свободных частиц относительно сопутствующей системы отсчета убывают в расширяющейся Вселенной; частицы постепенно «вмораживаются». В частности, если на ранних этапах эволюции Вселенной частицы были релятивистскими, то на более поздних этапах они становятся нерелятивистскими (разумеется, если их масса отлична от нуля). Такое поведение характерно для нейтрино, если их масса превышает 10⁻⁴ эВ.

В заключение этого раздела приведем другой вывод соотношения (2.45). Он связан с изучением решений уравнений массивных полей в расширяющейся Вселенной. Рассмотрим, например, действие для массивного скалярного поля

$$S=\int d^4x\,\sqrt{-g}iggl(rac{1}{2}g^{\mu
u}\,\partial_\mu\phi\,\partial_
u\phi-rac{m^2}{2}\phi^2iggr).$$

В метрике (2.24) оно имеет вид

$$S = \int d^3x \, d\eta igg(rac{1}{2} a^2 \eta^{\mu
u} \, \partial_\mu \phi \, \partial_
u \phi - rac{m^2 a^4}{2} \phi^2 igg).$$

Уравнение, получаемое отсюда варьированием по ϕ — это уравнение Клейна— Гордона в расширяющейся Вселенной (в конформных координатах)

$$\frac{1}{a^2}\partial_\eta(a^2\partial_\eta\phi) - \partial_i\partial_i\phi + m^2a^2\phi = 0.$$
 (2.48)

В это уравнение вновь пространственные координаты явно не входят, поэтому его решения — это линейные комбинации волн

$$\phi = \frac{1}{a(\eta)} f(\eta) \mathrm{e}^{-\imath \mathrm{k} \mathrm{x}},$$

где k не зависит от времени. Физическая длина волны частицы вновь дается соотношением (2.27), а ее физический импульс — равенством (2.45).

Задача 6. Показать, что в случае медленного изменения масштабного фактора решением уравнения (2.48) являются линейные комбинации функций вида

$$\phi = \frac{1}{a(\eta)\sqrt{\Omega(\eta)}} \exp\left\{i\int^{\eta} \Omega(\eta) \, d\eta\right\} e^{-i\mathbf{k}\mathbf{x}} \cdot \left(1 + \mathcal{O}(\partial_{\eta}a)\right)$$

где $\Omega(\eta) = \sqrt{\mathbf{k}^2 + m^2 a^2(\eta)}$. Таким образом, координатная частота (производная показателя экспоненты по конформному времени) равна $\Omega(\eta)$, а физическая частота равна

$$\omega(\eta) = rac{\Omega(\eta)}{a(\eta)} = \sqrt{\mathbf{p}^2 + m^2},$$

как и должно быть в релятивистской физике.

2.5. Газы свободных частиц в расширяющейся Вселенной

Рассмотрим, как ведут себя газы невзаимодействующих частиц в однородной изотропной Вселенной. Поскольку речь пойдет о локальных характеристиках типа плотности числа частиц, вновь можно пренебречь пространственной кривизной и выбрать метрику в виде (2.22). Газ частиц можно характеризовать функцией распределения, такой что $f(X, \mathbf{p}) d^3 X d^3 \mathbf{p}$ — это число частиц в элементе физического объема $d^3 X$ в интервале физических импульсов $d^3 \mathbf{p}$. Функция распределения, вообще говоря, зависит от времени и не является равновесной (поскольку здесь мы рассматриваем случай, когда частицы не взаимодействуют и, следовательно, не находятся в термодинамическом равновесии). Мы будем рассматривать однородные газы, для которых функция распределения не зависит от координат, а зависит только от импульсов (и времени).

Мы видели в предыдущих разделах, что координатные импульсы свободных частиц \mathbf{k} не изменяются во времени. Координатный объем $d^3\mathbf{x}$ также постоянен, поэтому функция распределения, записанная в терминах координатного импульса, не зависит от времени:

$$f(k) = \text{const.}$$

Число частиц в элементе сопутствующего фазового объема также не зависит от времени:

$$f(k) d^3 \mathbf{x} d^3 \mathbf{k} = \text{const.}$$

Сопутствующий фазовый объем совпадает с физическим:

$$d^3\mathbf{x} d^3\mathbf{k} = d^3(a\mathbf{x}) d^3\left(\frac{\mathbf{k}}{a}\right) = d^3\mathbf{X} d^3\mathbf{p}.$$

Поэтому функция распределения свободных частиц целиком определяется тем, как «краснеют» импульсы:

$$f(\mathbf{p}, t) = f(\mathbf{k}) = f[a(t) \cdot \mathbf{p}].$$

Если в какой-то момент времени функция распределения известна и равна $f_i(\mathbf{p})$, то в последующие времена она равна

$$f(\mathbf{p},t) = f_i \left(\frac{a(t)}{a_i}\mathbf{p}\right). \tag{2.49}$$

Разумеется, эта формула годится, вообще говоря, только для свободных частиц.

Мы увидим, что в ранней Вселенной частицы интенсивно взаимодействовали между собой и находились в термодинамическом равновесии. В какой-то момент (для каждого типа частиц — свой) Вселенная расширилась настолько, что плотность и температура в ней стали малы и взаимодействия между частицами прекратились. В момент прекращения взаимодействий частицы имели тепловую функцию распределения, а в дальнейшем она изменялась согласно закону (2.49)³⁾.

³⁾ Это утверждение требует уточнения. Оно было бы справедливо в строго однородной изотропной Вселенной. В реальной Вселенной имеются неоднородности плотности, которые в какой-то момент становятся значительными и создают заметные гравитационные потенциалы (галактик, скоплений и т.д.). Для реликтовых фотонов это с хорошей точностью несущественно, но для нерелятивистских частиц весьма важно. Для последних закон (2.49) справедлив только на достаточно ранних стадиях, когда неоднородности плотности еще малы.

Рассмотрим более подробно предельные случаи. Начнем с безмассовых частиц; наибольший интерес представляют фотоны. В момент, когда они прекращают взаимодействовать с веществом (момент рекомбинации, который мы будем подробно обсуждать в дальнейшем), их функция распределения — это планковская функция распределения излучения черного тела. Она зависит только от отношения импульса и температуры в этот момент, $|\mathbf{p}|/T_i$:

$$f_i(\mathbf{p}) = f_{bb}\left(\frac{|\mathbf{p}|}{T_i}\right) = \frac{1}{(2\pi)^3} \frac{1}{e^{|\mathbf{p}|/T_i} - 1}.$$
 (2.50)

Для безмассовых фермионов это была бы функция Ферми—Дирака с нулевой массой (см. Главу 5), которая тоже зависит только от отношения $|\mathbf{p}|/T_i$. В последующие времена, согласно (2.49), функция распределения равна

$$f(\mathbf{p}, t) = f_{bb} \left(\frac{a(t)|\mathbf{p}|}{a_i T_i} \right) = f_{bb} \left(\frac{|\mathbf{p}|}{T_{eff}(t)} \right),$$
$$T_{eff}(t) = \frac{a_i}{a(t)} T_i.$$
(2.51)

где

Таким образом, функция распределения всегда имеет равновесную форму, несмотря на то что фотоны не находятся в термодинамическом равновесии. Из (2.51) видно, что реликтовые фотоны имеют планковский спектр с (эффективной) температурой, убывающей с течением времени по закону

$$T_{eff}(t) \propto \frac{1}{a(t)}.$$
 (2.52)

Отметим, что так же (с некоторыми оговорками) ведет себя температура в ранней Вселенной, когда имеется термодинамическое равновесие фотонов с веществом (мы увидим это в дальнейшем).

Разумеется, соотношение (2.52) справедливо и для других безмассовых частиц, включая фермионы (если в природе действительно имеются безмассовые частицы, помимо фотонов и гравитонов). Существенно, что эффективная температура таких частиц падает по закону (2.52) начиная с того момента, когда эти частицы выходят из термодинамического равновесия с остальным веществом. В более поздние времена их температура может не совпадать с температурой фотонов. Мы столкнемся с этой ситуацией в Главе 7. Если частицы имеют малую, но ненулевую массу m и в момент «закалки» (прекращения взаимодействий между собой и с другими частицами и выхода из термодинамического равновесия) были ультрарелятивистскими, их спектр остается тепловым, а эффективная температура падает как $a^{-1}(t)$ до тех пор пока $T_{eff} \gg m$. В более поздние времена спектр этих частиц тепловым не является. Действительно, функция распределения все время остается планковской (если эти частицы — бозоны), т. е. имеет вид (2.50) с температурой $T_{eff}(t)$, в то время как при $T_{eff} \ll m$ равновесное распределение — это распределение

Максвелла—Больцмана. Такие реликтовые частицы называют «горячей темной материей»; «горячая» она в том смысле, что частицы отщепляются, будучи ультрарелятивистскими, и все время характеризуются безмассовой функцией распределения⁴). Важный пример таких частиц — реликтовые нейтрино.

Рассмотрим теперь другой предельный случай, когда частицы отщепляются (перестают взаимодействовать), будучи нерелятивистскими. В момент закалки они характеризуются больцмановской функцией распределения (см. Главу 5)

$$f(\mathbf{p}) = \frac{1}{(2\pi)^3} \exp\left\{-\frac{m-\mu_i}{T_i}\right\} \exp\left\{-\frac{\mathbf{p}^2}{2mT_i}\right\},$$

где T_i и μ_i — температура и химический потенциал в этот момент. Согласно (2.49), функция распределения в последующие времена равна

$$f(\mathbf{p}) = \frac{1}{(2\pi)^3} \exp\left\{-\frac{m-\mu_i}{T_i}\right\} \exp\left\{-\frac{a^2(t)\mathbf{p}^2}{2ma_i^2T_i}\right\}.$$

Ее снова можно представить в больцмановском виде

$$f(\mathbf{p},t) = \frac{1}{(2\pi)^3} \exp\left\{-\frac{m-\mu_{eff}}{T_{eff}}\right\} \exp\left\{-\frac{\mathbf{p}^2}{2mT_{eff}}\right\},\qquad(2.53)$$

где

$$T_{eff}(t) = \left(rac{a_i}{a(t)}
ight)^2 T_i,$$

а эффективный химический потенциал определяется из соотношения

$$\frac{m-\mu_{eff}(t)}{T_{eff}}=\frac{m-\mu_i}{T_i}.$$

Равенство (2.53) означает, что функция распределения по-прежнему имеет равновесный вид⁵⁾ (хотя частицы в термодинамическом равновесии не находятся), а эффективная температура падает со временем как

$$T_{eff}(t) \propto rac{1}{a^2(t)}$$

и убывает быстрее, чем в случае безмассовых частиц. Частицы, которые в момент закалки были нерелятивистскими, называют «холодной темной материей». Как мы упоминали в Главе 1, холодная темная материя, состоящая, по-видимому, из неизвестных стабильных частиц, составляет бо́льшую часть вещества во Вселенной, а ее плотность энергии (массы) составляет сегодня около 20 % полной плотности энергии.

⁴⁾ Это же свойство имеет «теплая» темная материя; по поводу различия между горячей и теплой темной материей см. раздел 9.1.

⁵⁾ См. сноску 3 в этой главе.

ДИНАМИКА РАСШИРЕНИЯ ВСЕЛЕННОЙ

3.1. Уравнение Фридмана

Закон расширения Вселенной, т.е. зависимость масштабного фактора *а* от времени, определяется уравнениями Эйнштейна (см. Приложение А)

$$R_{\mu
u}-rac{1}{2}g_{\mu
u}R=8\pi GT_{\mu
u}.$$

Найдем их явный вид для однородной изотропной метрики (2.13). Начнем с вычисления тензора Риччи. Имеем по определению

$$R_{\mu\nu} = \partial_{\lambda}\Gamma^{\lambda}_{\mu\nu} - \partial_{\mu}\Gamma^{\lambda}_{\nu\lambda} + \Gamma^{\lambda}_{\mu\nu}\Gamma^{\sigma}_{\lambda\sigma} - \Gamma^{\lambda}_{\mu\sigma}\Gamma^{\sigma}_{\lambda\nu}.$$
(3.1)

Отличные от нуля компоненты символов Кристоффеля даются формулами (2.16), (2.17) и (2.18). Из них, в частности, следует, что

$$\Gamma^{\mu}_{0\mu}=rac{\dot{a}}{a}\delta^i_i=3rac{\dot{a}}{a},\quad \Gamma^{\mu}_{i\mu}={}^{(3)}\Gamma^j_{ij}.$$

Вычислим сначала R_{00} . Поскольку $\Gamma_{00}^{\mu} = 0$, вклад дают только второе и четвертое слагаемые в (3.1), и мы получаем

$$R_{00} = -\partial_0 \Gamma_{0\lambda}^{\lambda} - \Gamma_{0\sigma}^{\lambda} \Gamma_{0\lambda}^{\sigma} = -\partial_0 \Gamma_{0\lambda}^{\lambda} - \Gamma_{0j}^i \Gamma_{0i}^j = \\ = -\partial_0 \left(3\frac{\dot{a}}{a}\right) - \left(\frac{\dot{a}}{a}\right)^2 \delta_j^i \delta_i^j = -3\partial_0 \left(\frac{\dot{a}}{a}\right) - 3\left(\frac{\dot{a}}{a}\right)^2.$$

Окончательно

$$R_{00} = -3\frac{\ddot{a}}{a}.$$
 (3.2)

Обратимся теперь к смешанным компонентам R_{0i} . Учитывая в (3.1) только ненулевые символы Кристоффеля, запишем

$$R_{0i} = \partial_j \Gamma^j_{0i} - \partial_0 \Gamma^\lambda_{i\lambda} + \Gamma^j_{0i} \Gamma^\lambda_{j\lambda} - \Gamma^k_{0j} \Gamma^j_{ik}.$$
(3.3)

Это выражение в действительности равно нулю, поскольку Γ_{0i}^{j} не зависят от пространственных координат, $\Gamma_{i\lambda}^{\lambda} = {}^{(3)}\Gamma_{ij}^{j}$ вычисляются по статической

метрике γ_{ij} и не зависят от времени, а $\Gamma^{j}_{0k} \propto \delta^{j}_{k}$, что приводит к сокращению двух последних слагаемых в (3.3). Итак,

$$R_{0i} = 0.$$
 (3.4)

Этого и следовало ожидать, поскольку R_{0i} преобразуются как компоненты трехвектора относительно трехмерных вращений, а в изотропном пространстве выделенного вектора нет.

Вычислим, наконец, пространственные компоненты R_{ij} . Вновь сохраним только ненулевые символы Кристоффеля в (3.1) и запишем

$$R_{ij} = \left(\partial_0 \Gamma^0_{ij} + \partial_k \Gamma^k_{ij}\right) - \partial_i \Gamma^\lambda_{j\lambda} + \left(\Gamma^0_{ij} \Gamma^\sigma_{0\sigma} + \Gamma^k_{ij} \Gamma^\sigma_{k\sigma}\right) - \left(\Gamma^0_{ik} \Gamma^k_{j0} + \Gamma^k_{i0} \Gamma^0_{jk} + \Gamma^k_{il} \Gamma^l_{jk}\right),$$
(3.5)

где в скобках собраны слагаемые, возникающие из каждого из четырех членов в (3.1). Учитывая (2.18), соберем слагаемые в (3.5), содержащие только пространственные индексы, в тензор Риччи ⁽³⁾ R_{ij} , вычисленный по трехмерной метрике γ_{ij} . Остальные четыре слагаемых вычисляются непосредственно, и мы получаем

$$R_{ij}=\partial_0(\dot{a}a)\gamma_{ij}+\dot{a}a\gamma_{ij}\cdot 3rac{\dot{a}}{a}-\dot{a}a\gamma_{ik}\cdot rac{\dot{a}}{a}\delta^k_j-rac{\dot{a}}{a}\delta^k_i\dot{a}a\gamma_{jk}+{}^{(3)}R_{ij}$$

Окончательно, имеем выражение

$$R_{ij} = (\ddot{a}a + 2\dot{a}^2 + 2\varkappa)\gamma_{ij}, \qquad (3.6)$$

где мы воспользовались соотношением (2.9).

Используем теперь формулы (3.2), (3.4) и (3.6), чтобы найти скалярную кривизну:

$$R = g^{\mu
u}R_{\mu
u} = g^{00}R_{00} + g^{ij}R_{ij} = R_{00} - rac{1}{a^2}\gamma^{ij}R_{ij}.$$

Поскольку $\gamma^{ij}\gamma_{ij}=3$, имеем

$$R = -6\left(rac{\ddot{a}}{a}+rac{\dot{a}^2}{a^2}+rac{\kappa}{a^2}
ight).$$

В результате (00)-компонента левой части уравнений Эйнштейна имеет простой вид

$$R_{00} - \frac{1}{2}g_{00}R = 3\left(\frac{\dot{a}^2}{a^2} + \frac{\kappa}{a^2}\right).$$

Аналогично вычисляются другие компоненты тензора Эйнштейна:

$$G_{\mu
u}\equiv R_{\mu
u}-rac{1}{2}g_{\mu
u}R.$$

Обратимся теперь к правой части уравнений Эйнштейна. На интересующих нас здесь этапах эволюции Вселенной пригодно макроскопическое описание вещества: его можно считать однородной «жидкостью» с плотностью энергии $\rho(t)$ и давлением p(t). В среднем вещество покоится в сопутствующей системе отсчета, поэтому единственная отличная от нуля компонента четырехскорости — это u^0 , причем в силу соотношения $g_{\mu\nu}u^{\mu}u^{\nu} = 1$ имеем

$$u^0 = 1, \quad u_0 = 1.$$

Следовательно, (00)-компонента тензора энергии-импульса равна (см. Приложение А)

$$T_{00} = (p +
ho) u_0 u_0 - g_{00} p =
ho.$$

Итак, (00)-компонента уравнений Эйнштейна в однородной изотропной Вселенной имеет вид

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{\varkappa}{a^2}.$$
(3.7)

Это уравнение называют уравнением Фридмана; оно связывает темп расширения Вселенной (а именно, параметр Хаббла $H = \dot{a}/a$) с плотностью энергии материи ρ и пространственной кривизной.

Уравнение Фридмана необходимо дополнить еще одним уравнением, поскольку в уравнении (3.7) содержатся две неизвестные функции времени a(t)и $\rho(t)$. Для получения дополнительного уравнения удобно рассмотреть условие ковариантного сохранения тензора энергии-импульса вещества (см. Приложение A)

$$\nabla_{\mu}T^{\mu\nu}=0$$

Полагая здесь $\nu = 0$, будем иметь

$$\nabla_{\mu}T^{\mu 0} \equiv \partial_{\mu}T^{\mu 0} + \Gamma^{\mu}_{\mu\sigma}T^{\sigma 0} + \Gamma^{0}_{\mu\sigma}T^{\mu\sigma} = 0.$$
(3.8)

Ненулевые компоненты тензора энергии-импульса в сопутствующей системе отсчета равны

$$T^{00} = g^{00} g^{00} T_{00} = \rho, \qquad (3.9)$$

$$T^{ij} = g^{ik}g^{jl}T_{kl} = g^{ik}g^{jl}(-g_{kl}p) = \frac{1}{a^2}\gamma^{ij}p.$$
 (3.10)

Здесь мы воспользовались тем, что пространственные компоненты четырехскорости равны нулю в сопутствующей системе отсчета, так что

$$T_{ij}=(p+
ho)u_iu_j-pg_{ij}=-pg_{ij}.$$

В формуле (3.10) величины γ^{ij} — это не зависящие от времени компоненты матрицы, обратной γ_{ij} . Вновь воспользуемся выражениями для ненулевых компонент символов Кристоффеля (2.16), (2.17), (2.18) и запишем уравнение (3.8) в явном виде:

$$\dot{\rho} + 3\frac{\dot{a}}{a}(\rho + p) = 0.$$
 (3.11)

Для замыкания системы уравнений, определяющих динамику эволюции однородной изотропной Вселенной, необходимо задать еще уравнение состояния материи

$$p = p(\rho). \tag{3.12}$$

Последнее уравнение не является следствием уравнений общей теории относительности, а определяется тем, какое вещество присутствует во Вселенной. Например, для нерелятивистских частиц p = 0, для газа ультрарелятивистских частиц $p = \rho/3$, а для вакуума $p = -\rho$, см. раздел 3.2.

Задача 1. Найти уравнение состояния в модели скалярного поля с лагранжианом

$$\mathcal{L} = -V_0 \sqrt{1 - \partial_\mu \phi \ \partial^\mu \phi}, \quad V_0 > 0,$$

считая, что поле ϕ является классическим и пространственно однородным (зависит только от времени).

Уравнения (3.7), (3.11) и (3.12) полностью определяют динамику расширения Вселенной. Сделаем два замечания по поводу уравнений (3.11) и (3.12). Во-первых, если во Вселенной присутствуют разные типы материи, не взаимодействующие между собой, то тензор энергии-импульса каждого типа материи независимо удовлетворяет уравнению ковариантного сохранения. Поэтому уравнения (3.11) и (3.12) выполняются в этом случае для каждого типа материи по отдельности, а плотность энергии ρ , фигурирующая в уравнении Фридмана (3.7), — это сумма плотностей энергии всех типов материи. Во-вторых, если вещество во Вселенной находится в термодинамическом равновесии, то уравнение (3.11) допускает простую интерпретацию. Его можно записать в виде

$$\frac{d\rho}{p+\rho} = -3d(\ln a). \tag{3.13}$$

Левая часть этого соотношения совпадает с $d(\ln s)$, где s — плотность энтропии, см. Главу 5. Поэтому уравнение (3.11) сводится к соотношению

$$sa^3 = \text{const},$$

которое означает сохранение энтропии в сопутствующем объеме. Иными словами, при расширении Вселенной плотность энтропии падает из-за растяжения пространства, как элемент пространственного объема

$$s = \frac{\text{const}}{a^3}$$

В заключение этого раздела отметим, что для получения уравнений эволюции Вселенной мы использовали только одно из уравнений Эйнштейна,

$$R_{00}-\frac{1}{2}g_{00}R=8\pi GT_{00},$$

и только одно из условий ковариантного сохранения тензора энергии-импульса, $\nabla_{\mu}T^{\mu 0} = 0$. Можно показать, однако, что остальные уравнения Эйн-

. 5

штейна и условия ковариантного сохранения тензора энергии-импульса выполняются тождественно на решениях уравнений (3.7) и (3.11). Тем не менее, выпишем для дальнейших ссылок уравнение, получающееся из (i, j)компонент уравнений Эйнштейна. Из (3.6) ясно, что (i, j)-компоненты тензора Эйнштейна пропорциональны γ_{ij} . Кроме того, (i, j)-компоненты тензора энергиии-импульса $T_{ij} = -g_{ij}p$ также пропорциональны γ_{ij} . Поэтому все (i, j)-компоненты уравнений Эйнштейна сводятся к одному уравнению

$$2\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2} = -8\pi G p - \frac{\kappa}{a^2}.$$
 (3.14)

Это уравнение нам в ближайших главах не понадобится; его можно воспринимать как следствие уравнения Фридмана (3.7) и ковариантного сохранения тензора энергии-импульса.

Задача 2. Показать, что уравнения

$$R_{0i} - \frac{1}{2}g_{0i}R = 8\pi GT_{0i}, \quad R_{ij} - \frac{1}{2}g_{ij}R = 8\pi GT_{ij}, \quad \nabla_{\mu}T^{\mu} = 0,$$

удовлетворяются тождественно для однородной изотропной Вселенной, если выполнены уравнения

$$R_{00}-rac{1}{2}g_{00}R=8\pi GT_{00},\quad
abla_{\mu}T^{\mu0}=0$$

При этом не обязательно предполагать, что Вселенная заполнена покоящейся «жид-костью», как мы делали в этом разделе. Существенно лишь, что материя однородна и изотропна.

3.2. Примеры космологических решений. Возраст Вселенной. Космологический горизонт

Прежде чем обсуждать реалистическую модель Вселенной, рассмотрим несколько примеров космологических решений. В этом разделе мы будем рассматривать пространственно-плоскую модель

$$\varkappa = 0$$

В действительности это очень хорошее приближение: как мы увидим в дальнейшем, слагаемое \varkappa/a^2 в уравнении Фридмана (3.7) мало по сравнению с первым членом в правой части как в современную эпоху, так и на ранних стадиях. Мы будем обсуждать более сложные решения, включая решения с $\varkappa \neq 0$, на протяжении этой книги.

В случае пространственно-плоской модели уравнение Фридмана приобретает вид

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho. \tag{3.15}$$

Простые решения, описанные в этом разделе, получаются, если считать, что Вселенная заполнена одним типом материи. Тогда уравнения (3.11), (3.12)

(или, что то же самое, (3.13) и (3.12)) позволяют найти зависимость плотности энергии от масштабного фактора, $\rho(a)$, после чего зависимость масштабного фактора от времени может быть найдена из уравнения (3.15). Напомним (см. раздел 2.2), что в пространственно-плоской Вселенной физический смысл имеет лишь отношение масштабных факторов в разные моменты времени, а не сам масштабный фактор. Поэтому следует ожидать, что решение a(t) будет определяться с точностью до произвольного множителя. Кроме того, уравнения (3.15) и (3.11) инвариантны относительно сдвига времени, поэтому в решении будет фигурировать еще одна произвольная постоянная — «начало отсчета времени».

3.2.1. Нерелятивистское вещество («пыль»)

Начнем с модели, в которой Вселенная заполнена нерелятивистским веществом, для которого p = 0. Из уравнения (3.13) получим

$$\rho = \frac{\text{const}}{a^3}.$$
 (3.16)

Здесь и далее в этом разделе const обозначает произвольную постоянную (вообще говоря, разную в разных формулах). Соотношение (3.16) имеет простую интерпретацию: плотность числа частиц n убывает в соответствии с изменением сопутствующего объема, так что $a^3n = \text{const}$, и полное число частиц сохраняется. Поскольку плотность энергии равна $\rho = mn$, где m — масса частицы, то она ведет себя так же, как n, т. е. $\rho a^3 = \text{const}$.

С учетом (3.16) уравнение (3.15) принимает вид

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{\text{const}}{a^3}$$

и имеет решение

$$a(t) = \text{const} \cdot (t - t_s)^{2/3},$$
 (3.17)

где t_s — произвольная постоянная. Вселенная расширяется, причем расширение замедляется со временем, $\ddot{a} < 0$. Плотность энергии ведет себя как

$$\rho(t) = \frac{\text{const}}{(t - t_s)^2}.$$
 (3.18)

Решение (3.17), (3.18) сингулярно при $t = t_s$: в этот момент масштабный фактор обращается в нуль (все расстояния бесконечно малы), а плотность энергии бесконечна. Это — пример космологической сингулярности, момента Большого взрыва. Разумеется, экстраполировать законы классической физики назад во времени вплоть до момента Большого взрыва, да еще с пылевидным уравнением состояния p = 0, незаконно. Тем не менее, мы увидим, что и многие другие классические космологические решения начинаются с сингулярности. Вполне возможно, что эволюция нашей Вселенной началась с состояния, в котором плотность энергии была очень велика (сравнима с планковской плотностью энергии $\rho_{Pl} \sim M_{Pl}^4 \sim 10^{76}$ ГэВ⁴), а законы классической физики были неприменимы.

В дальнейшем для решений с космологической сингулярностью мы будем отсчитывать время с момента сингулярности. Для решения (3.17), (3.18) это соответствует $t_s = 0$. Тогда t — это возраст Вселенной. С помощью (3.17) его можно связать со значением параметра Хаббла

$$H(t) = \frac{\dot{a}}{a}(t) = \frac{2}{3t}.$$
 (3.19)

Используя еще раз уравнение (3.15), получим

$$\rho = \frac{3}{8\pi G} H^2 = \frac{1}{6\pi G} \frac{1}{t^2}.$$
(3.20)

Соотношения (3.19) и (3.20) связывают физические величины, и в них нет произвольных постоянных.

Если бы в течение большей части эволюции нашей Вселенной ее расширение определялось нерелятивистской материей, то ее современный возраст определялся бы формулой (3.19),

$$t_0 = \frac{2}{3H_0}.$$
 (3.21)

Используя значения (2.36), (2.38), мы бы получили

$$t_0 = h^{-1} \cdot 0.65 \cdot 10^{10} \text{ лет} = 0.93 \cdot 10^{10} \text{ лет} \quad (h = 0.7).$$
 (3.22)

Это значение, даже с учетом неопределенности в измерении H_0 (см. (2.35)), противоречило бы достаточно надежным независимым ограничениям на возраст Вселенной, $t_0 \gtrsim 1.4 \cdot 10^{10}$ лет, о которых мы упоминали в Главе 1. Мы увидим, что ситуация улучшается, если расширение Вселенной определяется сегодня в значительной степени темной энергией.

Рассмотрим на примере решения (3.17) еще одно важное понятие — космологический горизонт. Представим себе, что в момент Большого взрыва из каждой точки пространства испущены сигналы, которые затем распространяются со скоростью света. Нас интересует расстояние $l_H(t)$, на которое такой сигнал удалится от точки своего излучения к тому моменту, когда возраст Вселенной станет равным t. Физический смысл $l_H(t)$ — это размер причинно связанной области на момент t: наблюдатель в момент t в принципе не может знать, что происходит за пределами сферы радиуса $l_H(t)$. Эту сферу называют космологическим горизонтом, а $l_H(t)$ — размером космологического горизонта в момент t или размером наблюдаемой части Вселенной. Ясно, что l_H растет со временем; горизонт расширяется.

Отметим, что для расматриваемого здесь космологического горизонта употребляют также термин «горизонт частиц», в отличие от горизонта событий; последний будет обсуждаться в разделе 3.2.3.

Для вычисления $l_H(t)$ удобно воспользоваться конформным временем η , см. раздел 2.3. В метрике (2.24) светоподобные геодезические, удовлетворяющие условию $ds^2 = 0$, описываются уравнением

$$|d\mathbf{x}| = d\eta$$

11

Поэтому координатный размер горизонта на момент времени t равен $\eta(t)$, а его физический размер — это

$$l_H(t) = a(t)\eta(t) = a(t) \int_0^t \frac{dt'}{a(t')}.$$
 (3.23)

Для решения (3.17) имеем

$$l_H(t) = 3t = \frac{2}{H(t)}.$$
 (3.24)

Если бы материя в нашей Вселенной описывалась нерелятивистским уравнением состояния p = 0, то размер горизонта сегодня был бы равен

$$l_{H,0}=\frac{2}{H_0}$$

Из (2.37) и (2.39) имеем численно

$$l_{H,0} = h^{-1} \cdot 6000 \text{ M}_{\Pi K} = 0.86 \cdot 10^4 \text{ M}_{\Pi K} = 2.7 \cdot 10^{28} \text{ cm} \quad (h = 0.7). \quad (3.25)$$

Еще одно свойство горизонта сформулировано в следующей задаче.

Задача 3. Показать, что сигналы, испущенные с расстояния $l_H(t)$, приходят к наблюдателю в момент времени t с бесконечным красным смещением.

Таким образом, в моделях с космологическим горизонтом область Вселенной, в принципе доступная нашему изучению, имеет конечный размер, даже если сама Вселенная бесконечна.

3.2.2. Ультрарелятивистское вещество («радиация»)

Если плотность энергии во Вселенной обусловлена ультрарелятивистским веществом, то уравнение состояния имеет вид (см. Главу 5)

$$p=\frac{1}{3}\rho.$$

В этом случае уравнение (3.13) дает

$$\rho = \frac{\text{const}}{a^4}.$$
(3.26)

Отличие этого закона от (3.16) связано с тем, что с расширением Вселенной уменьшается не только плотность числа частиц ($n \propto a^{-3}$), но и энергия каждой частицы ($\omega \propto a^{-1}$, ср. (2.29)).

Уравнение (3.15) превращается в

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{\text{const}}{a^4}$$

и имеет решение

$$a(t) = \operatorname{const} \cdot t^{1/2}$$

(мы вновь полагаем постоянную t_s равной нулю). Свойства этого решения аналогичны свойствам решения (3.17), (3.18): Вселенная расширяется с замедлением; t = 0 соответствует космологической сингулярности; время жизни обратно пропорционально параметру Хаббла (ср. (3.19)),

$$H \equiv \frac{\dot{a}}{a} = \frac{1}{2t}$$

а плотность энергии обратно пропорциональна квадрату возраста (ср. (3.20)),

$$\rho = \frac{3}{8\pi G} H^2 = \frac{3}{32\pi G} \frac{1}{t^2}.$$

Размер горизонта вновь конечен и равен

$$l_H = a(t) \int_0^t \frac{dt'}{a(t')} = 2t = \frac{1}{H(t)}.$$
 (3.27)

Полезно связать темп расширения Вселенной (параметр Хаббла) с температурой (в предположении термодинамического равновесия всех типов ультрарелятивистских частиц и в пренебрежении химическими потенциалами). При температуре T каждый тип ультрарелятивистских бозонов b вносит вклад в плотность энергии, равный (см. Главу 5)

$$\rho_b = \frac{\pi^2}{30} g_b T^4,$$

где g_b — число спиновых степеней свободы бозона b (например, для фотона $g_{\gamma} = 2$ в соответствии с числом поляризаций, для нейтральной скалярной частицы g = 1, а общее число степеней свободы W^+ -, W^- -, Z^0 -бозонов и бозона Хиггса в минимальной Стандартной модели при $T \ge 100$ ГэВ равно 10: массивные W^+ -, W^- -, Z^0 -бозоны имеют по 3 поляризации, еще одну степень свободы добавляет бозон Хиггса¹). Вклад каждого фермиона равен

$$ho_f = rac{7}{8} rac{\pi^2}{30} g_f T^4$$

Полная плотность энергии — это сумма вкладов всех типов частиц, которые являются ультрарелятивистскими при данной температуре:

$$\rho = \frac{\pi^2}{30} g_* T^4, \qquad (3.28)$$

¹⁾ Как мы увидим в главе 10, при высоких температурах электрослабая симметрия восстановлена, и W- и Z-бозоны не имеют масс. Поэтому более адекватен другой подсчет числа степеней свободы: по две от W^+ , W^- , Z^0 -бозонов и четыре от комплексного хиггсовского дублета.

где

$$g_* = \sum_b g_b + rac{7}{8} \sum_f g_f$$

— эффективное число ультрарелятивистских степеней свободы. С учетом того, что $G = M_{Pl}^{-2}$ (см. раздел 1.1), соотношение (3.15) может быть записано в виде

$$H = \frac{T^2}{M_{Pl}^*},$$
 (3.29)

где

$$M_{Pl}^* = \sqrt{\frac{90}{8\pi^3 g_*}} M_{Pl} = \frac{1}{1,66\sqrt{g_*}} M_{Pl}.$$
 (3.30)

Мы неоднократно будем пользоваться соотношением (3.29), имея, конечно, в виду, что параметр M_{Pl}^* зависит от эффективного числа степеней свободы g_* и, следовательно, от температуры (поскольку частицы массы *m* дают вклад в g_* только при $T \gg m$). Эта зависимость, однако, достаточно слабая, и при описании физики ранней Вселенной на определенных этапах ее эволюции, как правило, можно считать M_{Pl}^* постоянной.

Сравнивая соотношения (3.26) и (3.28), мы видим, что в термодинамическом равновесии температура обратно пропорциональна масштабному фактору (с точностью до слабо меняющегося множителя, зависящего от g_*),

$$T(t) \approx \frac{\text{const}}{a(t)}.$$
 (3.31)

Напомним, что такое же соотношение (которое в этом случае является точным) справедливо и для эффективной температуры газа ультрарелятивистских невзаимодействующих частиц, не находящихся в термодинамическом равновесии, см. раздел 2.5. Наконец, полезно отметить, что из (3.31) и (3.29) следует, что

$$\frac{\dot{T}}{T} \approx -\frac{T^2}{M_{Pl}^*}.$$
(3.32)

Последние два соотношения, (3.31) и (3.32), являются точными в периоды эволюции Вселенной, на протяжении которых эффективное число степеней свободы g_* не меняется.

3.2.3. Вакуум

В плоском пространстве-времени вакуум выглядит одинаково во всех инерциальных системах отсчета. Вообще говоря, он может иметь ненулевую плотность энергии, и из соображений симметрии его тензор энергии-импульса в плоском случае имеет вид

$$T_{\mu\nu} = \rho_{vac} \eta_{\mu\nu}. \tag{3.33}$$

70

При этом плотность энергии вакуума равна $T_{00} = \rho_{vac}$, а давление, определяемое согласно равенству $T_{ij} = -p\eta_{ij}$, равно

$$p = -\rho_{vac}$$
.

Итак, вакуум характеризуется весьма необычным уравнением состояния $p = -\rho$; давление вакуума отрицательно.

Если кривизна пространства-времени невелика, то выражение (3.33) справедливо в любой локально-лоренцевой системе отсчета, а в произвольной системе отсчета

$$T_{\mu\nu} = \rho_{vac} g_{\mu\nu}. \tag{3.34}$$

При этом ρ_{vac} — постоянная в пространстве и времени величина, которая в принципе должна вычисляться в фундаментальной теории элементарных частиц и их взаимодействий. До сих пор сколько-нибудь надежное вычисление плотности энергии вакуума отсутствует, и это — одна из главных проблем фундаментальной физики.

Постоянство ρ_{vac} согласуется с уравнением (3.11), которое при $p = -\rho$ дает $\dot{\rho} = 0$. Это, впрочем, очевидно с самого начала: уравнение (3.11) это следствие ковариантного сохранения тензора энергии-импульса, а тензор энергии-импульса вида (3.34) ковариантно-постоянен при $\rho_{vac} = \text{const}$, поскольку $\nabla_{\mu}T^{\lambda\rho} = 0$ в силу ковариантного постоянства метрического тензора, $\nabla_{\mu}g^{\lambda\rho} = 0$ (см. Приложение A).

На правую часть уравнений Эйнштейна вида $T_{\mu\nu} = \text{const} \cdot g_{\mu\nu}$ можно взглянуть с несколько другой стороны. Требование общерелятивистской инвариантности не запрещает добавить к гравитационному действию общей теории относительности

$$S_G=-rac{1}{16\pi G}\int R\sqrt{-g}\,d^4x$$

еще одно слагаемое

$$S_{\Lambda} = -\Lambda \int \sqrt{-g} d^4 x.$$

В результате варьирования действия $(S_G + S_\Lambda)$ по метрике в отсутствие вещества получатся уравнения (см. Приложение А)

$$R_{\mu
u}-rac{1}{2}g_{\mu
u}R-8\pi G\Lambda g_{\mu
u}=0.$$

Они в точности совпадают с уравнениями Эйнштейна с тензором энергииимпульса (3.34), если положить $\Lambda = \rho_{vac}$. Такой путь был исторически первым, и параметр Λ по историческим причинам часто называют космологической постоянной. Разумеется, различие между космологической постоянной и плотностью энергии вакуума — чисто филологическое (по крайней мере при современном понимании вопроса).

Решение уравнения Фридмана (3.15) с $\rho = \text{const} = \rho_{vac}$ имеет вид

$$a = \operatorname{const} \cdot \mathrm{e}^{H_{dS}t},\tag{3.35}$$
где параметр Хаббла

$$H_{ds} = \sqrt{\frac{8\pi}{3}G\rho_{vac}}$$

постоянен во времени. Соответствующее пространство-время с метрикой

$$ds^2 = dt^2 - e^{2H_{dS}t} dx^2$$
 (3.36)

называют пространством де Ситтера²⁾. Оно является пространством-временем постоянной кривизны.

Задача 4. Показать, что для пространства де Ситтера выполняется (ср. (2.7))

$$R_{\mu\nu\lambda\rho} = -H_{ds}^2(g_{\mu\lambda}g_{\nu\rho} - g_{\mu\rho}g_{\nu\lambda}).$$

В отличие от предыдущих примеров космологических решений, Вселенная расширяется с ускорением: $\ddot{a} > 0$. Более того, пространство де Ситтера не имеет сингулярности: хотя a(t) стремится к нулю при $t \to -\infty$, особенность, присутствующую в метрике при $t \to -\infty$, можно устранить координатным преобразованием.

Задача 5. Рассмотрим фиктивное плоское пятимерное пространство с метрикой

$$ds^{2} = (dy^{0})^{2} - (dy^{1})^{2} - (dy^{2})^{2} - (dy^{3})^{2} - (dy^{4})^{2}.$$

Рассмотрим в нем гиперболоид, заданный уравнением

$$(y^0)^2 - (y^1)^2 - (y^2)^2 - (y^3)^2 - (y^4)^2 = -H^{-2} = \text{const.}$$

Очевидно, что этот гиперболоид не имеет сингулярностей. Выберем на этом гиперболоиде координаты $(t, x^i), i = 1, 2, 3$, такие что

$$y^{0} = -H^{-1} \operatorname{sh} Ht - \frac{H}{2} x^{2} e^{Ht},$$

$$y^{i} = x^{i} e^{Ht},$$

$$y^{4} = H^{-1} \operatorname{ch} Ht - \frac{H}{2} x^{2} e^{Ht}.$$

(3.37)

Показать, что при таком выборе координат метрика, индуцированная на гиперболоиде из пятимерного пространства, совпадает с метрикой (3.36). Какую часть гиперболоида покрывают координаты (t, x)?

Для пространства де Ситтера космологический горизонт (горизонт частиц), аналогичный горизонту, описанному в разделе 3.2.1, отсутствует. Действительно, в пространстве де Ситтера «начало Вселенной» отодвинуто к $t = -\infty$, поэтому, в отличие от формулы (3.23), размер горизонта теперь дается выражением

$$l_{\scriptscriptstyle H}(t) pprox a(t) \int\limits_{-\infty}^t rac{dt'}{a(t')}.$$

²⁾ Координаты (t, x) покрывают лишь половину пространства де Ситтера, см., например, [14] и задачу 5 в этом разделе.

Из (3.35) получим

$$l_{H}(t) = \mathrm{e}^{H_{dS}t} \int\limits_{-\infty}^{t} dt' \, \mathrm{e}^{-H_{dS}t'} = \infty,$$

что и означает отсутствие горизонта.

Для пространства де Ситтера, впрочем, также вводят понятие горизонта, однако оно имеет другой смысл по сравнению с космологическим горизонтом, возникающим в моделях с космологической сингулярностью. А именно, пусть имеется наблюдатель, находящийся в точке $\mathbf{x} = 0$ в момент времени t. Зададимся вопросом о том, каков в этот момент размер области пространства, из которой испушенные в этот момент сигналы достигнут наблюдателя (все время находящегося в точке $\mathbf{x} = 0$) в сколь угодно далеком будущем. Поскольку светоподобные геодезические удовлетворяют равенству $|d\mathbf{x}| = d\eta$, коодинатный размер этой области равен

$$\eta(t o \infty) - \eta(t) = \int\limits_t^\infty rac{dt'}{a(t')},$$

а физический ее размер в момент времени t равен

$$l_{dS} = a(t) \int_{t}^{\infty} \frac{dt'}{a(t')} = \frac{1}{H_{dS}}.$$
 (3.38)

Наблюдатель никогда не узнает о событиях, происходящих в данный момент времени на расстояниях от него, превышающих $l_{dS} = H_{dS}^{-1}$; в этом смысл горизонта де Ситтера. Его еще называют горизонтом событий.

Задача 6. Показать, что горизонта событий, аналогичного горизонту де Ситтера, не существует для решений, рассмотренных в разделах 3.2.1 и 3.2.2.

3.2.4. Уравнение состояния p=w ho

11

Обзор простых космологических решений мы закончим кратким обсуждением модели, в которой материя характеризуется уравнением состояния

$$p = w\rho$$
,

где w — постоянная, превышающая -1. Случаи нерелятивистского и ультрарелятивистского вещества соответствуют w = 0 и w = 1/3. В последнее время рассматриваются довольно экзотические возможности с -1 < w < 0; материю с таким эффективным уравнением состояния называют по разному: квинтэссенция, зависящий от времени Λ -член и т.д.

При w > -1 решение уравнения (3.11) имеет вид

$$\rho = \frac{\text{const}}{a^{3(1+w)}}.$$
(3.39)

Из уравнения (3.15) получаем

$$a = \operatorname{const} \cdot t^{\alpha}$$
,

где

$$\alpha = \frac{2}{3} \frac{1}{1+w}$$

Параметр α положителен; Вселенная имеет космологическую сингулярность при t = 0. Плотность энергии ведет себя как

$$\rho = \frac{\text{const}}{t^2}$$

и обращается в бесконечность при $t \to 0$. Поскольку

$$\ddot{a} = \operatorname{const} \cdot \alpha(\alpha - 1)t^{\alpha - 2},$$

расширение Вселенной замедляется ($\ddot{a} < 0$) при $\alpha < 1$ и ускоряется при $\alpha > 1$. В терминах параметра w имеем

(a)
$$w > -\frac{1}{3}$$
 — замедление;
(b) $w < -\frac{1}{3}$ — ускорение.

Отметим, что если бы в правой части уравнения Фридмана (3.7) доминировало слагаемое с пространственной кривизной и $\kappa = -1$ (открытая Вселенная), это эффективно соответствовало $\rho = \text{const}/a^2$ и w = -1/3 (см. (3.39)). Скорость расширения Вселенной при этом не менялась бы со временем, $\ddot{a} = 0$.

Указанные только что случаи (а) и (b) различаются еще и в следующем отношении. В случае (а) в модели имеется космологический горизонт (горизонт частиц) и отсутствует горизонт событий, а в случае (b) — все наоборот. Действительно, горизонт частиц существует, если сходится интеграл (см. (3.23))

$$\int_{0}^{t} \frac{dt'}{a(t')}.$$

Для $\alpha < 1$ (т.е. w > -1/3) этот интеграл сходится, а для $\alpha > 1$ (т.е. w < -1/3) он расходится на нижнем пределе; в последнем случае горизонт частиц отодвигается на пространственную бесконечность. Существование же горизонта событий определяется сходимостью интеграла (см. (3.38))

$$\int\limits_t^\infty rac{dt'}{a(t')}.$$

Он расходится на верхнем пределе для $\alpha < 1$ (горизонт событий отсутствует) и сходится для $\alpha > 1$ (горизонт событий существует).

Задача 7. Возможно ли в расширяющейся Вселенной с уравнением состояния $p = p(\rho)$ перейти от эволюции с $(p + \rho) > 0$ к эволюции с $(p + \rho) < 0$, не нарушая условия вещественности скорости звука c_s , определенной соотношением $c_s^2 = \partial p/\partial \rho$?

3.3. Решения с реколлапсом

Для полноты картины в этом разделе мы кратко обсудим однородные изотропные космологические решения, в которых расширение Вселенной в какой -то момент времени прекращается и сменяется сжатием (*реколлансом*). Такое происходит, если в правой части уравнения Фридмана (3.7) имеются как положительные, так и отрицательные слагаемые, причем положительные слагаемые быстрее убывают с ростом масштабного фактора по сравнению с отрицательными. Физически интересные примеры возможных отрицательных вкладов — это вклад пространственной кривизны в замкнутой модели ($\varkappa = +1$) и вклад темной энергии. По поводу последнего можно сказать, что он положителен на современном этапе эволюции Вселенной, но нельзя исключить, что он зависит от времени и станет отрицательным в далеком будущем.

В качестве примера рассмотрим замкнутую модель Вселенной, заполненной пылевидной материей. С учетом (3.16) уравнение Фридмана имеет вид

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{a_m}{a^3} - \frac{1}{a^2},$$
(3.40)

где постоянная a_m определяется полной массой вещества во Вселенной. При $a \ll a_m$ Вселенная расширяется так же, как и в плоском случае (раздел 3.2.1). Расширение прекращается при $a = a_m$, когда правая часть (3.40) обращается в нуль.

Задача 8. Найти связь *a_m* с полной массой вещества в замкнутой Вселенной. До какого размера расширилась бы Вселенная с 1 кг вещества?

Явное решение имеет простой вид в терминах конформного времени η , определенного так, что $dt = a \, d\eta$ (см. (2.23)). Уравнение Фридмана (3.40) тогда принимает вид

$$\frac{1}{a^4} \left(\frac{da}{d\eta}\right)^2 = \frac{a_m}{a^3} - \frac{1}{a^2}$$

и имеет решение

$$a = a_m \sin^2 \frac{\eta}{2}.$$
 (3.41)

Видно, что расширение начинается с сингулярности при $\eta = 0$, максимальный размер достигается при $\eta = \pi$, и при $\eta = 2\pi$ Вселенная коллапсирует обратно в сингулярность. Связь физического времени с конформным имеет вид

$$t = \int a(\eta) \, d\eta = \frac{a_m}{2} (\eta - \sin \eta). \tag{3.42}$$

Таким образом, полное время жизни и максимальный размер связаны между собой соотношением $t_{tot} = \pi \cdot a_m$.

Задача 9. Показать, что при $a \ll a_m$ решение (3.41), (3.42) переходит в «плоское» решение (3.17).

Похожая ситуация возникает и тогда, когда расширение Вселенной останавливается за счет отрицательного Λ -члена. Вселенная живет конечное время между возникновением из сингулярности и реколлапсом в сингулярность.

Задача 10. Найти закон эволюции a = a(t) пространственно-плоской Вселенной ($\kappa = 0$) с отрицательной, не зависящей от времени космологической постоянной. Считать, что вещество во Вселенной имеет пылевидное уравнение состояния p = 0. Найти полное время жизни. Указание: использовать уравнение Фридмана в физическом времени.

Задача 11. Рассмотреть Вселенную, заполненную веществом с уравнением состояния

$$p = -\frac{A}{\rho} \tag{3.43}$$

(газ Чаплыгина).

- 1) Найти зависимость параметра Хаббла от масштабного фактора.
- 2) Найти закон эволюции Вселенной a = a(t) в пределах малого и большого масштабных факторов во всех трех случаях: $\kappa = 0, \pm 1$.
- 3) Найти закон эволюции a = a(t) в случае пространственно-плоской Вселенной.
- 4) Для каких и существуют статические решения уравнений Эйнштейна?
- 5) Что можно сказать про будущее Вселенной, если известно, что в некоторый момент времени она расширяется с ускорением? Рассмотреть все три случая, $\kappa = 0, \pm 1$.
- 6) Рассмотреть теорию скалярного поля с действием

$$S_{\phi} = \int d^4x \, \sqrt{-g} \, \left[rac{1}{2} g^{\mu
u} \, \partial_{\mu}\phi \, \partial_{
u}\phi - V(\phi)
ight].$$

Для пространственно плоской Вселенной найти потенциал $V(\phi)$, для которого пространственно однородное решение приводит к космологической эволюции, найденной в п. 3), причем соотношение между давлением и плотностью энергии имеет вид (3.43).

ACDM:

КОСМОЛОГИЧЕСКАЯ МОДЕЛЬ С ТЕМНОЙ МАТЕРИЕЙ И ТЕМНОЙ ЭНЕРГИЕЙ

4.1. Современный состав Вселенной

Космологические решения, рассмотренные в разделе 3.2, нельзя воспринимать как реалистические. В действительности плотность энергии в современной Вселенной обеспечивается нерелятивистским веществом (барионы и темная материя, а также те типы нейтрино, чья масса заметно выше 1 $K \sim 10^{-4}$ эВ), ультрарелятивистским веществом (фотоны, а также тот тип нейтрино, масса которого меньше 10^{-4} эВ, если такое нейтрино существует, см. Приложение С) и темной энергией. Вообще говоря, Вселенная могла бы иметь и ненулевую пространственную кривизну. Поэтому все соответствующие слагаемые необходимо учитывать в правой части уравнения Фридмана (3.7), и оно принимает вид

$$H^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G(\rho_{M} + \rho_{rad} + \rho_{\Lambda} + \rho_{curv}), \qquad (4.1)$$

где ρ_M , ρ_{rad} , ρ_{Λ} — плотности энергии нерелятивистского вещества, ультрарелятивистского вещества («радиации») и темной энергии, и по определению

$$\frac{8\pi}{3}G\rho_{curv} = -\frac{\varkappa}{a^2} \tag{4.2}$$

— вклад пространственной кривизны. Введем критическую плотность ρ_c соотношением

$$\rho_c \equiv \frac{3}{8\pi G} H_0^2, \tag{4.3}$$

где H_0 — современное значение параметра Хаббла. Подчеркнем, что мы всегда будем использовать понятие о критической плотности применительно к современному состоянию Вселенной; иными словами, ρ_c — не зависящая от времени величина. Ее смысл состоит в том, что если современное значение плотности энергии во Вселенной

$$ho_{M,0}+
ho_{rad,0}+
ho_{\Lambda,0}$$

в точности равно ρ_c , то Вселенная — пространственно-плоская (поскольку в этом случае $\rho_{curv} = 0$ и $\kappa = 0$). Для современного значения параметра Хаббла (2.33) имеем величину критической плотности

$$\rho_c = 1,88 \cdot 10^{-29} h^2 \frac{\Gamma}{\mathrm{cm}^3} = 0,53 \cdot 10^{-5} \frac{\Gamma_{\mathrm{B}}B}{\mathrm{cm}^3} \quad \mathrm{прu} \quad h = 0,7.$$
(4.4)

Средняя плотность энергии в современной Вселенной довольно мала: она эквивалентна всего около 5 массам протона на кубический метр.

Введем величины

$$\Omega_M = \frac{\rho_{M,0}}{\rho_c}, \quad \Omega_{rad} = \frac{\rho_{rad,0}}{\rho_c}, \quad \Omega_\Lambda = \frac{\rho_{\Lambda,0}}{\rho_c}, \quad \Omega_{curv} = \frac{\rho_{curv,0}}{\rho_c}.$$
(4.5)

Отметим, что эти величины также относятся только к современному состоянию Вселенной и по определению не меняются со временем. Из соотношений (4.1) и (4.3) следует, что

$$\sum_{i} \Omega_{i} \equiv \Omega_{M} + \Omega_{rad} + \Omega_{\Lambda} + \Omega_{curv} = 1.$$
(4.6)

Величины Ω_t равны относительным вкладам различных видов материи, а также пространственной кривизны в правую часть уравнения Фридмана (4.1) в современную эпоху. Они являются одними из главных космологических параметров.

Проще всего найти относительный вклад ультрарелятивистских частиц, Ω_{rad} . Он в основном определяется вкладом реликтовых фотонов с температурой $T_0 = 2,725$ К. В соответствии с законом Стефана—Больцмана, их плотность энергии равна (см. также Главу 5)

$$ho_{\gamma,0}=2rac{\pi^2}{30}T_0^4,$$

где множитель 2 связан с наличием двух поляризаций фотона. Численно

$$\rho_{\gamma,0} = 2,55 \cdot 10^{-10} \ \frac{\text{FbB}}{\text{cm}^3},$$

поэтому

$$\Omega_{\gamma} = 2,5 \cdot 10^{-5} \frac{1}{h^2} = 5,1 \cdot 10^{-5}, \quad h = 0,7.$$
 (4.7)

Если существуют безмассовые или легкие нейтрино (с $m_{\nu} \leq 1 \ K \sim 10^{-4} \ \text{эB}$), их вклад в Ω_{rad} по порядку величины сравним с Ω_{γ} . Итак,

$$\Omega_{rad} \lesssim 10^{-4}. \tag{4.8}$$

В связи с этим влиянием ультрарелятивистских частиц на темп расширения Вселенной в современную эпоху и в течение большой части предшествующей эволюции можно пренебречь.

Мы уже упоминали в Главе 1, что из наблюдений анизотропии реликтового излучения следует, что пространственная кривизна Вселенной или вообще равна нулю, или весьма мала; Вселенная с хорошей точностью является пространственно плоской. Количественно это сводится к ограничению на Ω_{curv} :

$$|\Omega_{curv}| < 0.02. \tag{4.9}$$

Мы обсудим в дальнейшем, как получается это ограничение, а пока будем просто им пользоваться.

Существует несколько независимых способов определения Ω_M и Ω_Λ из наблюдательных данных. Некоторые из них мы обсудим в этой книге, о некоторых — только упомянем (см. также Главу 1). Здесь нам достаточно привести принятые сегодня значения:

$$\Omega_M \approx 0.24, \quad \Omega_\Lambda \approx 0.76$$
 (4.10)

с точностью около 5 %. Таким образом, в современную эпоху темп расширения Вселенной определяется в значительной степени темной энергией и в меньшей степени — нерелятивистским веществом.

Отметим (см. также Главу 1), что современная плотность энергии нерелятивистского вещества складывается из плотности массы барионов (протонов, ядер) и плотности массы темной материи,

$$\Omega_M = \Omega_B + \Omega_{CDM},$$

причем

$$\Omega_B = 0.042$$
 и $\Omega_{CDM} = 0.20$.

По крайней мере два типа нейтрино имеют массы, превышающие температуру в современной Вселенной, см. Приложение С. Нейтрино этих типов сегодня являются нерелятивистскими. Однако вклад этих нейтрино в плотность энергии сегодня мал (см. Главу 7). Количество электронов равно полному количеству протонов, так что ¹⁾

$$\Omega_e \approx \frac{m_e}{m_p} \cdot \Omega_B \simeq 2 \cdot 10^{-5}.$$

Таким образом, наибольший вклад в Ω_M вносит темная материя. По причинам, о которых мы будем говорить в Главе 9, для нее часто используют термин «холодная темная материя» (cold dark matter), отсюда и обозначение Ω_{CDM} .

Пространственно-плоскую модель Вселенной с нерелятивистской холодной темной материей и темной энергией, параметры которой близки к (4.10), мы будем называть²⁾ моделью Λ CDM. В дальнейшем мы будем уточнять эту модель, рассматривая другие космологические параметры. Одно уточнение сделаем прямо сейчас: в рамках модели Λ CDM мы будем предполагать, если

¹⁾ Первое равенство здесь является приближенным, поскольку в Ω_B кроме протонов вносят вклад и нейтроны, находящиеся в ядрах. Это здесь для нас несущественно.

²⁾ Вообще говоря, под Λ CDM часто понимают более широкий класс моделей. Мы будем использовать этот термин в узком смысле, указанном в тексте. В литературе описываемую модель называют еще "concordance model".

не оговорено противное, что ρ_{Λ} не зависит от времени; такая ситуация имеет место, если $\rho_{\Lambda} \equiv \rho_{vac}$ — это плотность энергии вакуума.

Сразу скажем, что модель Λ CDM согласуется со всем набором существующих наблюдательных данных. Это, конечно, не означает, что эта модель — точная, или что невозможны альтернативные модели (особенно в части, касающейся темной энергии); в любом случае модель Λ CDM служит важной реперной точкой среди множества космологических моделей.

Обсуждавшееся только что соотношение между различными вкладами в правую часть уравнения Фридмана (4.1) характерно только для современной эпохи, поскольку ρ_{rad} , ρ_M , ρ_Λ и ρ_{curv} ведут себя по-разному со временем, а именно, $\rho_{rad} \propto a^{-4}$ (см. (3.26)), $\rho_M \propto a^{-3}$ (см. (3.16)), $\rho_{curv} \propto a^{-2}$ (см. (4.2)) и, как мы предположили, ρ_Λ не зависит от времени. Таким образом, уравнение Фридмана в модели Λ CDM можно записать в виде

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3} G\rho_c \left[\Omega_M \left(\frac{a_0}{a}\right)^3 + \Omega_{rad} \left(\frac{a_0}{a}\right)^4 + \Omega_\Lambda + \Omega_{curv} \left(\frac{a_0}{a}\right)^2\right].$$
(4.11)

Здесь есть одна тонкость. Число различных типов ультрарелятивистских частиц, как и число типов нерелятивистских частиц, различно в разные эпохи эволюции Вселенной. В частности, нейтрино с массой $m_{\nu} \gtrsim 1 K$ сегодня являются нерелятивистскими, а на ранних стадиях эволюции были релятивистскими. В этой Главе данная тонкость будет для нас несущественной, но следует иметь в виду, что уравнение Фридмана в виде (4.11) нужно использовать с осторожностью.

Еще одно замечание касается темной энергии. Нельзя исключить возможность того, что ρ_{Λ} в действительности зависит от времени. Например, можно было бы рассмотреть темную энергию с уравнением состояния $p_{\Lambda} = w_{\Lambda}\rho_{\Lambda}$ с $w_{\Lambda} \neq -1$; в этом случае ее плотность энергии изменялась бы с масштабным фактором по степенному закону (3.39). Наблюдательные данные свидетельствуют о том, что w_{Λ} лежит в пределах $-1,2 \leq w_{\Lambda} \leq -0.8$. С учетом этого основные выводы данной Главы остаются справедливыми, хотя при $w_{\Lambda} \neq -1$ формулы приобретают более громоздкий вид. Следует подчеркнуть, что вопрос о зависимости ρ_{Λ} от времени — это один из важнейших вопросов как с точки зрения космологии, так и с точки зрения физики частиц, поскольку он прямо связан с происхождением темной энергии: если $\rho_{\Lambda} = \text{const}$, то темная энергия — это энергия вакуума, в то время как зависимость ρ_{Λ} от времени свидетельствовала бы о существовании в природе нового вида материи (например, скалярных полей с экзотическими свойствами), для которого часто употребляют термин «квинтэссенция».

4.2. Общие свойства эволюции Вселенной

Обсудим, пока на качественном уровне, какие вклады в правую часть уравнения Фридмана наиболее существенны в различные космологические эпохи. Прежде всего, вклад кривизны никогда не был доминирующим. Действительно, из (4.9) и (4.10) видно, что вклад кривизны сегодня мал как по сравнению со вкладом нерелятивистского вещества, так и по сравнению со вкладом темной энергии. В прошлом вклад нерелятивистской материи был усилен по сравнению со вкладом кривизны множителем $a_0/a = 1 + z$, поэтому последний был тем более несущественным. Если вклад темной энергии действительно не зависит от времени, то вклад кривизны мал и в будущем: кривизна убывает как $1/a^2$, а ρ_{Λ} остается постоянной.

Говоря о будущем, заметим, что все вклады в правую часть уравнения (4.11), за исключением Ω_{Λ} , убывают с ростом *a*. Поэтому в будущем темп расширения Вселенной будет определяться темной энергией, и поведение масштабного фактора будет стремиться к экспоненциальному, вида (3.35) с $\rho_{vac} \equiv \rho_{\Lambda} = \rho_c \Omega_{\Lambda}$. Разумеется, этот вывод основан на предположении о постоянстве ρ_{Λ} во времени. Будет ли это предположение справедливо всегда — неизвестно, поэтому сколько-нибудь надежных предсказаний о совсем далеком будущем Вселенной сделать в действительности невозможно.

Заканчивая разговор о будущем, отметим, что если бы ρ_{Λ} мгновенно выключилась, то медленнее всего с ростом *a* убывал бы вклад кривизны (если $\Omega_{curv} \neq 0$, т. е. Вселенная не является в точности пространственно-плоской). При этом в случае открытой Вселенной ($\varkappa = -1$, $\Omega_{curv} > 0$, см. (4.2)) расширение длилось бы вечно, а в случае замкнутой Вселенной ($\varkappa = +1$, $\Omega_{curv} < 0$) расширение сменилось бы сжатием и последующим коллапсом Вселенной обратно в сингулярность. Смена расширения сжатием в последнем случае произошла бы тогда, когда правая часть уравнения (4.11) обратилась бы в нуль, т.е. при

$$\frac{a_0}{a} = \frac{|\Omega_{curv}|}{\Omega_M}$$

(пренебрегая вкладом релятивистского вещества). Из ограничения (4.9) и оценки (4.10) следует, что в момент остановки расширения

$$\frac{a}{a_0} > 10$$

т.е. Вселенная в любом случае расширится еще на порядок.

Задача 1. Используя ограничение (4.9) и консервативное ограничение $\Omega_M > 0,2$, получить ограничение снизу на полное время существования Вселенной в будущем до коллапса в классическую сингулярность.

Нас в этой книге будет больше интересовать прошлое Вселенной. Из уравнения (4.11) видно, что в современную эпоху основной вклад в правую часть вносит темная энергия. Этот вклад ρ_{Λ} стал существенным относительно недавно, а до этого был длительный период доминирования нерелятивистского вещества («пылевидная стадия»). Еще раньше, при достаточно малых *a*, доминировало ультрарелятивистское вещество («радиационно-доминированная стадия»). Если оставаться в рамках изложенных до сих пор представлений, то горячая радиационно-доминированная стадия началась непосредственно с космологической сингулярности. Такую картину мы будем условно называть картиной горячего Большого взрыва. Во второй части этой книги мы подробно обсудим недостатки такой картины и рассмотрим, как их удается обойти в инфляционной теории. Пока же сосредоточимся на теории горячего Большого взрыва, т. е. будем рассматривать постинфляционную эволюцию Вселенной.

Заметный интерес для космологии представляют «моменты» смены режимов расширения, к количественному описанию которых мы сейчас и переходим.

4.3. Переход от замедления к ускорению

Пренебрегая вкладами ультрарелятивистского вещества и кривизны, запишем уравнение (4.11) в виде

$$\dot{a}^2 = rac{8\pi}{3}G
ho_cigg(rac{\Omega_M a_0^3}{a} + \Omega_\Lambda a^2igg).$$

Отсюда получим ускорение

$$\ddot{a} = a rac{4\pi}{3} G
ho_c igg[2 \Omega_\Lambda - \Omega_M igg(rac{a_0}{a} igg)^3 igg].$$

В современную эпоху Вселенная расширяется с ускорением, поскольку $2\Omega_{\Lambda} > \Omega_{M}$ и, следовательно, $\ddot{a} > 0$. В прошлом, при достаточно больших $z \equiv a_0/a - 1$, Вселенная расширялась с замедлением, $\ddot{a} < 0$. Переход от замедления к ускорению произошел при

$$\left(\frac{a_0}{a_{acc}}\right)^3 = \frac{2\Omega_\Lambda}{\Omega_M},$$

т.е. при

$$z_{acc} = \left(\frac{2\Omega_{\Lambda}}{\Omega_M}\right)^{1/3} - 1.$$

Здесь индекс *acc* обозначает момент перехода от замедленного к ускоренному (accelerated) расширению. Для $\Omega_M = 0,24$, $\Omega_{\Lambda} = 0,76$ получаем численно

$$z_{acc} \approx 0.85$$
.

Таким образом, переход от замедления к ускорению произошел во Вселенной сравнительно недавно.

Задача 2. При каком z в нашей Вселенной сравнялись вклады в плотность энергии от нерелятивистского вещества и космологической постоянной?

Поскольку зависимость $\rho_M \propto a^{-3}$ — довольно сильная, а ρ_{Λ} не зависит от *a* вовсе, при *z* заметно бо́льших *z*_{acc} вкладом темной энергии в уравнение Фридмана можно пренебречь, и до перехода от замедления к ускорению Вселенная расширялась по закону $a \propto t^{2/3}$ (пылевидная стадия, см. раздел 3.2.1). Задача 3. Найти, при каком z происходит переход от замедления к ускорению для темной энергии с уравнением состояния $p = w\rho$. При каком значении параметра w этот переход происходил бы сейчас? Для численной оценки воспользоваться значениями (4.10) для относительных плотностей энергии нерелятивистского вещества и темной энергии.

4.4. Переход от радиационно-доминированной к пылевидной стадии

Мы уже говорили, что в рамках модели Большого взрыва на самых ранних стадиях эволюции Вселенной ее расширение определяется вкладом ультрарелятивистского вещества в уравнение Фридмана (радиационно-доминированная стадия). Момент перехода от радиационно-доминированной к пылевидной стадии играет важную роль в теории эволюции неоднородностей: мы увидим во второй части книги, что на этих стадиях неоднородности плотности во Вселенной ведут себя существенно по-разному.

Грубую оценку для момента перехода от радиационно-доминированной стадии к стадии доминирования нерелятивистского вещества (пылевидной стадии) получим из (4.11) и оценок (4.7) и (4.10). Обозначая момент этого перехода индексом *eq* (equality, равенство плотностей энергии релятивистской и нерелятивистской материи) и пренебрегая в уравнении (4.11) вкладами Λ -члена и кривизны, получим, что вклады ультрарелятивистского и нерелятивистского вещества сравниваются при

$$z_{eq} + 1 = \frac{a_0}{a_{eq}} \sim \frac{\Omega_M}{\Omega_{rad}} \sim 10^4.$$
(4.12)

При этом температура во Вселенной по порядку величины равна

$$T_{eq} = T_0(1 + z_{eq}) \sim 10^4 \text{ K} \sim 1 \text{ } \text{3B.}$$
 (4.13)

Таким образом, переход от радиационно-доминированной к пылевидной стадии происходил довольно далеко в прошлом.

Оценки (4.12) и (4.13) нуждаются в уточнении. При температуре порядка 1 эВ ультрарелятивистскими являются не только фотоны, но, скорее всего, и все три типа нейтрино (см. Приложение С). Мы увидим в Главе 7, что нейтрино при такой температуре не взаимодействуют ни между собой, ни с окружающим веществом. В соответствии с разделом 2.5, функции распределения нейтрино являются в это время тепловыми. В Главе 7 мы покажем, что эффективная температура нейтрино равна

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma},$$
 (4.14)

где T_{γ} — температура фотонов. Отметим, что всюду в этой книге мы отождествляем температуру во Вселенной с температурой фотонов, так что

$$T_{\gamma} \equiv T.$$

Вклад ультрарелятивистских нейтрино в плотность энергии во Вселенной дается законом Стефана—Больцмана, модифицированным соответствующим образом (см. Главу 5),

$$\rho_{\nu} = 3 \cdot 2 \cdot \frac{7}{8} \cdot \frac{\pi^2}{30} T_{\nu}^4, \qquad (4.15)$$

где множитель 3 отвечает трем типам нейтрино, множитель 2 возник из-за того, что для каждого типа нейтрино существует как нейтрино (одна поляризация). так и антинейтрино (вторая поляризация), а множитель 7/8 связан с тем, что нейтрино являются фермионами. Таким образом, плотность энергии ультрарелятивистского вещества при интересующих нас температурах равна

$$\rho_{rad} = \rho_{\gamma} + \rho_{\nu} = \left[2 + \frac{21}{4} \left(\frac{4}{11}\right)^{4/3}\right] \frac{\pi^2}{30} T^4, \qquad (4.16)$$

где первый член в квадратных скобках соответствует фотонам, а второй — трем типам нейтрино. Иными словами,

$$\rho_{rad} = 1,68\rho_{\gamma} = 1,68\left(\frac{a_0}{a}\right)^4 \Omega_{\gamma}\rho_c. \tag{4.17}$$

Выражение для плотности энергии нерелятивистского вещества, как и раньше, имеет вид

$$\rho_M = \left(\frac{a_0}{a}\right)^3 \Omega_M \rho_c. \tag{4.18}$$

Отсюда находим, что переход от радиационно-доминированной к пылевидной стадии происходит при

$$1+z_{eq}=\frac{a_0}{a_{eq}}=0,6\frac{\Omega_M}{\Omega_\gamma},$$

и с учетом (4.7) имеем

$$1 + z_{eq} = 2.4 \cdot 10^4 \ \Omega_M h^2. \tag{4.19}$$

Для $\Omega_M = 0,24$ и h = 0,7 имеем

$$1 + z_{eq} = 3.0 \cdot 10^3. \tag{4.20}$$

Температура в этот момент равна

$$T_{eq} = (1 + z_{eq})T_0 = 5.6 \ \Omega_M h^2 \ \Im B, \tag{4.21}$$

$$T_{eq} = 0,7$$
 эВ при $h = 0,7, \quad \Omega_M = 0,24.$ (4.22)

Выражения (4.19)-(4.22) уточняют оценки (4.12), (4.13) с учетом трех типов легких нейтрино.

Найдем время жизни Вселенной к моменту перехода от радиационнодоминированной к пылевидной стадии. До этого момента темп расширения определялся ультрарелятивистским веществом, причем во время большей части эволюции ультрарелятивистскими являлись только фотоны и нейтрино (наиболее легкие из других частиц — электроны и позитроны — перестали быть релятивистскими при $T \sim m_e = 0,5$ МэВ). Поэтому для вычисления времени жизни можно воспользоваться формулами раздела 3.2.2, причем число эффективных степеней свободы g_* получается сравнением формул (3.28) и (4.16):

$$g_* = 2 + \frac{21}{4} \left(\frac{4}{11}\right)^{4/3} = 3,36.$$
 (4.23)

Используя формулы (3.27) и (3.29), получим для времени жизни оценку

$$t_{eq} = \frac{1}{2H_{eq}} = \frac{M_{Pl}^*}{2T_{eq}^2},$$
(4.24)

где, как и прежде, $M_{Pl}^* = M_{Pl}/(1,66\sqrt{g_*})$. С учетом (4.21) и (4.23) получаем при $h = 0,7, \ \Omega_M = 0,24$

$$t_{eq} = 4 \cdot 10^{36}$$
 ГэВ⁻¹ = 2,5 · 10¹² с = 80 тыс. лет. (4.25)

Это время, разумеется, весьма мало по сравнению с современным возрастом Вселенной $t_0 \approx 14$ млрд лет.

В заключение этого раздела отметим, что переход от радиационно-доминированной к пылевидной стадии — это не какой-то определенный момент в истории Вселенной, а процесс, длительность которого сравнима с хаббловским временем на тот момент, H_{eq}^{-1} (иными словами, с временем жизни Вселенной, t_{eq}). Для определенности моментом перехода мы называем тот момент, когда $\rho_{rad} = \rho_M$; в этом смысле формула (4.19) является точной. Однако отношение плотностей энергии ультрарелятивистского и нерелятивистского вещества зависит от масштабного фактора не очень сильно, $\rho_{rad}/\rho_M \propto a$, так что за время порядка хаббловского это отношение не успевает сильно измениться. Поэтому представление о том, что при $t = t_{eq}$ закон расширения изменяется скачком от $a \propto t^{1/2} \kappa a \propto t^{2/3}$, носит приближенный характер; соотношение (4.24) между температурой T_{eq} и временем жизни t_{eq} — также приближенное, поскольку при выводе (4.24) не учитывался вклад нерелятивистского вещества в плотность энергии при $t < t_{eq}$.

Задача 4. Пренебрегая вкладом темной энергии и кривизны в уравнение Фридмана на интересующей здесь стадии эволюции и считая, что число эффективных ультрарелятивистских степеней свободы g_* постоянно и дается (4.23), найти точный закон расширения Вселенной a = a(t) при температурах, сравнимых с T_{eq} . Найти время жизни Вселенной к моменту, когда ее температура равна T_{eq} , заданной (4.21). Найти это время жизни численно при h = 0,7 и $\Omega_M = 0,24$, уточнив тем самым оценку (4.25).

4.5. Возраст современной Вселенной и размер горизонта

Учет того, что в течение заметного периода в динамике расширения Вселенной существенную роль играл космологический Λ -член, приводит к уточнению современного возраста Вселенной и размера космологического горизонта по сравнению с оценками (3.22) и (3.25). Для их вычисления можно пренебречь вкладами кривизны и ультрарелятивистского вещества в уравнение Фридмана: как мы обсуждали в разделе 4.1, вклад кривизны мал на всех этапах эволюции; вклад же ультрарелятивистского вещества существенен лишь в течение короткого этапа, $t < t_{eq}$. Положим поэтому $\Omega_{rad} = \Omega_{curv} = 0$ в уравнении (4.11) и запишем

$$\left(\frac{\dot{a}}{a}\right)^2 = H_0^2 \left[\Omega_M \left(\frac{a_0}{a}\right)^3 + \Omega_\Lambda\right],\tag{4.26}$$

где мы воспользовались соотношением (4.3). Кроме того, в нашем приближении

$$\Omega_M + \Omega_\Lambda = 1. \tag{4.27}$$

Нас будет интересовать случай $\Omega_{\Lambda} > 0$. Решение уравнения (4.26) имеет вид

$$a(t) = a_0 \left(\frac{\Omega_M}{\Omega_\Lambda}\right)^{1/3} \left[\operatorname{sh}\left(\frac{3}{2}\sqrt{\Omega_\Lambda}H_0t\right) \right]^{2/3}.$$
 (4.28)

Видно, что при малых временах восстанавливается закон расширения пылевидной стадии, $a \propto t^{2/3}$, а при больших временах масштабный фактор экспоненциально растет, как и следовало ожидать.

Момент Большого взрыва по-прежнему соответствует t = 0, когда решение (4.28) имеет сингулярность. Поэтому возраст современной Вселенной определяется из уравнения

$$\left(\frac{\Omega_M}{\Omega_\Lambda}\right)^{1/3} \left[\operatorname{sh}\left(\frac{3}{2}\sqrt{\Omega_\Lambda}H_0t_0\right) \right]^{2/3} = 1$$

и равен

$$t_0 = \frac{2}{3\sqrt{\Omega_\Lambda}} \frac{1}{H_0} \operatorname{Arsh} \sqrt{\frac{\Omega_\Lambda}{\Omega_M}}.$$
 (4.29)

При $\Omega_{\Lambda} \to 0$ и $\Omega_{M} \to 1$ мы вновь приходим к формуле (3.22). При положительном Ω_{Λ} время жизни больше $2/(3H_{0})$. В этом легко убедиться, построив графики зависимости масштабного фактора от времени для пылевидной космологии ($\Omega_{\Lambda} = 0$) и модели Λ CDM ($\Omega_{\Lambda} > 0$) так, чтобы они касались друг друга (производные их совпадали) в современный момент, когда $a = a_{0}$ (совпадение производных соответствует фиксированию современного значения параметра Хаббла $H_{0} = (\dot{a}/a)_{0}$). Поскольку для реальной Вселенной уравнение Фридмана имеет вид (4.26), а для пылевидной модели правая часть равна $H_{0}^{2}(a_{0}/a)^{3}$, при каждом значении $a < a_{0}$ производная масштабного фактора по времени больше для пылевидной модели, и мы приходим к графикам, изображенным на рис. 4.1.

Расстояние по временной оси на этих графиках от точки сингулярности a = 0 до точки $a = a_0$, соответствующей современной Вселенной, — это

Рис. 4.1. Законы эволюции a = a(t) пространственно-плоских Вселенных

и есть возраст Вселенной; видно, что он больше для реальной Вселенной с $\Omega_{\Lambda} > 0$. Из формулы (4.29) получаем:

$$t_0 = 1,38 \cdot 10^{10}$$
лет при $\Omega_M = 0,24$, $\Omega_{\Lambda} = 0,76$, $h = 0,7$.

Такой возраст Вселенной практически не противоречит независимым ограничениям, о которых мы упоминали в Главе 1. Таким образом, наличие в реальной Вселенной космологического А-члена снимает противоречие между возрастом Вселенной, вычисленным исходя из современного значения параметра Хаббла, и ограничениями на этот возраст, полученными другими способами.

Задача 5. Рассмотрим открытую модель Вселенной без Λ -члена (эта модель в действительности исключена измерениями анизотропии реликтового излучения), в которой $\Omega_M \neq 0$, $\Omega_{curv} \neq 0$, $\Omega_{\Lambda} = 0$ и $\Omega_M + \Omega_{curv} = 1$. Найти возраст современной Вселенной при заданном значении H_0 . Сделать численную оценку, используя значение $\Omega_M \approx 0,3$ (полученное из изучения скоплений галактик) и h = 0,7.

Задача 6. Найти современный возраст Вселенной с уравнением состояния для темной энергии $p = w\rho$. Сделать численную оценку для w = -1,2 и w = -0,8, полагая $\Omega_M = 0,24$, $\Omega_{\Lambda} = 0,76$.

Обсуждение размера космологического горизонта в модели ACDM не столь поучительно; тем не менее, приведем соответствующую оценку. В соответствии с общей формулой (3.23) современный размер горизонта равен

$$l_{H,0}=a_0\int\limits_0^{t_0}rac{dt}{a(t)}.$$

Поскольку при достаточно малых t справедливо $a(t) \propto t^{2/3}$ (см. (4.28)), этот интеграл сходится на нижнем пределе, т.е. размер космологического гори-

зонта конечен. Можно показать, что при заданном значении параметра Хаббла H_0 размер горизонта больше значения $2/H_0$, возникающего в плоской модели с «пылью», но без Λ -члена. Численно, при $\Omega_M = 0.24$, $\Omega_{\Lambda} = 0.76$, оценка имеет вид

$$l_{H,0} = \frac{2}{H_0} \cdot 1.8; \qquad (4.30)$$

$$l_{H,0} = 14.8 \ \Pi \kappa, \quad h = 0.7.$$
 (4.31)

Задача 7. Показать, что в плоской модели с «пылью» и положительным Λ -членом размер космологического горизонта больше $2/H_0$. Убедиться в справедливости численной оценки (4.31).

В заключение этого раздела сделаем следующее замечание. Ограничение (4.9) на Ω_{curv} вместе с оценкой (4.30) можно использовать для того, чтобы убедиться, что вне нашего космологического горизонта имеется много областей размера $l_{H,0}$. Напомним, что в классической теории горячего Большого взрыва с космологической сингулярностью такие области причинно не связаны между собой. В любом случае, никакой информации о событиях, происходящих или происходивших в этих областях, мы получить не можем: например, реликтовые фотоны с момента последнего рассеяния (момента рекомбинации) пролетели расстояние, ме́ньшее $l_{H,0}$.

Разумеется, в открытой и плоской моделях Вселенной таких областей бесконечно много, так что речь идет о не исключенной пока наблюдательными данными возможности того, что Вселенная — это 3-сфера³⁾. Из определений (4.2), (4.3) и (4.5) следует, что радиус этой сферы a_0 связан с Ω_{curv} следующим образом:

$$\frac{1}{a_0^2} = H_0^2 |\Omega_{curv}|.$$
 (4.32)

Сравнивая это выражение с (4.30) и используя ограничение (4.9), получим

$$\frac{a_0}{l_{H,0}} = \frac{1}{3,3\sqrt{|\Omega_{curv}|}} > 2,1.$$

Таким образом, радиус Вселенной заметно больше размера горизонта. Это обстоятельство станет еще более выпуклым, если найти полное количество областей, подобных области внутри нашего горизонта. Оно равно отношению объема 3-сферы $2\pi^2 a_0^3$ и объема области радиуса l_{H_0} :

$$N \approx \frac{2\pi^2 a_0^3}{(4\pi/3)l_{H,0}^3} = 4.7 \left(\frac{a_0}{l_{H,0}}\right)^3 > 46.$$
(4.33)

Таким образом, наблюдательные данные прямо свидетельствуют о том, что мы видим не больше 2 % всего объема Вселенной. Во второй части книги мы приведем теоретические соображения в пользу того, что Ω_{curv} на много порядков

输行员 网络特别 氟化的

³⁾ Предполагается, что Вселенная однородна и изотропна и вне нашего горизонта.

меньше, чем дает наблюдательное ограничение (4.9), т. е. областей вне нашего горизонта на много порядков больше, чем следует из ограничения (4.33).

4.6. Соотношение «видимая яркость — красное смещение» для удаленных стандартных свеч

Обсудим в общих чертах один из важных способов определения таких космологических параметров, как современное значение параметра Хаббла H_0 , относительные плотности энергии нерелятивистского вещества Ω_M и темной энергии Ω_Λ и параметр Ω_{curv} , характеризующий пространственную кривизну. В перспективе этот способ представит также одну из возможностей выяснить, действительно ли темная энергия имеет вакуумное уравнение состояния $p = -\rho$, или она представляет из себя не вакуум, а нечто иное (например, характеризуется уравнением состояния $p = w\rho c w \neq -1$). Речь идет об одновременном измерении красного смещения z и видимой яркости стандартных свеч, находящихся от нас на расстояниях, сравнимых с размером космологического горизонта, и имеющих поэтому не слишком малые z. В качестве таких стандартных свеч — достаточно ярких объектов, абсолютная светимость которых известна с хорошей точностью, — сегодня используются⁴⁾ сверхновые типа Ia.

Найдем соотношение между красным смещением и видимой яркостью источника с абсолютной светимостью *L*. Хотя последующие рассуждения (но не конкретные результаты!) непосредственно обобщаются на случай, когда темная энергия не обладает вакуумным уравнением состояния, ограничимся пока вакуумным случаем с ρ_{Λ} , не зависящей от времени. В то же время, полезно включить в рассмотрение возможность ненулевой пространственной кривизны и отвлечься от ограничения (4.9). Для определенности выберем модель открытой Вселенной с $\varkappa = -1$ и $\Omega_{curv} > 0$. Плоская модель восстанавливается в пределе $\Omega_{curv} \rightarrow 0$ или, что тоже самое, $a_0 \rightarrow \infty$, см. соотношение (4.32).

Используем форму метрики (2.10)

$$ds^{2} = dt^{2} - a^{2}(t) \left[d\chi^{2} + sh^{2} \chi \left(d\theta^{2} + sin^{2} \theta d\phi^{2} \right) \right].$$
(4.34)

Как обычно, координатное расстояние между источником, излучившим свет в момент t_i , и приемником, находящимся на Земле в момент t_0 , равно

$$\chi = \int_{t_i}^{t_0} \frac{dt}{a(t)}.$$
 (4.35)

Найдем соотношение между координатным расстоянием и красным смещением z источника. Для этого воспользуемся уравнением Фридмана в форме

⁴⁾ Как и всюду в этой книге, мы здесь не останавливаемся на наблюдательных и астрофизических аспектах проблемы. В частности, мы оставляем в стороне вопросы о природе сверхновых типа Ia, о том, почему они служат хорошими кандидатами на роль стандартных свеч, и т. п.

(4.11), в котором пренебрежем вкладом радиации. Перейдя в интеграле (4.35) к переменной интегрирования

$$z(t)=\frac{a_0}{a(t)}-1,$$

получим

$$\chi=\int\limits_{0}^{z}rac{dz'}{a_{0}(\dot{a}/a)(z')}$$

или с учетом уравнения (4.11)

$$\chi(z) = \int_{0}^{z} \frac{dz'}{a_0 H_0} \frac{1}{\sqrt{\Omega_M (z'+1)^3 + \Omega_\Lambda + \Omega_{curv} (z'+1)^2}}.$$
 (4.36)

Этот интеграл аналитически взять не удается, но его нетрудно найти численно при заданных значениях параметров.

В силу (4.34), физическая площадь сферы, через которую сегодня пролетают фотоны, испущенные источником, равна

$$S(z) = 4\pi r^2(z), \tag{4.37}$$

где

$$r(z) = a_0 \operatorname{sh} \chi(z). \tag{4.38}$$

Число фотонов, пересекающих единицу поверхности приемника, обратно пропорционально S, а энергия каждого фотона отличается от его энергии в момент испускания множителем покраснения $(1 + z)^{-1}$. Такой же множитель возникает дополнительно, если мы интересуемся числом фотонов, проходящих через заданную площадку в единицу времени, поскольку временные интервалы для источника и приемника отличаются в $(1 + z)^{-1}$ раз. Последнее обстоятельство можно пояснить следующим образом. В конформных координатах (η , x) фотоны ведут себя так же, как в статической Вселенной, см. раздел 2.3. Поэтому в этих координатах промежутки времени между испусканием двух фотонов и между их поглощением одинаковы, $d\eta_i = d\eta_0$. Отсюда и следует соотношение между соответствующими промежутками физического времени, $dt_0 = (1 + z) dt_i$.

Таким образом, видимая яркость — поток энергии на приемник — равна

$$J = \frac{L}{(1+z)^2 S(z)},$$
(4.39)

где L — абсолютная светимость источника (энергия, излучаемая в единицу времени). Это и есть искомое соотношение между видимой яркостью и красным смещением источника, чья абсолютная светимость L предполагается

90

известной. Если ввести фотометрическое расстояние r_{ph} так, чтобы связь между L и J имела формально такой же вид, как в пространстве Минковского,

$$J=\frac{L}{4\pi r_{ph}^2},$$

то из (4.39) будем иметь

$$r_{ph} = (1+z) \cdot r(z),$$
 (4.40)

где r(z) задано (4.38).

На первый взгляд может показаться, что соотношение (4.39) содержит в себе пять космологических параметров: H_0 , a_0 , Ω_M , Ω_Λ и Ω_{curv} . На самом деле независимых параметров всего три, поскольку выполняются соотношения (см. (4.6) и (4.2), (4.5))

$$\Omega_M + \Omega_\Lambda + \Omega_{curv} = 1 \tag{4.41}$$

И

$$\Omega_{curv} = \frac{1}{a_0^2 H_0^2}.$$
 (4.42)

Отметим, что при $z \ll 1$ в подынтегральном выражении в (4.36) можно пренебречь z', тогда $\chi(z) = z/(a_0H_0)$ и $r(z) = a_0\chi(z)$, так что мы возвращаемся к закону Хаббла $r(z) = H_0^{-1}z$. При этом в главном порядке по z яркость дается обычной формулой

$$J=\frac{L}{4\pi r^2(z)}, \quad z\ll 1.$$

Возвратимся к общему случаю. Как видно из формул (4.36)-(4.42), все три независимых космологических параметра входят в соотношение между видимой яркостью и красным смещением нетривиальным образом, и измерения в широком диапазоне z могут в принципе их все определить. Это проиллюстрировано на рис. 4.2 и 4.3.

Чтобы понять, что изображено на рис. 4.2 и 4.3, заметим, что зависимость от космологических параметров входит в формулу (4.39) через функцию r(z). Если измерять r(z) в хаббловских единицах длины H_0^{-1} , то

$$H_0 r(z) = \frac{1}{\sqrt{\Omega_{curv}}} \operatorname{sh} \chi(z),$$

$$\chi(z) = \int_0^z \frac{\sqrt{\Omega_{curv}} \, dz'}{\sqrt{\Omega_M (1+z')^3 + \Omega_\Lambda + \Omega_{curv} (1+z')^2}}.$$
(4.43)

Таким образом, правая часть (4.43) не зависит явно от H_0 ; именно она изображена на рис. 4.2 и 4.3.

Обсудим сначала черную и темно-серую кривые на рис. 4.2, которые соответствуют пространственно-плоской Вселенной с $\Omega_M = 0.24$, $\Omega_{\Lambda} = 0.76$

Рис. 4.2. Зависимость $H_0r(z)$ от красного смещения z для различных космологических моделей

Рис. 4.3. Иллюстрация вырождения в пространстве параметров (Ω_M , Ω_Λ). Случаи ($\Omega_M = 0$, $\Omega_\Lambda = 0.55$) и ($\Omega_M = 0.6$, $\Omega_\Lambda = 0.85$) соответствуют открытой и замкнутой моделям, причем $\Omega_{curv} = 1 - \Omega_M - \Omega_\Lambda$. Отметим, что в отличие от рис. 4.2 масштаб по оси абсцисс выбран логарифмическим

(черная кривая) и $\Omega_M = 1$, $\Omega_{\Lambda} = 0$ (темно-серая кривая, плоская Вселенная без Λ -члена). Для получения из выражений (4.36), (4.38) формул плоской модели возьмем предел $a_0 \to \infty$, $\Omega_{curv} \to 0$ и получим

$$r(z)=rac{1}{H_0}\int\limits_0^zrac{dz'}{\sqrt{\Omega_M(z'+1)^3+\Omega_\Lambda}},\quad \Omega_{curv}=0,$$

Рис. 4.4. Диаграмма Хаббла для сверхновых типа Ia [15]. В верхней части рисунка приведено распределение наблюдавшихся сверхновых по яркости (с поправкой на собственную светимость). В нижней части рисунка проиллюстрировано отличие наблюдений и предсказаний различных космологических моделей от предсказания модели CDM с пространственной кривизной ($\Omega_M = 0, 2, \ \Omega_{\Lambda} = 0, \ \Omega_{curv} =$ 0,8). Обозначение на оси ординат связано с используемой в астрономии характеристикой видимой яркости - звездной величиной. Фигурирующая здесь разность (m - M) связана с фотометрическим расстоянием r_{ph} соотношением $m - M = 5 \lg (r_{nh} / M \pi \kappa) + 25$. Бо́льшие (m - M) соответствуют более тусклым объектам

причем $\Omega_M + \Omega_\Lambda = 1$. Видно, что при бо́льших Ω_Λ (и, соответственно, меньших Ω_M) функция r(z) быстрее растет с увеличением z; удаленные сверхновые тусклее в модели Λ CDM по сравнению с плоской моделью без Λ -члена. Именно это и обнаружено в реальных наблюдениях, см. рис. 4.4, 4.5.

Далее, черная и светло-серая кривые на рис. 4.2, соответствующие модели Λ CDM и модели без космологической постоянной, но с пространственной кривизной, также довольно сильно различаются уже при умеренных z. Поэтому модель с $\Omega_{\Lambda} = 0$, $\Omega_{curv} = 0,76$ также противоречит наблюдениям. Вообще, данные по сверхновым типа Ia несовместны с моделями без космологического Λ -члена⁵⁾, см. рис. 4.4, 4.5, 4.6.

Это — один из самых сильных аргументов в пользу существования темной энергии, полученных в рамках измерений одного класса (а не из сравнения результатов разных наблюдений).

Обратимся теперь к рис. 4.3. Он приведен для того, чтобы показать, что модели с заметно различающимися параметрами приводят к очень похожим результатам при умеренных z. Ясно, что объекты с очень большими красными смещениями, находящиеся на сверхдальних расстояниях, наблюдать крайне трудно, поэтому именно случай умеренных z представляет особый интерес.

⁵⁾ Если не рассматривать маловероятную возможность того, что в самих этих данных имеются сильные систематические погрешности.

Рис. 4.5. Диаграммы [16], иллюстрирующие различные варианты объяснения результатов наблюдений удаленных сверхновых типа Ia. На диаграммах приведены отклонения кривых потускнения от соответствующей кривой в пустой Вселенной с пространственной кривизной ($\Omega_M = \Omega_{\Lambda} = 0$, $\Omega_{curv} = 1$; напомним, что такая Вселенная расширяется с постоянной скоростью, $\ddot{a} = 0$). Среди космологических моделей рассмотрены модель Λ CDM ($\Omega_M = 0,27, \ \Omega_{\Lambda} = 0,73$) и модель CDM без космологической постоянной $(\Omega_M = 1, \Omega_{\Lambda} = 0)$. Среди эволюционных моделей рассмотрена модель со сверхновыми, чья собственная светимость падает пропорционально z (в модели CDM). Среди моделей с нестандартной межгалактической средой представлены модели с «пылью», поглощающей излучение, которая приводит к эффективному потускнению далеких сверхновых; рассмотрены модели с плотностью «пыли» $\rho(z) = \rho_0 (1+z)^{\alpha}$, где $\alpha = 3$ (штрих-пунктирная линия) и $\alpha = 3$ при z < 0.5 с $\alpha = 0$ при остальных z (тонкая сплошная линия). На верхнем рисунке приведены результаты наблюдений далеких сверхновых, осуществленных на космическом телескопе Хаббла (кружки) и наземных телескопах (ромбики); для иллюстрации на нижнем рисунке эти результаты усреднены по определенным интервалам красного смещения z. Отметим, что в независимых наблюдениях сверхновых типа Ia 17получены результаты, согласующиеся с приведенными на этом рисунке

Здесь мы сталкиваемся с примером приближенного вырождения по параметрам. Чтобы понять, в чем дело, найдем первую поправку по z к закону Хаббла. Учтем, что $\Omega_{\Lambda} = 1 - \Omega_M - \Omega_{curv}$, и запишем в квадратичном порядке по z

$$\chi(z) = \frac{1}{a_0 H_0} \left[z - \frac{z^2}{4} (3\Omega_M + 2\Omega_{curv}) \right].$$

В этом порядке

$$r(z)=a_0\chi(z)+\mathcal{O}(z^3),$$

Рис. 4.6. Области в пространстве космологических параметров Ω_M , Ω_Λ , согласующиеся с наблюдениями сверхновых типа Ia [16]: пунктиром обозначены контуры, относящиеся к более ранним наблюдениям, а сплошной линией отмечены доверительные области, относящиеся к более поздним наблюдениям далеких сверхновых (приведенным на рис. 4.5). Видно, что результаты различных наблюдений (и, вообще говоря, несколько различного анализа этих наблюдений) хорошо согласуются друг с другом

поэтому в квадратичном порядке по z

$$r(z) = \frac{1}{H_0} \left[z - \frac{z^2}{4} (3\Omega_M + 2\Omega_{curv}) \right].$$
(4.44)

Второе слагаемое в правой части представляет собой искомую поправку. Из выражения (4.44) видно, что она зависит только от комбинации ($3\Omega_M + 2\Omega_{curv}$) или, в терминах Ω_M и Ω_Λ , от комбинации ($\Omega_M - 2\Omega_\Lambda$), а не от Ω_M и Ω_Λ по отдельности. Отсюда и вырождение по параметрам при малых *z*. Для исследования вырождения при умеренных *z* требуется в формуле (4.44) учесть следующие члены в разложении по *z*. При этом зависящие от ($\Omega_M - 2\Omega_\Lambda$) вклады порядка z^2 и z^3 эффективно компенсируются в интересной области космологических параметров. Оставшийся нескомпенсированным вклад порядка z^3 определяется другой линейной комбинацией, ($2\Omega_M - \Omega_\Lambda$), и именно к ней чувствительны эксперименты, в которых изучается закон Хаббла при умеренных *z*. Экспериментально эта линейная комбинация невелика, а вдоль ортогональной к ней линейной комбинации имеется вырождение. При больших *z* вырождение снимается, но растут экспериментальные ошибки, так что разрешенная область параметров вытягивается вдоль линии $2\Omega_M - \Omega_\Lambda = 0$. Это хорошо видно на рис. 4.6.

Задача 8. Показать, что в третьем порядке разложения по *z* вырождение по параметрам снимается, т. е. r(z), определенное соотношением (4.38), содержит нетривиальную зависимость от всех трех параметров H_0 , Ω_M , Ω_Λ . Убедиться, что в интересной области космологических параметров при умеренных *z* остается приближенное вырождение вдоль линии $2\Omega_M - \Omega_\Lambda = 0$.

В вырождении по параметрам нет ничего удивительного. Ясно, что в первую поправку по z к закону Хаббла, помимо современного значения параметра Хаббла, может входить лишь современное значение параметра ускорения. Последний определим как⁶

$$q_0 = \frac{1}{H_0^2} \left(\frac{\ddot{a}}{a}\right)_0 \tag{4.45}$$

Измеряя один параметр q_0 , можно определить лишь одну из комбинаций Ω_M и Ω_{Λ} , а не оба этих независимых параметра сразу.

В связи с рис. 4.6 сделаем один общий комментарий. Мы довольно часто будем изображать области на плоскости параметров, разрешенные теми или иными наблюдениями. Если не оговорено противное, три вложенных друг в друга области будут соответствовать значениям параметров, разрешенным на уровне достоверности 1σ , 2σ , 3σ в предположении нормального (гауссова) распределения для соответствующей величины, т. е. 68,3%, 95,4%, 99,7%.

⁶⁾ В литературе традиционно используют параметр замедления, отличающийся знаком от параметра ускорения (4.45). Использовать параметр замедления для Вселенной, которая расширяется с ускорением, представляется неоправданным. Мы будем пользоваться определением (4.45).

Задача 9. Найти первую поправку по z к закону Хаббла, т.е. функцию r(z) с квадратичной точностью по z, в терминах H_0 и q_0 ; уравнение Фридмана при этом не использовать. Показать, что с учетом уравнения Фридмана соответствующее выражение сводится к (4.44).

Указанное приближенное вырождение по параметрам делает трудной задачей определение Ω_M , Ω_{Λ} и Ω_{curv} только с помощью изучения стандартных свеч. В то же время, измерения анизотропии реликтового излучения дают сильное ограничение на Ω_{curv} : $|\Omega_{curv}| < 0.02$. Используя это ограничение, можно с хорошей точностью восстановить Ω_M и Ω_{Λ} из измерений сверхновых типа Ia: на рис. 4.6, где прямая $\Omega_{curv} = 0$ обозначена $\Omega_{tot} = 1$, видно, что наблюдения сверхновых дают

$$0,23 < \Omega_M < 0,39, \quad 0,77 > \Omega_\Lambda > 0,61$$

на 95 %-м уровне достоверности.

В заключение этого раздела подчеркнем, что наблюдения удаленных сверхновых типа Ia, наряду с измерениями анизотропии реликтового излучения и исследованиями крупномасштабной структуры Вселенной, явились одним из главных свидетельств существования в природе темной энергии. Комбинация имеющихся результатов космологических наблюдений приводит к значениям

$$\Omega_M = 0.24 \pm 0.04, \quad \Omega_\Lambda = 0.76 \pm 0.05$$

на уровне достоверности 68 %.

Аналогичные наблюдения с большей точностью, а также при бо́льших z позволят, по-видимому, установить, зависит ли космологический Λ -член от времени (или поставить сильные ограничения на эту зависимость). Упомянем в этой связи, что все существующие данные не противоречат отсутствию такой зависимости (т. е. уравнению состояния темной энергии $p = -\rho$), а для

Рис. 4.7. Области в пространстве космологических параметров Ω_M , w, разрешенные результатами наблюдений анизотропии реликтового излучения (сплошные линии) и совместным анализом этих наблюдений с наблюдениями сверхновых типа Ia (темные области) [5]. Области меньшего и большего размеров соответствуют 68 %-му и 95 %-му уровням достоверности

4 Введение в теорию ранней Вселенной 🚿

97

параметра w уравнения состояния темной энергии $p = w\rho$ из этих данных следует ограничение (см. рис. 4.7)

$$-1,2 < w < -0,8.$$
 (4.46)

Уточнение этого ограничения — одна из важных задач будущих наблюдений.

Задача 10. Обобщить формулы этого раздела на случай темной энергии с уравнением состояния $p = w\rho$. Считая $\Omega_{curv} = 0$ и $\Omega_M = 0.24$, нарисовать графики r(z) для w = -2, w = -1.5, w = -1, w = -0.75 и w = -0.5. Используя рис. 4.6, убедиться, что современные данные действительно позволяют получить ограничение на w на уровне, указанном в (4.46).

4.7. Угловые размеры удаленных объектов

Важной наблюдаемой характеристикой протяженного объекта (например, галактики) является его угловой размер. В связи с этим вводят понятие расстояния углового размера r_a (angular diameter distance), связывающего абсолютный диаметр объекта d с углом $\Delta \theta$, под которым объект наблюдается сегодня,

$$d = r_a(z) \cdot \Delta \theta$$
,

где z — красное смещение объекта. Чтобы найти выражение для $r_a(z)$, вновь вспомним, что в конформных координатах фотоны ведут себя так же, как в статической Вселенной, поэтому координатный размер объекта связан с его координатой χ и угловым размером $\Delta \theta$ соотношением

 $d_{conf} = \operatorname{sh} \chi \cdot \Delta \theta.$

Рис. 4.8. Зависимость расстояния углового размера от *z* для молели Λ CDM $(\Omega_M = 0,24, \Omega_{\Lambda} = 0,76, \Omega_{curv} = 0)$

Физический размер объекта, испускающего фотоны в момент времени t_i , равен

- 40 J

4*

$$d = a(t_i)d_{conf} = rac{a(t_i)}{a_0} \cdot a_0 \operatorname{sh} \chi \cdot \Delta heta.$$

Учитывая (4.38), получаем отсюда

$$r_a(z) = \frac{1}{1+z}r(z),$$

причем для r(z) справедливы формулы предыдущего раздела.

Расстояние углового размера растет с z довольно медленно при умеренных z и даже падает при больших z, см. рис. 4.8. В то же время, фотометрическое расстояние (4.40) растет при всех z, и галактики становятся все более тусклыми. Для достаточно больших z большое удаление галактик от Земли проявляется не в малости их видимого размера, а в малости их поверхностной яркости (видимой яркости участка галактики единичного углового размера).

4.8. *Квинтэссенция

Отличная от нуля космологическая постоянная — далеко не единственная возможная причина ускоренного расширения Вселенной в современную эпоху. В связи с этим и говорят в общем случае о «темной энергии», ответственной за это явление. Природа темной энергии — одна из главных загадок современного естествознания. Неудивительно, что на эту тему было высказано множество гипотез. Одна из таких гипотез — это существование «квинтэссенции», однородного в пространстве поля, энергия которого выступает в роли темной энергии. В отличие от космологической постоянной, квинтэссенция является динамическим полем, и ее плотность энергии зависит от времени. На языке эффективного уравнения состояния $p = w\rho$ это означает, что $w \neq -1$ и, вообще говоря, w зависит от времени.

В качестве квинтэссенции, как правило (хотя и не всегда), рассматривают скалярное поле. В этом разделе мы обсудим один из классов таких моделей, но перед этим рассмотрим в общих чертах динамику однородного скалярного поля в расширяющейся Вселенной. Изложенные здесь результаты будут полезны, помимо рассмотрения моделей квинтэссенции, для обсуждения целого ряда других вопросов. В особенности важно понимание динамики скалярного поля для построения и изучения моделей инфляции.

4.8.1. Особенности эволюции однородного скалярного поля в расширяющейся Вселенной

Рассмотрим теорию вещественного скалярного поля с действием

$$S = \int d^4x \,\sqrt{-g}\mathcal{L} = \int d^4x \,\sqrt{-g} \left[\frac{1}{2}g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi - V(\varphi)\right],\tag{4.47}$$

где $V(\varphi)$ — скалярный потенциал. Будем считать, что Вселенная — пространственно-плоская и описывается метрикой стандартного вида

$$ds^{2} = dt^{2} - a^{2}(t) dx^{2}, \qquad (4.48)$$

где a(t) — заданная функция времени.

Уравнение движения для скалярного поля получается, как обычно, варьированием действия (4.47) по φ и имеет вид

$$\frac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}\,g^{\mu\nu}\partial_{\nu}\varphi\right) = -\frac{\partial V}{\partial\varphi}.\tag{4.49}$$

Рассмотрим однородное (не зависящее от пространственных координат) поле $\varphi(t)$ в метрике (4.48). Для него уравнение (4.49) сводится к

$$\ddot{\varphi} + 3H\dot{\varphi} = -\frac{\partial V}{\partial \varphi},\tag{4.50}$$

где, как обычно, $H = \dot{a}/a$ — параметр Хаббла. Уравнение (4.50) совпадает с уравнением классической механики «частицы» с координатой φ в потенциале $V(\varphi)$, испытывающей трение с зависящим от времени коэффициентом трения *H*. В зависимости от соотношения между скатывающей силой и трением возможны два режима: (1) режим быстрого скатывания, когда $H\dot{\varphi} \ll V'$ (штрих обозначает производную по φ), трение мало, и «частица» быстро скатывается к точке минимума потенциала $V(\varphi)$; (2) режим медленного скатывания, когда трение сильное и частица практически покоится. Во втором режиме выполняется

$$H\dot{\varphi} \sim V'. \tag{4.51}$$

За хаббловское время H^{-1} значение поля меняется на

$$\delta arphi \sim \dot{arphi} H^{-1} \sim rac{V'}{H^2}.$$

Это изменение мало по сравнению с самим значением поля, т.е. $\delta \varphi \ll \varphi$ при

$$\frac{V'}{\varphi} \ll H^2. \tag{4.52}$$

Для степенных потенциалов типа $m^2 \varphi^2$ или $\lambda \varphi^4$ справедливо $V' \sim V \varphi^{-1}$, поэтому условие режима медленного скатывания имеет вид

$$\frac{V}{\varphi^2} \ll H^2. \tag{4.53}$$

Итак, для степенных потенциалов при выполнении условия (4.53) значение поля остается практически неизменным при эволюции Вселенной, а при выполнении обратного неравенства поле быстро меняется с течением времени и скатывается к минимуму потенциала $V(\varphi)$.

100

Задача 11. Показать, что для степенной зависимости масштабного фактора от времени $a(t) = t^{\alpha}$, $\alpha > 1/3$, решение уравнения (4.50) в приближении V' = const имеет вид

$$\varphi = \varphi_i + C \cdot (t^2 - t_i^2) + d \cdot \left[1 - \left(\frac{t_i}{t}\right)^{3\alpha - 1}\right], \qquad (4.54)$$

где φ_i — начальное значение, $\varphi_i = \varphi(t_i)$. Считая, что $\dot{\varphi}(t_i) \ll H(t_i)\varphi(t_i)$, найти значения констант C и d, выразив их через φ_i и $\dot{\varphi}(t_i)$. Убедиться, что при указанном предположении третий член в (4.54) всегда мал. Найти, при каких временах t второй член в (4.54) мал по сравнению с начальным значением φ_i , и убедиться, что для степенных потенциалов это условие совпадает с (4.53), а в общем случае — с (4.52). Убедиться, что при этих временах выполняется соотношение (4.51), а также $\ddot{\varphi} \sim H\dot{\varphi}$. Из последнего соотношения видно, что за хаббловское время относительное изменение скорости $\dot{\varphi}$ не мало, но сама скорость остается малой (последнее свойство характерно лишь для степенных a(t)).

Хотя нам в этой Главе поведение скалярного поля вблизи минимума скалярного потенциала не понадобится, обсудим для полноты, как в расширяющейся Вселенной происходит приближение $\varphi(t)$ к этому минимуму. Будем считать, что потенциал $V(\varphi)$ имеет минимум при $\varphi = 0$, а вблизи минимума равен

$$V(\varphi) = \frac{m^2}{2}\varphi^2. \tag{4.55}$$

Тогда уравнение (4.50) вблизи минимума потенциала имеет вид

$$\ddot{\varphi} + 3\frac{\dot{a}}{a}\dot{\varphi} + m^2\varphi = 0. \tag{4.56}$$

Для анализа подобных уравнений полезно избавиться от члена с трением и перейти к уравнению осциллятора с переменной частотой (ср. с концом раздела 2.3). В данном случае замена имеет вид

where
$$arphi(t)=rac{1}{a^{3/2}(t)}\cdot\chi(t),$$
 where $arphi(t)$ is the second se

где χ — новая неизвестная функция, удовлетворяющая, как следует из (4.56), уравнению

$$\ddot{\chi} + \left(m^2 - \frac{3}{2}\frac{\ddot{a}}{a} - \frac{3}{4}\frac{\dot{a}^2}{a^2}\right)\chi = 0.$$
(4.57)

Отметим, что

Con Concernant 1

$$rac{\ddot{a}}{a}\simrac{\dot{a}^2}{a^2}=H^2$$

Из (4.57) видно, что массой m можно пренебречь при $m^2 \ll H^2$. В этом случае для потенциала (4.55) выполняется условие (4.53), и мы возвращаемся к режиму медленного скатывания.

Задача 12. Получить результаты предыдущей задачи, исходя из уравнения (4.57).

Нас сейчас интересует обратный режим, $m^2 \gg H^2$. В этом случае членами порядка H^2 в скобке в (4.57) можно пренебречь, и решение имеет вид $\chi = \text{const} \cdot \cos(mt + \beta)$, где β — произвольная фаза. Итак, при $m^2 \gg H^2$ приближение к минимуму происходит по закону

$$\varphi(t) = \varphi_* \cdot \frac{\cos\left(mt + \beta\right)}{a^{3/2}(t)},\tag{4.58}$$

где φ_* — некоторая постоянная. Поле осциллирует вблизи минимума с уменьшающейся амплитудой. Отметим, что относительное изменение амплитуды за период осцилляций по порядку величины равно

$$rac{\dot{a}}{a}\cdot m^{-1}\sim rac{H}{m}$$

и мало́ в интересующем нас случае $m \gg H$.

Решение (4.58) можно получить и из энергетических соображений. В однородной изотропной Вселенной с метрикой (4.48) действие (4.47) в случае свободного массивного скалярного поля имеет вид

$$S = \int d^4x \cdot a^3 \cdot \left(rac{1}{2} \dot{arphi}^2 - rac{1}{2a^2} \left(\partial_i arphi
ight)^2 - rac{m^2}{2} arphi^2
ight).$$

При масштабном факторе, не зависящем от времени, сохраняется энергия

$$E = \int d^3\mathbf{x} \cdot a^3 \cdot \left(\frac{1}{2}\dot{\varphi}^2 + \frac{m^2}{2}\varphi^2\right),$$

где мы считаем поле однородным, как и всюду в этом разделе. При этом решения уравнения поля осциллируют с частотой m, т. е. $\varphi \propto \cos{(mt + \beta)}$. При медленном (адиабатическом) изменении a со временем осцилляционный характер решений сохраняется; сохраняется (конечно, приближенно) и энергия, как это известно из классической механики. Отсюда следует, что

$$a^{3}(t)\left(\frac{1}{2}\dot{\varphi}^{2}+\frac{m^{2}}{2}\varphi^{2}\right)=\text{const.}$$
 (4.59)

Это и означает, что амплитуда поля падает как $a^{-3/2}$, т. е. мы приходим к решению (4.58). Отметим, что приближенный закон сохранения (4.59) соответствует сохранению энергии в сопутствующем объеме, также приближенному. Отметим еще, что в общем случае произвольно быстрого изменения a(t) не существует даже приближенного интеграла движения типа энергии: в зависящих от времени внешних полях (в данном случае a(t)) энергия не сохраняется. Говорить об энергии во всей Вселенной (с учетом энергии гравитационного поля) смысла не имеет: такого интеграла движения в общей теории относительности нет⁷⁾.

a filosofia de la seguração perente a companya de la segura de la segura de la segura de la segura de la segur

⁷⁾ В общей теории относительности можно, тем не менее, ввести понятие полной энергии (с учетом гравитационного поля) в специальных случах, одним из которых является асимптотически плоское пространство-время. Поэтому понятие энергии (массы) тяготеющего тела, вдали от которого пространство-время имеет геометрию Минковского, хорошо определено.

В заключение этого раздела найдем тензор энергии-импульса скалярного поля в различных режимах. Общее выражение для тензора энергии-импульса в теории с действием (4.47) имеет вид

$$T_{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta S}{\delta g^{\mu\nu}} = \partial_{\mu}\varphi \,\partial_{\nu}\varphi - g_{\mu\nu}\mathcal{L}. \tag{4.60}$$

В случае однородного поля с потенциалом $V(\varphi)$ имеем в локально-лоренцевой системе (т. е. полагая мгновенное значение $g_{\mu\nu}$ в (4.60) равным $\eta_{\mu\nu}$) следующие выражения для ненулевых компонент

$$T_{00} = \frac{1}{2}\dot{\varphi}^2 + V(\varphi) \equiv \rho_{\varphi}, \quad T_{ij} = \left(\frac{1}{2}\dot{\varphi}^2 - V(\varphi)\right)\delta_{ij} \equiv p_{\varphi}\delta_{ij}.$$
(4.61)

В режиме медленного скатывания имеем с учетом (4.51)

$$\dot{\varphi}^2 \sim \frac{V^{\prime 2}}{H^2} \ll V^{\prime} \cdot \varphi, \qquad (4.62)$$

где при получении неравенства мы учли (4.52). Для степенных потенциалов справедливо $V'\varphi \sim V$, поэтому из (4.62) имеем

$$\dot{\varphi}^2 \ll V.$$

Следовательно, в режиме медленного скатывания

$$\rho_{\varphi} \approx -p_{\varphi} \approx V(\varphi), \tag{4.63}$$

т.е. уравнение состояния приближенно совпадает с вакуумным, $p \approx -\rho$ (хотя, как видно из (4.61), всегда имеет место неравенство $p > -\rho$).

В режиме быстрых осцилляций вокруг минимума скалярного потенциала используем (4.55) и с учетом (4.58) получим

$$T_{00} = rac{m^2 arphi_*^2}{2} \cdot rac{1}{a^3(t)}, \quad T_{ij} = -rac{m^2 arphi_*^2}{2} rac{1}{a^3} \cos{(2mt+2eta)} \cdot \delta_{ij},$$

где мы вновь использовали соотношение $H \ll m$. Усредненные за период осцилляций значения плотности энергии и давления равны, таким образом,

$$T_{00} \equiv \rho_{\varphi} = \frac{m^2 \varphi_*^2}{2} \cdot \frac{1}{a^3(t)}, \quad T_{ij} \equiv p_{\varphi} \cdot \delta_{ij} = 0.$$

$$(4.64)$$

Итак, усредненный за период осцилляций тензор энергии-импульса когерентных осцилляций однородного скалярного поля совпадает с тензором энергии-импульса нерелятивистского вещества: давление равно нулю, а плотность энергии падает как $a^{-3}(t)$. Как мы уже отмечали, последнее свойство отвечает сохранению энергии в сопутствующем объеме, см. (4.59).

С точки зрения квантовой теории поля однородное осциллирующее поле (4.58) можно воспринимать как набор покоящихся свободных частиц массы *m* в когерентном состоянии. Плотность числа этих частиц равна

$$n=\frac{\rho}{m}=\frac{1}{2}m^2\varphi_*^2\cdot\frac{1}{a^3(t)}$$

Как и любая плотность числа невзаимодействующих частиц, n(t) убывает как $a^{-3}(t)$. Равенство нулю давления естественным образом интерпретируется как проявление того факта, что частицы, будучи покоящимися, являются, конечно, нерелятивистскими.

4.8.2. Ускоренное расширение Вселенной за счет скалярного поля

Ускоренное расширение Вселенной в современную эпоху можно объяснить, введя скалярное поле φ (квинтэссенцию) с действием (4.47) и подобрав потенциал $V(\varphi)$ и современное значение поля φ так, чтобы эволюция поля $\varphi(t)$ происходила сегодня в режиме медленного скатывания. При этом необходимо предположить, что поле φ однородно в пространстве; такие начальные данные естественным образом следуют из инфляционной теории, поэтому это предположение особенной трудности не представляет.

В режиме медленного скатывания эффективное уравнение состояния для скалярного поля имеет вид $p_{\varphi} \approx -\rho_{\varphi}$, см. (4.63). Поэтому Вселенная действительно расширяется с ускорением, если доминирующий вклад в плотность энергии вносит само скалярное поле. Найдем, при каких условиях режим медленного скатывания действительно реализуется. Для определенности будем считать, что при современном значении φ главный вклад в $V(\varphi)$ является степенным, т. е. $V(\varphi) \propto \varphi^k$ и |k| не слишком велико. Тогда условие медленного скатывания имеет вид (4.53). Поскольку плотность энергии во Вселенной в основном определяется плотностью энергии скалярного поля, уравнение Фридмана имеет вид

$$H^{2} = \frac{8\pi}{3M_{Pl}^{2}}\rho_{\varphi} = \frac{8\pi}{3M_{Pl}^{2}}V(\varphi),$$
(4.65)

где мы воспользовались (4.63). Комбинируя (4.53) и (4.65), получаем

$$\varphi \gg M_{Pl}.\tag{4.66}$$

Это и есть условие медленного скатывания (для степенных потенциалов).

Несмотря на то что значение поля φ сегодня чрезвычайно велико, сам потенциал $V(\varphi)$ должен быть при этом очень мал, $V(\varphi) \sim \rho_c$ (точнее, $V(\varphi) = 0,76\rho_c$). Для степенного (и не только степенного) потенциала это означает, что потенциал должен быть чрезвычайно плоским. Например, в случае $V(\varphi) = m^2 \varphi^2/2$ требуется

$$m \lesssim rac{\sqrt{
ho_c}}{M_{Pl}} \sim 10^{-33} \; \mathrm{sB},$$

а в случае $V(\varphi) = \lambda \varphi^4$ необходимо $\lambda \leq 10^{-122}$. Таким образом, идея о квинтэссенции работает только при весьма экзотических преположениях о свойствах скалярного потенциала при значениях полей $\varphi \geq M_{Pl}$.

Достоинством моделей квинтэссенции служит то, что они в принципе доступны проверке с помощью космологических наблюдений. В случае квинтэссенции соотношение $p = -\rho$ для темной энергии не является точным, и поэтому эволюция Вселенной в прошлом отличается, вообще говоря, от эволюции Вселенной с космологической постоянной. Задача 13. В случае потенциала $V(\varphi) = m^2 \varphi^2/2$ найти современное значение параметра w, входящего в уравнение состояния $p = w\rho$, в зависимости от современного значения $\varphi = \varphi_0$. Подобрав значение φ_0 так, чтобы современное значение w было равно $w_0 = 0.9$, найти w(z) как функцию красного смещения при 2 > z > 0. Указание: считать, что сегодня $\Omega_{\varphi} \equiv \Omega_{\Lambda} = 0.76$, $\Omega_M = 0.24$; воспользоваться тем, что изменение скалярного поля со временем — медленное.

Задача 14. В условиях предыдущей задачи и с $w_0 = 0,9$ найти численно зависимость $r_{ph}(z)$ фотометрического расстояния от красного смещения (см. раздел 4.6). Построить график, аналогичный рис. 4.2, и сравнить с графиком $\Omega_M = 0,24$, $\Omega_{\Lambda} = 0,76$ для не зависящей от времени Λ .

Отметим, что в моделях с квинтэссенцией будущее Вселенной, вообще говоря, отличается от будущего Вселенной с космологической постоянной (см. обсуждение в Главе 1). Особенно сильно́ это отличие для моделей, в которых скатывание поля $\varphi(t)$ происходит к отрицательным значениям потенциала $V(\varphi)$: в этом случае расширение Вселенной может смениться сжатием.

Задача 15. Считая, что сегодня $\varphi = \varphi_0 \gg M_{Pl}$, проанализировать будущее Вселенной в случае потенциала

$$V(arphi)=rac{m^2}{2}arphi^2+\epsilonarphi,$$

где $|\epsilon| \ll m^2 M_{Pl}$ — малый параметр, а m — такое, что $V(\varphi_0) \sim \rho_c$. Указание: воспользоваться результатами раздела 4.8.1.

Подчеркнем, что модели квинтэссенции, вообще говоря, не дают решения проблемы космологической постоянной. Они лишь подразумевают деление этой проблемы на две части — на вопрос о том, почему «истинная» космологическая постоянная (энергия вакуума) равна нулю, и вопрос о том, почему столь мала плотность темной энергии — квинтэссенции. Ответа на первый вопрос модели квинтэссенции не дают *в принципе*; второй вопрос связан с *натуральностью* подбора параметров скалярного потенциала. Кроме того, в моделях квинтэссенции имеется вопрос о том, что обеспечивает «правильное» современное значение скалярного поля. Возможный ответ на последний вопрос дают модели «следящего поля», которые мы сейчас вкратце обсудим.

4.8.3. Следящее поле

Рассмотрим один из классов моделей квинтэссенции — модели следящего (tracker) поля. Выберем потенциал скалярного поля в виде⁸⁾

$$V(arphi)=rac{M^{n+4}}{narphi^n},$$

где M — параметр размерности массы и n > 2 — численный параметр. На радиационно-доминированной или пылевидной стадии, когда $a(t) \propto t^{\alpha}$, урав-

⁸⁾ С точки зрения физики частиц такие потенциалы являются весьма экзотическими.

нение скалярного поля (4.50) имеет вид

$$\ddot{\varphi} + \frac{3\alpha}{t}\dot{\varphi} - \frac{M^{n+4}}{\varphi^{n+1}} = 0.$$
(4.67)

Оно имеет специальное «следящее» решение (tracker solution)

$$\varphi^{(tr)}(t) = CM^{1+\nu}t^{\nu}, \qquad (4.68)$$

где

$$\nu = \frac{2}{n+2},\tag{4.69}$$

а $C = C(n, \alpha)$ определяется из уравнения (4.67).

Задача 16. Показать, что (4.68) действительно является решением уравнения (4.67). Найти $C(n, \alpha)$, входящее в (4.68).

Решение (4.68) является аттрактором: если в начальный момент t_i поле φ_i было меньше, чем решение (4.68) в этот же момент, $\varphi_i < \varphi^{(tr)}(t_i)$, то скатывающая сила

$${\cal F}(arphi)\equiv -V'(arphi)={M^{n+4}\over arphi^{n+1}}$$

превышает скатывающую силу на решении (4.68) в начальный и последующие моменты времени,

$$\mathcal{F}(\varphi(t)) > \mathcal{F}(\varphi^{(tr)}(t)).$$

Поэтому решение с начальным значением $\varphi_i < \varphi^{(tr)}(t_i)$ догоняет следящее решение (4.68). Наоборот, решение с $\varphi_i > \varphi^{(tr)}(t_i)$ уменьшается медленнее, чем следящее решение, и последнее настигает решение с начальным значением φ_i . Это и означает, что решение (4.68) является аттрактором: в достаточно широком классе начальных данных решения стремятся к (4.68) при больших временах; эволюция поля φ по-существу не зависит от начальных данных и описывается решением (4.68).

Для решения (4.68) справедливо (обозначение (tr) в дальнейшем опускаем)

$$\dot{\varphi}^2 \sim V(\varphi) \propto \frac{1}{t^{2-2\nu}}$$

Видно, во-первых, что поле эволюционирует *не* в режиме медленного скатывания. Во-вторых, плотность энергии ρ_{φ} (см. (4.61)) убывает со временем медленнее, чем плотность энергии доминирующей материи (радиации или пыли): последняя убывает как $H^2 \propto t^{-2}$. Относительная доля поля φ в полной плотности энергии возрастает со временем как $t^{2\nu}$. В-третьих, поскольку $a \propto t^{\alpha}$, получаем

$$ho_{arphi} \propto rac{1}{a^{(2-2
u)/lpha}}.$$

Учитывая соотношение (3.39), имеем следующее выражение для параметра w_{φ} , входящего в эффективное уравнение состояния следящего поля $p_{\varphi} = w_{\varphi} \rho_{\varphi}$:

$$w_{\varphi}=-1+\frac{2}{3}\frac{1-\nu}{\alpha}.$$

Воспользовавшись (4.69) и результатами раздела 3.2.4, получаем

$$w_{\varphi} = w \frac{n}{n+2} - \frac{2}{n+2}, \qquad (4.70)$$

где w — параметр уравнения состояния доминирующей материи (w = 1/3и w = 0 для радиации и пыли соответственно). Таким образом, уравнение состояния следящего поля зависит от уравнения состояния доминирующей материи. Отсюда и происхождение термина «следящее поле». Отметим, что при больших n уравнение состояния следящего поля близко к уравнению состояния доминирующей материи, $w_{\varphi} \approx w$.

Задача 17. Вычислив давление и плотность энергии путем подстановки решения (4.68) в выражения (4.61), убедиться в справедливости (4.70) независимым образом.

Задача 18. Показать, что для решения (4.68) справедливо $V'' \propto H^2$ как на радиационнодоминированной, так и на пылевидной стадии. Это — еще одна причина использования термина «следящее поле».

Решение (4.68) справедливо в те времена, когда плотность энергии следящего поля все еще мала по сравнению с плотностью энергии доминирующей материи. Относительный вклад следящего поля в полную плотность энергии растет и в какой-то момент начинает доминировать само следящее поле; после этого решение (4.68) перестает быть справедливым. Значение поля в этот момент найдем, воспользовавшись тем, что

$$V(arphi)\sim \dot{arphi}^2\sim rac{arphi^2}{t^2}, \quad ext{t. e.} \quad
ho_arphi\sim rac{arphi^2}{t^2}.$$

Плотность энергии материи при этом равна

$$ho_M = rac{3}{8\pi} M_{Pl}^2 H^2(t) \sim rac{M_{Pl}^2}{t^2}$$

Из требования $\rho_{\varphi} \sim \rho_M$ получим, что следящее поле начинает доминировать при

 $\varphi \sim M_{Pl}$.

Отсюда, кстати, видно, что начальное значение поля хотя и может быть достаточно произвольным, должно удовлетворять условию $\varphi_i \ll M_{Pl}$.

В более поздние времена поле $\varphi(t)$ растет, и довольно скоро начинает выполняться соотношение (4.66), т. е. эволюция φ переходит в режим медленного скатывания, а эволюция Вселенной — в режим ускоренного расширения.

Разумеется, в период перехода от доминирования материи к доминированию следящего поля и некоторое время после этого эволюция Вселенной довольно сильно отличается от эволюции Вселенной с не зависящей
от времени космологической постоянной. Поэтому вполне реальной является возможность подтвердить или опровергнуть модель следящего поля путем космологических наблюдений. Существующие данные не исключают пока ни космологической постоянной (не зависящей от времени), ни модели следящего поля; совместны они и с целым рядом других моделей квинтэссенции.

Задача 19. Оценить для различных *n*, при каких значениях *M* модель следящего поля согласуется с реальной картиной ускоренного расширения Вселенной.

ТЕРМОДИНАМИКА В РАСШИРЯЮЩЕЙСЯ ВСЕЛЕННОЙ

5.1. Функции распределения бозонов и фермионов

На протяжении ряда глав мы будем рассматривать процессы, происходящие в расширяющейся Вселенной, которая заполнена горячей плазмой, состоящей из различных взаимодействующих между собой частиц. Как мы увидим в дальнейшем, скорость протекания взаимодействий между этими частицами во многих случаях выше темпа расширения Вселенной, так что можно считать, что в каждый момент времени Вселенная находится в термодинамическом равновесии. Поэтому нам понадобится ряд основных соотношений и формул равновесной термодинамики, которые мы и приводим в настоящем разделе. Стоит отметить, что, как правило, наиболее интересными моментами являются те, когда та или иная реакция выходит из равновесия («вымораживается»). Равновесные термодинамические законы обычно оказываются полезными для качественного описания и такой ситуации — они позволяют оценить момент времени, когда происходит выход из равновесия, и определить направление того или иного неравновесного процесса.

В ранней Вселенной вещество находится в очень горячем и плотном состоянии, так что интенсивно идут процессы с изменением числа частиц и с нарушением квантовых чисел, сохраняющихся в обычных условиях. Например, как мы обсудим в Главе 11, при температуре $T \gtrsim 100$ ГэВ активно идут реакции с изменением барионного числа. Для термодинамического описания такой системы необходимо ввести для каждого типа частиц свой химический потенциал μ . При этом, если имеется реакция вида

$$A_1 + A_2 + \ldots + A_n \leftrightarrow B_1 + B_2 + \ldots + B_{n'}, \quad \text{and} \quad \text{determine} \quad (5.1)$$

где A_i , B_j — различные типы частиц, то для соответствующих химических потенциалов в термодинамическом равновесии¹⁾ справедливо свойство

$$\mu_{A_1} + \mu_{A_2} + \ldots + \mu_{A_n} = \mu_{B_1} + \mu_{B_2} + \ldots + \mu_{B_{n'}}.$$
(5.2)

¹⁾ Точнее, равенство (5.2) справедливо, когда реакция (5.1) находится в *химическом* равновесии, т.е. когда скорость ее протекания выше характерной скорости изменения параметров системы (например, темпа расширения Вселенной).

Так, к примеру, в любой реакции, где участвует хотя бы одна заряженная частица, всегда имеется возможность испустить дополнительный фотон (например, возможна реакция $e^-e^- \rightarrow e^-e^-\gamma$). Поэтому из уравнения (5.2) следует, что химический потенциал фотона равен нулю,

$$\mu_{\gamma}=0.$$

В качестве другого применения соотношения (5.2) рассмотрим реакцию аннигиляции электрон-позитронной пары в два фотона

 $e^+ + e^- \leftrightarrow 2\gamma.$

Поскольку $\mu_{\gamma} = 0$, из возможности такой реакции следует, что

$$\mu_{e^-} + \mu_{e^+} = 0.$$

Ясно, что такое же соотношение справедливо для любых других частиц и античастиц, поскольку для них всегда имеется возможность проаннигилировать в фотоны. Таким образом, химический потенциал любой античастицы равен химическому потенциалу соответствующей частицы, взятому с обратным знаком.

В равновесной среде со многими типами частиц удобный способ учета всех реакций типа (5.1) состоит во введении независимых химических потенциалов μ_i только к сохраняющимся квантовым числам $Q^{(i)}$. При этом $Q^{(i)}$ должны быть независимы друг от друга и должны образовывать полный набор сохраняющихся чисел. Химический потенциал для частиц типа A равен

$$\mu_A = \sum_i \mu_i Q_A^{(i)} , \qquad (5.3)$$

где $Q_A^{(i)}$ — квантовые числа, которые несет частица типа A. Например, при температурах 200 МэВ $\ll T \ll 100$ ГэВ сохраняющимися числами являются барионное число B, лептонные числа L_e , L_{μ} , L_{τ} и электрический заряд Q (см. Приложение В, цвет кварков и глюонов для нас сейчас несущественен), т.е. полный набор независимых сохраняющихся чисел имеет вид $Q^{(i)} = B$, L_e , L_{μ} , L_{τ} , Q. В этой ситуации химический потенциал, например, u-кварка (барионное число 1/3, электрический заряд 2/3) равен

$$\mu_u=\frac{1}{3}\mu_B+\frac{2}{3}\mu_Q,$$

а для d-кварка, электрона и электронного нейтрино имеем

$$\mu_d = \frac{1}{3}\mu_B - \frac{1}{3}\mu_Q, \quad \mu_e = \mu_{L_e} - \mu_Q, \quad \mu_{\nu_e} = \mu_{L_e}.$$

Соотношения типа (5.2) автоматически выполняются во всех реакциях с участием этих частиц (как и всех других частиц, присутствующих в среде); примером служит реакция

$$u+e^{\tilde{}} \rightarrow d+
u_e$$
,

обусловленная слабым взаимодействием.

Задача 1. Показать в общем случае, что соотношения (5.2) автоматически выполняются, если химические потенциалы частиц имеют вид (5.3), а заряды $Q^{(i)}$ одинаковы для начального и конечного состояний реакции (5.1), т.е.

$$Q_{A_1}^{(i)} + \ldots + Q_{A_n}^{(i)} = Q_{B_1}^{(i)} + \ldots + Q_{B_{n'}}^{(i)}.$$

Далее, сами химические потенциалы можно найти, если известны плотности сохраняющихся чисел, которые мы обозначим $n^{(i)}$. Действительно, плотность каждого типа частиц n_A выражается через μ_A , поэтому система уравнений

$$\sum_A Q^{(i)}_A n_A = n^{(i)}$$

вместе с (5.3) позволяет выразить²⁾ все μ_i через $n^{(i)}$.

В космической плазме взаимодействия между частицами, как правило, довольно слабы; мы будем уточнять это утверждение в соответствующих местах. В этом случае равновесные функции распределения частиц по импульсам **р** в локально-лоренцевой системе координат равны функциям распределения идеальных бозе- и ферми-газов:

$$f(\mathbf{p}) = \frac{1}{(2\pi)^3} \frac{1}{e^{(E(\mathbf{p}) - \mu)/T} \mp 1}.$$
 (5.4)

Здесь

$$E(\mathbf{p}) = \sqrt{\mathbf{p}^2 + m^2} \tag{5.5}$$

— энергия частиц массы m, T — температура среды. Знак «-» в формуле (5.4) относится к частицам, подчиняющимся статистике Бозе, а знак «+» — к частицам, подчиняющимся статистике Ферми.

В случае, когда можно пренебречь слагаемым ± 1 в знаменателе в правой части формулы (5.4), функция распределения принимает универсальную форму распределения Максвелла—Больцмана

$$f_B(\mathbf{p}) = \frac{1}{(2\pi)^3} e^{-(E(\mathbf{p})-\mu)/T}.$$
 (5.6)

Важный пример, когда применима формула (5.6), дает предел нерелятивистского разреженного газа, для которого $m \gg T$, $(m - \mu) \gg T$. В этом случае

$$f_B(\mathbf{p}) = \frac{1}{(2\pi)^3} e^{(\mu - m)/T} \cdot e^{-\mathbf{p}^2/(2mT)}.$$
 (5.7)

Проинтегрировав функцию распределения по импульсам, получаем следующее общее выражение для плотности числа частиц *i*-го типа:

$$n_i = g_i \int f(\mathbf{p}) d^3 \mathbf{p} = 4\pi g_i \int f(E) \sqrt{E^2 - m_i^2} E dE,$$
 (5.8)

²⁾ Здесь существенно, что квантовые числа $Q^{(i)}$ независимы и образуют полный набор.

где во втором равенстве мы проинтегрировали по углам и воспользовались соотношением

$$E dE = |\mathbf{p}| d|\mathbf{p}|, \tag{5.9}$$

вытекающим из релятивистского дисперсионного соотношения (5.5). Множитель g_i в (5.8) равен числу спиновых состояний данного типа частиц. К примеру, для фотонов, электронов и позитронов

$$g_{\gamma} = g_{e^-} = g_{e^+} = 2,$$

а для нейтрино и антинейтрино

$$g_{\nu} = g_{\bar{\nu}} = 1.$$

Из явного вида функции распределения (5.4) следует, что разность чисел частиц и античастиц данного типа в единице объема зависит от значения химического потенциала. Как мы скоро убедимся, при достаточно высоких температурах во Вселенной разность чисел частиц и античастиц крайне мала по сравнению с самим числом частиц. К примеру при $T \gtrsim 1$ ГэВ для частиц с барионным зарядом (при таких температурах это кварки и антикварки) имеем (см. раздел 1.5.5)

$$\frac{n_B-n_{\bar{B}}}{n_B+n_{\bar{B}}}\sim 10^{-10}.$$

Относительная разность чисел электронов и позитронов имеет тот же порядок величины (Вселенная в целом электрически нейтральна, поэтому избыточный положительный заряд, содержащийся в кварках, в точности компенсируется избыточным отрицательным зарядом электронов). Следовательно, химические потенциалы были крайне малы в ранней Вселенной, и для многих целей ими можно пренебречь.

Плотность энергии ρ_i частиц *i*-го типа дается следующим интегралом от функции распределения:

$$\rho_i = g_i \int f(\mathbf{p}) E(\mathbf{p}) d^3 \mathbf{p} = 4\pi g_i \int f(E) \sqrt{E^2 - m_i^2} E^2 dE, \qquad (5.10)$$

где во втором равенстве, как и в соотношении (5.8), мы проинтегрировали по углам и воспользовались (5.9).

Чтобы найти выражение для давления среды, рассмотрим маленькую площадку ΔS , расположенную перпендикулярно оси z. Количество частиц с импульсами в интервале от **p** до **p** + d**p**, налетающих с одной из сторон на эту площадку за время Δt , равно

 $\Delta n = v_z f(\mathbf{p}) d^3 \mathbf{p} \Delta S \Delta t,$

где

$$v_z = rac{p_z}{E} > 0$$

— проекция скорости частицы на ось z. Частица с проекцией импульса p_z при упругом отражении от площадки передает ей импульс в направлении оси z,

равный $\Delta p_z = 2p_z$. Следовательно, давление, равное отношению полного импульса, полученного площадкой, к времени Δt и площади ΔS , имеет вид

$$p_{i} = g_{i} \int_{p_{z}>0} 2\frac{p_{z}^{2}}{E} f(\mathbf{p}) d^{3}\mathbf{p} =$$

$$= \frac{4\pi g_{i}}{3} \int_{0}^{\infty} \frac{|\mathbf{p}|^{4} d|\mathbf{p}|}{E(\mathbf{p})} f(\mathbf{p}) = \frac{4\pi g_{i}}{3} \int_{0}^{\infty} f(E) \left(E^{2} - m_{i}^{2}\right)^{3/2} dE, \qquad (5.11)$$

где мы учли, что только половина частиц движется в сторону рассматриваемой площадки, и воспользовались тем, что в силу изотропии системы можно заменить p_z^2 на

$$\frac{1}{3}\mathbf{p}^2 = \frac{1}{3}(E^2 - m^2).$$

Исследуем теперь выражения (5.8), (5.10) и (5.11) для плотности числа частиц, плотности энергии и давления в разных физически интересных предельных случаях. Для начала рассмотрим случай ультрарелятивистских частиц $T \gg m_i$ с нулевым химическим потенциалом $\mu_i = 0$. В этом пределе выражение (5.10) для плотности энергии принимает вид (закон Стефана— Больцмана)

$$\rho_{i} = \frac{g_{i}}{2\pi^{2}} \int \frac{E^{3}}{e^{E/T} \mp 1} dE = \begin{cases} g_{i} \frac{\pi^{2}}{30} T^{4} & -\text{Бозе;} \\ \frac{7}{8} g_{i} \frac{\pi^{2}}{30} T^{4} & -\Phi \text{ерми.} \end{cases}$$
(5.12)

Вычисление встречающихся в этой Главе интегралов приведено, например, в книге [18]; сводка формул дана в конце этого раздела. Как и следовало ожидать из размерных соображений, плотность энергии в этом случае равна T^4 с точностью до численного коэффициента; вклад фермионов в плотность энергии отличается от вклада бозонов множителем 7/8. Отметим, что в релятивистском случае частицы часто удобно характеризовать спиральностью проекцией спина на направление движения; параметр g_i можно тогда понимать как число спиральных состояний.

Если в плазме имеются ультрарелятивистские частицы различных типов и с одной и той же температурой T, а химическими потенциалами можно пренебречь, то плотность энергии ультрарелятивистской компоненты равна

$$\rho = g_* \frac{\pi^2}{30} T^4, \tag{5.13}$$

где

$$g_* = \sum_{\substack{\text{бозоны} \\ m \ll T}} g_i + \frac{7}{8} \sum_{\substack{\text{фермионы} \\ m \ll T}} g_i$$
(5.14)

— эффективное число степеней свободы.

Выражение (5.11) для давления в ультрарелятивистском случае имеет вид

$$p_i = \frac{g_i}{6\pi^2} \int \frac{E^3}{e^{E/T} \mp 1} \, dE = \frac{\rho_i}{3}.$$
 (5.15)

Таким образом, уравнение состояния ультрарелятивистского вещества имеет форму

$$p=\frac{1}{3}\rho.$$

Выражение (5.8) для плотности числа частиц в ультрарелятивистском случае имеет вид

$$n_{i} = \frac{g_{i}}{2\pi^{2}} \int \frac{E^{2}}{e^{E/T} \mp 1} dE = \begin{cases} g_{i} \frac{\zeta(3)}{\pi^{2}} T^{3} & -\text{ Bose;} \\ 3 & \zeta(3) \end{cases}$$
(5.16a)

$$2\pi^2 J e^{E/T} \mp 1$$
 $\left(\frac{3}{4}g_i\frac{\zeta(3)}{\pi^2}T^3 - \Phi$ ерми. (5.16b)

Здесь численное значение дзета-функции равно

 $\zeta(3) \approx 1,2.$

Пользуясь равенствами (5.12), (5.16), можно найти среднюю энергию частицы в ультрарелятивистском случае:

$$\langle E \rangle = \frac{\rho_i}{n_i} \approx \begin{cases} 2.7 \ T & -\text{Бозе;} \\ 3.15 \ T & -\text{Ферми.} \end{cases}$$
(5.17)

В качестве простого примера применения приведенных формул оценим, при какой температуре релятивистская космическая среда находится в тепловом равновесии по отношению, например, к электромагнитным взаимодействиям. Ограничимся здесь случаем высоких температур, $T \gg 1$ МэВ, когда электроны являются релятивистскими. Интересные для этого случая процессы — это комптоновское рассеяние, e^+e^- -аннигиляция (рис. 5.1) и т. д.

Амплитуды этих процессов пропорциональны $\alpha \equiv e^2/(4\pi)$, а сечения — α^2 . Отсюда и из размерных соображений сразу получаем оценку для темпа этих процессов (обратное время между соударениями одной частицы)

$$\Gamma \sim \alpha^2 T.$$

Процессы находятся в тепловом равновесии, если эта величина заметно превышает темп расширения Вселенной,

 $\Gamma \gg H(T).$

Учитывая (см. раздел 3.2.2), что

$$H(T)=\frac{T^2}{M_{Pl}^*},$$

получим, что среда находится в равновесии при

$$T \ll lpha^2 M_{Pl}^* \sim 10^{14}$$
 ГэВ.

Такая же оценка работает для слабых и сильных (цветовых) взаимодействий ³⁾. Таким образом, предположение о тепловом равновесии действительно хорошо выполняется на протяжении большей части горячей стадии эволюции Вселенной (более точно следует говорить о кинетическом равновесии, т. е. о равновесном распределении по импульсам; обсуждение химического равновесия, т. е. равновесия между сортами частиц, надо проводить отдельно).

Рассмотрим теперь предел нерелятивистского разреженного газа, когда функция распределения принимает больцмановский вид (5.6). В этом пределе выражение для плотности числа частиц имеет вид

$$n_i = g_i \left(\frac{m_i T}{2\pi}\right)^{3/2} \mathrm{e}^{(\mu_i - m_i)/T},$$
 (5.18)

а плотность энергии и давление равны

$$\rho_i = m_i n_i + \frac{3}{2} n_i T \tag{5.19}$$

И

$$p_i = T n_i \ll \rho_i. \tag{5.20}$$

Как было очевидно с самого начала, газ нерелятивистских частиц описывается уравнением состояния p = 0, с точностью до поправок O(T/m).

Задача 2. Показать, что при высоких температурах (больше масс всех частиц) и малых химических потенциалах разности плотностей числа частиц и античастиц определенной спиральности равны

$$\Delta n = \mu \frac{T^2}{3} -$$
бозоны (5.21)

И

$$\Delta n = \mu \frac{T^2}{6}$$
 — фермионы, (5.22)

³⁾ Выход из термодинамического равновесия при низких температурах — важный вопрос, который мы будем обсуждать в разных местах этой книги.

где μ — химический потенциал для соответствующего типа частиц, причем считается, что $\mu \ll T$. Указания: (1) Учесть, что химические потенциалы частиц и античастиц равны по величине и противоположны по знаку; (2) Выделив в интеграле (5.8) с m = 0 линейный член по μ , проинтегрировать по частям и воспользоваться формулами конца раздела.

Задача 3. Найти разности плотностей частиц и античастиц (асимметрии) для всех типов ультрарелятивистских частиц в равновесной электронейтральной среде при температуре T = 400 МэВ, считая известными плотности барионного и лептонных чисел n_B , n_{L_e} , $n_{L_{\mu}}$, $n_{L_{\tau}}$, причем n_B , n_{L_e} , $n_{L_{\mu}}$, $n_{L_{\tau}} \ll T^3$. Указания: (1) учесть, что при такой температуре релятивистскими являются u-, d-, s-кварки, глюоны, фотоны, электрон, мюон и все типы нейтрино, а остальные частицы Стандартной модели — нерелятивистские; (2) учесть, что нейтрино имеют одну спиральность, а другие фермионы — две; (3) учесть, что кварки имеют три цветовых состояния.

Приведем значения встречающихся в этой Главе интегралов.

$$1. \int_{0}^{\infty} \frac{dz}{\mathrm{e}^{z}+1} = \ln 2.$$

2. Для целых положительных *n*

$$\int_{0}^{\infty} \frac{z^{2n-1}}{e^{z}-1} dz = \frac{(2\pi)^{2n}}{4n} B_{n}, \qquad \int_{0}^{\infty} \frac{z^{2n-1}}{e^{z}+1} dz = \frac{2^{2n-1}-1}{2n} \pi^{2n} B_{n},$$

где B_n — числа Бернулли,

$$B_1 = \frac{1}{6}, \quad B_2 = \frac{1}{30}, \quad B_3 = \frac{1}{42}, \quad \dots$$

3. При произвольном x

$$\int_{0}^{\infty} \frac{z^{x-1}}{e^{z}-1} dz = \Gamma(x)\zeta(x), \qquad \int_{0}^{\infty} \frac{z^{x-1}}{e^{z}+1} dz = (1-2^{1-x})\Gamma(x)\zeta(x),$$

где $\zeta(x)$ — дзета-функция Римана, частные значения которой равны

$$\zeta(3) = 1,202, \quad \zeta(5) = 1,037, \quad \zeta\left(\frac{3}{2}\right) = 2,612, \quad \zeta\left(\frac{5}{2}\right) = 1,341.$$

Напомним, что для целых положительных *n* справедливо

$$\Gamma(\boldsymbol{n}) = (\boldsymbol{n}-1)! \, .$$

Значения гамма-функции при любых полуцелых x можно найти, исходя из значения

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

и воспользовавшись свойством $\Gamma(1 + x) = x\Gamma(x)$.

5.2. Энтропия в расширяющейся Вселенной. Барион-фотонное отношение

Одной из основных термодинамических характеристик системы является ее энтропия. Поскольку мы собираемся применять термодинамические законы к расширяющейся Вселенной, полезно обсудить свойства энтропии в такой системе. Напомним, что в классической термодинамике понятие энтропии возникает в первом начале термодинамики. В общем случае переменного числа частиц приращение внутренней энергии dE имеет вид

$$dE = TdS - p \, dV + \sum_{i} \mu_i \, dN_i. \tag{5.23}$$

где S — энтропия системы, а индекс *i* обозначает сорт частиц; в дальнейшем этот индекс и суммирование по нему мы будем опускать, где это возможно.

Внутренняя энергия и число частиц являются экстенсивными характеристиками, т. е. они линейно меняются с изменением объема, а температура и давление являются локальными характеристиками, не зависящими от объема системы. Поэтому из первого начала термодинамики (5.23) следует, что энтропия является экстенсивной величиной. В связи с этим удобно перейти от энергии, числа частиц и энтропии к их плотностям,

$$\rho \equiv \frac{E}{V}, \quad n \equiv \frac{N}{V}, \quad s \equiv \frac{S}{V}.$$
(5.24)

Взяв дифференциалы от равенств (5.24), получим

$$dE = \rho \, dV + V d\rho, \tag{5.25}$$

$$dN = n \, dV + V \, dn, \tag{5.26}$$

$$dS = s \, dV + V \, ds. \tag{5.27}$$

Подставив выражения (5.25), (5.26) и (5.27) для дифференциалов в равенство (5.23), мы приходим к следующей форме записи первого начала термодинамики:

$$(Ts - p - \rho + \mu n) dV + (Tds - d\rho + \mu dn)V = 0.$$
 (5.28)

Это соотношение применимо как ко всей системе, так и к любой ее части. Применим его к области постоянного объема внутри системы и получим для дифференциалов

$$Tds = d\rho - \mu \, dn.$$

Теперь можно применить (5.28) ко всей системе, объем которой меняется, и найти искомое выражение для плотности энтропии

$$s=\frac{p+\rho-\mu n}{T}.$$

В качестве важного примера рассмотрим сначала ультрарелятивистское вешество с нулевыми химическими потенциалами, для которого

$$s = \frac{p+\rho}{T}.$$
(5.29)

Пользуясь этим равенством и выражениями для ρ и p, полученными в предыдущем разделе, мы приходим к следующим выражениям для вкладов частиц *i*-го типа в плотность энтропии

$$s_i = rac{4}{3}rac{
ho_i}{T} = \begin{cases} g_i rac{4\pi^2}{90} T^3 & -$$
 Бозе; $rac{7}{8} g_i rac{4\pi^2}{90} T^3 & -$ Ферми. (5.30)

Сравнивая эти выражения с выражениями (5.16) для плотности числа частиц, мы видим, что в ультрарелятивистском случае плотность энтропии и плотность числа частиц отличаются лишь на численный множитель порядка единицы.

Для нерелятивистской компоненты воспользуемся равенствами (5.19) и (5.20) и запишем

$$s_i=rac{5}{2}n_i+rac{m_i-\mu_i}{T}n_i.$$

Исключим из этого выражения химический потенциал с помощью (5.18) и получим окончательно

$$s_i = n_i \left\{ \frac{5}{2} + \ln \left[\frac{g_i}{n_i} \left(\frac{m_i T}{2\pi} \right)^{3/2} \right] \right\}.$$

В космической среде плотность числа нерелятивистских частиц мала по сравнению с плотностью числа фотонов; при температурах $T \leq 100$ МэВ, когда протоны и нейтроны являются нерелятивистскими, их плотность n_B оценивается величиной $n_B \sim 10^{-9} n_\gamma$. Такая же оценка имеет место для электронов, которые являются нерелятивистскими при $T \leq 0.5$ МэВ. Таким образом, нерелятивистскими вкладами в энтропию можно пренебречь, и полная плотность энтропии дается формулой

$$s = g_* \frac{4\pi^2}{90} T^3, \tag{5.31}$$

где эффективное число релятивистских степеней свободы g_* определено, как обычно, формулой (5.14).

Одним из ключевых свойств энтропии, определяющим ее важнейшую роль в термодинамике, является второе начало термодинамики, согласно которому энтропия замкнутой системы не убывает в ходе любого физического процесса и остается постоянной для обратимых процессов, т. е. процессов настолько медленных, что система все время находится в состоянии термодинамического равновесия. Справедливость этого свойства неочевидна для вещества в расширяющейся Вселенной, поскольку кроме вещества во Вселенной имеется также и гравитационное поле, так что плазма сама по себе не образует замкнутой системы. Обсудим, как модифицируется закон сохранения энтропии в расширяющейся Вселенной (считая расширение равновесным процессом). Для этого вернемся к соотношению (5.23) и учтем явным образом, что химические потенциалы частиц и античастиц равны по величине и противоположны по знаку. Запишем тогда

$$dE = TdS - p\,dV + \sum \mu(dN - d\overline{N}), \qquad (5.32)$$

где \overline{N} — число античастиц, а суммирование производится по всем типам частиц. При равновесном расширении соотношение (5.32) можно применить к сопутствующему объему, $V \propto a^3$, при этом $(N - \overline{N})$ в сопутствующем объеме сохраняется ⁴). Таким образом, для сопутствующего объема будем иметь

$$TdS = (p+\rho) dV + V d\rho.$$
(5.33)

Причиной изменения сопутствующего объема и характеристик среды является расширение Вселенной, поэтому соотношение (5.33) нужно понимать как

$$T\frac{dS}{dt} = a^{3}\left[(p+\rho)\cdot 3\frac{\dot{a}}{a} + \dot{\rho}\right], \qquad \text{ for all } t \in \mathbb{R}^{3}$$

где $S = sa^3$ — энтропия в сопутствующем объеме. Вспомним теперь закон ковариантного сохранения энергии в расширяющейся Вселенной (см. уравнение (3.11))

$$\dot{\rho} + 3\frac{\dot{a}}{a}(\rho + p) = 0$$
 (5.34)

и получим

$$\dot{s} + 3\frac{\dot{a}}{a}s = 0. \quad (5.35)$$

Следовательно, полная энтропия в сопутствующем объеме сохраняется,

$$sa^3 = \text{const.}$$
 (5.36)

Итак, ковариантный закон сохранения энергии имеет в случае равновесного расширения простую интерпретацию: он представляет собой закон сохранения энтропии в сопутствующем объеме.

Оценим плотность энтропии Вселенной в современную эпоху. Для этого вспомним, что Вселенная заполнена реликтовым микроволновым излучением — газом фотонов с температурой

$$T_0 = 2,725 \ K.$$

Плотность энтропии этого фотонного газа в соответствии с формулой (5.30) равна

$$s_{\gamma} = \frac{8\pi^2}{90} T_0^3 \simeq 1.5 \cdot 10^3 \text{ cm}^{-3}.$$
 (5.37)

Вкладами других типов частиц (в том числе нейтрино) для грубой оценки пренебрежем. Пользуясь результатом (5.37), мы можем оценить полную эн-

⁴⁾ Если быть более точными, то в формуле (5.32) под $(N - \overline{N})$ следует понимать сохраняющиеся квантовые числа, а под μ — химические потенциалы к этим числам, см. (5.3).

тропию видимой части Вселенной. Размер видимой части Вселенной составляет $l_{\mu0} \sim 10^{28}$ см, так что для полной энтропии получаем

$$S_{\gamma} = rac{4\pi}{3} s_{\gamma} l_{\mu,0}^3 \sim 10^{88}.$$

Мы видим, что энтропия видимой части Вселенной — это гигантское безразмерное число. Если бы в процессе расширения полная энтропия все время сохранялась, то в момент своего рождения Вселенная должна была бы уже обладать такой энтропией. Таким образом, в стандартном сценарии горячего Большого взрыва мы сталкиваемся с необходимостью включать в начальные условия расширения Вселенной гигантский безразмерный параметр порядка 10⁸⁸. Мы вернемся к этой проблеме и обсудим возможность ее решения в рамках инфляционной теории во второй части книги.

Сохранение энтропии в сопутствующем объеме можно использовать для того, чтобы ввести количественные, не зависящие от времени характеристики асимметрии Вселенной по отношению к различным сохраняющимся квантовым числам. Например, в настоящее время во Вселенной имеются частицы, несущие положительное барионное число, — протоны и нейтроны, и отсутствуют частицы с отрицательным барионным числом. Следовательно, во Вселенной имеется ненулевая плотность барионного числа. Поскольку при температурах ниже сотен ГэВ процессы с нарушением барионного числа отсутствуют, полное барионное число в сопутствующем объеме остается постоянным при расширении Вселенной начиная по крайней мере ⁵⁾ с $T \sim 100$ ГэВ. Другими словами, справедливо равенство

$$(n_B - n_{\bar{B}})a^3 = \text{const}, \qquad (5.38)$$

где n_B и $n_{\bar{B}}$ — плотности чисел барионов и антибарионов. Сравнивая соотношения (5.36) и (5.38), мы видим, что отношение

$$\Delta_{B} = \frac{n_{B} - n_{\bar{B}}}{s} \tag{5.39}$$

является постоянной во времени численной характеристикой барионной асимметрии Вселенной.

Несколько забегая вперед, приведем оценку численного значения барионной асимметрии Вселенной. Когда в космологии имеют дело со сравнительно низкими температурами ($T \leq 1 \text{ МэВ}$), традиционно используют барион-фотонное отношение

$$\eta_{\scriptscriptstyle B} = rac{n_{\scriptscriptstyle B}}{n_{\gamma}}$$

где n_{γ} — плотность числа фотонов. Эта величина остается постоянной в течение эволюции Вселенной, начиная с температуры порядка 1 МэВ, и отличается от барионной асимметрии Δ_B численным коэффициентом порядка

120

⁵⁾ Мы не рассматриваем здесь возможность генерации барионной асимметрии при более низких температурах. Такая возможность имеется, например, в сценарии Аффлека—Дайна, см. раздел 11.6.

единицы. Последний связан как с численным отличием n_{γ} от энтропии фотонов s_{γ} , см. (5.16) и (5.31), так и со вкладом нейтрино в энтропию Вселенной, см. Главу 7. При $T \leq 1$ МэВ плотность энтропии во Вселенной равна

$$s = \frac{4\pi^2}{90} \left(2 + \frac{7}{8} \cdot 2 \cdot 3 \cdot \frac{4}{11} \right) T^3, \tag{5.40}$$

где первый и второй члены в скобках соответствуют вкладам фотонов и нейтрино, причем температура нейтрино связана с температурой фотонов $T_{\gamma} \equiv T$ соотношением (4.14); происхождение множителя $\frac{7}{8} \cdot 2 \cdot 3$ — такое же, как в (4.15). Для дальнейшего полезно отметить, что современное значение плотности энтропии равно⁶⁾

$$s_0 = 2.9 \cdot 10^3 \text{ cm}^{-3}$$
. (5.41)

Итак, имеем

$$\Delta_{B} = \frac{n_{\gamma}}{s} \eta_{B} = \frac{\frac{2\zeta(3)}{\pi^{2}}}{\frac{4\pi^{2}}{90} \left(2 + \frac{7}{8} \cdot 2 \cdot 3 \cdot \frac{4}{11}\right)} \cdot \eta_{B} = 0.14 \cdot \eta_{B}.$$

Точное значение барион-фотонного отношения можно извлечь из распространенности первичных элементов во Вселенной (см. Главу 8) и из измерений анизотропии реликтового излучения. Эти два независимых способа дают хорошо согласующиеся между собой результаты и приводят к значению

$$\eta_{\rm B} = (6,10 \pm 0,20) \cdot 10^{-10}. \tag{5.42}$$

В терминах барионной асимметрии имеем

$$\Delta_{\rm B} = 0.87 \cdot 10^{-10}$$

Как мы обсуждали в разделе 1.5.5, в горячей Вселенной (при $T \gtrsim 1$ ГэВ) по порядку величины имеем

$$\Delta_{\scriptscriptstyle B} \sim \frac{n_q - n_{\bar{q}}}{n_q + n_{\bar{a}}},\tag{5.43}$$

где n_q и $n_{\bar{q}}$ — плотности чисел кварков и антикварков, причем $n_q \approx n_{\bar{q}} \sim s$. Таким образом, параметр Δ_B показывает, какую долю от общего числа кварков составляет избыток кварков над антикварками. Мы видим, что этот избыток очень мал. Следовательно, как мы и утверждали выше, химические потенциалы в ранней Вселенной были действительно крайне малы.

Задача 4. Оцените численное значение химического потенциала для u-кварка при температуре 1 ГэВ.

⁶⁾ Тонкость, связанная с тем, что фотоны и нейтрино являются свободными в современной Вселенной, а по крайней мере два типа нейтрино к тому же имеют массы, превышающие $T_{\nu0}$, здесь несущественна, поскольку в современной Вселенной функции распределения фотонов и нейтрино по импульсам — тепловые и ультрарелятивистские, см. раздел 2.5. Если стремиться к аккуратности, то правую часть (5.40) нужно считать *определением* величины *s* в современную эпоху, а также на достаточно поздних этапах эволюции.

В заключение этого раздела напомним, что наряду с барион-фотонным отношением η_B часто используют безразмерный параметр Ω_B , определяемый как отношение современного значения (массовой) плотности барионов ρ_B к критической плотности ρ_c (см. Главу 4),

$$\Omega_B = \frac{\rho_B}{\rho_c} = \frac{m_B n_B}{\rho_c}, \qquad (5.44)$$

где $m_B \simeq 1$ ГэВ — масса протона (при той точности, с которой мы работаем, разница между массами протона и нейтрона несущественна). В соответствии с формулой (5.16а), плотность числа реликтовых фотонов в современной Вселенной равна

$$n_{\gamma} = 2 rac{\zeta(3)}{\pi^2} T_0^3 = 410 \; rac{1}{\mathrm{cm}^3}.$$

Используя значение критической плотности (4.4), получим из (5.42)

$$\Omega_B h^2 \simeq 0.022 \pm 0.001. \tag{5.45}$$

Таким образом, $\Omega_B \simeq 0.042$, что заметно меньше полной относительной плотности массы нерелятивистского вещества в модели Λ CDM, $\Omega_M \simeq 0.24$ (см. Главу 4). Таким образом, бо́льшая часть нерелятивистской материи во Вселенной — не барионы, а неизвестные частицы темной материи.

Напомним (см. Главу 1), что прямая оценка значения Ω_B , основанная на измерении средней плотности светящегося вещества (звезд) во Вселенной, привела бы к значению Ω_B^{Lum} , примерно на порядок меньшему, чем в (5.45). Это означает, что бо́льшая часть барионов во Вселенной находится в виде газа.

Одна из важных задач космологии — объяснить происхождение барионной асимметрии Вселенной. Мы обсудим эту проблему в Главе 11.

Задача 5. Дать численную оценку вкладов электронов и протонов в плотность энтропии во Вселенной при $0,5 \text{ M} \rightarrow \text{B} \gg T \gg 1 \rightarrow \text{B}$. *Указание*: учесть, что при таких температурах электроны и протоны — нерелятивистские и находятся в свободном состоянии (рекомбинации в атомы водорода еще не произошло) и что число электронов равно числу протонов (наличием легких ядер пренебрегаем).

5.3. * Модели с промежуточной пылевидной стадией: генерация энтропии

Обсудим возможность того, что на раннем этапе эволюции Вселенной, еще до сравнительно недавней радиационно-доминированной стадии, реализовывалась пылевидная стадия космологической эволюции. Можно привести два сценария, в которых имеется такая возможность. В первом из них предполагается, что в природе существуют новые тяжелые частицы \tilde{G} с достаточно большим временем жизни τ , и что на начальном этапе эпохи горячего Большого взрыва доминировало релятивистское вещество, в котором была некоторая примесь \tilde{G} -частиц. \tilde{G} -частицы являются нерелятивистскими по крайней

мере при температуре, меньшей их массы. В процессе расширения Вселенной плотность энергии горячей релятивистской компоненты падает как a^{-4} , а после того, как \tilde{G} -частицы стали нерелятивистскими, их плотность энергии падает как a^{-3} . Поэтому в некоторый момент времени t_* Вселенная переходит с радиационно-доминированной стадии на стадию доминирования нерелятивистских \tilde{G} -частиц, т. е. на пылевидную стадию. Основным предположением здесь служит то, что

$$t_* \ll \tau \equiv \Gamma^{-1}, \tag{5.46}$$

где Γ — ширина распада \tilde{G} -частиц. При дальнейшей эволюции Вселенной \tilde{G} -частицы распадаются на легкие частицы, например на кварки, лептоны и другие частицы Стандартной модели; предполагается, что последние быстро (быстрее, чем за хаббловское время) термализуются и включаются в релятивистскую горячую компоненту. Мы увидим, что эпоха доминирования \tilde{G} -частиц заканчивается вскоре после того, как темп расширения Вселенной снизится до $H \sim \Gamma$: после этого все \tilde{G} -частицы распадутся за несколько хаббловских времен, во Вселенной останется только горячее релятивистское вещество и вновь начнется радиационно-доминированная стадия эволюции. Отметим, что в течение промежутка времени $t_* < t < \Gamma^{-1}$ во Вселенной сильно нарушено термодинамическое равновесие: концентрация \tilde{G} -частиц весьма далека от равновесной. Это свойство, обусловленное, конечно, соотношением (5.46), в конечном итоге приводит к генерации большой энтропии во Вселенной.

Такой сценарий реализуется в некоторых моделях с тяжелыми гравитино (см. раздел 9.6.3), отсюда и использованное обозначение \tilde{G} для новых частиц.

Второй сценарий основывается на наблюдении, что с точки зрения космологической эволюции роль нерелятивистского вещества может выполнять массивное скалярное поле, осциллирующее вблизи минимума своего скалярного потенциала, см. раздел 4.8.1. Как мы упоминали в разделе 4.8.1, такое поле можно воспринимать как набор покоящихся массивных частиц. Предполагается, что перед эпохой горячего Большого взрыва энергия во Вселенной была сосредоточена исключительно в этом поле, а его осцилляции начались в момент времени t_* (до этого скалярое поле эволюционировало в режиме медленного скатывания, см. раздел 4.8.1). Таким образом, в момент t_* релятивистского вещества во Вселенной не было вовсе. Предположим далее, что массивные частицы, соответствующие этому скалярному полю, распадаются с шириной Γ на легкие частицы, которые, как и в первом сценарии, быстро термализуются и образуют горячую релятивистскую компоненту. Опять-таки предположим, что $t_* \ll \Gamma^{-1}$, и, кроме того, что указанные распады являются основным механизмом распада осциллирующего скалярного поля — конденсата новых частиц. Подчеркнем, что последнее предположение является весьма сильным: имеются альтернативные механизмы распада осциллирующего скалярного поля, которые во многих случаях доминируют. С некоторыми из таких механизмов мы познакомимся во второй части книги, а здесь будем работать в сделанных предположениях. Тогда, как и в первом сценарии, Вселенная переходит на радиационно-доминированную стадию при $H(t) \sim \Gamma$.

До некоторого момента анализ этих двух сценариев идет параллельно. Пусть ρ_M и ρ_r — плотности энергий нерелятивистской и релятивистской компонент соответственно. Будем считать для простоты, что эффективное число степеней свободы g_* не меняется в процессе эволюции (общему случаю посвящена задача в конце раздела). Число нерелятивистских частиц в сопутствующем объеме $(n_M a^3)$ уменьшается только за счет их распадов, поэтому выполняется

$$\frac{d}{dt}(n_Ma^3)=-\Gamma n_Ma^3.$$

Учитывая, что $\rho_M \propto n_M$, получаем отсюда

$$\dot{\rho}_M + 3H\rho_M = -\Gamma\rho_M. \tag{5.47}$$

Плотность энергии горячей релятивистской компоненты уменьшается из-за расширения Вселенной, при этом падает как плотность числа частиц, так и энергия каждой из них, т. е. температура. С другой стороны, энергия «впрыскивается» в релятивистскую компоненту при распадах тяжелых частиц. Поэтому уравнение на ρ_r имеет вид

$$\dot{\rho}_r + 4H\rho_r = \Gamma \rho_M. \tag{5.48}$$

Третьим уравнением, замыкающим систему уравнений эволюции, служит уравнение Фридмана

$$H^2 = \frac{8\pi}{3}G(\rho_M + \rho_r).$$
 (5.49)

Наша цель — изучить решения ситемы уравнений (5.47), (5.48) и (5.49).

Задача 6. Используя уравнения (5.47) и (5.48), показать, что полные энергия и давление (суммы энергий и давлений двух компонент) удовлетворяют ковариантному закону сохранения $\dot{\rho}_{tot} = -3H(\rho_{tot} + p_{tot})$.

Прежде всего, решением уравнения (5.47) служит

$$\rho_M(t) = \frac{\text{const}}{a^3(t)} e^{-\Gamma t}.$$
(5.50)

Как на пылевидной, так и на радиационно-доминированной стадии $t \sim H^{-1}$, поэтому при больших временах, когда $\Gamma \gg H(t)$, плотность энергии нерелятивистской компоненты экспоненциально мала. При таких временах правой частью уравнения (5.48) можно пренебречь, и плотность энергии релятивистской компоненты падает как a^{-4} . Это убывание — степенное, а не экспоненциальное, поэтому при $\Gamma \gg H(t)$ выполняется $\rho_r \gg \rho_M$. Итак, во Вселенной действительно происходит переход от пылевидной к радиационно-доминированной стадии, причем «момент» перехода $t_{MD\to RD}$ определяется соотношением

$$\Gamma \sim H(t_{MD \to RD}). \tag{5.51}$$

Вообще говоря, приведенное рассуждение не исключает возможности того, что в правой части (5.51) имеется логарифмически большой множитель, т.е.

переход происходит несколько позже; с другой стороны, оно не исключает и перехода на более ранних времена χ , когда $\Gamma \ll H$. Мы убедимся в дальнейшем, что ни одна из этих возможностей не реализуется.

Рассмотрим поведение решений уравнений (5.47), (5.48) и (5.49) после начала пылевидной стадии, $t > t_*$, но на достаточно ранних временах, когда $\Gamma \ll H(t)$. Иными словами, интересующий нас период — это

$$t_* < t \ll \Gamma^{-1}.$$

Предположим, что в этот период доминирует нерелятивистская материя; это предположение мы оправдаем в конце вычисления. При интересующих нас временах экспоненциальный множитель в (5.50) близок к единице — убылью тяжелых частиц за счет их распадов можно пренебречь. Поэтому для эволюции Вселенной работают формулы раздела 3.2.1; в частности, $a \propto t^{2/3}$,

$$H=\frac{2}{3t^{*}}, \quad \rho_{M}\approx\frac{3}{8\pi G}H^{2}=\frac{1}{6\pi Gt^{*}}.$$

Подставляя последние выражения в (5.48), получим уравнение

$$\dot{\rho}_r + \frac{8}{3t}\rho_r = \frac{\Gamma}{6\pi G}\frac{1}{t^2}.$$

Его общее решение имеет вид

$$\rho_r = \frac{\Gamma}{10\pi G} \frac{1}{t} + \frac{C}{t^{8/3}},\tag{5.52}$$

где С — произвольная постоянная.

Константа *C* в решении (5.52) определяется начальными условиями и различна для двух описанных выше сценариев. Начнем с первого из них. Напомним, что в нем предполагается доминирование горячего релятивистского вещества при $t \ll t_*$ и переход к пылевидной стадии при $t \simeq t_*$. В момент t_* первый член в (5.52), как мы увидим, мал, и требование $\rho_r(t_*) \simeq \rho_M(t_*)$ дает

$$rac{C}{t_*^{8/3}}\simeq rac{1}{6\pi G t_*^2}$$

так что выражение для ho_r при $t \gg t_*$ имеет вид

$$\rho_r = \frac{\Gamma}{10\pi G} \frac{1}{t} + \frac{1}{6\pi G} \frac{t_*^{2/3}}{t^{8/3}} \equiv \rho_{gen} + \rho_{init}.$$
(5.53)

Первый член здесь обусловлен «подкачкой» энергии за счет распадов тяжелых частиц, а второй — релятивистским веществом, изначально имевшимся во Вселенной. Отметим, что первое слагаемое довольно медленно убывает со временем, в то время как второе падает как a^{-4} , как и положено для релятивистского вещества. С учетом основного предположения $\Gamma \ll t_*^{-1}$ первый, индуцированный вклад действительно мал при $t = t_*$; он начинает доминировать при $t \simeq t_*^{2/5} \Gamma^{-3/5} \ll \Gamma^{-1}$, т.е. задолго до повторного перехода на радиационно-доминированную стадию. В это время начинает генерироваться энтропия, заметно превышающая уже имевшуюся во Вселенной.

Подчеркнем, что ρ_r , а значит, и температура горячей релятивистской компоненты монотонно убывают со временем, что может показаться удивительным: наивно можно было бы ожидать, что максимальная температура во Вселенной достигается при $H(t) \sim \Gamma$, когда распадается большинство тяжелых частиц. В действительности, как показывает приведенный анализ, на ранних временах малость относительного числа распадов тяжелых частиц за хаббловское время компенсируется высокой плотностью этих частиц, поэтому вклад их распадов в ρ_r не мал при малых t.

Задача 7. Показать, что температура горячей компоненты монотонно убывает и при $H(t) \leq \Gamma$.

Во втором сценарии $\rho_r = 0$ при $t = t_*$, откуда следует

$$\rho_r = \frac{\Gamma}{10\pi G} \left(\frac{1}{t} - \frac{t_*^{5/3}}{t^{8/3}} \right). \quad \text{transformation}$$
(5.54)

Плотность энергии горячего релятивистского вещества быстро (за время порядка t_*) вырастает от нуля до максимального значения⁷⁾

$$\rho_{r,max} \sim \frac{\Gamma}{10\pi Gt_*},$$

а затем падает как t^{-1} . Наибольшая температура во Вселенной достигается сразу после начала пылевидной стадии.

В обоих сценариях при $t \ll \Gamma^{-1}$ выполняется $\rho_r \ll \rho_M$, а к моменту $t \sim \Gamma^{-1}$, когда $H(t) \sim \Gamma$, плотность энергии релятивистского вещества приближается к плотности энергии нерелятивистской компоненты. Это и означает справедливость соотношения (5.51) без больших логарифмических множителей. Сразу после перехода на радиационно-доминированную стадию можно пользоваться для оценок формулами раздела 3.2.2, так что соотношение (5.51) можно переписать в виде

$$\Gamma \sim rac{T_{MD o RD}^2}{M_{Pl}^*}.$$

Из теории первичного нуклеосинтеза и соответствующих наблюдений (см. Главу 8) следует, что радиационно-доминированная стадия имела место по крайней мере начиная с температур $T_{NS} \sim 1 \text{ МэВ}$, так что $T_{MD \to RD} > T_{NS}$. Отсюда следует ограничение на время жизни тяжелых частиц,

$$\tau = \Gamma^{-1} \lesssim \frac{M_{PL}^*(T_{NS})}{T_{NS}^2} \simeq 1 \text{ c.}$$
 (5.55)

⁷⁾ Из-за того, что разогрев протекает быстро, представление о мгновенном начале пылевидной стадии является неадекватным. Поэтому численный коэффициент в (5.54) зависит от деталей начала пылевидной стадии.

Это ограничение существенно, например, для некоторых моделей с массивными гравитино, см. раздел 9.6.3.

В описанных сценариях распады тяжелых частиц приводят к значительной генерации энтропии. Так, в первом сценарии к моменту $t \sim \Gamma^{-1}$ начала повторной радиационно-доминированной стадии плотность энтропии, возникшей за счет распадов, оценивается величиной $s_{gen} \sim \rho_{gen}^{3/4}$ ($t = \Gamma^{-1}$), а если бы этих распадов не было, то плотность энтропии была бы равна $s_{init} \sim \rho_{init}^{3/4}$ ($t = \Gamma^{-1}$), см. (5.53). Отсюда фактор увеличения энтропии оценивается как

$$rac{s_{gen}}{s_{init}}\sim rac{1}{\sqrt{\Gamma t_*}}.$$

Видно, что при $t_* \ll \Gamma^{-1}$ этот фактор велик, т. е. энтропия генерируется весьма эффективно. Во втором сценарии энтропии во Вселенной изначально не было вовсе, так что вся энтропия обусловлена процессами распада.

Задача 8. Обобщить анализ этого раздела на случай, когда эффективное число релятивистских степеней свободы g_* меняется в процессе эволюции. *Указание*: вместо уравнения (5.48) вывести и использовать аналогичное уравнение для плотности энтропии горячей релятивистской компоненты.

5.4. *Неравновесные процессы

В этой книге нам неоднократно будет встречаться ситуация, когда большинство процессов в среде происходят достаточно быстро, но есть один или несколько медленных процессов, из-за низкого темпа которых среда не находится в состоянии термодинамического равновесия. Приведем характерный (но далеко не единственный) пример такой ситуации. Пусть в теории имеются гипотетические тяжелые частицы X (скажем, с массой $m_X \gtrsim 100$ ГэВ), имеющие большое время жизни, а единственным процессом, из-за которого концентрация n_X этих частиц в среде может изменяться, является их аннигиляция с античастицами \overline{X} . В то же время, предположим, что рассеяние X-частиц на обычных частицах, имеющихся в космической плазме (лептонах, кварках, фотонах и т.д.) происходит достаточно часто. При температурах T, превышающих массу X-частиц m_X , процессы рождения и аннигиляции X-частиц происходят, как правило, быстро (по сравнению с темпом расширения Вселенной), и их концентрация является равновесной.

Рассмотрим симметричную среду с одинаковым количеством частиц Xи античастиц \overline{X} . При $T \ll m_X$ концентрация X-частиц в такой среде экспоненциально падает с понижением температуры, и процессы аннигиляции X-частиц происходят все реже и реже, поскольку вероятность встречи X-частицы со своей античастицей становится все меньше. Это дает пример рассматриваемой ситуации: при $T \ll m_X$ все процессы, кроме рождения и аннигиляции пар $X - \overline{X}$, являются быстрыми, а сами процессы $X - \overline{X}$ -аннигиляции и рождения — медленные, и концентрации n_X и $n_{\overline{X}}$ могут не совпадать с равновесными. В этих условиях среда по-прежнему характеризуется температурой и числами частиц (в том числе самих частиц X и \overline{X} ; в симметричной среде $n_X = n_{\overline{X}}$). Функции распределения даются формулами раздела 5.1; неравновесность же проявляется в том, что $\mu_X \neq 0$, причем для симметричной среды $\mu_X = \mu_{\overline{X}}$.

Не рассматривая пока расширение Вселенной, обсудим, как происходит в такой ситуации релаксация к состоянию термодинамического равновесия. В общем случае в процессе релаксации эффективная температура среды и плотности числа всех частиц изменяются со временем (температура изменяется, например, если процесс релаксации происходит с выделением тепла; в нашем примере это действительно имеет место, если концентрация X-частиц превышает равновесную, $n_X > n_X^{eq}$, и релаксация происходит путем аннигиляции X-частиц, а не рождения $X - \overline{X}$ -пар). При этом в каждый момент времени температура и химические потенциалы имеют вполне определенные значения. Таким образом, среду в каждый момент времени можно характеризовать свободной энергией⁸⁾ $F(T, N_i)$. Напомним, что свободная энергия связана с числом состояний (статистической суммой) соотношением (считаем, что система имеет большой, но конечный объем)

$$Z = e^{-F/T}.$$
(5.56)

При приближении к термодинамическому равновесию свободная энергия стремится к своему минимуму, а статистическая сумма — к максимуму.

Пусть имеется прямой медленный процесс, приближающий систему к состоянию термодинамического равновесия (в нашем примере — это $X - \overline{X}$ -аннигиляция; для определенности будем считать, что $n_X > n_X^{eq}$). Обозначим темп таких процессов (их количество в единицу времени) как⁹⁾ Γ_+ . Есть и обратные процессы, темп которых обозначим через Γ_- (в нашем примере — это процесс рождения $X - \overline{X}$ -пар). Наша задача — найти соотношение между Γ_+ и Γ_- .

В результате единичного прямого процесса система переходит из состояния с большей свободной энергией F_+ (и, соответственно, с меньшей статистической суммой Z_+) в состояние с меньшей свободной энергией $F_$ и большей статистической суммой Z_- . Пусть i_+ — одно из *микроскопических* состояний ¹⁰ системы в начале прямого процесса, а j_- — одно из микроскопических состояний, в которые система может перейти в результате этого

⁸⁾ Как правило, удобнее работать не со свободной энергией, а с большим термодинамическим потенциалом, фиксируя не числа частиц, а химические потенциалы. В этом разделе, однако, мы будем рассматривать состояния с определенным числом частиц, для которых справедлива формула (5.56).

⁹⁾ Это обозначение связано с тем, что в прямом процессе статистическая сумма увеличивается; этот процесс более выгоден с термодинамической точки зрения.

¹⁰⁾ Например, в случае классической статистической механики в состоянии i_+ фиксированы положения и импульсы всех частиц среды.

процесса. Вероятность реализации начального состояния i_+ равна

$$P(i_+) = rac{\mathrm{e}^{-E(i_+)/T}}{Z_+},$$

где $E(i_+)$ — энергия состояния i_+ (здесь существенно, что по отношению ко всем другим процессам, кроме рассматриваемого, имеет место термодинамическое равновесие). Пусть $\gamma(i_+ \to j_-)$ — вероятность прямого процесса $i_+ \to j_-$. Тогда вероятность того, что какой-либо прямой процесс произойдет в среде, равна

$$\Gamma_+ = \sum_{i_+, j_-} P(i_+) \cdot \gamma(i_+ o j_-) = rac{1}{Z_+} \sum_{i_+, j_-} \mathrm{e}^{-E(i_+)/T} \gamma(i_+ o j_-).$$

Аналогично, вероятность какого-либо обратного процесса в среде равна

$$\Gamma_- = rac{1}{Z_-} \sum_{i_+,\,j_-} \mathrm{e}^{-E(j_-)/T} \gamma(j_-
ightarrow i_+).$$

В силу равенства вероятностей процесса $i_+ \to j_-$ и обратного ему процесса $j_- \to i_+$, т. е. $\gamma(j_- \to i_+) = \gamma(i_+ \to j_-)$, а также закона сохранения энергии, $E(i_+) = E(j_-)$, имеем

$$\frac{\Gamma_{+}}{\Gamma_{-}} = \frac{Z_{-}}{Z_{+}} = e^{-(F_{-}-F_{+})/T},$$

$$\frac{\Gamma_{+}}{\Gamma_{-}} = e^{-\Delta F/T},$$
(5.57)

и окончательно

计算法 计操

где ΔF — разность свободных энергий после и до прямого процесса (согласно данным выше определениям $\Delta F < 0$). В дальнейшем под Γ_+ и Γ_- мы будем понимать число прямых и обратных процессов, происходящих в единицу времени *в единице объема.* Для них, разумеется, соотношение (5.57) остается справедливым. Формула (5.57) представляет собой общее соотношение детального баланса.

Отметим, что в приведенном примере

$$\Delta F = \frac{\partial F}{\partial N_X} \Delta N_X + \frac{\partial F}{\partial N_{\overline{X}}} \Delta N_{\overline{X}},$$

где $\Delta N_X = \Delta N_{\overline{X}} = -1$ — изменение количества X- и \overline{X} -частиц в единичном прямом процессе (аннигиляция). Поэтому

$$\Delta F = -2\mu_X, \qquad (5.58)$$

где мы учли, что $\partial F/\partial N_X = \mu_X$ и $\mu_{\bar{x}} = \mu_X$.

Из выражения (5.57) видно, во-первых, что релаксация действительно идет в сторону уменьшения свободной энергии: $\Gamma_+ > \Gamma_-$ при $\Delta F < 0$. Далее, при $|\Delta F| \gg T$ справедливо $\Gamma_+ \gg \Gamma_-$, и обратными процессами можно

5 Введение в теорию ранней Вселенной

пренебречь. Наоборот, при $|\Delta F| \ll T$ имеет место малое отклонение от термодинамического равновесия, $(\Gamma_+ - \Gamma_-) \ll \Gamma_+$, Γ_- , прямой и обратный процессы идут с примерно одинаковой интенсивностью. В этом случае темп прямого и обратного процессов близок к равновесному, $\Gamma_+ \approx \Gamma_- \approx \Gamma_{eq}$, и релаксация характеризуется темпом

$$\Gamma_{+} - \Gamma_{-} = -\frac{\Delta F}{T} \Gamma_{eq}, \quad |\Delta F| \ll T.$$
(5.59)

В излагаемой в этом разделе ситуации часто можно ввести интенсивную (не зависящую от объема V) характеристику среды n = N/V. В приведенном выше примере — это плотность числа X-частиц, а N — полное число X-частиц в системе. Величина N не изменяется в быстрых процессах и изменяется на ΔN и $(-\Delta N)$ в прямом и обратном медленных процессах (в приведенном примере $\Delta N = -1$, поскольку мы считаем, что прямой процесс — это процес аннигиляции). По-прежнему не рассматривая расширение Вселенной, запишем для n(t) уравнение

$$\frac{dn}{dt} = \Delta N \cdot (\Gamma_+ - \Gamma_-) \tag{5.60}$$

(напомним, что Γ_{\pm} — скорости процессов *в единице объема*). В состоянии термодинамического равновесия свободная энергия имеет минимум по *N*, поэтому в равновесии

$$(\Delta F)_{eq} = \left(\frac{\partial F}{\partial N}\right)_{eq} \cdot \Delta N = 0.$$

Вблизи термодинамического равновесия ΔF пропорциональна отклонению n от равновесного значения n_{eg} , так что

$$\Delta F = -\alpha \left(n - n^{eq} \right),$$

где α — положительная постоянная. С учетом этого уравнение (5.60) принимает вид

$$\frac{dn}{dt} = \frac{\alpha}{T} \Delta N \Gamma_{eq} \left(n - n^{eq} \right).$$
(5.61)

Поскольку в термодинамическом равновесии n не зависит от времени, т.е.

$$\frac{dn^{eq}}{dt}=0,$$

последнее уравнение можно записать в виде

· 41 :

$$\frac{d(n-n^{eq})}{dt} = \frac{\alpha}{T} \Delta N \Gamma_{eq} \left(n - n^{eq} \right).$$
(5.62)

Отсюда видно, что приближение к равновесию носит экспоненциальный характер¹¹).

130

¹¹⁾ Отметим, что правая часть (5.62) всегда отрицательна: при $n > n^{eq}$ прямой процесс — это процесс с уменьшением n, т. е. $\Delta N < 0$, и наоборот.

В приведенном выше примере симметричной среды с частицами X и \overline{X} их концентрация при $T \ll m_X$ дается формулой (5.18) с ненулевыми $\mu_X = \mu_{\overline{X}}$, поэтому

$$n_X = n_{\bar{X}} = \mathrm{e}^{\mu_X/T} n_X^{eq}.$$

Следовательно, вблизи равновесия (т. е. при $\mu_X/T \ll 1$) имеем, с учетом (5.58),

$$\Delta F = -2\mu_X = -2Trac{n_X - n_X^{eq}}{n_X^{eq}}$$

Отсюда $\alpha = 2T/n_X^{eq}$ и, с учетом $\Delta N = -1$, приближение к равновесию описывается уравнением

$$\frac{d(n_X - n_X^{eq})}{dt} = -2\frac{\Gamma_{eq}}{n_X^{eq}}(n_X - n_X^{eq}).$$
(5.63)

Учтем, наконец, что темп процессов аннигиляции в единице объема в состоянии равновесия равен

$$\Gamma_{eq} = \Gamma_{X,eq} \cdot n_X^{eq},$$

где $\Gamma_{X,eq} = \tau_X^{-1}$ — время жизни X-частицы в среде, и получим

$$\frac{d(n_X-n_X^{eq})}{dt}=-2\Gamma_{X,eq}(n_X-n_X^{eq}).$$

Последний результат можно получить и вполне элементарным способом. В среде с концентрацией частиц n_X и концентрацией античастиц $n_{\overline{X}}$ вероятность аннигиляции в единицу времени частицы X с какой-то античастицей \overline{X} равна

$$\Gamma_X = \sigma_{ann} \cdot n_{\overline{X}} \cdot v_X,$$

где v_X — скорость X-частицы, а σ_{ann} — сечение аннигиляции (за время $\tau_X = \Gamma_X^{-1}$ частица с площадью поперечного сечения σ_{ann} встретит на своем пути ровно одну античастицу \overline{X}). Поэтому вероятность процесса аннигиляции в единицу времени в единице объема равна

$$\Gamma_{+} = \Gamma_{X} \cdot n_{X} = \sigma_{ann} \cdot n_{\overline{X}} \cdot v_{X} \cdot n_{X} = \Gamma_{eq} \frac{n_{\overline{X}}}{n_{\overline{Y}}^{eq}} \frac{n_{X}}{n_{X}^{eq}}.$$

Вероятность обратного процесса образования $X - \overline{X}$ -пары не зависит от того, сколько в действительности имеется частиц X в среде, поэтому она равна

$$\Gamma_{-}=\Gamma_{eq}$$

Поэтому

$$\frac{d(n_X - n_X^{eq})}{dt} = \Gamma_{eq} \left(1 - \frac{n_{\overline{X}} n_X}{n_{\overline{X}}^{eq} n_X^{eq}} \right)$$

В симметричной среде $n_{\overline{X}} = n_X$ и $n_{\overline{X}}^{eq} = n_X^{eq}$, и при $|n_X - n_X^{eq}| \ll n_X$ отсюда следует уравнение (5.63).

В случае расширяющейся Вселенной уравнение (5.60) перестает быть справедливым. Если Вселенная расширяется, оставаясь однородной ¹²⁾, а N — параметр типа числа частиц, то его плотность уменьшается как a^{-3} даже при выключенных медленных процессах, просто за счет расширения Вселенной. В этом случае имеет смысл рассматривать величину N в сопутствующем объеме, $N \propto na^3$. Уравнение для нее будет иметь вид

$$\frac{d(na^3)}{dt} = \Delta N \cdot (\Gamma_+ - \Gamma_-) \cdot a^3, \qquad (5.64)$$

где Γ_+ и Γ_- — по-прежнему скорости медленных процессов в единицу времени в единице физического объема, между которыми в общем случае имеется соотношение (5.57). Разумеется, Γ_+ и Γ_- сами зависят от времени, например, из-за уменьшения температуры за счет расширения Вселенной. Вблизи термодинамического равновесия уравнение (5.61) обобщается на случай расширяющейся Вселенной следующим образом:

$$\frac{d(na^3)}{dt} = \frac{\alpha}{T} \Delta N \cdot \Gamma_{eq}(n - n_{eq}) \cdot a^3.$$
(5.65)

Уравнение (5.64) — это упрощенное уравнение Больцмана в расширяющейся Вселенной. В этой книге мы будем неоднократно пользоваться уравнениями подобного типа и их простыми обобщениями.

132

¹²⁾ Эта оговорка необходима, поскольку могут быть этапы эволюции Вселенной, на которых она временно перестает быть однородной. Примером служат фазовые переходы первого рода, см. Главу 10.

РЕКОМБИНАЦИЯ

6.1. Температура рекомбинации

При температурах, превышающих энергию связи электронов в атомах, обычное вещество во Вселенной находилось в состоянии ионизованной плазмы, состоящей из электронов, фотонов и барионов. Как мы обсудим в Главе 8, при температуре ниже нескольких десятков кэВ барионы в основном состояли из протонов (около 75% от общей массы) и ядер ⁴He — α -частиц (около четверти от общей массы). При дальнейшем понижении температуры в определенный момент становится термодинамически выгодным образование атомов. Этот этап в истории Вселенной называется рекомбинацией. Если до рекомбинации фотоны активно рассеиваются на свободных электронах, присутствующих в плазме, так что их длина свободного пробега много меньше размера горизонта, то после рекомбинации вещество во Вселенной становится электрически нейтральным и фотоны распространяются практически свободно. Эти фотоны и дожили до настояшего времени в виде реликтового излучения.

Количественное изучение процесса рекомбинации начнем с того, что определим температуру, при которой образование атомов становится термодинамически выгодным. Наивно можно было бы ожидать, что эта температура близка к энергии связи электрона в атоме. Однако, как мы увидим, рекомбинация происходит при заметно более низкой температуре. Физическая причина этого состоит в том, что плазма во Вселенной является очень разреженной при рассматриваемых температурах, и объединение электронов с ядрами в единое целое приводит к значительному проигрышу в энтропии.

Эквивалентное «микроскопическое» объяснение малости температуры рекомбинации состоит в следующем. При малой концентрации электронов и протонов рекомбинация одного из электронов с каким-то протоном происходит¹⁾ за время τ_+ , обратно пропорциональное плотности числа протонов, $\tau_+ \propto n_B^{-1}$. Образовавшийся атом водорода разрушается фотоном, энергия которого превышает энергию связи атома водорода Δ_H . Такие фотоны имеются в среде и при $T \ll \Delta_H$, хотя их количество экспоненциально мало́. Поэтому

¹⁾ Индексы + и – относятся к прямому и обратному процессам — рекомбинации и ионизации соответственно.

время жизни атома водорода в среде конечно, хотя и экспоненциально велико, $\tau_{-} \propto e^{\Delta_{H}/T}$. Рекомбинация становится эффективной при

$$\tau_+ \sim \tau_-, \tag{6.1}$$

что при малом n_B действительно соответствует $T \ll \Delta_H$. Температуру рекомбинации можно было бы найти, используя намеченный здесь кинетический подход (см. задачу 4 в этом разделе). Однако проще применить термодинамический подход, что мы сейчас и сделаем.

Начнем с рассмотрения ситуации, когда все барионы в плазме состоят из протонов. Тот факт, что в действительности имеется существенная доля α -частиц, практически не сказывается на значении температуры рекомбинации.

Будем считать, что среда, состоящая из электронов, протонов и атомов водорода, находится в термодинамическом равновесии. То, что это предположение справедливо, мы проверим в разделе 6.3. Нас сейчас интересуют температуры масштаба 1 эВ (масштаб энергии связи электронов в атомах). При таких температурах электроны и протоны являются нерелятивистскими. Выпишем выражения для равновесных концентраций электронов, протонов и атомов водорода в нерелятивистском приближении:

$$n_e = g_e \left(\frac{m_e T}{2\pi}\right)^{3/2} \mathrm{e}^{(\mu_e - m_e)/T},$$
 (6.2)

$$n_p = g_p \left(\frac{m_p T}{2\pi}\right)^{3/2} e^{(\mu_p - m_p)/T},$$
(6.3)

$$n_H = g_H \left(\frac{m_H T}{2\pi}\right)^{3/2} e^{(\mu_H - m_H)/T}.$$
 (6.4)

В них входят неизвестные пока химические потенциалы. Количество спиновых степеней свободы для электрона g_e и для протона g_p равно двум. Для атома водорода $g_H = 4$.

Задача 1. Покажите, что $g_H = 4$.

化化学 化氯化化 化过敏分子

Температура рекомбинации T_r определяется условием

$$n_p(T_r) \simeq n_H(T_r). \tag{6.5}$$

При температурах выше T_r протонам и электронам выгоднее оставаться в свободном состоянии, а при понижении температуры более выгодным становится связанное состояние в виде нейтрального атома водорода. Для того чтобы найти значение T_r , нам необходимо найти еще три уравнения, позволяющие исключить неизвестные химические потенциалы μ_e , μ_p и μ_H , входящие в соотношения (6.2)–(6.4). Первым из этих условий является закон сохранения полного барионного числа²⁾

$$n_p + n_H = n_B. \tag{6.6}$$

²⁾ Для простоты мы здесь не учитываем тот факт, что плотность числа всех протонов отличается от n_B из-за наличия ядер гелия. Мы это учтем в дальнейшем.

Здесь, как и прежде, n_B — плотность барионного числа

$$n_B(T) = \eta_B n_\gamma(T), \tag{6.7}$$

где значение барион-фотонного отношения уже фигурировало в разделе 5.2,

$$\eta_B \simeq 6.1 \cdot 10^{-10}, \tag{6.8}$$

а плотность числа фотонов $n_{\gamma}(T)$ — известная функция температуры (см. (5.16а)). Еще одно уравнение

$$\mu_p + \mu_e = \mu_H \tag{6.9}$$

следует из химического равновесия реакции

$$p + e \leftrightarrow H + \gamma,$$
 (6.10)

которая собственно и является основной реакцией процесса рекомбинации. Наконец, последнее уравнение следует из электронейтральности среды во Вселенной и имеет вид

$$n_p = n_e. \tag{6.11}$$

Итого, мы получили шесть уравнений: (6.2), (6.3), (6.4), (6.6), (6.9) и (6.11), из которых при каждом значении температуры T можно определить три неизвестных плотности числа частиц n_e , n_p , n_H и три неизвестных химических потенциала μ_e , μ_p , μ_H . Самый быстрый способ упростить эту систему уравнений состоит в том, чтобы перемножить выражения (6.2) и (6.3) для плотности числа электронов и протонов:

$$n_p n_e = g_p g_e \left(\frac{m_p T}{2\pi}\right)^{3/2} \left(\frac{m_e T}{2\pi}\right)^{3/2} e^{(\mu_p + \mu_e - m_p - m_e)/T}.$$

Теперь, пользуясь равенствами (6.9), (6.11) и выражением (6.4) для n_H , можно исключить химические потенциалы и привести получившееся уравнение к следующему виду:

$$n_p^2 = \left(\frac{m_e T}{2\pi}\right)^{3/2} n_H e^{-\Delta_H/T},$$
 (6.12)

где

$$\Delta_H \equiv m_p + m_e - m_H = 13,6 \text{ } \text{ } \text{B}$$

— энергия связи водорода и мы пренебрегли разницей между m_p и m_H в предэкспоненциальном множителе в правой части уравнения (6.12). Вместе с уравнением (6.6) уравнение (6.12) определяет концентрации свободных протонов и атомов водорода n_p и n_H .

Удобно ввести безразмерные отношения

$$X_p \equiv rac{n_p}{n_B}, \quad X_H \equiv rac{n_H}{n_B},$$

так что условие сохранения барионного числа принимает вид

$$X_p + X_H = 1. (6.13)$$

Пользуясь уравнением (6.12), можно выразить X_H через X_p , в результате чего условие (6.13) приведет к следующей связи между X_p и температурой:

$$X_p + n_B X_p^2 \left(\frac{2\pi}{m_e T}\right)^{3/2} e^{\Delta_H/T} = 1.$$
 (6.14)

Уравнение (6.14) носит название уравнения Саха. Выразив n_B через барионфотонное отношение η_B с помощью соотношения (6.7) и воспользовавшись формулой (5.16a) для плотности числа фотонов $n_{\gamma}(T)$, мы получаем следуюшее уравнение, содержащее только безразмерные величины:

$$X_p + \frac{2\zeta(3)}{\pi^2} \eta_B \left(\frac{2\pi T}{m_e}\right)^{3/2} X_p^2 e^{\Delta_H/T} = 1.$$
(6.15)

Второе слагаемое здесь — это относительная концентрация атомов водорода, выраженная через X_p ,

$$X_{H} = \frac{2\zeta(3)}{\pi^{2}} \eta_{B} \left(\frac{2\pi T}{m_{e}}\right)^{3/2} X_{p}^{2} e^{\Delta_{H}/T}.$$
 (6.16)

Теперь мы явно видим, что рекомбинация происходит при температурах, заметно более низких, чем энергия связи атома водорода Δ_H . Действительно, пока экспоненциальный множитель в (6.16) недостаточно велик, концентрация протонов X_p близка к единице, а концентрация атомов водорода X_H подавлена. Это подавление связано как с малостью барион-фотонного отношения $\eta_B \sim 10^{-9}$, так и с тем, что электроны являются сильно нерелятивистскими при интересующих нас температурах,

$$rac{T}{m_{
m s}} \ll 1.$$

Момент рекомбинации наступает тогда, когда одновременно $X_p \sim 1$, $X_H \sim 1$. В этот момент отмеченная малость компенсируется экспоненциальным множителем $e^{\Delta_H/T}$. При этом отношение Δ_H/T заметно больше единицы:

$$\frac{\Delta_H}{T_r} \simeq -\ln\left[\frac{2\zeta(3)}{\pi^2}\eta_B \left(\frac{2\pi T_r}{m_e}\right)^{3/2}\right].$$
(6.17)

Эта формула получается подстановкой $X_H(T_r) \sim X_p(T_r) \sim 1$ в соотношение (6.16). Из нее и вычисляется температура рекомбинации.

Для дальнейшего полезно обсудить, как решать уравнения типа (6.17). Это уравнение являтся частным случаем уравнения вида

$$\boldsymbol{x} = \ln\left(\boldsymbol{A}\boldsymbol{x}^{\alpha}\right),\tag{6.18}$$

где в нашем случае неизвестная x равна

and the street for state of

$$x=rac{\Delta_H}{T_r},$$

а параметры А и α равны

$$\alpha = \frac{3}{2}, \quad A = \frac{\sqrt{\pi}}{4\sqrt{2}\,\zeta(3)} \left(\frac{m_e}{\Delta_H}\right)^{3/2} \eta_B^{-1}.$$

Существенно, что

$$\ln A \gg 1. \tag{6.19}$$

В уравнении вида (6.18) в ведущем логарифмическом приближении (т. е. пренебрегая числом порядка единицы по сравнению с $\ln A$) можно положить x = 1 в правой части, что приводит к следующему результату для x:

$$x \approx \ln A.$$
 (6.20)

Задача 2. Представив x в виде

$$x = (1 + \epsilon) \ln A$$

и считая $\epsilon \ll 1$, найдите x в первом нетривиальном порядке по ϵ и убедитесь, что ϵ действительно мало, если выполнено условие (6.19) и $\alpha \sim 1$.

В нашем случае в ведущем логарифмическом приближении получаем следующее значение для температуры рекомбинации

$$T_r \approx \frac{\Delta_H}{\ln\left[\frac{\sqrt{\pi}}{4\sqrt{2}\,\zeta(3)} \left(\frac{m_e}{\Delta_H}\right)^{3/2} \eta_B^{-1}\right]} \approx 0.38 \text{ sB.}$$
(6.21)

Численное решение уравнения (6.17) с эффективным значением

$$\eta_{B} = 0.75 \cdot 6.1 \cdot 10^{-10}$$

дает $T_r = 0,33 \ \Im B^{3}$.

Сравнивая значение температуры рекомбинации (6.21) со значением температуры (4.22) перехода от радиационно-доминированной стадии расширения к пылевидной, мы видим, что рекомбинация происходит на пылевидной стадии. Значению температуры $T_r = 0,33$ эВ соответствует величина красного смещения $z_r \approx 1400$.

Найдем возраст Вселенной на момент рекомбинации. Для этого воспользуемся соотношением (3.20), справедливым для пылевидной стадии, и запишем

$$t_r = \frac{2}{3}H^{-1}(t_r) = \left[\frac{M_{Pl}^2}{6\pi\rho_M(T_r)}\right]^{1/2}.$$

Для плотности энергии нерелятивистского вещества (включая темную материю) имеем

$$ho_M(T) = rac{\Omega_M}{\Omega_B} \cdot m_p \cdot n_B(T).$$

³⁾ Множитель 0,75 здесь — это отношение числа протонов к полному числу барионов, см. Главу 8. Ядра ⁴Не раньше связываются с электронами в атомы гелия (см. раздел 6.2), поэтому для рассматриваемого процесса они несущественны.

Используя равенство $n_B(T) = \eta_B \cdot n_{\gamma}(T)$ и формулу (5.16а), получаем окончательно

$$t_r = \left[\frac{\pi}{12\zeta(3)} \frac{\Omega_B}{\Omega_M} \frac{M_{Pl}^2}{\eta_B T_r^3 m_p}\right]^{1/2}.$$
 (6.22)

Численно

 $t_r = 200$ тыс. лет

для $T_r = 0,33$ эВ, $\Omega_B = 0,042$, $\Omega_M = 0,24$ и $\eta_B = 6,1 \cdot 10^{-10}$. Отметим, что выражение (6.22) содержит лишь параметры, характеризующие Вселенную на момент рекомбинации (поскольку $\frac{\Omega_B}{\Omega_M} = \frac{\rho_B}{\rho_B + \rho_{CDM}}$ постоянно во времени), как и должно быть.

Задача 3. Оцените численные значения химических потенциалов μ_e , μ_p , μ_H на момент рекомбинации. Сравните полученные значения с массами электрона, протона и атома водорода.

Задача 4. Дайте альтернативный вывод температуры рекомбинации, основанный на кинетическом подходе и соотношении (6.1).

Сделаем одно замечание. Разумеется, рекомбинация происходит не мгновенно: концентрация протонов X_p , определяемая из уравнения (6.14), плавно меняется от единицы (при $T > T_r$) до практически нулевого значения (при $T < T_r$). Однако это изменение происходит на малом интервале температур,

 $\Delta T \ll T_r$,

что связано с быстрым изменением экспоненты в (6.14) при $T \sim T_r \ll \Delta_H$. Этот интервал можно оценить из требования, чтобы экспонента в (6.14) отличалась в *e* раз от своего значения при $T = T_r$, т. е.

$$\left|\frac{\Delta_H}{T_r \pm \Delta T} - \frac{\Delta_H}{T_r}\right| = 1.$$

Отсюда получим

weite die die die

$$\frac{\Delta T}{T_r} \approx \frac{T_r}{\Delta_H}$$

или, с учетом (6.17),

$$rac{\Delta T}{T_r} pprox rac{1}{-\ln\left[rac{2\zeta(3)}{\pi^2}\eta_B\left(rac{2\pi T_r}{m_e}
ight)^{3/2}
ight]} pprox 0,03.$$

Таким образом, концентрация свободных протонов и электронов в период рекомбинации заметно падает при понижении температуры всего на несколько процентов. Поскольку при эволюции Вселенной выполняется $|\dot{T}/T| = \dot{a}/a = H(t)$, процесс рекомбинации происходит за время, много меньшее хаббловского времени, $\Delta t \ll H^{-1}(t)$.

После рекомбинации, когда концентрация свободных протонов мала, $X_p \ll 1$, в уравнении (6.15) можно пренебречь первым членом. Тогда видно,

138

что при дальнейшем понижении температуры концентрация свободных протонов экспоненциально падает.

6.2. Последнее рассеяние фотонов

С точки зрения наблюдений реликтового излучения интерес представляет не сам «момент» рекомбинации, который мы определили как момент равенства концентраций свободных протонов и атомов водорода, а «момент» последнего рассеяния реликтовых фотонов, после которого они свободно распространяются во Вселенной. Последнее рассеяние фотонов происходит несколько позже рекомбинации, когда плотность свободных электронов и протонов значительно падает. Основным процессом при этом является комптоновское рассеяние фотонов на электронах

$$\gamma e \to \gamma e.$$
 (6.23)

В квантовой электродинамике сечение этой реакции определяется двумя диаграммами, изображенными на рис. 6.1. Нас интересуют температуры, а следовательно, и частоты фотонов, малые по сравнению с массой электрона. В этом пределе сечение комптоновского рассеяния сводится к томсоновскому сечению, известному из классической электродинамики (обсуждение комптоновского рассеяния в квантовой электродинамике читатель может найти в [19]; вывод томсоновского сечения в классической теории см. в [20]). Томсоновское сечение равно

$$\sigma_T = \frac{8\pi}{3} \frac{\alpha^2}{m_e^2} \approx 0,67 \cdot 10^{-24} \text{ cm}^2. \tag{6.24}$$

Отметим, что значение томсоновского сечения с точностью до численного множителя $8\pi/3$ сразу же получается из размерных соображений. Действительно, множитель α^2 в сечении связан с тем, что диаграммы для комптоновского рассеяния содержат две вершины взаимодействия электрона с фотонами. Каждая из вершин вносит множитель *e* в выражение для амплитуды, что приводит к множителю α^2 в сечении, пропорциональном квадрату модуля амплитуды. При низких энергиях единственным размерным параметром является масса электрона, так что зависимость $\sigma_T \propto m_e^{-2}$ восстанавливается по размерности.

Рис. 6.1. Фейнмановские диаграммы для комптоновского рассеяния

Таким образом, время свободного пробега фотона по отношению к комптоновскому рассеянию равно

$$\tau_{\gamma} = \frac{1}{\sigma_T \cdot n_e(T)},\tag{6.25}$$

где n_e — плотность свободных электронов. Последняя совпадает с плотностью протонов и определяется формулой (6.12), в которой при $T < T_r$ можно положить $n_H = n_B = \eta_B \cdot n_\gamma$, поскольку рекомбинация практически завершилась. Ита_K,

$$n_e^2 = \left(\frac{m_e T}{2\pi}\right)^{3/2} \frac{2\zeta(3)}{\pi^2} T^3 \eta_B e^{-\Delta_H/T},$$
 (6.26)

где мы воспользовались формулой (5.16а). В момент последнего рассеяния время свободного пробега (6.25) совпадает по порядку величины с темпом расширения Вселенной,

$$\pi_{\gamma}(T_f) \simeq H^{-1}(T_f) \simeq t_f, \tag{6.27}$$

где T_f — температура последнего рассеяния. Используя (6.26), получаем отсюда

$$\frac{\Delta_H}{T_f} = \ln\left[\sigma_T^2 t_r^2 \cdot \left(\frac{m_e T_r}{2\pi}\right)^{3/2} \eta_B \frac{2\zeta(3)}{\pi^2} T_r^3\right],\tag{6.28}$$

где мы пренебрегли отличием T_f от T_r под логарифмом. Подставляя сюда $T_r \simeq 0.33$ эВ, $\eta_B = 0.75 \cdot 6.1 \cdot 10^{-10}$, $t_r \simeq 2 \cdot 10^5$ лет и значение томсоновского сечения (6.24), получим численно

$$T_f = 0,27$$
 эВ.

Отметим, что хотя это значение и не сильно отличается от значения $T_r = 0,33$ эВ, вычисленного в предыдущем разделе, доля свободных электронов в момент последнего рассеяния сильно отличается от единицы благодаря экспоненциальной зависимости в (6.26), см. также конец предыдушего раздела. Отметим также, что сделанные приближения и неопределенность, присущая (6.27), слабо сказываются на результате, по-существу по той же причине (а технически — благодаря слабой логарифмической зависимости правой части (6.28) от входящих в нее параметров). Итак, упругое рассеяние фотонов на электронах прекращается при T = 0,27 эВ (z = 1100). Возраст Вселенной в это время составляет 270 тыс. лет.

Почти в то же время полностью перестают идти процессы фотоионизации — развала атомов водорода фотонами из высокоэнергетичной части спектра. В дальнейшем, если не оговорено особо, мы не будем делать различия между температурами рекомбинации и последнего рассеяния фотонов и под температурой рекомбинации будем подразумевать

$$T_r \equiv T_f = 0,27 \ \text{sB}, \quad z_r = 1100.$$

Отметим, что к периоду рекомбинации плотность вещества во Вселенной уже невелика. Сразу после рекомбинации плотность числа атомов водорода равна⁴⁾

$$n_H = 0.75 \eta_B n_{\gamma} = 0.75 \eta_B (1+z_r)^3 n_{\gamma,0}$$

Вспоминая, что $n_{\gamma,0} = 410 \text{ см}^{-3}$, имеем численно $n_H \simeq 250 \text{ см}^{-3}$. После рекомбинации газ во Вселенной является весьма разреженным, и реликтовые фотоны распространяются в нем без рассеяния. Вселенная становится прозрачной для реликтовых фотонов.

Задача 5. Проверьте, что характерное время рассеяния фотона на нейтральных атомах превышает возраст Вселенной на момент рекомбинации. Это означает, что наличие нейтрального водорода не сказывается на распространении реликтовых фотонов во Вселенной.

6.3. *Выполнение условий термодинамического равновесия

Обсудим более подробно физические допушения, сделанные нами при получении численного значения температуры рекомбинации. Прежде всего вспомним, что на самом деле в плазме имелась некоторая доля α -частиц (примеси остальных легких ядер пренебрежимо малы). Часть электронов соединится не с протонами, а с α -частицами. Вычисление температуры, при которой становится термодинамически выгодным образование нейтральных атомов гелия, производится совершенно аналогично вычислению для водорода, приведенному выше. Поскольку энергия ионизации атома гелия почти в два раза выше, чем для водорода, образование нейтрального гелия происходит при более высокой температуре.

Задача 6. Найдите эту температуру. Не забудьте, что для образования нейтрального атома гелия α -частице необходимо захватить два электрона.

Таким образом, наличие α -частиц, а потом атомов гелия в среде практически не влияет на процесс отщепления реликтовых фотонов: сразу после образования нейтрального гелия плазма все еще содержит свободные протоны и электроны, и поэтому все еще непрозрачна для фотонов.

Проверим теперь справедливость предположения о том, что плазма находится в термодинамическом равновесии. Именно на этом предположении было основано все наше вычисление. Нам надо проверить, что скорость реакций энергообмена между различными компонентами плазмы (фотонами, электронами и протонами) достаточно высока по сравнению с темпом расширения Вселенной на момент рекомбинации, так что функции распределения всех этих частиц имеют равновесный вид (6.2)–(6.4) с одной и той же температурой. Кроме того, необходимо проверить, что скорость реакции рекомбинации (6.10) достаточно высока, так что свободные протоны и электроны действительно успевают объединяться в атомы водорода, несмотря на расширение Вселенной.

Начнем с обсуждения реакций энергообмена. В разделе 2.5 мы обнаружили, что если бы взаимодействие между фотонами и нерелятивистскими частицами в плазме отсутствовало, то и те и другие продолжали бы описываться равновесными функциями распределения, однако эффективная температура фотонов падала бы медленнее

⁴⁾ Происхождение множителя 0,75 здесь такое же, как и раньше.

Рис. 6.2. Кинематика комптоновского рассеяния

с расширением Вселенной. Таким образом, нам надо проверить, что взаимодействие, обеспечивающее «перекачку» энергии от фотонов в электрон-протонную компоненту плазмы, происходит достаточно эффективно.

Для начала рассмотрим электроны. Они получают энергию от фотонов в результате процесса комптоновского рассеяния (6.23), которое происходит с томсоновским сечением (6.24). Характерное время между двумя последовательными взаимодействиями данного электрона с фотонами имеет вид

$$\sigma = rac{1}{\sigma_T n_\gamma(T)}.$$

Нас, однако, интересует эффективность энергообмена между электронами и фотонами. Другими словами, нам необходимо оценить время τ_E , в течение которого электрон приобретает кинетическую энергию порядка температуры за счет процессов комптоновского рассеяния. Для того чтобы произвести эту оценку, заметим, что характерная передача энергии при столкновении фотона малой частоты ω с медленным электроном дополнительно подавлена. Действительно, запишем закон сохранения 4-импульса в этом процессе в виде

$$p_e + p_\gamma - p'_\gamma = p'_e,$$

где p_e , p_{γ} — начальные 4-импульсы электрона и фотона, а штрихованные величины относятся к конечным электрону и фотону. Возводя это равенство в квадрат, получаем

$$n_e(\omega - \omega') - |\mathbf{p}_e|(\omega \cos \theta_1 - \omega' \cos \theta_2) - \omega \omega'(1 - \cos \theta) = 0, \qquad (6.29)$$

где \mathbf{p}_e — начальный импульс электрона, ω , ω' — начальная и конечная частоты фотона, θ_1 , θ_2 — углы между начальным импульсом электрона и начальным и конечным импульсами фотона k и k' соответственно, а θ — угол рассеяния фотона (см. рис. 6.2).

Если первоначально электрон покоился, то в уравнении (6.29) остаются первый и третий члены, так что мы получаем, что характерная передача энергии равна

$$\Delta E = \omega' - \omega \sim \frac{\omega^2}{m_e}.$$
(6.30)

Таким образом, для того чтобы покоящемуся электрону была передана энергия, сравнимая с температурой фотонов, требуется количество актов комптоновского рассеяния, по порядку величины равное

$$N \sim \frac{T}{\Delta E} \sim \frac{m_e}{T}.$$
(6.31)

Нас, впрочем, интересует ситуация, когда электрон до столкновения имеет энергию, сравнимую с частотой фотона. Именно эта ситуация интересна для проверки того, что электроны и фотоны находятся в термодинамическом равновесии на момент рекомбинации. В этой ситуации импульс электрона равен

$$|\mathbf{p}| = \sqrt{2E_e m_e} \sim \sqrt{\omega m},$$

так что можно пренебречь третьим слагаемым в левой части равенства (6.29), и мы получаем следующую оценку для характерной энергопередачи в одном столкновении:

$$\Delta E \sim \omega \sqrt{\frac{\omega}{m}}.\tag{6.32}$$

Заметим, однако, что, в отличие от третьего члена, второе слагаемое в левой части уравнения (6.29) является знакопеременным, поскольку углы θ_1 и θ_2 принимают произвольные случайные значения. Поэтому, пользуясь аналогией со случайными блужданиями, можно оценить количество актов комптоновского рассеяния, требующихся для «разогрева» двигающегося электрона как

$$N \sim \left(\frac{T}{\Delta E}\right)^2 \sim \frac{m_e}{T}$$

что совпадает с оценкой (6.31) для покоящегося электрона⁵⁾. Тогда для характерного времени «разогрева» мы получаем следующую оценку:

$$au_E(T) \sim N\tau(T) \sim \frac{m_e}{T\sigma_T n_\gamma(T)},$$
(6.33)

где мы учли, что $T = T_0(1+z)$ и $n_\gamma \propto T^3$. Подставляя численные значения параметров, входящих в выражение (6.33), на момент рекомбинации получаем следующее значение $\tau_E(T_r)$:

$$\tau_E(T_r) \simeq 1.8 \cdot 10^8 \text{ c},$$

что намного меньше возраста Вселенной на момент рекомбинации. Таким образом, энергообмен между фотонами и электронами достаточно эффективен, чтобы поддерживать у них одинаковое значение температуры на момент рекомбинации.

Обсудим теперь как происходит «подогрев» протонов. Легко видеть, что механизм энергопередачи, основанный на прямом взаимодействии с фотонами, неэффективен. В самом деле, весь анализ, приведенный для электронов, остается в силе с той разницей, что везде вместо массы электрона следует теперь подставить массу протона. Это приведет к увеличению характерного времени «подогрева» на множитель $(m_p/m_e)^3$, так что это время станет больше возраста Вселенной на момент рекомбинации.

Процесс, обеспечивающий эффективную энергопередачу протонам — это упругое рассеяние электронов на протонах. Для нерелятивистских частиц дифференциальное сечение этого процесса в системе покоя протона дается классической формулой Резерфорда

$$d\sigma_R = \frac{\pi \alpha^2}{m_e^2 v^4} \frac{\sin \theta}{\sin^4 \theta/2} \, d\theta, \tag{6.34}$$

⁵⁾ Заметим, что с повышением скорости электрона второй член в уравнении (6.29) начинает приводить к систематической потере энергии электроном, поскольку количество фотонов, летящих навстречу электрону, больше, чем количество фотонов, «догоняющих» электрон. В итоге этот процесс приводит к установлению равновесной энергии электрона $E \sim T$, если вначале электрон имел высокую энергию $E \gg T$.
где v — скорость электрона, θ — угол рассеяния. Дифференциальное сечение (6.34) имеет степенную сингулярность вида $d\theta/\theta^3$ при малых углах рассеяния, так что соответствующее интегральное сечение расходится, а время свободного пробега формально обращается в нуль. Однако, как и выше, нас интересует не время свободного пробега, а характерное время энергопередачи τ_E . Для того чтобы получить оценочную формулу для этой величины, заметим, что при рассеянии электрона на покоящемся протоне на угол θ передача энергии равна

$$\Delta E = 2 \frac{m_e}{m_p} E(1 - \cos \theta), \tag{6.35}$$

где *Е* — энергия электрона.

Задача 7. Проверьте формулу (6.35).

Как и в случае комптоновского рассеяния, при переходе в систему отсчета плазмы, где протон движется, возникает знакопеременный вклад в передачу, подавленный не отношением m_e/m_p , а квадратным корнем из этого отношения. Однако в соответствии с аргументами, приведенными выше, после усреднения по углам вклад этого члена оказывается того же порядка, что и (6.35), так что мы не будем выписывать его явно.

· 永靖 (董)

Пользуясь выражениями (6.34) и (6.35), мы получаем следующую оценку для характерного времени энергопередачи

$$\tau_E \sim \left(n_e v \int d\theta \; \frac{d\sigma_R}{d\theta} \; \frac{\Delta E(\theta)}{E} \right)^{-1} = \left(\frac{8n_e \pi \alpha^2}{m_p m_e v^3} \int d\theta \; \operatorname{ctg} \frac{\theta}{2} \right)^{-1}. \tag{6.36}$$

Интеграл в правой части уравнения (6.36) по-прежнему расходится на малых углах, но уже не степенным образом, а логарифмически. Такое сглаживание сингулярности хорошо понятно физически — оно связано с тем, что при рассеянии на малые углы энергопередача тоже становится крайне мала. Для того чтобы получить конечное значение для интеграла в (6.36), вспомним, что в плазме фотон в некотором смысле не является строго безмассовой частицей, а приобретает небольшую «массу» m_D за счет эффектов вещества. Точнее, на расстоянии $r \gtrsim r_D = m_D^{-1}$ потенциал между заряженными частицами экспоненциально подавлен (напомним, что это явление носит название дебаевской экранировки, см. [18]). Значение дебаевского радиуса r_D дается следующей формулой:

$$r_D = \left(rac{T}{4\pi n_e lpha}
ight)^{1/2}.$$

Следовательно, интеграл в уравнении (6.36) следует обрезать на углах рассеяния, соответствующих значению прицельного параметра, равному $r_{\rm D}$,

$$\theta \gtrsim \theta_D \sim \frac{\alpha}{m_e v^2 r_D}.$$
 (6.37)

Задача 8. Пользуясь выражением (6.34) для резерфордовского дифференциального сечения, получите оценку (6.37) для θ_D .

Главный вклад в интеграл в уравнении (6.36) приходит из области малых углов рассеяния $\theta \sim \theta_D$, так что мы можем написать следующую оценку для характерного времени энергопередачи:

$$\tau_E(T) \sim \frac{m_p m_e v^3}{16\pi n_e(T) \alpha^2 \ln \theta_D^{-1}} \sim \frac{m_p m_e}{16\pi n_e(T) \alpha^2 \ln (6T r_D/\alpha)} \left(\frac{3T}{m_e}\right)^{3/2}.$$
 (6.38)

144

Подставляя численные значения параметров, входящих в (6.38), на момент рекомбинации получаем

$$\tau_E(T_r) \sim 10^4 \text{ c} \ll t_r.$$

Следовательно, энергопередача между электронами и протонами достаточно эффективна для установления термодинамического равновесия.

Перейдем теперь к обсуждению установления химического равновесия для основной реакции рекомбинации

$$p + e \rightarrow H + \gamma$$
.

В интересующей нас кинематической области, когда энергия электрона меньше энергии связи атома водорода Δ_H , сечение этой реакции имеет следующий вид (см. [19, с. 243–244]):

$$\sigma_{rec} = \frac{2^{10}\pi^2}{3e^4} \frac{\omega^2}{\alpha m_e^4 v^2},$$
 (6.39)

где ω — частота испущенного фотона, по порядку величины равная Δ_H , а е — основание натуральных логарифмов. Тогда характерное время, требующееся свободному протону для образования атома водорода, равно

$$\tau_r(T) \simeq \left\langle \left(\sigma_{rec} v n_e\right)^{-1} \right\rangle \simeq \frac{3e^4 \alpha}{2^{10} \pi^2} \frac{2\sqrt{2T m_e} m_e^3}{\sqrt{\pi} \Delta_H^2 n_e(T)},\tag{6.40}$$

где мы усреднили по скоростям электронов. К моменту рекомбинации, $T \simeq 0.33$ эВ, когда плотность свободных электронов с хорошей степенью точности еще была равновесной, это время составляло

$$\tau_r(T_r) \simeq 435 \; \text{лет.}$$
 (6.41)

Итак, характерное время реакции образования атома водорода также меньше возраста Вселенной на момент рекомбинации.

Задача 9. Проверьте, что аналогичное утверждение справедливо и для обратного процесса — фотоионизации атома водорода

$$H + \gamma \rightarrow p + e.$$

Таким образом, мы убедились в применимости равновесного рассмотрения процесса рекомбинации. Заметим, что в качестве побочного следствия нашего вычисления легко получить оценку для остаточной ионизации Вселенной, т. е. для концентрации свободных электронов после рекомбинации. А именно, электроны и протоны закаливаются тогда, когда характерное время, необходимое свободному протону для встречи со свободным электроном и последующего образования атома водорода, определяемое формулой (6.40), превысит возраст Вселенной,

$$\tau_r(T) \gtrsim t_r. \tag{6.42}$$

Это происходит при температуре $T_r \approx 0,27$ эВ. Условие (6.42) совместно с выражением (6.40) определяют плотность свободных электронов $n_e^{\text{своб.}}$ (она уже не будет даваться равновесным температурным распределением) на момент закалки — замораживания реакции образования водорода. Ее отношение к полной плотности электронов, со-держащихся к этому моменту в основном в атомах водорода (и гелия), равна

$$\frac{n_{e}^{\text{CBOG.}}(T_{r})}{n_{e}^{\text{полн.}}(T_{r})} \simeq \frac{1}{t_{r} \langle \sigma_{rec} v \rangle \eta_{B} n_{\gamma}(T_{r})} = \frac{3e^{4}\alpha}{2^{10} \zeta(3) \sqrt{\pi} \eta_{B}} \frac{\sqrt{2m_{e}}}{\sqrt{T_{r}}} \frac{m_{e}^{3}}{\Delta_{H}^{2} T_{r}^{2} t_{r}} \simeq 10^{-3},$$

$$\eta_{B} = 6,1 \cdot 10^{-10}.$$
(6.43)

После этого реакция рекомбинации идти не будет, так что (6.43) дает оценку для остаточной концентрации свободных электронов.

Отметим, что из (6.27) следует, что при интересующих нас температурах, $T \simeq T_f = 0.27$ эВ, время свободного пробега фотона (6.25) превышает характерное время рекомбинации (6.40). Это означает, что последнее рассеяние фотонов происходит перед тем, как закаливаются свободные электроны, так что результаты раздела 6.2 остаются в силе.

В заключение раздела подчеркнем, что все наше рассмотрение носило оценочный, приближенный характер. К примеру, при вычислении различных термодинамических средних (таких как σv в формуле для времени свободного пробега) мы заменяли среднее от произведения на произведение средних. Конечно, при точных количественных вычислениях нужно действовать более аккуратно, а для вычисления неравновесных величин, таких как остаточная плотность свободных электронов, необходимо пользоваться уравнением Больцмана. Тем не менее, сравнение с точными вычислениями показывает, что оценки, сделанные нами, в большинстве случаев справедливы с точностью порядка 10-50 %, что вполне достаточно для наших целей.

6.4. Горизонт на момент рекомбинации и угол, под которым он виден сегодня. Пространственная плоскостность Вселенной

Реликтовые фотоны, отщепившиеся в момент рекомбинации, несут на себе отпечаток Вселенной, какой она была при температуре $T_r = 0,27$ эВ, т. е. в $z_r = 1100$ раз более высокой, чем сейчас. В период рекомбинации Вселенная характеризовалась собственным масштабом длины — размером горизонта $l_{H,r}$. Этот масштаб интересен, во-первых, тем, что в теории горяче-го Большого взрыва области, находившиеся в то время на расстоянии больше $l_{H,r}$ друг от друга, были в тот момент причинно несвязанными. Во-вторых, наличие характерного масштаба длины не могло не сказаться на свойствах реликтовых фотонов. Мы увидим во второй части книги, что анизотропия реликтового излучения действительно имеет особенности на угловых масштабах, определяемых размером $l_{H,r}$, точнее, тем углом, под которым горизонт на момент рекомбинации виден сегодня. В этом разделе мы найдем этот угол и определим, как он зависит от космологических параметров.

Поскольку температура рекомбинации $T_r = 0,27$ эВ заметно меньше температуры $T_{eq} \simeq 0,7$ эВ, при которой произошел переход от радиационно-доминированной к пылевидной стадии (см. раздел 4.4), размер горизонта на момент рекомбинации дается формулой (3.24), справедливой для пылевидной стадии (это — довольно грубое приближение, см. задачу 13 в конце раздела):

$$l_{H,r}=\frac{2}{H_r},$$

где $H_r \equiv H(t_r)$ — параметр Хаббла на момент рекомбинации. Дальнейшее вычисление можно было бы провести аналогично вычислению возраста Вселенной t_r , приводящему к формуле (6.22). Нам здесь, однако, будет удобен

другой, эквивалентный подход. Величину H_r найдем из уравнения Фридмана

$$H_r^2=\frac{8\pi}{3}G\rho_M(t_r).$$

Учтем, что

$$\rho_M(t_r) = \rho_{M,0} \left(\frac{a_0}{a_r}\right)^3 = \rho_{M,0}(1+z_r)^3$$

где $\rho_{M,0}$ — современная плотность нерелятивистского вещества во Вселенной, и что $\rho_{M,0} = \rho_c \Omega_M$, см. Главу 4. Комбинируя эти формулы с определением ρ_c (см. (4.3)), получим

$$l_{H,r} = \frac{2}{H_0 \sqrt{\Omega_M}} \frac{1}{(1+z_r)^{3/2}}.$$
(6.44)

Задача 10. Показать, что результаты (6.44) и (6.22) совпадают с учетом равенства

 $l_{H,r} = 3t_r$.

Таким образом, зависимость выражения (6.44) от параметров, характеризующих современную Вселенную — лишь кажущаяся.

С момента рекомбинации масштаб (6.44) растянулся в $(1 + z_r)$ раз за счет расширения Вселенной, и сегодня соответствующий размер равен

$$l_{H,r}(t_0)=rac{2}{H_0\sqrt{\Omega_M}}rac{1}{\sqrt{1+z_r}}.$$

Видно, что этот размер примерно в $\sqrt{1+z_r} \simeq 30$ раз меньше современного размера горизонта (4.30); иными словами, в сегодняшней видимой части Вселенной имеется порядка $(1+z_r)^{3/2} \sim 3 \cdot 10^4$ областей, которые не были причинно связанными между собой к моменту рекомбинации (разумеется, если оставаться в рамках модели горячего Большого Взрыва). Тем не менее, эти области Вселенной были совершенно одинаковыми — это мы знаем как из свойств пришедшего из них реликтового излучения, так и из глубоких обзоров галактик. Как получилось, что несмотря на отсутствие причинной связи между разными областями они оказались в совершенно одинаковом состоянии? Ответа на этот вопрос теория горячего Большого взрыва не дает, что составляет одну из проблем этой теории — проблему горизонта. Проблема горизонта элегантно разрешается в инфляционной теории.

Найдем сегодняшний угловой размер области, пространственный размер которой в момент рекомбинации равнялся $l_{H,r}$. При этом мы вновь, как и в разделе 4.6, не будем предполагать, что Вселенная — пространственно плоская: как мы обсудим в этом разделе на качественном уровне (а в дальнейшем и более подробно), именно вычисления подобного типа и их сравнение с измерениями анизотропии реликтового излучения позволяют сделать вывод о том, что пространственная кривизна Вселенной близка к нулю. Кроме того, мы будем считать ρ_{Λ} постоянной во времени (темная энергия = вакуум); соответствующее обобщение сделать нетрудно. Для определенности вновь, как и в разделе 4.6, выберем открытую модель Вселенной ($\varkappa = -1$, $\Omega_{curv} > 0$), т. е. будем пользоваться метрикой в форме (2.10). Рекомбинация отделена от нас на координатное расстояние

$$\chi_r = \int_{t_r}^{t_0} \frac{dt}{a(t)}, \qquad (6.45)$$

именно такое координатное расстояние пролетели реликтовые фотоны, испущенные в момент рекомбинации. Это координатное расстояние вновь выражается формулой (4.36), в которой следует положить $z = z_r$. Поскольку $z_r \gg 1$, в интеграле (4.36) можно положить предел интегрирования равным бесконечности, что соответствует пределу $t_r \rightarrow 0$ в интеграле (6.45). Физически это означает, что мы пренебрегаем отличием между расстоянием, которое пролетели реликтовые фотоны с момента рекомбинации, и размером современного горизонта. Итак,

$$\chi_r \simeq \chi_{H,0} = \int_0^\infty \frac{dz}{a_0 H_0} \frac{1}{\sqrt{\Omega_M (1+z)^3 + \Omega_\Lambda + \Omega_{curv} (1+z)^2}},$$
 (6.46)

что совпадает с координатным размером современного горизонта. Воспользовавшись результатами раздела 4.7, запишем выражение для углового размера,

$$\Delta heta_r = rac{l_{H,r}}{r_a(z_r)},$$

где $r_a(z_r) = (1+z_r)^{-1} \cdot a_0 \cdot \operatorname{sh} \chi_r$ — расстояние углового размера для момента рекомбинации. Имеем окончательно

$$\Delta \theta_r = \frac{2}{\sqrt{\Omega_M} a_0 H_0 \operatorname{sh} \chi_r} \frac{1}{\sqrt{z_r + 1}}.$$
(6.47)

При обсуждении этой формулы по-прежнему нужно иметь в виду соотношения (4.41) и (4.42).

Мы начнем обсуждение результата (6.47) с гипотетического случая пространственно-плоской Вселенной без космологической постоянной, $\Omega_{curv} = 0$, $\Omega_{\Lambda} = 0$. Пространственно-плоская Вселенная получается в пределе $a_0 \to \infty$, так что

$$\Delta \theta_r = \frac{1}{\sqrt{z_r + 1}}, \quad \Omega_{curv} = \Omega_{\Lambda} = 0.$$
 (6.48)

Разумеется, этот результат гораздо быстрее можно было бы получить, используя непосредственно формулы для Вселенной с пылевидной материей, раздел 3.2.1.

Задача 11. Получить формулу (6.48) непосредственно в модели плоской Вселенной с пылевидной материей.

Для $z_r = 1100$ формула (6.48) дает $\Delta \theta_r = 0.03$, или $\Delta \theta_r = 1.7^{\circ}$. В рамках модели горячего Большого взрыва это означает, что реликтовые фотоны, приходящие к нам с направлений, различающихся на небесной сфере более чем на 2°, были испушены из областей Вселенной, причинно не связанных между собой. Тем не менее эти фотоны имеют одинаковую (с точностью лучше 10^{-4}) температуру! Это и есть одно из проявлений проблемы горизонта.

Вернемся к обсуждению формулы (6.47). Как мы уже отмечали, угол $\Delta \theta_r$ определяет угловой масштаб, на котором имеются особенности в спектре угловой анизотропии реликтового излучения (подробности мы обсудим во второй части книги). В этом смысле угол $\Delta \theta_r$ является измеримой величиной. Поэтому имеет смысл рассмотреть зависимость $\Delta \theta_r$ от космологических параметров. Поскольку z_r фиксировано, таких параметров всего два: с учетом соотношений (4.41) и (4.42) в качестве пары независимых параметров можно выбрать (Ω_M , Ω_{curv}). Чтобы понять, от какого из этих двух параметров зависимость наиболее сильная, рассмотрим сначала случай $\Omega_{curv} = 0$, т.е. случай пространственно-плоской Вселенной. В отличие от случая (6.48), теперь $\Omega_{\Lambda} \neq 0$ и, соответственно, $\Omega_M \neq 1$. Нас интересует предел $a_0 \to \infty$, так что выражение (6.47) приобретает вид

$$\Delta \theta_r = \frac{1}{\sqrt{z_r + 1}} \frac{1}{I(\Omega_M)}, \quad \Omega_{curv} = 0, \qquad (6.49)$$

где

$$I = \frac{\sqrt{\Omega_M}}{2} \int_0^\infty \frac{dz}{\sqrt{\Omega_M (z+1)^3 + \Omega_\Lambda}},$$
 (6.50)

причем $\Omega_{\Lambda} = 1 - \Omega_M$. С помощью замены $(1+z) = y^{-2}$ приведем этот интеграл к виду

$$I = \int_{0}^{1} \frac{dy}{\sqrt{1 + \frac{\Omega_{\Lambda}}{\Omega_{M}}y^{6}}}.$$
 (6.51)

Если Ω_M не слишком мала, то этот интеграл довольно слабо зависит от $\Omega_{\Lambda}/\Omega_M$: при $\Omega_M = 1$, $\Omega_{\Lambda} = 0$ он равен 1, а при $\Omega_M = 0.24$, $\Omega_{\Lambda} = 0.76$ он равен 0.81. Мы заключаем, что зависимость угла $\Delta \theta_r$ от соотношения между Ω_M и Ω_{Λ} — довольно слабая.

В то же время, угол $\Delta \theta_r$ весьма сильно зависит от Ω_{curv} . Чтобы убедиться в этом, рассмотрим гипотетический случай $\Omega_{\Lambda} = 0$, когда $\Omega_M + \Omega_{curv} = 1$. В этом случае замена переменных $(1+z) = y^{-2}$ позволяет вычислить интеграл (6.46) в аналитическом виде:

$$\chi_r = 2 \operatorname{Arsh} \sqrt{\frac{\Omega_{curv}}{\Omega_M}}, \quad \Omega_{\Lambda} = 0,$$

где мы использовали соотношение (4.42). Для угла $\Delta \theta_r$ имеем

$$\Delta heta_r = rac{1}{\sqrt{z_r+1}} rac{1}{\sqrt{1+\Omega_{curv}/\Omega_M}}.$$

Видно, что при $\Omega_{curv} \sim \Omega_M$ это выражение довольно сильно отличается об результатов (6.48) и (6.49), полученных для случая плоской Вселенной. Уже отсюда ясно, что измерение $\Delta \theta_r$ (точнее, связанных с ним угловых масштабов) позволяет получить сильные ограничения на пространственную кривизну Вселенной.

Наконец, рассмотрим случай, когла Ω_{curv} мало по сравнению с Ω_M и Ω_{Λ} , а последние — сравнимы между собой. Тогда в подкоренном выражении в (6.46) можно пренебречь величиной Ω_{curv} (это соответствует малости вклада кривизны в уравнение Фридмана на всех этапах эволюции Вселенной, обсуждавшейся в разделе 4.2), и с учетом (4.42) мы получаем

$$\chi_r = 2 \sqrt{rac{\Omega_{curv}}{\Omega_M}} I(\Omega_M, \Omega_\Lambda),$$

где I — тот же интеграл (6.50) или (6.51), но Ω_{Λ} уже не равно $(1 - \Omega_M)$. Вновь используя (6.47), получим выражение для угла

$$\Delta \theta_r = \frac{1}{\sqrt{z_r + 1}} \frac{2\sqrt{\Omega_{curv}/\Omega_M}}{\operatorname{sh}\left(2\sqrt{\Omega_{curv}/\Omega_M} I\right)}.$$
(6.52)

Кривизна пространства здесь проявляется в том, что в знаменателе стоит гиперболический синус, а не линейная функция: угол, под которым заданный отрезок длины виден с фиксированного расстояния на гиперболоиде, меньше, чем соответствующий угол для евклидова пространства. Зависимость

150

Рис. 6.4. Разрешенная область в пространстве (Ω_M, Ω_Λ) из данных по анизотропии реликтового излучения и наблюдений сверхновых типа Ia [5]. Отмечены области параметров, отвечающие 68 %-му и 90 %-му доверительным интервалам

правой части (6.52) от Ω_{curv}/Ω_M — достаточно сильная, в отличие от зависимости от $\Omega_{\Lambda}/\Omega_M$. Это подтверждает вывод о заметной чувствительности измерения $\Delta \theta_r$ к пространственной кривизне. Заметим, что мы вновь сталкиваемся с явлением приближенного вырождения по параметрам, с которым мы встречались в разделе 4.6, но теперь в роли менее существенного параметра выступает $\Omega_{\Lambda}/\Omega_M$.

Уже первые достаточно точные измерения анизотропии реликтового излучения на небольших угловых масштабах (доли градуса) позволили сделать вывод о малой пространственной кривизне Вселенной, а вместе с результатами изучения сверхновых типа Ia — сформулировать модель ACDM (см. рис. 6.3). Последующие наблюдательные данные не вошли в противоречие с этой моделью, но привели к ее уточнению и развитию. Это проиллюстрировано на рис. 6.4. Некоторых из этих результатов мы коснемся в следующих главах.

Задача 12. Вычисляя интеграл (6.46) численно, изобразить линии постоянного $\Delta \theta_r$ на плоскости ($\Omega_{\Lambda}, \Omega_M$). Сравнить качественно с рис. 6.3. *Указание*: использовать соотношения (4.41), (4.42).

Задача 13. Уточнить формулу (6.44) с учетом того, что переход от радиационно-доминированной к пылевидной стадии произошел не слишком задолго до рекомбинации. *Указание*: воспользоваться для этого результатами решения задачи 4 Главы 4.

РЕЛИКТОВЫЕ НЕЙТРИНО

Чем более ранний момент времени в истории Вселенной мы рассматриваем, тем выше температура и плотность вещества, заполняющего ее. Из-за этого те взаимодействия, которые слишком слабы, чтобы играть роль на современной стадии эволюции, оказываются существенными на более ранних стадиях и могут оставить заметный след в той Вселенной, которую мы наблюдаем сейчас.

В Главе 6 мы уже обсуждали явление такого рода на примере реликтового излучения. В этой Главе мы продвинемся еще дальше назад по времени и обсудим роль других легких частиц — нейтрино.

7.1. Температура закалки нейтрино

В этом разделе мы оценим температуру, при которой нейтрино перестают взаимодействовать между собой и с космической плазмой. Мы увидим, что это происходит при температуре порядка нескольких МэВ. В это время электроны и позитроны все еще релятивистские, и их концентрация дается формулой (5.16b). Барионы при этом уже нерелятивистские, и их концентрация подавлена множителем порядка η_B по отношению к концентрации e^+e^- -пар. Поэтому с точки зрения закалки нейтрино существенными процессами являются только процессы рассеяния нейтрино на электронах, позитронах и между собой и аннигиляция нейтрино и антинейтрино в e^+e^- -пару или пару нейтрино-антинейтрино другого типа, а также обратные процессы. Все они происходят с участием ультрарелятивистских частиц при интересующих нас температурах.

Для дальнейшего нам будет несущественно точное значение температуры закалки нейтрино. Поэтому нам будет достаточно размерной оценки сечений процессов с участием нейтрино. Нейтрино участвуют только в слабых взаимодействиях (см. Приложение C). При интересующих нас энергиях сечения пропорциональны квадрату фермиевской константы G_F^2 , где

$$G_F = 1,17 \cdot 10^{-5} \text{ F}_{3}\text{B}^{-2}.$$

Из размерных соображений отсюда сразу получается оценка для сечения любого из указанных выше процессов,

$$\sigma_{
u} \sim G_F^2 E^2$$

где E — характерная энергия столкновения, $E \sim T$.

24

Время свободного пробега нейтрино как всегда дается формулой

$$\tau_{\nu} = \frac{1}{\langle \sigma_{\nu} n v \rangle},\tag{7.1}$$

где v — относительная скорость нейтрино и частиц, с которыми происходит столкновение, а n — плотность этих частиц. В интересующем нас случае ультрарелятивистских частиц плотность числа частиц дается релятивистской формулой (5.16), т. е. $n \sim T^3$, а относительная скорость $v \simeq 1$. Таким образом, мы приходим к следующей оценке для времени свободного пробега:

$$\tau_{\nu} \sim \frac{1}{G_F^2 T^5}.\tag{7.2}$$

Сравнивая τ_{ν} с хаббловским временем (см. (3.29))

$$H^{-1} = \frac{M_{Pl}^*}{T^2},\tag{7.3}$$

мы видим, что в процессе охлаждения Вселенной τ_{ν} растет быстрее, чем H^{-1} . Следовательно, при достаточно высоких температурах время свободного пробега нейтрино было меньше, чем хаббловское время, и нейтрино находились в термодинамическом равновесии с веществом. Действительно, число столкновений нейтрино начиная с момента времени t оценивается величиной

$$N(t)\sim \int\limits_t^\infty rac{dt'}{ au_
u(t')}=\int\limits_t^\infty rac{dt'}{t'}rac{t'}{ au_
u(t')}\sim rac{t}{ au_
u(t)}\sim rac{1}{H(t) au_
u(t)},$$

где мы учли, что

$$rac{t}{ au_
u(t)}\sim rac{1}{H(t) au_
u(t)}$$

быстро падает со временем. Если $N(t) \gg 1$, то нейтрино находятся в термодинамическом равновесии, а при $N(t) \ll 1$ они распространяются как свободные частицы. Таким образом, нейтрино перестают взаимодействовать («закаливаются») при

$$au_
u(T) \sim H^{-1}(T).$$

Из (7.2) и (7.3) следует, что это происходит при температуре

$$T_{\nu,f} \sim \left(\frac{1}{G_F^2 M_{Pl}^*}\right)^{1/3} \sim 2 \div 3 \text{ M}\Im \text{B}.$$

Задача 1. Оценить возраст Вселенной на момент закалки нейтрино.

Итак, при температуре порядка $T_{\nu,f}$ нейтрино испытали последнее столкновение и с тех пор распространялись во Вселенной свободно. Их полное число (в сопутствующем объеме) при этом не изменялось: как мы говорили, реакции аннигиляции $e^+e^- \rightarrow \overline{\nu}\nu$ и $\overline{\nu}\nu \rightarrow e^+e^-$ также обусловлены слабыми взаимодействиями и, следовательно, также перестают идти в момент

Sector States

закалки нейтрино. Таким образом, одно лишь предположение о том, что Вселенная когда-то имела температуру выше нескольких МэВ (а как мы увидим в дальнейшем, успех теории нуклеосинтеза дает твердое подтверждение такому предположению) приводит к выводу о том, что должен существовать реликтовый газ нейтрино, аналогичный газу реликтовых фотонов, т. е. микроволновому реликтовому излучению.

7.2. Эффективная температура нейтрино. Космологическое ограничение на массу нейтрино

Как следует из результатов раздела 2.5, нейтрино после закалки по-прежнему описываются ультрарелятивистской функцией распределения, характеризующейся эффективной температурой

$$T_{\nu} = T_{\nu,f} \frac{a(t_{\nu})}{a(t_{0})} = \frac{T_{\nu,f}}{1+z_{\nu}},$$
(7.4)

где z_{ν} — красное смещение, соответствующее моменту закалки нейтрино. В этот момент температура нейтрино была равна температуре фотонов. Впоследствии температура фотонов также падала за счет расширения Вселенной, сначала по закону (7.4). Однако в момент закалки нейтрино кроме фотонов в плазме было также большое количество релятивистских электрон-позитронных пар. После того как Вселенная охладилась до температур ниже массы электрона, электрон-позитронные пары проаннигилировали в фотоны, что привело к «подогреву» фотонов относительно нейтрино. Количественно эффект подогрева фотонов за счет аннигиляции электронов и позитронов можно определить, пользуясь законом сохранения энтропии электрон-фотонной компоненты в сопутствующем объеме,

$$q_*(T)a^3T^3 = \text{const},\tag{7.5}$$

где $g_*(T)$ — эффективное число релятивистских степеней свободы в электрон-фотонной плазме (см. соотношения (5.31) и (5.36)). Сразу после закалки нейтрино в энтропию электрон-фотонной плазмы давали вклад фотоны, электроны и позитроны, что приводит к следующему значению:

$$g_*(T_{\nu,f})=2+rac{7}{8}(2+2)=rac{11}{2}.$$

После e^+e^- -аннигиляции в энтропию плазмы вносят вклад только фотоны, и отношение температур фотонов и нейтрино остается постоянным и равным

$$\frac{T_{\gamma,0}}{T_{\nu,0}} = \left(\frac{g_*(T_{\nu,f})}{g_*(T_0)}\right)^{1/3} = \left(\frac{11}{4}\right)^{1/3} \simeq 1.4.$$
(7.6)

Следовательно, в настоящее время температура нейтрино равна¹⁾

$$T_{\nu}(t_0) \simeq 1.95 \text{ K.}$$
 (7.7)

Пользуясь формулой (5.16) находим, что при современной температуре плотность числа нейтрино и антинейтрино каждого типа составляет

$$n_{\nu,0} = \frac{3}{4} \cdot 2 \cdot \frac{\zeta(3)}{\pi^2} T_{\nu}^3(t_0) \simeq 112 \text{ cm}^{-3}.$$
 (7.8)

Задача 2. Сделаем (неправильное) предположение о том, что в природе отсутствуют Z^0 -бозоны, а W^{\pm} — существуют (модель Джорджи—Глэшоу). Какими тогда будут современные концентрации нейтрино различных типов? *Указание*: процессы, происходящие на петлевом уровне, не учитывать; предполагать (снова вопреки экспериментальным данным), что нейтринные осцилляции отсутствуют.

Прямое детектирование реликтовых нейтрино кажется практически неразрешимой задачей ввиду крайне малых сечений взаимодействия нейтрино с веществом и ничтожного энерговыделения.

Задача 3. Считая нейтрино безмассовыми, оцените массу детектора, в котором бы происходило одно взаимодействие реликтового нейтрино в течение одного года.

Реликтовые нейтрино, если они массивны, могли бы оказать существенное влияние на темп расширения Вселенной. Отсюда возникает важное космологическое ограничение на массу нейтрино. Чтобы вывести это ограничение, найдем вклад Ω_{ν} какого-то одного типа нейтрино и антинейтрино в современную относительную плотность Вселенной. Если речь идет о безмассовом нейтрино, то из выражения (5.12) для плотности энергии в ультрарелятивистском случае следует, что Ω_{ν} невелико,

$$\Omega_
u(t_0) = 2 \cdot rac{7}{8} \cdot rac{\pi^2}{30} \cdot rac{T_{
u,0}^4}{
ho_c} pprox 10^{-5},$$

и, следовательно, безмассовое нейтрино не оказывает существенного влияния на современное расширение Вселенной. Стоит отметить, что это не так на более ранних стадиях расширения; в частности, из теории первичного нуклеосинтеза следует жесткое ограничение на число типов нейтрино с массой $m_{\nu} \leq 1$ МэВ, которое будет обсуждаться в Главе 8.

Найдем теперь вклад в современную плотность Вселенной массивных нейтрино с массой $m_{\nu} > T_{\nu,0}$. Плотность энергии, связанная с такими нейтрино, равна

$$\rho_{\nu,0}=m_{\nu}n_{\nu,0},$$

а соответствующий вклад в относительную плотность равен

$$\Omega_{\nu} = \frac{\rho_{\nu,0}}{\rho_c} \approx \left(\frac{m_{\nu}}{1 \text{ }_{3}\text{B}}\right) \cdot 0.01 h^{-2}. \tag{7.9}$$

¹⁾ Еще раз отметим, что *массивные* нейтрино имеют сегодня ультрарелятивистскую функцию распределения по импульсам. Это не мешает, однако, использовать формулу (5.16) для нахождения их концентрации.

Потребуем, чтобы плотность энергии нейтрино не превышала полную плотность массы нерелятивистского вещества во Вселенной. Учтя все три типа нейтрино, получаем отсюда следующее космологическое ограничение на сумму масс всех типов нейтрино:

$$\sum_{i} m_{\nu_i} < 100 \cdot h^2 \Omega_M \quad \Im B. \tag{7.10}$$

Используя консервативную оценку $\Omega_M < 0,4$ и положив h = 0,7, получим

$$\sum_{i}m_{
u_{i}} <$$
 20 эВ.

В течение долгого времени подобное ограничение было самым сильным ограничением на массы μ - и τ -нейтрино. Сегодня комбинирование прямых ограничений на массу электронного нейтрино [4],

$$m_{\nu_{a}} < 2 \ B_{a}$$

и результатов экспериментов по поиску нейтринных осцилляций, из которых следует, что разность квадратов масс Δm^2 между ν_e , ν_μ и ν_τ мала, $\Delta m^2 \lesssim 5 \cdot 10^{-3}$ эВ², приводит к более сильному ограничению на массу нейтрино,

$$m_{\nu} < 2 \ \Im \mathrm{B}, \tag{7.11}$$

для всех типов (см. Приложение С). Из ограничения (7.11) и соотношения (7.9) следует, что вклад нейтрино всех типов в плотность энергии во Вселенной невелик,

$$\sum_{i} \Omega_{\nu_i} < 0,12. \tag{7.12}$$

Тем не менее, сравнивая это ограничение со значением $\Omega_M \approx 0,25$ для полной плотности нерелятивистского вещества в модели ΛCDM , мы видим, что одного ограничения (7.12) недостаточно, чтобы исключить, что нейтрино являются заметной компонентой темной материи. Однако результаты, связанные с изучением структур во Вселенной и измерением анизотропии реликтового излучения, ограничивают вклад нейтрино в плотность энергии во Вселенной на уровне

$$\sum_{i} \Omega_{\nu_i} h^2 < 0.002 \div 0.01, \tag{7.13}$$

в зависимости от того, какие космологические параметры считаются фиксированными. Это соответствует ограничению на сумму масс нейтрино [5, 25]

$$\sum_i m_{
u_i} < 0,2 \div 1,0$$
 эВ

и исключает нейтрино как кандидата на роль темной материи. Мы подробнее обсудим происхождение ограничения (7.13) во второй части книги.

В заключение этого раздела отметим, что изложенные результаты были получены в предположении, что во Вселенной нет заметной асимметрии между нейтрино и антинейтрино, иными словами, что химический потенциал нейтрино близок к нулю. Это предположение представляется вполне разумным, особенно с учетом того, что электрослабые процессы при температурах выше 100 ГэВ уравнивают по порядку величины лептонную и барионную асимметрию (см. Главу 11), а барионная асимметрия крайне мала, $\eta_B \sim 10^{-9}$. Тем не менее, нельзя полностью исключить, что лептонная асимметрия заметно больше барионной, т. е. количество нейтрино во Вселенной заметно больше количества антинейтрино (или наоборот). В этом случае экспериментальные данные по нейтринным осцилляциям (точнее, нижнее ограничение на массу наиболее тяжелого нейтрино, $m_{\nu} > m_{atm} \approx 0,05$ эВ) вместе с ограничением (7.13) можно использовать для того, чтобы получить ограничение на лептонную асимметрию в современной и ранней Вселенной.

Задача 4. Используя результаты, относящиеся к нейтринным осцилляциям (Приложение С), получить ограничение на нейтринную асимметрию современной Вселенной

$$\Delta_{L,0}=rac{1}{s}\sum_i(n_{
u_i}-n_{ar
u_i}),$$

где *s* — плотность энтропии. Показать, что в применении к ранней Вселенной это ограничение приводит к ограничению на лептонную асимметрию

$$\Delta_L = rac{1}{s} \sum_i n_{L,i},$$

где $n_{L,i} = (n_{\nu_i} - n_{\overline{\nu}_i}) + (n_{l_i} - n_{\overline{l}_i})$ — плотность лептонного числа каждого типа, а l_i обозначает заряженный лептон *i*-го типа: $l_1 = e^-$, $l_2 = \mu^-$, $l_3 = \tau^-$. Величина Δ_L сохраняется в процессе эволюции Вселенной, если сохраняется полное лептонное число.

Более сильное ограничение на лептонную асимметрию получается из сравнения теории первичного нуклеосинтеза с измерениями первичной концентрации гелия-4. В разделе 8.1 мы получим ограничение на химический потенциал электронного нейтрино при температуре порядка 1 МэВ на уровне $|\mu_{\nu_e}/T| < 0,05$. Более точное ограничение имеет вид (95%-й доверительный интервал),

$$-0,023 < \frac{\mu_{\nu_e}}{T} < 0,014, \quad T \sim 1 \text{ M} \ni \text{B}.$$
 (7.14)

В действительности это ограничение относится ко всем типам нейтрино, поскольку к моменту закалки ($T \sim 2-3$ МэВ) нейтрино успевают проосциллировать между собой, и концентрации разных типов нейтрино успевают выровняться. Действительно, характерный период осцилляций нейтрино с энергией E составляет (см. Приложение C)

$$t_{osc} \simeq \pi \frac{4E}{\Delta m^2}.$$

При $E\simeq 3T, T\simeq 3$ МэВ и даже наименьшей разности квадратов масс $\Delta m_{sol}^2\simeq 8\cdot 10^{-5}$ эВ² этот период составляет

$$t_{osc} \simeq 5 \cdot 10^{-4} \mathrm{c},$$

 \lesssim γ

что гораздо меньше хаббловского времени H^{-1} ($T \simeq 3 \text{ M} \Rightarrow B$) ~ 0,1 с. Отметим, что в последней оценке мы не учитывали эффектов среды; при температуре около 3 МэВ это действительно является неплохим приближением (подробности см. в [22, 23]). Итак, к моменту закалки нейтрино

$$\mu_{\nu_e} = \mu_{\nu_{\mu}} = \mu_{\nu_{\tau}}, \quad T \sim 3 \text{ M} \Rightarrow \text{B}.$$

Отсюда и следует, что ограничение (7.14) справедливо для всех типов нейтрино.

Избыток нейтрино над антинейтрино дается формулой (5.22), а сама плотность числа нейтрино — формулой (5.16b). Поэтому для асимметрии каждого типа нейтрино имеем

$$\frac{n_{\nu} - n_{\bar{\nu}}}{n_{\nu} + n_{\bar{\nu}}} = \frac{\pi^2}{9\zeta(3)} \frac{\mu_{\nu}}{T}.$$

Эта асимметрия сохраняется до нашего времени, так что из (7.14) имеем для нейтрино любого типа

$$rac{|n_
u - n_{\overline
u}|}{n_
u + n_{\overline
u}} < 0,06.$$

В современной Вселенной избыток нейтрино над антинейтрино или избыток антинейтрино над нейтрино мал.

7.3. *Стерильные нейтрино

Наблюдаемые нейтринные осцилляции указывают на неполноту Стандартной модели физики частиц (см. подробнее Приложение С). Некоторые из возможных расширений Стандартной модели подразумевают введение дополнительных частиц — так называемых стерильных нейтрино — левых фермионов, смешивающихся с обычными нейтрино. Термин стерильные указывает на то обстоятельство, что дополнительные поля нейтрино считаются не взаимодействующими с калибровочными полями Стандартной модели, в частности, не участвующими в слабых взаимодействиях. В этом контексте обычные нейтрино, взаимодействующие с W- и Z-бозонами, называют активными. Число нейтринных массовых состояний растет с числом стерильных нейтрино N_s как $3 + N_s$. Ниже для простоты мы ограничимся рассмотрением случая одного стерильного нейтрино, $N_s = 1$. Отметим, что за исключением результатов эксперимента LSND объяснение сушествующих экспериментальных данных по нейтринным осцилляциям не требует введения стерильных нейтрино (см. обсуждение в разделе С.3), однако такое обобщение Стандартной модели вполне заслуживает обсуждения.

В простейших моделях рождение стерильных нейтрино $|\nu_s\rangle$ в ранней Вселенной происходит благодаря их смешиванию с активными нейтрино $|\nu_a\rangle$, $\alpha = e, \mu, \tau$. В приближении, когда существенно только смешивание между двумя компонентами нейтрино, будем иметь

$$|\nu_{\alpha}\rangle = \cos\theta_{\alpha}|\nu_{1}\rangle + \sin\theta_{\alpha}|\nu_{2}\rangle, \quad |\nu_{s}\rangle = -\sin\theta_{\alpha}|\nu_{1}\rangle + \cos\theta_{\alpha}|\nu_{2}\rangle,$$

где $|\nu_{\alpha}\rangle$ и $|\nu_{s}\rangle$ — состояния активного и стерильного нейтрино, $|\nu_{1}\rangle$ и $|\nu_{2}\rangle$ массовые состояния нейтрино с массами $m_{1} < m_{2}$, а θ_{α} — угол смешивания в вакууме между стерильным и активным нейтрино. Будем считать смешивание малым, $\theta_{\alpha} \ll 1$, так что тяжелое состояние в основном образовано стерильным нейтрино, $|\nu_{2}\rangle \approx |\nu_{s}\rangle$. В этом случае массу тяжелого состояния естественно назвать массой стерильного нейтрино, $m_{2} \equiv m_{s}$. Будем считать, что масса стерильного нейтрино велика по сравнению с массой активного нейтрино, $m_{s} \gg m_{1}$.

Вычисление вероятности осцилляций $\nu_{\alpha} \leftrightarrow \nu_{s}$ осуществляется аналогично случаю осцилляций между разными активными нейтрино, $\nu_{\alpha} \leftrightarrow \nu_{\beta}$ (см. раздел С.1). Для ультрарелятивистских нейтрино, $E_{\nu} \gg m_{s}$, вероятность перехода $\nu_{\alpha} \rightarrow \nu_{s}$ за время t в пренебрежении эффектами плазмы (вакуумные осцилляции) равна

$$P(\nu_{\alpha} \to \nu_{s}) = \sin^{2} 2\theta_{\alpha} \cdot \sin^{2} \left(\frac{t}{2t_{\alpha}^{vac}}\right),$$

$$t_{\alpha}^{vac} = \frac{2E_{\nu}}{\Delta m^{2}}, \quad \Delta m^{2} = m_{s}^{2} - m_{1}^{2} \simeq m_{s}^{2}.$$
(7.15)

Эффекты первичной плазмы, однако, весьма существенны, особенно при высоких температурах. Плазма влияет на эволюцию состояния активного нейтрино $|\nu_{\alpha}\rangle$, так что гамильтониан нейтрино в калибровочном базисе ($|\nu_{\alpha}\rangle$, $|\nu_{s}\rangle$) принимает вид

$$H = U \cdot \operatorname{diag}\left(\frac{m_1^2}{2E_{\nu}}, \frac{m_2^2}{2E_{\nu}}\right) \cdot U^{\dagger} + V_{int}, \qquad (7.16)$$

где матрица смешивания U и матрица взаимодействия с плазмой V_{int} имеют вид

$$U = egin{pmatrix} \cos heta_lpha & \sin heta_lpha \ -\sin heta_lpha & \cos heta_lpha \end{pmatrix}, \quad V_{int} = egin{pmatrix} V_{lpha lpha} & 0 \ 0 & 0 \end{pmatrix}.$$

Величина $V_{\alpha\alpha}$ для различных $\nu_{\alpha} = \nu_e, \nu_{\mu}, \nu_{\tau}$ может быть вычислена с использованием методов квантовой теории поля при конечных температурах, изложенных в Приложении D. В предположении отсутствия лептонной асимметрии лидирующие вклады от лептонов и антилептонов в $V_{\alpha\alpha}$ сокращаются². Наиболее существенными оказываются вклады второго порядка по константе Ферми G_F . При интересующих нас температурах $T \sim 100$ МэВ в плазме нет реликтовых τ -лептонов и мало мюонов, однако много релятивистских электронов. Поэтому величины $V_{\alpha\alpha}$ для различных поколений нейтрино отличаются. Для ν_{τ} будем иметь [26]:

$$V_{\tau\tau} = \frac{14\pi}{45\alpha} \sin^2 \theta_W \cos^2 \theta_W \cdot G_F^2 T^4 \cdot E_\nu \approx 25 \cdot G_F^2 T^4 \cdot E_\nu,$$

для электронного нейтрино соответствующий численный коэффициент примерно в 3,5 раза больше, а тот же коэффициент для мюонного нейтрино

²⁾ Речь здесь идет о вкладах, приводящих к эффекту Михеева-Смирнова-Вольфенштейна.

лежит между 1 и 3,5 в зависимости от соотношения между величиной температуры и массой мюона.

Диагонализация гамильтониана (7.16) дает величины эффективных масс нейтрино и углов смещивания в плазме, отличные от аналогичных величин в вакууме. В результате для вероятности осцилляций будем иметь выражение, аналогичное (7.15), но с другими углом смешивания $\theta_{\alpha}^{nn.}$ и периодом осцилляций $t_{\alpha}^{nn.}$,

$$P\left(\nu_{\alpha} \to \nu_{s}\right) = \sin^{2} 2\theta_{\alpha}^{\text{nn.}} \cdot \sin^{2}\left(\frac{t}{2t_{\alpha}^{\text{nn.}}}\right), \qquad (7.17)$$

$$t_{\alpha}^{n\pi} = \frac{t_{\alpha}^{vac}}{\sqrt{\sin^2 2\theta_{\alpha} + (\cos 2\theta_{\alpha} - V_{\alpha\alpha} \cdot t_{\alpha}^{vac})^2}}, \quad \sin 2\theta_{\alpha}^{n\pi} = \frac{t_{\alpha}^{n\pi}}{t_{\alpha}^{vac}} \cdot \sin 2\theta_{\alpha},$$

где в качестве t_{α}^{vac} фигурирует вакуумное время осцилляций при энергии $E_{\nu} \sim T$. При интересующих нас температурах $E_{\nu} \sim T \sim 100$ МэВ и массах стерильных нейтрино $m_1 \ll m_s \ll T$ для характерного времени осцилляций нейтрино в плазме получаем оценку

$$t_{\alpha}^{\text{IDI.}} = \min\{t_{\alpha}^{vac}, V_{\alpha\alpha}^{-1}\} = \min\{2Tm_s^{-2}, 0, 04 \cdot T^{-5} \cdot G_F^{-2}\}.$$
 (7.18)

Характерное время осцилляций не только существенно меньше хаббловского времени $H^{-1}(T)$, но и численно меньше характерного времени слабых взаимодействий в среде, которое оценивается как

$$\tau_W \sim (\sigma_W \cdot n)^{-1} \sim T^{-5} \cdot G_F^{-2}.$$

Рассеяние активного нейтрино приводит к коллапсу волновой функции. Поэтому в течение времени τ_W активное и стерильное нейтрино осциллируют друг в друга, а в момент столкновения когерентность волновой функции разрушается.

Итак, каждое активное нейтрино ν_{α} успевает много раз проосциллировать в стерильное нейтрино ν_s , пока не столкнется с другими частицами плазмы, поэтому вероятность образования за время τ_W этим нейтрино стерильного нейтрино равна

$$\langle P(\nu_{\alpha} \to \nu_{s}) \rangle = \frac{1}{4} \cdot \sin^{2} 2\theta_{\alpha}^{n\pi},$$
 (7.19)

где мы усреднили второй множитель в (7.17) по нескольким периодам осцилляций (по поводу множителя 1/4 см. [24]). Другими словами, каждое активное нейтрино в плазме с вероятностью (7.19) выбывает из плазмы за характерное время τ_W , превращаясь в стерильное. При температурах $T \gtrsim 3$ МэВ, когда активные нейтрино находятся в термодинамическом равновессии в плазме, этот процесс не изменяет плотность активных нейтрино в среде, однако приводит к увеличению плотности стерильных нейтрино. Темп образования стерильных нейтрино в единице объема за единицу времени равен

$$au_W^{-1} \cdot \langle P(
u_lpha o
u_s)
angle \cdot n_{
u_lpha}.$$

Отсюда для плотности стерильных нейтрино n_{ν_s} в пренебрежении их возможным исчезновением в результате распада (например, в фотон и активное нейтрино) или обратной осцилляцией в активное нейтрино будем иметь

$$\frac{dn_{\nu_s}}{dt} + 3Hn_{\nu_s} = \tau_W^{-1} \cdot \langle P(\nu_\alpha \to \nu_s) \rangle \cdot n_{\nu_\alpha}, \qquad (7.20)$$

где второе слагаемое в левой части учитывает расширение Вселенной. Удобно переписать уравнение (7.20) как уравнение на отношение плотностей стерильного и активного нейтрино. В результате получим

$$\frac{d(n_{\nu_s}/n_{\nu_a})}{d\ln T} = -\frac{\langle P(\nu_\alpha \to \nu_s) \rangle}{H(T)\tau_W},\tag{7.21}$$

где мы перешли от переменной t к переменной T и пренебрегли зависимостью числа степеней свободы g_* от температуры. Поскольку правая часть уравнения (7.21) с учетом сильной зависимости угла смешивания в плазме $\theta_{\alpha}^{nn.}$ от температуры ведет себя при малых температурах как $\propto T^3$, а при больших температурах как $\propto T^{-7}$, то рождение стерильных нейтрино в основном происходит в узком интервале температур вблизи критической температуры T_* , при которой правая часть уравнения (7.21) достигает максимума, т. е. когда выражения в скобках в (7.18) совпадают по порядку величины. Отсюда имеем

$$T_* \sim \left(rac{m_s}{5G_F}
ight)^{1/3} \simeq 200 \; \mathrm{M} artriangle \mathrm{B} \cdot \left(rac{m_s}{1 \; \mathrm{K} artriangle \mathrm{B}}
ight)^{1/3}.$$

С учетом резкой степенной зависимости темпа образования стерильных нейтрино от температуры, для их плотности справедлива следующая простая оценка по порядку величины:

$$\frac{n_{\nu_s}(T_*)}{n_{\nu_\alpha}(T_*)} \sim \frac{\sin^2 2\theta_\alpha}{H(T_*) \cdot \tau_W(T_*)} \sim T_*^3 M_{Pl}^* G_F^2 \cdot \sin^2 2\theta_\alpha \sim$$

$$\sim 10^{-2} \cdot \left(\frac{m_s}{1 \text{ k} \Rightarrow \text{B}}\right) \cdot \left(\frac{\sin 2\theta_{\alpha}}{10^{-4}}\right)^2.$$
 (7.22)

В дальнейшем плотность числа стерильных нейтрино в сопутствующем объеме можно считать постоянной, так что постоянным остается и отношение $n_{\nu_s}/n_{\nu_{\alpha}}$. С учетом выражения для плотности числа активных нейтрино (7.8), из (7.22) получаем оценку для вклада стерильных нейтрино в современную плотность энергии Вселенной:

$$\Omega_{\nu_s} \simeq 0.2 \cdot \left(\frac{\sin 2\theta_{\alpha}}{10^{-4}}\right)^2 \cdot \left(\frac{m_{\nu}}{1 \text{ κ>B}}\right)^2.$$
(7.23)

Более аккуратные вычисления показывают, что полученная нами оценка (7.23) имеет неплохую точность. Таким образом, стерильные нейтрино с массой $m_{\nu} \gtrsim 1$ кэВ и малым углом смешивания $\theta_{\alpha} \lesssim 10^{-4}$ могут составлять темную материю. Это была бы теплая темная материя, поэтому легкие стерильные нейтрино с массами $m_s \leq 1$ кэВ неприемлемы как кандидаты на роль частиц темной материи (см. обсуждение в разделе 9.1). Отметим, что в моделях рассмотренного типа стерильное нейтрино, вообще говоря, нестабильно по отношению к распаду на активное нейтрино и фотон. Отсюда возникают ограничения на параметры стерильных нейтрино: модели не должны противоречить измерениям естественных потоков фотонов с энергиями порядка 1–10 кэВ, выполненным в космосе. Эти ограничения в действительности сильны настолько, что ставят под сомнение описанный механизм генерации стерильных нейтрино как темной материи [27].

Заметим, что полученная нами оценка для отношения плотностей стерильных и активных нейтрино (7.22) совпадает с отношением темпа образования стерильных нейтрино во Вселенной к темпу расширения Вселенной, стоящему в правой части уравнения (7.21), при температуре $T = T_*$, когда это отношение является максимальным. Отсюда ясно, что стерильные нейтрино не входят в равновесие с плазмой, пока отношение (7.22) остается меньше единицы.

Оценки (7.23) и (7.13) закрывают³⁾ простейшее объяснение результата эксперимента LSND (см. подробнее раздел С.3) как осцилляции между электронным, мюонным и одним стерильным нейтрино: с учетом существующих прямых экспериментальных ограничений на параметры такого смешивания масса стерильного нейтрино и угол смешивания между стерильным и активным нейтрино, входящие в формулу (7.23), оказываются слишком большими, т. е. такие стерильные нейтрино давали бы слишком большой вклад в современную плотность энергии Вселенной [28].

Подчеркнем, что приведенные здесь результаты справедливы только для долгоживущих стерильных нейтрино. В моделях со стерильными нейтрино, распадающимися в ранней Вселенной, приведенные оценки перестают выполняться. В частности, в моделях такого рода можно подобрать параметры так, чтобы осталась возможность согласовать результаты эксперимента LSND с космологией [29].

В завершение раздела отметим, что в более сложных моделях помимо рассмотренного нами существуют и другие механизмы рождения легких стерильных нейтрино, например в результате распада тяжелых частиц. Для этих моделей полученная нами оценка (7.23), вообще говоря, является оценкой снизу.

³⁾ Для стерильных нейтрино, которые не находились в термодинамическом равновесии в ранней Вселенной, ограничение (7.13) справедливо лишь с точностью до множителя порядка единицы. Это обстоятельство не влияет на обсуждаемый здесь результат.

ПЕРВИЧНЫЙ НУКЛЕОСИНТЕЗ

Самая ранняя эпоха горячей Вселенной, о которой сегодня имеются надежные наблюдательные данные — это эпоха первичного нуклеосинтеза. Как мы увидим, она начинается с температуры порядка 1 МэВ и продолжается до температур порядка десятков кэВ. В это время нейтроны, входившие в состав космической плазмы, объединяются с протонами в легкие ядра в основном гелий-4 (⁴He) с небольшой, но измеримой примесью дейтерия $(D \equiv {}^{2}H)$, гелия-3 (${}^{3}He$) и лития (${}^{7}Li$); основные термоядерные реакции первичного нуклеосинтеза перечислены в начале раздела 8.3. Мы увидим, что нейтронов при интересующих нас температурах заметно меньше, чем протонов; «лишние» протоны остаются во Вселенной и в конечном итоге образуют атомы водорода. Измерения химического состава вещества в тех областях современной (или относительно недавней) Вселенной, где вещество не подвергалось дальнейшей переработке в термоядерных реакциях в звездах, позволяют не только подтвердить теорию горячей Вселенной, но и определить важный космологический параметр — барион-фотонное отношение η_{B} . Кроме того, первичный нуклеосинтез позволяет получать ограничения на параметры теорий, претендующих на обобщение Стандартной модели физики частиц, поскольку наблюдения согласуются с предсказаниями стандартного нуклеосинтеза, базирующегося на процессах в расширяющейся Вселенной, описываемых Стандартной моделью.

Точное вычисление концентраций легких элементов, образованных в результате первичного нуклеосинтеза — сложная и трудоемкая задача, которая решается численно на основе кинетических уравнений с учетом многочисленных термоядерных реакций. В этой Главе, как и во многих других местах этой книги, мы ограничимся оценками по порядку величины, имея в виду основную цель — обсудить физику процессов, происходивших в ранней Вселенной, и пояснить на качественном уровне зависимость результатов от космологических параметров.

8.1. Закалка нейтронов. Нейтрон-протонное отношение

Первым этапом первичного нуклеосинтеза является закалка нейтронов. Мы сейчас увидим, что она происходит при температуре порядка 1 МэВ, когда образование легких ядер еще не началось. Нейтроны образуются и исчезают в ранней Вселенной в результате процессов слабого взаимодействия:

$$p + e \leftrightarrow n + \nu_e \tag{8.1}$$

и кроссинг-процесса. Характерные энергетические параметры для таких процессов — это разность масс нейтрона и протона

$$\Delta m \equiv m_n - m_p = 1,3$$
 M₃B

и масса электрона $m_e = 0,5$ МэВ. Предположим для простоты, что мы имеем дело с достаточно высокими температурами,

$$T \ge \Delta m, m_e.$$
 (8.2)

Тогда, как и в Главе 7, время свободного пробега нейтрона *по отношению к про*цессам типа (8.1) можно оценить из размерных соображений

$$\tau_{n\leftrightarrow p} = \Gamma_{n\leftrightarrow p}^{-1}, \quad \Gamma_n = C_n G_F^2 T^5, \tag{8.3}$$

где C_n — константа порядка единицы. Процессы типа (8.1) прекращаются, когда время τ_n становится сравнимым с хаббловским временем, т.е.

$$\Gamma_n(T) \sim H(T) = \frac{T^2}{M_{Pl}^*},\tag{8.4}$$

где мы учли, что Вселенная при интересующих нас температурах $T \sim 1$ МэВ находится на радиационно-доминированной стадии. Как и раньше,

$$M_{Pl}^* = \frac{M_{Pl}}{1,66\sqrt{g_*}},\tag{8.5}$$

причем число ультрарелятивистских степеней свободы равно

$$g_* = 2 + \frac{7}{8} \cdot 4 + \frac{7}{8} \cdot 2 \cdot N_{\nu}. \tag{8.6}$$

Первый вклад здесь возникает благодаря фотонам, второй — благодаря электронам и позитронам (они — ультрарелятивистские при $T > m_e$), третий связан с легкими нейтрино, число типов которых мы пока обозначили N_{ν} (в действительности $N_{\nu} = 3$). Напомним (см. Главу 7), что при $T > m_e$, т.е. до аннигиляции позитронов с электронами, нейтрино имеют ту же температуру, что и фотоны.

Из (8.4) и (8.3) получаем температуру, при которой реакции типа (8.1) прекращаются,

$$T_n = \frac{1}{\left(C_n M_{Pl}^* G_F^2\right)^{1/3}}.$$
(8.7)

Константа C_n известна: процессы типа (8.1) возникают благодаря четырехфермионной вершине, изображенной на рис. 8.1 *a*; точно та же вершина описывает распад нейтрона, рис. 8.1 *b*. Поэтому C_n извлекается из времени

Рис. 8.1. Фейнмановские диаграммы для процессов $n + \nu_e \leftrightarrow p + e$ (a) и $n \to p e \tilde{\nu}_e$ (b)

жизни нейтрона; численно, $C_n = 1,2$. Таким образом, температура закалки (8.7) не содержит неизвестных параметров. Отметим, однако, что она зависит от числа типов легких нейтрино, см. (8.5) и (8.6).

Подставляя в (8.7) значение $G_F = 1,17 \cdot 10^{-5}$ ГэВ и $g_* = 43/4$ (для $N_{\nu} = 3$), получаем численно

$$T_n \approx 1,4$$
 M₃B.

Следует отметить, что исходное предположение (8.2) удовлетворяется плохо, поэтому требуется более аккуратное вычисление. Оно дает $T_n \approx 0.8$ МэВ.

Замечательно, что температура закалки нейтронов близка к разности масс Δm . Такого совпадения могло бы и не быть (например, если бы массы *u*- и *d*-кварков были бы сильно разными, или константа Ферми, гравитационная постоянная или g_* отличались бы от своих реальных значений). Это — одна из случайностей, благодаря которым первичный нуклеосинтез вообще был возможен в ранней Вселенной. Из-за этой случайности нейтронов в момент закалки довольно много, что в конечном итоге приводит к заметной концентрации легких ядер¹).

Оценим остаточную концентрацию нейтронов после их закалки. С хорошей степенью точности она равна равновесной концентрации нейтронов непосредственно перед закалкой. Для дальнейшего полезно еще раз записать общую формулу для плотности числа частиц A (протонов, нейтронов, ядер) в химическом равновесии при температуре $T \ll m_A$ (см. Главу 5):

$$n_A = g_A \left(\frac{m_A T}{2\pi}\right)^{3/2} e^{(\mu_A - m_A)/T},$$
 (8.8)

где μ_A — химический потенциал частицы A. Чтобы применить эту формулу к протонам и нейтронам, учтем, что непосредственно перед закалкой реакции типа (8.1) находятся в равновесии, поэтому (см. Главу 5) $\mu_p + \mu_e = \mu_n + \mu_\nu$, т.е.

$$\mu_n = \mu_p + \mu_e - \mu_\nu. \tag{8.9}$$

¹⁾ Если бы оказалось, что $\Delta m \gg T_n$, то концентрация нейтронов в момент закалки (а следовательно, и концентрация легких ядер после нуклеосинтеза) была бы подавлена множителем $e^{-\Delta m/T_n}$, см. (8.12). Наоборот, при $\Delta m \ll T_n$ нейтронов и протонов в плазме было бы поровну, и практически все нуклоны (протоны и нейтроны) после эпохи нуклеосинтеза находились бы в ядрах ⁴ Не, т. е. в первичном веществе Вселенной практически отсутствовал бы водород. Такая Вселенная без водорода вряд ли была бы пригодна для жизни!

Для релятивистских электронов и позитронов имеем из (5.22)

$$n_{e^-} - n_{e^+} \sim \mu_e T^2,$$
 (8.10)

поэтому

$$rac{\mu_e}{T}\sim rac{n_{e^-}-n_{e^+}}{T^3}.$$

Разность концентраций электронов и позитронов равна концентрации протонов (из электронейтральности космической плазмы),

$$n_{e^-}-n_{e^+}=n_p,$$

а n_p/T^3 по порядку величины совпадает с барион-фотонным отношением

$$\frac{n_p}{T^3} \sim \eta_{\scriptscriptstyle B} \sim 10^{-9},$$

поэтому химический потенциал электронов крайне мал:

$$\frac{\mu_e}{T} \sim 10^{-9}.$$

Предположим далее, что во Вселенной нет большой лептонной асимметрии (обсуждение обратной ситуации мы проведем в конце раздела), т.е.

$$n_
u - n_{ar
u} \ll n_
u + n_{ar
u} \sim T^3.$$

Тогда μ_{ν}/T тоже мало и из (8.9) получаем с хорошей точностью

$$\mu_n = \mu_p. \tag{8.11}$$

Из (8.8) заключаем тогда, что нейтрон-протонное отношение на момент закалки нейтронов целиком определяется температурой закалки:

$$\frac{n_n}{n_p} = e^{-(m_n - m_p)/T_n} \equiv e^{-\Delta m/T_n}$$
 (8.12)

(мы учли, что протон и нейтрон имеют по два спиновых состояния, т. е. $g_n = g_p = 2$, и пренебрегли отличием масс протона и нейтрона в предэкспонентах).

Нейтрон-протонное отношение (8.12) является, грубо говоря, величиной порядка единицы, т. е. концентрация нейтронов после их закалки не слишком мала по сравнению с концентрацией протонов. Для количественной оценки необходимо знать температуру закалки с хорошей точностью. Для $T_n = 0.8$ МэВ получаем

$$\frac{n_n}{n_p} = 0,199 \approx \frac{1}{5}.$$
 (8.13)

Отметим, что нейтрон-протонное отношение на момент закалки зависит от числа типов легких нейтрино N_{ν} (обобщая, можно сказать, что имеется зависимость от числа релятивистских степеней свободы в первичной плазме при $T \sim 1 \text{ МэВ}$) и практически не зависит от других космологических параметров.

В заключение этого раздела найдем возраст Вселенной к моменту закалки нейтронов. Имеем в соответствии с (3.27)

$$t = \frac{1}{2H(T_n)} = \frac{M_{Pl}^*}{2T_n^2}.$$

Для $T_n = 0.8$ МэВ и $N_{\nu} = 3$ получаем отсюда t = 1,2 с. Таким образом, теория первичного нуклеосинтеза относится к космологической эпохе, начинающейся через одну секунду (!) после Большого взрыва.

В заключение этого раздела отметим, что приведенное вычисление нейтрон-протонного отношения существенным образом опиралось на предположение об отсутствии лептонной асимметрии. Если это не так, т. е. если имеется асимметрия между электронными нейтрино и антинейтрино, то вместо (8.11) будем иметь $\mu_n = \mu_p - \mu_{\nu_e}$, а вместо (8.12) получим

$$rac{n_n}{n_p} = \exp\left\{-rac{\Delta m}{T_n} - rac{\mu_{
u_e}}{T_n}
ight\}.$$

Нейтрон-протонное отношение определяет наработанную в конечном итоге концентрацию 4 He (см. раздел 8.2),

$$n_{
m ^4He} \propto rac{n_n}{n_p}$$
 ,

и из сравнения теории с наблюдениями можно сделать вывод о том, что отличие n_n/n_p от стандартного значения не должно быть большим,

$$\left|\Delta\left(\frac{n_n}{n_p}\right)\right| \lesssim 0.05.$$

Отсюда следует ограничение на химический потенциал электронного нейтрино,

$$\left|\frac{\mu_{\nu_e}}{T}\right| \lesssim 0,05.$$

Более точное современное ограничение приведено в (7.14); его асимметричность связана с тем, что наблюдаемая распространенность ⁴Не лежит несколько выше стандартного предсказания.

8.2. Начало нуклеосинтеза. Направление термоядерных реакций

Цепочки термоядерных реакций в ранней Вселенной начинаются с образования дейтерия в реакции

$$p + n \rightarrow D + \gamma.$$
 (8.14)

В ядерной физике для этой и аналогичных реакций используют обозначение

$$p(n, \gamma)$$
D. (8.15)

Мы будем использовать как обозначения (8.14), так и обозначения (8.15). Для вычисления температуры, при которой начинается реакция (8.14), воспользуемся следующим приемом. Предположим, что реакция (8.14) происходит достаточно быстро и имеет место химическое равновесие дейтерия с протонами и нейтронами. При этом будем считать, что остальные термоядерные реакции (о них речь ниже) выключены. Найдем в этих предположениях концентрацию дейтерия при температуре T. При высоких температурах эта концентрация мала, т. е. образование дейтерия термодинамически невыгодно (ср. с Главой 6). Соответствующий физический механизм состоит в том, что образующиеся ядра дейтерия быстро диссоциируют обратно в нейтроны и протоны под воздействием жестких γ -квантов из хвоста температуре, когда (в сделанных только что предположениях) равновесная концентрация дейтерия становится сравнимой с концентрацией протонов и нейтронов (последние равны по порядку величины, см. (8.13)).

Такой «равновесный» подход позволяет определить направление термоядерных реакций. Успевают они произойти или нет, зависит от скорости реакций в сравнении с темпом расширения Вселенной: из-за довольно быстрого космологического расширения химическое равновесие в действительности не вполне достигается. Именно благодаря последнему обстоятельству нуклеосинтез приводит к заметной остаточной концентрации D, ³He, ⁷Li: в термодинамическом равновесии при интересующих нас температурах их концентрация была бы ничтожно мала, а все нейтроны находились бы в наиболее сильно связанном ядре ⁴He.

Продолжая использовать равновесный подход, преобразуем соотношение (8.8) к виду уравнения Саха. В ситуации, когда существенны термоядерные реакции, химические потенциалы нейтронов и протонов не равны между собой, поэтому формула (8.8), примененная к протонам и нейтронам, дает

$$n_n = 2\left(\frac{m_p T}{2\pi}\right)^{3/2} e^{(\mu_n - m_n)/T},$$
(8.16)

$$n_p = 2 \left(\frac{m_p T}{2\pi}\right)^{3/2} \mathrm{e}^{(\mu_p - m_p)/T},$$
 (8.17)

где в предэкспоненте мы пренебрегли разницей масс протона и нейтрона. Если ядро с атомным весом A и зарядом Z (нас сначала будет интересовать дейтерий, однако для последующих оценок полезно написать общую формулу) находится в химическом равновесии, то химический потенциал для него равен ²⁾

$$\mu_A = \mu_p \cdot Z + \mu_n \cdot (A - Z)$$
 .

168

²⁾ Здесь и далее подстрочный индекс A обозначает ядро (A, Z); более аккуратно было бы использовать обозначение типа $\mu_{A,Z}$, но мы этого не будем делать для упрошения записи формул.

Действительно, предположение о химическом равновесии означает, что достаточно быстро идет цепочка термоядерных реакций, в результате которой Zпротонов и (A - Z) нейтронов объединяются в ядро (A, Z).

Действуя так же, как в Главе 6, получим из (8.8), (8.16), (8.17)

$$n_A = n_p^Z n_n^{A-Z} 2^{-A} g_A A^{3/2} \left(\frac{2\pi}{m_p T}\right)^{\frac{3}{2}(A-1)} e^{\Delta_A/T}, \qquad (8.18)$$

где мы положили в предэкспоненте $m_A = Am_p$ и ввели энергию связи ядра (A, Z)

$$\Delta_A = Zm_p + (A-Z) m_n - m_A$$

Введем еще безразмерное отношение числа нуклонов, находящихся в ядрах (A, Z), к полному числу нуклонов

$$X_A = \frac{An_A}{n_B}$$

и запишем соотношение (8.18) в виде уравнения Саха

$$X_A = X_p^Z X_n^{A-Z} n_B^{A-1} 2^{-A} g_A A^{5/2} \left(\frac{2\pi}{m_p T} \right)^{\frac{3}{2}(A-1)} \mathrm{e}^{\Delta_A/T}.$$

Наконец, плотность числа барионов равна

$$n_{\scriptscriptstyle B}=\eta_{\scriptscriptstyle B}\cdot n_{\gamma}=\eta_{\scriptscriptstyle B}\cdot rac{2\zeta(3)}{\pi^2}T^3=0,24\eta_{\scriptscriptstyle B}T^3.$$

Окончательно имеем

$$X_{A} = X_{p}^{Z} X_{n}^{A-Z} 2^{-A} g_{A} A^{5/2} \eta_{B}^{A-1} \left(\frac{2.5T}{m_{p}}\right)^{\frac{3}{2}(A-1)} e^{\Delta A/T}.$$
 (8.19)

Аналогично Главе 6, правая часть этого равенства содержит малый энтропийный множитель

$$\eta_{\scriptscriptstyle B}^{A-1}\left(\frac{T}{m_p}\right)^{\frac{3}{2}(A-1)},$$

так что равновесная концентрация ядер перестает быть малой лишь при $T \ll \Delta_A$, т.е. когда температура станет заметно меньше энергии связи ядра.

Нуклеосинтез начинается тогда, когда становится термодинамически выгодным образование дейтерия, т. е. тогда, когда X_D становится, грубо говоря, величиной порядка единицы (образование более тяжелых ядер, напоминаем, предполагается выключенным). Учитывая, что при этом $X_p, X_n \sim 1$, и пренебрегая множителями порядка единицы в (8.19), получаем

$$X_{\rm D}(T_{NS}) \sim \eta_B \left(\frac{2.5T_{NS}}{m_p}\right)^{3/2} {\rm e}^{\Delta_{\rm D}/T_{NS}} \sim 1,$$
 (8.20)

где T_{NS} — температура нуклеосинтеза, $\Delta_{\rm D} = 2,23$ МэВ и мы учли, что для дейтерия A = 2, Z = 1. Из (8.20) получаем при $\eta_B = 6,1 \cdot 10^{-10}$

$$T_{NS} \approx 65$$
 кэВ.

Итак, в предположении о достаточно большой скорости реакции образования дейтерия (8.14) нуклеосинтез происходит при температурах около 70 кэВ. Отметим, что эта температура слабо (логарифмически) зависит от η_B .

Убедимся, что при таких больших температурах термодинамически наиболее выгодным является в действительности образование ядер ⁴ He. Для этого вновь используем равновесный подход. Если действительно практически все нейтроны находятся при $T \approx T_{NS}$ в ядрах ⁴ He, то, применяя формулу (8.19), мы должны получить, что

 $X_{\rm ^4He} \sim 1$,

в то время как концентрации всех других легких ядер, включая свободные нейтроны, малы. Поэтому запишем формулу (8.19) для ⁴He ($A = 4, Z = 2, g_A = 4$):

$$X_{^{4}\mathrm{He}} = X_{p}^{2}X_{n}^{2} \cdot 8\eta_{B}^{3} \left(\frac{2,5T}{m_{p}}\right)^{9/2} \mathrm{e}^{\Delta_{^{4}\mathrm{He}}/T}.$$

Учтем, что протонов в плазме больше, чем нейтронов (см. (8.13)), так что «лишние» протоны дают $X_p \sim 1$, и выразим концентрацию нейтронов через $X_{4\text{He}}$, пренебрегая множителями порядка единицы:

$$X_n = X_{^{4}\text{He}}^{1/2} \eta_B^{-3/2} \left(\frac{2,5T}{m_p}\right)^{-9/4} e^{-\Delta_{^{4}\text{He}}/2T}.$$
(8.21)

Подставляя выражение (8.21) в (8.19), считая $X_{^4\text{He}} \sim 1$ и вновь опуская множители порядка единицы, получим для других ядер

$$X_{A} = \left[\eta_{B}\left(\frac{2,5T}{m_{p}}\right)^{3/2}\right]^{\frac{3}{2}Z - \frac{1}{2}A - 1} \exp\left\{\frac{\Delta_{A} - \Delta_{^{4}\text{He}}(A - Z)/2}{T}\right\} \simeq 210^{7,4(A + 2 - 3Z)} \exp\left\{\frac{\Delta_{A} - \Delta_{^{4}\text{He}}(A - Z)/2}{T}\right\},$$
(8.22)

где численные значения предэкспоненциального множителя соответствуют $\eta_B = 6.1 \cdot 10^{-10}$, T = 65 кэВ. Заметим, что знак показателя экспоненты зависит от величины энергии связи на нейтрон для ядра (A, Z), т. е. $\Delta_A/(A-Z)$. Среди легких ядер эта величина максимальна для ядра ⁴Не, и именно поэтому во Вселенной в основном образуются именно эти ядра.

Энергии связи для наиболее сильно связанных стабильных (или почти стабильных по сравнению с продолжительностью нуклеосинтеза) легких ядер приведены в табл. 8.1. Используя эти данные, получим из (8.22) оценки при $T = 65 \text{ кэВ: } X_n \sim 10^{-79}, X_D \sim 10^{-79}, X_{^3\text{H}} \sim 10^{-118}, X_{^3\text{He}} \sim 10^{-51}, X_{^6\text{Li}} \sim 10^{-78}, X_{^7\text{Li}} \sim 10^{-116}, X_{^7\text{Be}} \sim 10^{-55}, X_{^8\text{B}} \sim 10^{-69}$. Таким образом, при $T = T_{NS}$ равновесные концентрации легких ядер действительно малы по сравнению с концентрацией ⁴He.

-111

Таблица 8.1

Z	ядро	Δ_A	Δ_A/A	$\Delta_A/(A-Z)$
1	$^{2}H \equiv D$	2,23	1,11	2,23
	$^{3}H \equiv T$	8,48	2,83	4,24
2	³ He	7,72	2,57	7,72
	4 He $\equiv \alpha$	28,30	7,75	14,15
3	⁶ Li	31,99	5,33	10,66
	⁷ Li	39,24	5,61	9,81
4	⁷ Be	37,60	5,37	12,53
5	⁸ B	37,73	4,71	12,58
6	¹² C	92,2	7,68	15,37

Энергии связи некоторых стабильных (или почти стабильных по сравнению с продолжительностью нуклеосинтеза) легких ядер (МэВ)

Отметим в связи с этим два обстоятельства. Во-первых, применение формулы (8.22) к ядру ¹² С дало бы $X_{^{12}C} \gg 1$, т. е. если бы это ядро могло образовываться, то наше предположение о доминировании ⁴Не было бы неверным: большинство нейтронов связывалось бы в ядро ¹² С (и более тяжелые ядра), а не в ⁴Не. Однако из табл. 8.1 видно, что ядро ¹² С не может образовываться в двухчастичных реакциях с участием более легких *стабильных* ядер³: слияние двух ядер ⁶Li происходит редко из-за очень малой концентрации этих ядер (их образование возможно лишь в реакции слияния гелия-3 и трития, что сильно подавлено по сравнению с рождением гелия-4 из того же начального состояния). Поэтому цепочка термоядерных реакций во Вселенной до ядра углерода не доходит⁴. Термоядерные реакции в ранней Вселенной при $T \approx T_{NS}$ идут в сторону образования ядра ⁴Не.

Во-вторых, если бы во Вселенной при T > 65 кэВ все время имелось химическое равновесие по отношению к образованию ⁴He, то первичный нуклеосинтез происходил бы при более высоких температурах, поскольку энергия связи для ⁴He заметно превышает энергию связи в дейтерии. Одна-

³⁾ Трехчастичные реакции практически не идут в ранней Вселенной из-за того, что концентрации ядер в ней меньше или порядка $\eta_B \sim 10^{-9}$, т. е. очень малы. Ядро ¹² С образуется в звездах именно в трехчастичных реакциях из ядер ⁴ Не.

⁴⁾ При этом важно, что двухчастичные реакции с участием ядер с высокой концентрацией не могут приводить к образованию стабильных или долгоживущих изотопов с массовыми числами 5 и 8.

ко до образования дейтерия такое химическое равновесие невозможно из-за того, что ⁴Не образуется не прямо из нейтронов и протонов, а в результате горения дейтерия. В этом смысле нуклеосинтез происходит в ранней Вселенной с задержкой.

Задача 1. Найти температуру нуклеосинтеза в гипотетическом случае химического равновесия по отношению к образованию ⁴Не при T > 65 кэВ.

В завершение этого раздела определим возраст Вселенной в эпоху нуклеосинтеза, т. е. время, прошедшее от начала Большого взрыва до момента t_{NS} , когда стало термодинамически выгодным образование дейтерия. Как мы видели, температура Вселенной при этом была около $T_{NS} \approx 70$ кэВ. В соответствии с (3.27) получаем отсюда

$$t_{NS} = \frac{1}{2H(T_{NS})} = \frac{M_{Pl}^*}{2T_{NS}^2}.$$
(8.23)

При температуре $T_{NS} \approx 70$ кэВ на темп расширения Вселенной влияют только два типа релятивистских частиц: фотоны и нейтрино, причем поскольку последние уже не взаимодействуют с веществом плазмы, то их эффективный вклад подавлен, см. (7.6). В результате выражение (8.23) содержит

$$M_{Pl}^{*} = \frac{M_{Pl}}{1,66\sqrt{g_{*}}}, \quad \text{где} \quad g_{*} = 2 + \frac{7}{8} \cdot 2 \cdot N_{\nu} \cdot \left(\frac{4}{11}\right)^{4/3}, \quad N_{\nu} = 3.$$
 (8.24)

Отсюда возраст Вселенной в эпоху нуклеосинтеза составляет

$$t_{NS} = 265 c \approx 4,5$$
 мин.

Найденное время позволяет предсказать распространенность первичного гелия-4 во Вселенной. Действительно, мы увидим в разделе 8.3, что термоядерные реакции, происходившие в первичной плазме, протекают достаточно быстро, а приводят они в основном к образованию гелия-4. Поэтому после завершения нуклеосинтеза практически все нераспавшиеся нейтроны будут содержаться именно в этих ядрах. Концентрация гелия-4 при $T = T_{NS}$ составляет половину от концентрации нейтронов,

$$n_{{}^{\mathsf{A}}\mathsf{He}}(T_{NS})=\frac{1}{2}n_n(T_{NS}),$$

которая, в свою очередь, связана с концентрацией протонов как

$$\frac{n_n(T_{NS})}{n_p(T_{NS})} \approx \frac{1}{5} \cdot e^{-t_{NS}/\tau_n} \approx \frac{1}{7},$$
(8.25)

где мы модифицировали соотношение (8.13) с учетом конечного времени жизни нейтрона $\tau_n \approx 886$ с. В результате получаем массовую долю ⁴Не среди всех барионов

$$X_{^{4}\text{He}} = \frac{m_{^{4}\text{He}} \cdot n_{^{4}\text{He}}(T_{NS})}{m_{p}(n_{p}(T_{NS}) + n_{n}(T_{NS}))} = \frac{2}{\frac{n_{p}(T_{NS})}{n_{n}(T_{NS})} + 1} \approx 25\%.$$
 (8.26)

Отметим, что массовая доля гелия-4 зависит как от момента нуклеосинтеза t_{NS} , так и от момента закалки нейтронов T_n (см. (8.12)). Обе эти величины в свою очередь зависят от (эффективного) числа релятивистских степеней свободы в первичной плазме. Поэтому измерение распространенности первичного гелия фиксирует g_* для эпохи нуклеосинтеза. Это, в свою очередь, позволяет определить число релятивистских нейтрино (см. (8.6)), $N_{\nu} = 3$, и существенно ограничить пространство параметров многочисленных теорий, претендующих на роль обобщений Стандартной модели физики частиц, в рамках которых возможно появление в первичной плазме новых релятивистских компонент. Это ограничение обычно формулируют в терминах эффективного числа дополнительных типов нейтрино: плотность энергии новых частиц к началу нуклеосинтеза не должна превышать плотности энергии, соответствующей одному типу нейтрино,

$$\Delta N_{veff} \leq 1, \quad T \sim 1 \text{ M} \Rightarrow \text{B}. \tag{8.27}$$

Задача 2. Определить наименьшую температуру закалки гипотетических безмассовых частиц, если неопределенность в $g^*(T_{NS})$ составляет 20%. То же для неопределенности 5%.

Задача 3. Используя формулы (8.5)–(8.7), (8.12) и (8.23)–(8.25), показать, что каждый дополнительный тип нейтрино дает численную поправку к концентрации первичного гелия на уровне 5%.

Заметная неопределенность в теоретическом предсказании распространенности гелия-4 во Вселенной связана с неточностью измерения времени жизни нейтрона, которое определяет как величину T_n (см. (8.7), (8.12), (8.13)), так и долю распавшихся нейтронов на момент t_{NS} (см. (8.25)).

8.3. Кинетика нуклеосинтеза

В предыдущем разделе с использованием равновесного подхода было установлено, что ядерные реакции первичного нуклеосинтеза идут в сторону образования гелия-4 (α -частиц). В этом разделе мы обсудим скорости этих реакций и оценим остаточные концентрации легких ядер, т. е. распространенность первичных химических элементов во Вселенной.

Выясненное в предыдущем разделе направление реакций позволяет расположить все основные ядерные реакции первичного нуклеосинтеза по следующим этапам:

- 1. $p(n, \gamma)$ D образование дейтерия, начало нуклеосинтеза.
- 2. $D(p, \gamma)^{3}$ He, $D(D, n)^{3}$ He, D(D, p)T, 3 He(n, p)T предварительные реакции, подготавливающие материал для образования 4 He.
- 3. $T(D, n)^4$ He, 3 He $(D, p)^4$ He образование 4 He.
- 4. $T(\alpha, \gamma)^7 Li$, ³He $(\alpha, \gamma)^7$ Be, ⁷Be $(n, p)^7 Li$ образование наиболее тяжелых элементов первичного нуклеосинтеза.
- 5. $^{7}\text{Li}(p, \alpha)^{4}\text{He}$ горение ^{7}Li .

Отметим, что поскольку интенсивность реакций определяется концентрациями сталкивающихся ядер, то среди всех разрешенных реакций основными являются те, для которых хотя бы одна из компонент является достаточно распространенной в первичной плазме, т. е. p, n, D, ⁴He.

Рассмотрим эти реакции по порядку с целью оценить скорости их протекания в ранней Вселенной. Сравнение этих скоростей с темпом расширения Вселенной на момент нуклеосинтеза,

$$H (T_{NS} = 70 \text{ кэB}) = 4 \cdot 10^{-3} \text{ c}^{-1}$$
,

позволяет найти остаточные *неравновесные* концентрации первичных химических элементов во Вселенной, которые, конечно, значительно выше, чем те, что получились бы в условиях химического равновесия.

8.3.1. Горение нейтронов, $p+n ightarrow \mathrm{D} + \gamma$

Как мы видели, дейтерию термодинамически выгодно образовываться при температуре $T = T_{NS} \approx 65$ кэВ. Однако Вселенная довольно быстро расширяется, поэтому, в принципе, часть нейтронов может не успеть «сгореть». Определим, какая доля нейтронов переходит в дейтерий. Для этого сравним интенсивность «горения» нейтронов с темпом расширения Вселенной на момент t_{NS} .

Сечение образования дейтерия можно грубо оценить как геометрическое,

$$(\sigma v)_{p(n,\gamma)\mathrm{D}} \sim \frac{\alpha}{m_{\pi}^2} \simeq \frac{1}{137} \frac{1}{(200 \text{ M} \Im \text{B})^2} = 2 \cdot 10^{-18} \frac{\text{cm}^3}{\text{c}},$$

где m_{π} — масса пиона, определяющая характерный пространственный размер ядерных взаимодействий, $r \sim m_{\pi}^{-1}$, а постоянная тонкой структуры α учитывает подавление, связанное с необходимостью испускания фотона. Отметим, что оцененное так сечение не зависит от скоростей сталкивающихся частиц, т. е. от температуры плазмы. В действительности это не так, и температурные поправки изменяют сечение образования дейтерия в 1,5–2 раза при $T \sim T_{NS}$. Кроме того, поскольку ядро дейтерия является слабо связанным, имеется дополнительный множитель подавления $\omega_{\gamma}/p_{\rm D}$, определяемый отношением величины характерного импульса испускаемого фотона, $\omega_{\gamma} \sim \Delta_{\rm D}$, к величине характерных импульсов протона и нейтрона в дейтерия может быть найден из теоремы вириала

$$\frac{p_{\rm D}^2}{M_{\rm D}} \simeq \Delta_{\rm D},\tag{8.28}$$

где мы предположили для оценки, что потенциал сильного взаимодействия между нейтроном и протоном обратно пропорционален расстоянию между ними. Окончательная оценка имеет вид

$$(\sigma v)_{p(n,\gamma)\mathrm{D}} pprox 6 \cdot 10^{-20} \ \frac{\mathrm{cm}^3}{\mathrm{c}}.$$

Скорость выгорания нейтронов определяется как частота столкновений нейтрона с протонами, сопровождающихся образованием дейтерия. Отсюда для скорости процесса получаем

$$\Gamma_{p(n,\gamma)D} = n_p \cdot (\sigma v)_{p(n,\gamma)D} = \eta_B \cdot 2 \frac{\zeta(3)}{\pi^2} T^3 \cdot (\sigma v)_{p(n,\gamma)D} = 0,31 \text{ c}^{-1}$$

для $\eta_B = 6,1 \cdot 10^{-10}, \quad T = T_{NS} = 65 \text{ кэB},$

где мы выразили концентрацию протонов на момент нуклеосинтеза через барион-фотонное отношение η_B и плотность фотонов при температуре нуклеосинтеза $T = T_{NS}$. Поскольку эта скорость значительно превышает темп расширения Вселенной, $\Gamma_{p(n,\gamma)D} \gg H(T_{NS})$, нейтроны действительно активно горят, и все стремятся перейти в дейтерий⁵⁾.

Задача 4. Определить температуру и время жизни Вселенной на момент прекращения процесса горения нейтронов. Какова была бы их концентрация на этот момент, если бы было можно пренебречь другими ядерными реакциями?

8.3.2. Горение дейтерия

Образовавшиеся в результате горения нейтронов ядра дейтерия служат материалом для образования трития и гелия-3. Сечения реакций

$$D + D \rightarrow {}^{3}He + n$$
 и $D + D \rightarrow T + p$

можно оценить как геометрические, однако необходимо учесть кулоновский барьер: оба сталкивающихся ядра несут положительный электрический заряд, и между ними имеется отталкивание. На больших расстояниях $r \gg 1/m_{\pi}$ это отталкивание доминирует и препятствует протеканию реакций. Соответствующий эффективный потенциал представлен на рис. 8.2.

Чтобы произошло образование ядра A с энергией связи Δ_A , сталкивающиеся ядра должны преодолеть кулоновский барьер. Достигается это в результате туннельного процесса.

Чтобы оценить соответствующее сечение, перейдем в систему центра масс двух сталкивающихся ядер с зарядами Z_1 и Z_2 , массами M_1 и M_2 и скоростями v_1 и v_2 , соответственно (хотя сейчас мы интересуемся горением дейтерия, для дальнейшего изложения нам будет полезно оценить сечение реакции горения в общем случае). Кинетическая энергия системы будет иметь вид $E_{kin} = Mv^2/2$, где $M = M_1M_2/(M_1 + M_2)$ — приведенная масса, а $v = v_1 - v_2$ — относительная скорость ядер.

Амплитуда туннелирования экспоненциально подавлена, и в *s*-волне она имеет вид

$$A \propto \exp\left\{-\int\limits_{0}^{r_0}\sqrt{2M(V(r)-E_{kin})}\,dr
ight\},$$

⁵⁾ Заметим, что для $\eta_B < 10^{-11}$ это уже не так!

где точка поворота r₀ определяется из условия

$$E_{kin}(r=r_0)=E_{kin}(r=\infty)-V(r_0)=rac{1}{2}Mv^2-rac{lpha Z_1Z_2}{r_0}=0,$$

причем v — относительная скорость удаленных друг от друга ядер; в показателе экспоненты было учтено, что $r_0 \gg 1/m_{\pi}$, т. е. туннелирование происходит в центр системы (ядра «падают» друг на друга). Таким образом, показатель экспоненты принимает вид

$$-\sqrt{2\pilpha Z_{1}Z_{2}}\int\limits_{0}^{r_{0}}\sqrt{rac{1}{r}-rac{1}{r_{0}}}\,dr=-rac{\pilpha Z_{1}Z_{2}}{v}$$

В результате для сечения горения ядер получаем

$$\sigma \propto e^{-2\pi \alpha Z_1 Z_2/v}$$

или, с учетом предэкспоненты,

$$\sigma v = \sigma_0 \cdot \frac{2\pi\alpha Z_1 Z_2}{v} \cdot e^{-2\pi\alpha Z_1 Z_2/v}, \qquad (8.29)$$

где σ_0 — геометрическое сечение реакции в отсутствие кулоновского подавления.

Выражение (8.29) необходимо усреднить с учетом разброса скоростей в первичной плазме:

$$\langle \sigma v \rangle = \sigma_0 \cdot 2\pi \alpha Z_1 Z_2 \int_0^\infty \exp\left\{-\frac{Mv^2}{2T} - \frac{2\pi \alpha Z_1 Z_2}{v}\right\} v \, dv \times$$

$$\times \left(\int_{0}^{\infty} \exp\left\{-\frac{Mv^2}{2T}\right\} v^2 dv\right)^{-1}.$$
(8.30)

Нормировочный интеграл в знаменателе легко вычисляется и равен

$$\sqrt{\frac{\pi}{2}} \left(\frac{T}{M}\right)^{3/2}.$$

Интеграл в числителе возьмем методом перевала:

$$\int_{0}^{\infty} \exp\left\{-\frac{Mv^2}{2T} - \frac{2\pi\alpha Z_1 Z_2}{v}\right\} v \, dv \approx$$
$$\approx v_0 \sqrt{\frac{2\pi}{\frac{M}{T} + \frac{4\pi\alpha Z_1 Z_2}{v_0^3}}} \exp\left\{-\frac{Mv_0^2}{2T} - \frac{2\pi\alpha Z_1 Z_2}{v_0}\right\},$$

где точка перевала v_0 определена условием

$$rac{Mv_0}{T}=rac{2\pilpha Z_1Z_2}{v_0^2},$$

В результате (8.30) принимает вид

$$\langle \sigma v \rangle \approx \sigma_0 \cdot \frac{2}{\sqrt{3}} \cdot \left(2\pi \alpha Z_1 Z_2\right)^{4/3} \cdot \left(\frac{M}{T}\right)^{2/3} \cdot \exp\left\{-\frac{3}{2} \left(2\pi \alpha Z_1 Z_2\right)^{2/3} \left(\frac{M}{T}\right)^{1/3}\right\}.$$

Наконец, вводя вспомогательные величины: относительную приведенную массу ядер $\overline{A} \equiv M/m_p$ и температуру, измеряемую в миллиардах градусов Кельвина, $T_9 \equiv T/(10^9 \text{ K}) = T/(86 \text{ кэВ})$, запишем окончательно

$$\langle \sigma v \rangle = 9.3 \cdot \sigma_0 \cdot (Z_1 Z_2)^{4/3} \overline{A}^{2/3} T_9^{-2/3} \cdot \exp\left\{-4.26 \cdot (Z_1 Z_2)^{2/3} \overline{A}^{1/3} T_9^{-1/3}\right\}.$$
(8.31)

Отметим, что в полученной нами оценке для $\langle \sigma v \rangle$ заложено предположение, что σ_0 не зависит от импульсов сталкивающихся частиц в интересующем нас интервале энергий $E \sim 10-100$ кэВ. На самом деле это не так, и учет нетривиальной зависимости предэкспоненциального множителя в (8.29) от импульсов (т. е. от скоростей) часто приводит вместо (8.31) к более громоздким выражениям. В частности, для многих реакций лидирующий вклад в предэкспоненте в окончательном ответе, заменяющем собой выражение (8.31), имеет иную степенную зависимость от температуры. В ряде случаев выражение (8.31) вообще не работает, что связано с вкладами в сечение промежуточных резонансных состояний. Наконец, рождение новых ядер может происходить не только в *s*-волне, — нетривиальный угловой момент дает вклад в эффективный потенциал, стоящий в туннельной экспоненте. Это часто приводит к дополнительным вкладам в полное сечение, имеющим иную степенную зависимость показателя экспоненты от температуры, чем в (8.31). Мы опускаем все эти подробности и в соответствующих местах для получения численных оценок будем корректировать формулу (8.31), подставляя взамен нее основной вклад в скорость конкретной реакции.

Возвращась к вопросу о горении дейтерия и рассматривая реакции слияния двух ядер дейтерия, D(D, p)T и $D(D, n)^3$ Не, оценим σ_0 грубо, используя характерный пространственный масштаб ядерных сил:

$$\sigma_0 \sim m_\pi^{-2} \sim 10^{-26} \text{ cm}^2 \sim 3 \cdot 10^{-16} \ rac{\text{cm}^3}{\text{c}}.$$

В результате для горения дейтерия ($\overline{A} = Z_1 = Z_2 = 1$) получим

$$\langle \sigma v \rangle_{\rm DD} = 3 \cdot 10^{-15} \, \frac{\rm CM^3}{\rm c} \cdot T_9^{-2/3} \cdot {\rm e}^{-4,26 \cdot T_9^{-1/3}}.$$
 (8.32)

Дейтерий перестает гореть при условии

$$\Gamma_{\rm DD} = n_{\rm D}(T) \cdot \langle \sigma v \rangle_{\rm DD}(T) \sim H(T). \tag{8.33}$$

Этим условием можно воспользоваться, чтобы определить концентрацию дейтерия на момент прекращения реакции горения. При $T = T_{NS}$ ($T_9 \approx 0.75$) получим

$$n_{\rm D} = \frac{H(T_{NS})}{\langle \sigma v \rangle_{\rm DD}(T_{NS})} = 10^{14} \text{ cm}^{-3}.$$
 (8.34)

Отметим, что эта концентрация довольно слабо зависит от параметра η_B , поскольку η_B входит в выражение для n_D через температуру T_{NS} , а T_{NS} зависит от η_B логарифмически. Сравнивая n_D с концентрацией протонов, оценим распространенность первичного дейтерия во Вселенной:

$$\frac{n_{\rm D}}{n_p} = \frac{1}{0.75\eta_{\scriptscriptstyle B}} \cdot \frac{n_{\rm D}}{n_{\gamma}(T_{NS})} = 0.3 \cdot 10^{-4} \quad \text{при} \quad \eta_{\scriptscriptstyle B} = 6.1 \cdot 10^{-10}. \tag{8.35}$$

Это отношение не изменяется со времени нуклеосинтеза и может быть проверено при изучении облаков первичного газа путем сравнения интенсивности линий излучения (или поглощения), отвечающих дейтерию и водороду.

Существенно, что из-за слабой зависимости n_D от η_B отношение концентраций дейтерия и протонов (8.35) обратно пропорционально η_B , поэтому экспериментальное измерение распространенности первичного дейтерия позволяет определить плотность барионов.

Перейдем к рассмотрению еще одной реакции с участием дейтерия:

$$D + p \rightarrow \gamma + {}^{3}He.$$

Сечение этой реакции заметно меньше сечения других реакций с участием дейтерия, рассмотренных выше. Это связано с необходимостью испускания дополнительного фотона. Поэтому $\sigma_0 \sim 10^{-21}$ см³/с и

$$\langle \sigma v \rangle_{\mathrm{D}(p,\gamma)^{3}\mathrm{He}} = 8 \cdot 10^{-21} \frac{\mathrm{cm}^{3}}{\mathrm{c}} \cdot T_{9}^{-2/3} \cdot \mathrm{e}^{-3,7 \cdot T_{9}^{-1/3}},$$

где мы применили общую формулу (8.31) и учли, что для рассматриваемой реакции $\overline{A} = 2/3$, $Z_1 = Z_2 = 1$.

Скорость этой реакции горения дейтерия пропорциональна концентрации протонов в плазме

$$\Gamma = n_p \cdot \langle \sigma v \rangle_{\mathrm{D}(p,\gamma)^3\mathrm{He}}$$

и для $\eta_B = 6, 1 \cdot 10^{-10}$ при $T \simeq T_{NS}$ уступает темпу расширения Вселенной. Эта реакция становится существенной при достаточно больших η_B (в этом разделе мы изучаем зависимость наблюдаемых величин от этого параметра): чем больше концентрация барионов⁶⁾, тем больше дейтерия «вымывается». При этом его остаточная концентрация уменьшается, а остаточная концентрация ³ Не, наоборот, увеличивается.

8.3.3. * Образование первичных ³ Не и ³ Н

Гелий-3 и тритий, образованные в столкновениях ядер дейтерия, сами перегорают в гелий-4.

Для горения гелия-3 в реакции

$$^{3}\text{He} + \text{D} \rightarrow p + {}^{4}\text{He}$$

простая оценка (8.31) не работает (см. обсуждение в конце раздела 8.3). Вместо нее скорость реакции в интересующей нас области энергии хорошо описывается выражением

$$\langle \sigma v \rangle_{^{3}\text{He}(D, p)^{4}\text{He}} = 10^{-15} \frac{\text{cM}^{3}}{\text{c}} \cdot T_{9}^{-1/2} \cdot \text{e}^{-1.8 \cdot T_{9}^{-1}}.$$
 (8.36)

При $T_9 \simeq 0.75$ (T = 65 кэВ) эта скорость превышает скорость горения дейтерия (8.32); когда основные реакции горения дейтерия в значительной степени прекращаются, гелий-3 продолжает активно выгорать. Горение гелия-3 прекращается тогда, когда концентрация дейтерия уменьшится за счет расширения Вселенной настолько, что темп реакции ³He + D $\rightarrow p$ + ⁴He сравнится с темпом расширения Вселенной. Это произойдет в момент времени $t_{^3\text{He}}$, такой что

$$\frac{\langle \sigma v \rangle_{^{3}\text{He}(D, p)^{4}\text{He}} \cdot n_{D}}{H} \sim 1, \quad t = t_{^{3}\text{He}}. \quad (8.37)$$

К этому моменту во Вселенной все еще имеется небольшое количество гелия-3, поскольку реакция $D+D \rightarrow {}^{3}He+n$ с малой вероятностью продолжает идти. Концентрация гелия-3, которая нарабатывается за хаббловское время при $t \simeq t_{^{3}He}$, оценивается величиной

$$n_{^{3}\mathrm{He}} \sim \langle \sigma v \rangle_{\mathrm{D}(\mathrm{D},\,n)^{^{3}\mathrm{He}}} \cdot n_{\mathrm{D}}^{2} \cdot \frac{1}{H}, \quad t = t_{^{3}\mathrm{He}}.$$
 (8.38)

⁶⁾ В этом разделе мы специальное внимание уделяем зависимости наблюдаемых величин от параметра η_B и поэтому позволяем себе рассматривать его в качестве свободного. Отметим, однако, что он весьма жестко фиксирован, безотносительно к нуклеосинтезу, имеющимися экспериментальными данными по анизотропии реликтового излучения.
Это выражение и дает оценку остаточной концентрации гелия-3, поскольку при $t \gg t_{^{3}\text{He}}$ плотность дейтерия очень мала и образования гелия-3 не происходит. Из (8.37) и (8.38) видно, что отношение остаточных концентраций гелия-3 и дейтерия оценивается величиной

$$\frac{n_{^{3}\text{He}}}{n_{\text{D}}} \simeq \frac{\langle \sigma v \rangle_{\text{D(D, }n)^{^{3}\text{He}}}}{\langle \sigma v \rangle_{^{3}\text{He(D, }p)^{^{4}\text{He}}}},$$
(8.39)

причем правую часть нужно вычислять в момент времени $t_{^{3}\text{He}}$. Температура в этот момент определяется соотношением (8.37), и она несильно отличается от температуры нуклеосинтеза $T_{NS} = 65$ кэВ. Действительно, левая часть в (8.37) сильно зависит от температуры, поскольку $n_{\rm D} \propto T^{-3}$ и $H^{-1} \propto T^{-2}$, а скорости реакций

$$D + D \rightarrow {}^{3}He + p$$
 и ${}^{3}He + D \rightarrow {}^{4}He + p$

отличаются всего на порядок при $T = T_{NS}$. Сравнивая (8.37) с соотношением (8.33), выполняющимся при $T = T_{NS}$, мы видим, что горение ³Не прекращается при $T_{^{3}\text{He}} \simeq 0.6 T_{NS}$. Используя (8.32) и (8.36) и учитывая (8.35), получаем отсюда оценку распространенности первичного гелия-3 во Вселенной:

$$\frac{n_{^{3}\mathrm{He}}}{n_{p}}\simeq0.9\cdot10^{-5}$$

Аналогичным образом рассматривается горение трития,

$$T + D \rightarrow {}^{4}He + n.$$

Сечение образования трития — такое же, как для ³ Не, а скорость горения равна

$$\langle \sigma v \rangle_{\mathrm{T}(\mathrm{D}, n)^{4}\mathrm{He}} = 10^{-15} \frac{\mathrm{cm}^{3}}{\mathrm{c}} \cdot T_{9}^{-2/3} \cdot \mathrm{e}^{-0.5 \cdot T_{9}^{-1}}.$$
 (8.40)

Стоит отметить слабую зависимость этой скорости от температуры в интересующей нас области $T_9 \sim 1$. Скорость горения трития больше, чем гелия-3, поэтому его горение прекращается еще позже, чем горение ³He, а остается его еще меньше. Оценка отношения закалочных концентраций трития и дейтерия производится так же, как для ³He (см. (8.39)) и дает в конечном итоге

$$\frac{n_{\rm T}}{n_p} \simeq 2 \cdot 10^{-7}$$
 при $\eta_{\scriptscriptstyle B} = 6, 1 \cdot 10^{-10}.$ (8.41)

Как отношение $n_{^{3}\mathrm{He}}/n_{p}$, так и отношение n_{T}/n_{p} обратно пропорциональны η_{B} .

Отметим в заключение, что неоднократно упоминавшийся нами факт, что в процессе первичного нуклеосинтеза практически все свободные нейтроны связываются в ядра ⁴He, напрямую связан с тем, что реакции горения гелия-3 и трития при $T \simeq T_{NS}$ идут быстрее, чем реакции их образования из дейтерия. Если бы это было не так, дейтерий бы выгорел быстрее всего, и реакции ³He + D \rightarrow ⁴He + p, T + D \rightarrow ⁴He + n прекратились бы на этапе, когда нейтроны были бы в основном связаны в ядрах гелия-3 и трития, а не в ядрах ⁴Не. С другой стороны, не слишком малые значения закалочных концентраций ³Не и Т связаны с тем, что скорости их горения сравнимы со скоростью горения дейтерия при $T \simeq T_{NS}$, хотя и несколько выше ее. Определенное разнообразие легких элементов, образующихся в результате первичного нуклеосинтеза, обусловлено довольно случайными совпадениями сечений термоядерных реакций при низких энергиях.

8.3.4. * Образование и горение наиболее тяжелых ядер первичной плазмы

В качестве примера реакций с участием наиболее тяжелых элементов первичного нуклеосинтеза рассмотрим образование и горение ⁷Li в реакциях $T(\alpha, \gamma)^7$ Li и ⁷Li(p, α)⁴He соответственно.

Для реакции образования неплохо работает формула (8.31), в которой

$$\sigma_0 \propto m_\pi^{-2} \cdot lpha$$

(множитель а обусловлен испусканием фотона). Численно

$$\langle \sigma v \rangle_{T(\alpha,\gamma)^7 \text{Li}} \sim 10^{-18} \frac{\text{cM}^3}{\text{c}} \cdot T_9^{-2/3} \cdot \text{e}^{-8.0 \cdot T_9^{-1/3}}.$$
 (8.42)

Темп выгорания трития по этому каналу

$$\langle \sigma v \rangle_{\mathsf{T}(\alpha,\gamma)^7 \operatorname{Li}} \cdot n_{\alpha} \simeq 1.5 \cdot 10^{-4} \operatorname{c}^{-1}, \quad T_9 = 0.75,$$

мал по сравнению с параметром Хаббла. Для реакции горения ⁷ Li формула (8.31) также работает, и с ее помощью можно получить

$$\langle \sigma v \rangle_{{}^{7}\mathrm{Li}(\mathrm{p},\alpha)^{4}\mathrm{He}} \sim 10^{-15} \ \frac{\mathrm{cm}^{3}}{\mathrm{c}} \cdot T_{9}^{-2/3} \cdot \mathrm{e}^{-8.5 \cdot T_{9}^{-1/3}}.$$

В этой реакции σ_0 обусловлено целиком сильными взаимодействиями, поэтому ее скорость гораздо выше скорости образования (8.42). Численно темп выгорания лития-7 равен

$$\langle \sigma v
angle_{^7\mathrm{Li}(\mathrm{p},lpha)^4\mathrm{He}} \cdot n_p \simeq 0.7 \ \mathrm{c}^{-1}$$
 при $T_9 = 0.75,$ $\eta_{\scriptscriptstyle B} = 6.1 \cdot 10^{-10},$

что превышает параметр Хаббла. Поэтому горение ⁷ Li прекращается довольно поздно, когда плотность протонов существенно уменьшится вследствие расширения Вселенной. В этот момент отношение концентраций лития-7 и трития замораживается на уровне (ср. (8.38))

$$\frac{n_{^{7}\mathrm{Li}}}{n_{\mathrm{T}}} \simeq \frac{\langle \sigma v \rangle_{\mathrm{T}(\alpha,\gamma)^{^{7}\mathrm{Li}}}}{\langle \sigma v \rangle_{^{7}\mathrm{Li}(p,\alpha)^{^{4}\mathrm{He}}}} \cdot \frac{n_{\alpha}}{n_{p}} \sim 2 \cdot 10^{-5},$$

поэтому, с учетом (8.41), распространенность первичного лития-7 мала. Весьма существенно и образование ⁷ Ве. Этот элемент нестабилен, поэтому концентрация первичного бериллия не является непосредственно наблюдаемой величиной. Бериллий-7 переходит в литий-7 либо в результате захвата электрона, ⁷ Ве $(e^-, \nu_e)^7$ Li, либо в результате реакции ⁷ Ве $(n, p)^7$ Li. Таким образом,

. .

литий-7 образуется либо непосредственно в результате слияния ядер трития с α -частицами, либо через бериллий. Существованием двух различных механизмов образования обусловлена немонотонная зависимость концентрации первичного лития-7 от величины η_{B} .

Кратко опишем процедуру вычисления скоростей горения $\langle \sigma v \rangle$, определяющих в конечном итоге остаточные концентрации первичных легких химических элементов (см. подробнее [31]). Усреднение по энергиям осуществляется с функцией распределения Больцмана,

$$\langle \sigma v \rangle = \frac{2}{T} \cdot \sqrt{\frac{2}{\pi \mu T}} \cdot \int_{0}^{\infty} \sigma(E) \cdot E \cdot e^{-E/T} dE,$$
 (8.43)

где v — относительная скорость сталкивающихся частиц, μ — их приведенная масса (все частицы, кроме фотонов и нейтрино, предполагаются нерелятивистскими), $\sigma(E)$ — сечение рассеяния частиц в соответствующем канале (процессы 2 \rightarrow 2 являются доминирующими) как функция кинетической энергии E в системе центра масс.

Если одна из сталкивающихся частиц — нейтрон, то рассеяние происходит за счет сильных взаимодействий. Предполагая, что при малых энергиях рассеяние происходит в *s*-волне, т. е. $\sigma \sim v^{-1}$, сечение рассеяния нейтрона, стоящее под знаком интеграла в (8.43), при энергиях, далеких от резонансных, естественно представить в виде:

$$\sigma(E) \equiv \frac{R(E)}{v(E)} = \sqrt{\frac{\mu}{2E}}R(E).$$

Функция R(E) слабо зависит от E в интересующей нас области энергий $E \leq 1$ МэВ, что позволяет приблизить ее несколькими первыми членами разложения в ряд Тейлора по скорости, т.е. по \sqrt{E} ,

$$R(E) = \sum_{n=0}^{m} \frac{R^{(n)}(0)}{n!} E^{n/2},$$

причем величины $R^{(n)}(0)$ определяются фитированием существующих экспериментальных данных по изучению соответствующего рассеяния при низких энергиях. В данном случае интеграл в (8.43) можно взять аналитически, получив для скорости горения нейтронов в данном канале $\langle \sigma v \rangle$ следующее выражение:

$$\langle \sigma v \rangle(T) = \sum_{n=0}^{m} \frac{R^{(n)}(0)}{n!} \frac{\Gamma(\frac{n+3}{2})}{\Gamma(\frac{3}{2})} \cdot T^{n/2}.$$

Если рассеяние имеет резонансный характер (например, реакция ⁷ Be $(n, p)^7$ Li имеет резонансы при энергиях $E_R \simeq 0.32$ и 2,7 МэВ), то для случая изолированного ядерного резонанса энергии E_R и ширины Γ_R сечение $\sigma(E)$ вблизи резонанса удобно представить в форме Брейта—Вигнера,

$$\sigma(E) = \frac{\pi}{2\mu E} \frac{(2J+1)(1+\delta_{ij})}{(2J_i+1)(2J_j+1)} \frac{\Gamma_{in}(E)\Gamma_{out}(E)}{(E-E_R)^2 - (\Gamma/2)^2}$$

где J_i , J_j и J — полные угловые моменты начальных адронов и резонанса, а $\Gamma_{in}(E)$ и $\Gamma_{out}(E)$ — парциальные ширины распада данного резонансного состояния в начальные и конечные частицы соответственно. Функции $\Gamma_{in}(E)$ и $\Gamma_{out}(E)$ также определяются из эксперимента. Отметим, что в случае узкого резонанса, $\Gamma \ll E_R$, интеграл (8.43) имеет хорошее аналитическое приближение,

$$\langle \sigma v \rangle(T) \simeq \left(\frac{2\pi}{\mu T}\right)^{3/2} \frac{(2J+1)(1+\delta_{ij})}{(2J_i+1)(2J_j+1)} \frac{\Gamma_{in}\Gamma_{out}}{\Gamma} \cdot e^{-E_R/T}.$$
 (8.44)

Если обе частицы заряжены, то на процесс рассеяния существенно влияет дальнодействующее электромагнитное взаимодействие, приводящее за счет кулоновского барьера к экспоненциальному подавлению сечения с показателем экспоненты, определяемым параметром Зоммерфельда

$$\zeta = \alpha Z_i Z_j \sqrt{\frac{\mu}{2E}} \equiv \frac{1}{2\pi} \sqrt{\frac{E_g}{E}},$$

где E_q — энергия Гамова. Для сечения $\sigma(E)$ удобно оказывается воспользоваться следующим представлением,

$$\sigma(E) = rac{S(E)}{E} \cdot \mathrm{e}^{-2\pi\zeta}.$$

Полагая, что функция S(E) полиномиальна по E, интеграл (8.43) можно взять методом перевала,

$$\langle \sigma v \rangle(T) = \frac{2\sigma_0}{T} \sqrt{\frac{2}{\mu T \pi}} \cdot e^{-3(E_g/4T)^{1/3}} \cdot S_0(E_0), \qquad (8.45)$$

где

$$E_0=E_g\cdot\left(rac{T}{2E_g}
ight)^{2/3},\quad \sigma_0=rac{2E_g}{\sqrt{3}}\left(rac{T}{2E_g}
ight)^{5/6}$$

— перевальная точка и ширина перевала, а функция $S_0(E_0)$ полиномиальна по $\langle - \rangle^2$

$$\left(rac{b}{E_0}
ight) \propto \left(rac{1}{E_g}
ight)$$
делена из эксперимента. Отметим, что в действите.

(m > 1/3)

и может быть опре, льности параметр разложения метода перевала

$$rac{\sigma}{E_0} = \left(rac{T}{E_g}
ight)^{1/6}$$

оказывается достаточно велик, так что для хорошего приближения требуется использовать полиномы большого порядка. На практике часто прибегают к другим полуаналитическим приближениям для улучшения сходимости рядов при оценке скоростей (σv) . Например, реакции T(D, n)⁴He и ³He(D, p)⁴He имеют резонансы. Несмотря на то, что они являются широкими, для описания вклада резонансных областей в интегралы можно воспользоваться приближением узкого резонанса (8.44). Численно это приближение оказывается довольно хорошим для этих реакций, и именно резонансные вклады оказываются доминирующими в интересующей нас области температур. Этим приближением мы воспользовались в основном тексте, поэтому зависимость от температуры в показателях экспонент в выражениях для скоростей этих реакций (8.36), (8.40) отличается от той, что получается из аналитического приближения (8.45).

Итак, для описания скоростей $\langle \sigma v \rangle$ существенны экспериментальные данные по ядерным реакциям. Ясно, что для аккуратного описания реакций при температурах $T \sim T_{NS}$ необходимо иметь как можно больше данных именно при низких энергиях, $E \leq 1$ МэВ. В ряде случаев, например для реакций $p(n, \gamma)$ D, D $(p, \gamma)^3$ He, таких данных очень мало, что приводит к неопределенностям в предсказании распространенности

первичных элементов. Отметим, что для первой реакции $p(n, \gamma)$ D хорошо работает теоретическое описание, которое часто и используют в расчетах.

В заключение отметим, что эффекты, связанные с возбуждением ядер в плазме, а также частичная экранировка ядер свободными электронами оказываются несущественными.

8.4. Наблюдаемая распространенность первичных элементов

Теория первичного нуклеосинтеза хорошо разработана. На основе численных расчетов с высокой точностью получены предсказания распространенностей всех легких элементов, образованных в первичной плазме. Эти предсказания проверяются в результате наблюдений областей Вселенной, химический состав которых по тем или иным причинам не изменился, несмотря на эволюцию Вселенной.

Как мы уже отмечали, более тяжелые ядра образуются в основном в термоядерных реакциях внутри звезд, т. е., грубо говоря, уже в нашу эпоху, $z \sim 1-10$. Первичные ядра служат при этом строительным материалом для более сложных химических элементов. Таким образом, в результате звездной эволюции часть первичных легких ядер трансформируется в более тяжелые ядра, часть, наоборот, трансформируется в более простые — разрушается под воздействием жесткого γ -излучения, сопровождающего процессы звездообразования. В то же время, термоядерные процессы рождения более тяжелых ядер часто в качестве побочных продуктов реакций содержат и легкие ядра. Кроме того, состав легких ядер пополняется продуктами диссоциации тяжелых ядер под воздействием тех же энергичных γ -квантов. Все эти процессы приводят к изменению локальной распространенности легких ядер по сравнению с их первичной концентрацией.

Лишь в определенных областях Вселенной локальная распространенность некоторых легких ядер не изменялась. Это области, где процессы звездообразования протекали слабо: например, наиболее удаленные области (области с наибольшим красным смещением) и/или области с малой распространенностью металлов (что можно выяснить, изучая спектр поглощения света от далеких квазаров).

Дейтерий занимает в ряду легких ядер особую роль: вследствие очень низкой энергии связи он не образуется в процессах звездного нуклеосинтеза, а, наоборот, только разрушается. Поскольку неизвестно никаких существенных астрофизических источников дейтерия⁷⁾, то любое измерение его локальной распространенности дает ограничение снизу на концентрацию первичного дейтерия. Отметим, что в последнее время распространенность дейтерия измеряется по спектроскопии расположенных на космологических расстояниях облаков обедненного металлами газа, поглощающего свет от далеких квазаров.

⁷⁾ Вообще говоря, известны довольно редкие астрофизические явления, где в сильно неравновесных условиях может образоваться малое количество дейтерия.

Распространенность гелия-4 изучается по обедненным металлами облакам ионизованного водорода в карликовых галактиках (рождение гелия-4 в звездах сопровождается рождением тяжелых элементов, поэтому отсутствие последних в облаках — свидетельство того, что гелий-4 там в основном первичный).

Для измерения распространенности лития-7 используют результаты спектроскопии обедненных металлами старых звезд (звезды второго поколения) в шаровых скоплениях нашей Галактики.

Для ³Не пока не найдено областей во Вселенной, для которых можно было бы уверенно заключить, что основная доля содержащихся там легких ядер сохранилась со времен первичного нуклеосинтеза. Кроме того, он менее чувствителен к концентрации барионов η_B , чем дейтерий, и измерение его современной распространенности больше говорит о процессах звездообразования и эволюции Галактики, чем о деталях первичного нуклеосинтеза.

Сами по себе измерения относительных локальных распространенностей химических элементов основаны на спектроскопии и поэтому весьма точны. Основная ошибка в измерении первичной концентрации легких элементов систематическая и, грубо говоря, обусловлена неуверенностью в «первичности» состава наблюдаемых облаков или звезд. Предсказания нуклеосинтеза для распространечностей первичных элементов вместе с результатами наблюдений приведены на рис. 8.3.

В целом эти результаты неплохо согласуются друг с другом и с величиной $\eta_B = 6,1 \cdot 10^{-10}$, полученной из измерений анизотропии реликтового излучения. Указывать на некоторое противоречие между распространенностями гелия-4 и лития-7, с одной стороны, и распространенностью дейтерия и данными по анизотропии реликтового излучения, с другой стороны, конечно, рано — систематические неопределенности в измерении распространенности первичных элементов еще весьма велики. В то же время, они достаточны для того, чтобы получить важную информацию о составе первичной плазмы в эпоху нуклеосинтеза. Этой информацией можно воспользоваться для получения результатов, интересных для физики частиц.

Действительно, с точки зрения Стандартной модели физики частиц первичный нуклеосинтез в расширяющейся Вселенной позволяет определить только один новый космологический параметр — барионную асимметрию η_B . Если же рассматривать обобщения Стандартной модели физики частиц, то первичный нуклеосинтез становится источником важных ограничений на параметры таких теорий. А именно, хорошее согласие предсказаний с наблюдениями позволяет сделать несколько заключений.

Во-первых, как мы уже отмечали, нуклеосинтез накладывает ограничение на концентрацию новых релятивистских частиц при $T \sim 1$ МэВ, см. (8.27).

Во-вторых, в эпоху нуклеосинтеза не могло происходить распада (или аннигиляции) каких-либо новых частиц, сопровождающегося рождением большого числа энергичных фотонов. Дело в том, что последние неминуемо разрушили бы часть образовавшихся ядер. Отсюда следуют ограничения на модели с тяжелыми долгоживущими частицами. Если основной канал распада такой

Рис. 8.3. Предсказания нуклеосинтеза для распространенностей первичных ⁴He, D, ³He, ⁷Li вместе с результатами наблюдений [4] (2σ неопределенности: статистические — длинный пунктир, статистические и систематические — короткий пунктир; неопределенности в вычислении распространнностей соответствуют толщине линий). Вертикальная полоса "CMB" — результат для η_B , следующий из анализа анизотропии реликтового излучения. По оси абсцисс отложено $\eta_{10} = \eta_B \cdot 10^{10}$, по оси ординат — $Y = \frac{n_{4He} \cdot m_{4He}}{n_p \cdot m_p}$ — массовая концентрация ⁴He, n_D/n_p , n_{3He}/n_p и n_{3Li}/n_p — распространенности остальных элементов

частицы X — это распад

 $X \to \gamma Y$,

где Y — слабовзаимодействующая частица с $m_Y \ll m_X$, то в распадах таких частиц образуются жесткие фотоны с $E_{\gamma} \approx m_X/2$, опасные с точки зрения нуклеосинтеза. Соответствующие ограничения в пространстве параметров τ_X и ζ_X , где τ_X — время жизни X-частицы, а

$$\zeta_X = m_X rac{n_X}{n_\gamma},$$

представлены на рис. 8.4.

Примерами моделей с такими X- и Y-частицами служат некоторые суперсимметричные расширения Стандартной модели физики частиц, причем в качестве распадающихся X-частиц может выступать нейтралино, а в качестве стабильной Y-частицы — гравитино (см. раздел 9.7.1).

Аналогичные ограничения [33] следуют на модели с долгоживущими частицами, распадающимися в адроны. В этом случае помимо разрушения уже

Рис. 8.4. Модельно-независимые ограничения из первичного нуклеосинтеза на модели с долгоживущими нестабильными частицами, распадающимися в высокоэнергичные фотоны [32]. Модели с параметрами выше сплошных линий исключены из результатов наблюдения распространенности соответствующих элементов. Верхние линии соответствуют наиболее консервативным оценкам

образовавшихся ядер ультрарелятивистскими частицами идет прямое рождение сильновзаимодействующих частиц, в том числе нуклонов и антинуклонов. У новых адронов достаточно энергии для разрушения наиболее сильно связанных ядер гелия-4, и поскольку они являются наиболее распространенными ядрами, именно этот процесс и доминирует. В результате из остатков ядер гелия-4 дополнительно образуются ядра D, ³ He, ⁶ Li, ⁷ Li, т. е. концентрация последних увеличивается по сравнению с предсказанием стандартного нуклеосинтеза.

Еще одним источником ограничений на параметры моделей, расширяющих Стандартную модель, служит тот факт, что в эпоху нуклеосинтеза невозможно дополнительное производство энтропии — например, за счет распада каких-либо частиц (или конденсатов) в мягкие фотоны. В противном случае изменилась бы температура нуклеосинтеза, а значит, и количество нераспавшихся нейтронов, и как следствие — распространенность образовавшегося гелия-4 (см. (8.26)).

ТЕМНАЯ МАТЕРИЯ

Мы уже многократно отмечали, что заметный вклад в полную плотность энергии в современной Вселенной (около 20%) вносит темная материя, которая, по-видимому, состоит из новых массивных частиц, отсутствующих в Стандартной модели физики частиц. Эти частицы должны быть нерелятивистскими, почти не взаимодействовать между собой¹⁾ и не взаимодействовать (или если взаимодействовать, то очень слабо) с фотонами. Последнее означает, что в галактиках газ частиц темной материи не может остывать, испуская фотоны подобно барионам, а значит перепад плотности между центром галактики и ее периферией будет не такой большой, как у барионов. Это в конечном итоге и позволяет объяснить распределение пекулярных скоростей светящегося вещества в галактиках, погруженных в гало из частиц темной материи (см. рис. 1.7 в Главе 1).

В этой Главе мы рассмотрим некоторые механизмы генерации темной материи во Вселенной и некоторые расширения Стандартной модели, в которых имеются частицы — кандидаты на роль частиц темной материи. Сразу сделаем одно важное замечание: ни один из излагаемых ниже механизмов не объясняет приближенного (с точностью до множителя 5) соотношения

$$\rho_{B,0} \sim \rho_{DM,0},\tag{9.1}$$

где $\rho_{B,0}$ и $\rho_{DM,0}$ — плотность энергии (массы) барионов и частиц темной материи в современной Вселенной. Это приближенное равенство выполнялось и в прошлом, на достаточно поздних этапах расширения Вселенной. В литературе было предложено несколько возможных механизмов генерации темной материи и барионной асимметрии, приводящих к соотношению (9.1), однако убедительного и естественного объяснения приближенного совпадения ρ_B и ρ_{DM} до сих пор не найдено. Возможно, это — действительно случайное совпадение.

¹⁾ Темная материя из взаимодействующих частиц привела бы среди прочего к формированию в основном шарообразных гало, что противоречит наблюдениям (в частности, наблюдения галактик в скоплениях показывают, что подавляющее большинство гало скоплений существенно элипсоидальны). В то же время стоит отметить, что ненулевое сечение упругого рассеяния частиц темной материи самих на себе позволило бы избежать проблем с распределением темной материи в центрах галактик, где компьютерные вычисления в модели с невзаимодействующей холодной темной материей предсказывают слишком резкое увеличение плотности ее массы.

9.1. Холодная, горячая и теплая темная материя

Сделаем довольно естественное предположение о том, что частицы темной материи Х находились в термодинамическом равновесии с обычным веществом в ранней Вселенной²⁾. В какой-то момент эти частицы вышли из равновесия и с тех пор распространяются свободно. Если соответствующая температура T_f (freeze-out) заметно меньше массы частиц темной материи *М*_{*X*}, то эти частицы отщепляются, будучи нерелятивистскими. В этом случае говорят о холодной темной материи. В противоположном случае $T_f \gtrsim M_X$ рассматривают два варианта: $M_X \leq 1$ эВ и $M_X \geq 1$ эВ. Первый случай соответствует горячей темной материи; именно он реализуется для нейтрино, как мы обсуждали в Главе 7. Во втором случае говорят о теплой темной материи. Разница между этими случаями состоит в том, что горячая темная материя является релятивистской к моменту перехода от радиационно-доминированной к пылевидной стадии (напомним, что этот переход происходит при $T_{eq} \sim 1$ эВ, см. раздел 4.4), а теплая темная материя является уже нерелятивистской к этому моменту. Мы увидим во второй части книги, что рост возмущений плотности происходит существенно по-разному на радиационно-доминированной и пылевидной стадиях, и что этот рост существенно зависит от того, является ли темная материя релятивистской или нет на пылевидной стадии. Отсюда и различие между горячей и теплой темной материей.

Один их эффектов, специфических для горячей или теплой темной материи, состоит в следующем. Пусть во Вселенной изначально имелись малые неоднородности плотности темной материи, и был период, когда частицы темной материи являлись релятивистскими и распространялись свободно (это происходило в интервале температур $T_f \gtrsim T \gtrsim M_X$). В этот период частицы темной материи двигались во Вселенной почти со скоростью света, они быстро покидали области с повышенной плотностью и заполняли области с пониженной плотностью, — разумеется, в пределах текущего космологического горизонта. В результате этого процеса свободного перемешивания (free streaming) неоднородности плотности темной материи с размерами меньше текущего горизонта замывались. Таким образом, для горячей и теплой темной материи характерны малые амплитуды возмущений плотности на относительно малых пространственных масштабах.

Свободное перемешивание прекратилось при $T \sim M_X$. Размер горизонта на этот момент, растянутый в $(1+z) \simeq T/T_0$ раз, и определяет максимальный современный размер областей, в которых возмущения плотности подавлены. В случае теплой темной материи момент $T \sim M_X$ имеет место на радиационно-доминированной стадии, и размер горизонта на этот момент равен

$$l_H \sim rac{M_{Pl}^*}{T^2} \sim rac{M_{Pl}^*}{M_r^2}.$$

²⁾ Это предположение, впрочем, может не выполняться, как мы увидим в некоторых примерах в разделе 9.5.

Соответствующий современный размер имеет порядок величины

$$l_{X,0} = l_H \frac{T}{T_0} \sim \frac{M_{Pl}^*}{T_0 M_X}.$$
(9.2)

Таким образом, в моделях с теплой темной материей неоднородности с современными размерами $l_0 < l_{X,0}$ подавлены по сравнению с моделями с холодной темной материей. Для $M_X \sim 1$ кэВ учтем, что $g_* = 3,36$ при $T \sim 1$ кэВ (см. (4.23)), так что

$$M_{Pl}^* = rac{M_{Pl}}{1,66\sqrt{g_*}} = 4 \cdot 10^{18}$$
 ГэВ.

Получим из (9.2)

$$l_{X,0} \sim 3 \cdot 10^{23}$$
 см = 0,1 Мпк, $M_X \sim 1$ кэВ.

В случае $M_X \sim 1$ эВ соответствующий размер имеет порядок

$$l_{X,0} \sim 100 \text{ Mnk}, \quad M_X \sim 1 \text{ B.}$$
 (9.3)

Возмущения на всех масштабах, меньших 100 Мпк, подавлены и в моделях с горячей темной материей.

Наиболее приемлемым вариантом считается холодная темная материя. Частицы горячей темной материи (например, нейтрино Стандартной модели) могут составлять лишь небольшую часть темной материи. Действительно, как видно из (9.3), возмущения плотности не слишком больших пространственных размеров подавлены в моделях с горячей теплой материей. Поэтому в таких моделях сначала формируются самые крупные структуры — сверхскопления, которые потом распадаются на более мелкие структуры — скопления. Галактики формируются в последнюю очередь, и этот процесс должен был начаться не так давно. Такая последовательность формирования структур противоречит наблюдениям.

Пространственные размеры порядка 0,1 Мпк характерны для начальных возмущений, из которых в конечном итоге образовывались структуры с размерами, несколько меньшими обычных галактических масштабов, в том числе карликовые галактики³⁾. Изучение структур таких масштабов приводит к ограничению снизу на массу частиц темной материи

$$M_X \gtrsim 1$$
 кэВ. (9.4)

Как видно, возможность существования теплой темной материи до сих пор не исключена. Подчеркнем, что это ограничение относится к темной материи, когда-то находившейся в термодинамическом равновесии с обычным

³⁾ Плотность материи в галактиках по порядку величины составляет $10^5 - 10^6$ средней плотности материи во Вселенной. Это означает, что материя в галактике собралась из окружающей области с размером, в 50–100 раз превышающим размер галактики. Отсюда и следует приведенная оценка.

веществом⁴⁾. Для случая частиц темной материи с произвольной функцией распределения по импульсам оценку (9.4) следует модифицировать, умножив правую часть на отношение среднего импульса частиц к среднему импульсу равновесного (теплового) распределения, $\langle |\mathbf{p}| \rangle / \langle \mathbf{p} \rangle_T$.

Для частиц темной материи, не находившихся в термодинамическом равновесии с частицами первичной плазмы, модельно-независимое ограничение снизу на их массу существенно слабее. Это ограничение следует из необходимости «заключить» частицы темной материи в галактики. Для частицы темной материи — *бозона* — это означает, что ее волна де Бройля

$$\lambda = rac{2\pi}{M_X v_X}$$

должна быть меньше размеров галактик, т. е. меньше 1 кпк (типичный размер карликовой галактики). Отсюда получим (учитывая, что скорость частиц темной материи в галактике $v_X \sim 10^{-3}$)

$$M_X \gtrsim 3 \cdot 10^{-22}$$
 \Rightarrow B.

Для фермионов ограничение значительно сильнее, что связано с принципом Паули. Предположив, что частицы темной материи в гало — фермионы — имеют максвелловское распределение по скоростям (что ожидается для частиц холодной темной материи), получим для их плотности распределения в фазовом пространстве

$$f(\mathbf{p}, \mathbf{x}) = \frac{\rho_X(\mathbf{x})}{M_X} \cdot \frac{1}{(\sqrt{2\pi}M_X v_X)^3} \cdot \exp\left\{-\frac{\mathbf{p}^2}{2M_X^2 v_X^2}\right\},\,$$

где $\rho_X(\mathbf{x})/M_X$ и v_X^2 — плотность числа и дисперсия скоростей частиц темной материи в гало. Как функция импульса, $f(\mathbf{p}, \mathbf{x})$ принимает наибольшее значение при $\mathbf{p} = 0$,

$$f^{\max}(\mathbf{p}, \mathbf{x}) = rac{
ho_X(\mathbf{x})}{M_X^4} \cdot rac{1}{(2\pi)^{3/2} v_X^3}$$

Это наибольшее значение не может превысить масимально возможную плотность распределения фермионов, допустимую принципом Паули (см. (5.4)),

$$f_X=\frac{g_X}{(2\pi)^3}$$

Полагая $g_X = 2$, $v_X \sim 10^{-3}$ и $\rho(\mathbf{x}) \sim 0.5$ ГэВ/см³ (характерная плотность массы в гало Галактики), получим ограничение снизу на массу фермионов, составляющих всю темную материю в Галактике,

 $M_X \gtrsim 25$ эВ.

Более сильное ограничение следует из существования гало карликовых галактик. Здесь плотность энергии в центре может достигать ~ 15 ГэВ/см³, что дает для массы фермионов, составляющих всю темную материю в карликовых галактиках, следующую оценку:

⁴⁾ Точнее, в кинетическом равновесии, при котором функции распределения по импульсам являются равновесными; при этом концентрации частиц не обязаны быть равновесными, т.е. химическое равновесие может не иметь места.

Отметим, что формально ограничение сверху на массу частицы темной материи составляет около тысячи масс Солнца,

$$M_X \leq 10^3 M_{\odot} \sim 10^{61}$$
 ГэВ.

Оно следует из стабильности звездных скоплений в Галактике, которые разрушались бы наводимым гравитационным полем пролетающих мимо более тяжелых «частиц» темной материи.

9.2. Закалка тяжелых реликтовых частиц

Перейдем к обсуждению одного из наиболее привлекательных космологических сценариев генерации холодной темной материи. В следующих разделах этой Главы мы обсудим несколько конкретных примеров, но сначала проведем вычисление остаточной концентрации тяжелых реликтовых частиц в общем виде.

Итак, рассмотрим следующую ситуацию. Пусть имеются некоторые стабильные тяжелые частицы X, находившиеся в термодинамическом равновесии с остальным веществом во Вселенной при достаточно высоких температурах. Пусть взаимодействия X-частиц с остальным веществом достаточно интенсивны, так что они продолжали находиться в термодинамическом равновесии и при температурах, несколько меньших их массы M_X . Это предположение, разумеется, нужно будет обосновать результатом вычисления температуры закалки. Предположим также, что во Вселенной нет асимметрии между частицами X и античастицами \overline{X} , т. е. их плотности равны между собой:

$$n_X - n_{\overline{X}} = 0. \tag{9.5}$$

Это предположение весьма существенно: результаты этого раздела не применимы ко Вселенной, асимметричной по отношению к X-частицам⁵⁾. Нашей задачей является вычисление современной плотности массы Ω_X частиц X и \overline{X} .

При температуре $T < M_X$ в термодинамическом равновесии имеем

$$n_X = n_{\overline{X}} = g_X \left(\frac{M_X T}{2\pi}\right)^{3/2} e^{-M_X/T}.$$
 (9.6)

Здесь мы учли соотношение (9.5), положив химический потенциал X-частиц равным нулю. Из-за стабильности частиц X и \overline{X} уменьшение их количества в сопутствующем объеме происходит за счет реакции аннигиляции

 $X\overline{X} \to$ легкие частицы.

Пока скорость реакции аннигиляции выше темпа расширения Вселенной, концентрация частиц X дается равновесной формулой (9.6). В какой-то момент плотность X-частиц падает так сильно, что аннигиляция прекращается.

⁵⁾ Другая возможность, приводящая по-существу к тем же результатам, состоит в том, что X — истинно нейтральная частица (т. е. \overline{X} совпадает с X), но X-частицы рождаются и уничтожаются только парами. В этом случае условие (9.5) выполняется автоматически.

После этого число частиц в единице сопутствующего объема остается постоянным. Таким образом, для того чтобы найти остаточную плотность *X*-частиц, прежде всего надо определить температуру, при которой прекращает идти реакция аннигиляции.

Рассмотрим одну \overline{X} -частицу. Среднее время пробега этой частицы до аннигиляции с какой-нибудь частицей X равно

$$\tau = \frac{1}{n_X} \frac{1}{\langle \sigma_{ann} v \rangle},\tag{9.7}$$

где σ_{ann} — сечение аннигиляции, а v — относительная скорость частиц X и \overline{X} . Момент прекращения («вымораживания») реакции аннигиляции можно найти, приравняв время пробега τ и время жизни Вселенной $t \sim H^{-1}$,

$$\frac{1}{n_X}\frac{1}{\langle \sigma_{ann}v\rangle} = H^{-1}(T_f), \qquad (9.8)$$

где T_f обозначает температуру вымораживания реакции аннигиляции ("freezeout temperature").

Как правило, $X\overline{X}$ -аннигиляция происходит в *s*-волне. В этом случае для нерелятивистских частиц зависимость сечения аннигиляции от относительной скорости определяется законом Бете:

$$\sigma_{ann} = \frac{\sigma_0}{v},\tag{9.9}$$

где σ_0 — не зависящая от относительной скорости постоянная, определяемая взаимодействиями, ответственными за аннигиляцию.

Кратко напомним как возникает закон (9.9) (более подробное обсуждение можно найти, например, в книге [30]). Он применим не только к реакции аннигиляции, но и к любой неупругой *s*-волновой реакции с участием нерелятивистских частиц, и основан на предположении, что взаимодействия, отвечающие за реакцию, являются короткодействующими и происходят в области некоторого характерного размера *a*. Как обычно, рассмотрим поток нерелятивистских частиц *X*, налетающий на покоящуюся частицу \overline{X} . Тогда вероятность реакции в единицу времени равна

$$P \sim Ca^3 |\psi(a)|^2,$$

где $\psi(a)$ — волновая функция частиц X в области размера a вблизи частицы \overline{X} , а постоянная C определяется деталями взаимодействия. Чтобы получить сечение, нужно поделить вероятность P на абсолютную величину потока частиц X, налетающих на покоящуюся частицу \overline{X} ,

$$\mathbf{j} = \frac{\mathbf{i}}{2\mathbf{m}}(\boldsymbol{\psi}\boldsymbol{\nabla}\boldsymbol{\psi}^* - \boldsymbol{\psi}^*\boldsymbol{\nabla}\boldsymbol{\psi}).$$

Вдали от области взаимодействия волновую функцию можно взять в виде плоской волны, распространяющейся вдоль оси z с импульсом p,

$$\psi = \mathrm{e}^{ipz}$$
.

при этом абсолютное значение потока равно скорости v. Кроме того, в силу короткодействия, квадрат модуля волновой функции в зоне реакции $|\psi(a)|^2$ равен квадрату модуля волновой функции на бесконечности, т. е. для плоской волны имеем $|\psi(a)|^2 = 1$. В итоге для сечения получаем

where
$$\sigma = rac{P}{|\mathbf{j}|} = rac{Ca^3}{v},$$

в согласии с (9.9). Реакция аннигиляции тяжелых частиц X неизбежно связана с большой передачей энергии $\Delta E \sim M_X$, поэтому характерный размер области, где происходит аннигиляция, мал,

$$a \sim \frac{1}{M_X},$$

и условие короткодействия выполнено.

Отметим, что для очень медленных частиц с ненулевыми противоположными электрическими зарядами значение волновой функции в зоне реакции может сильно отличаться от асимптотического значения на пространственной бесконечности за счет дальнодействующего кулоновского потенциала (подробности см. в книге [30]). Этот эффект существенен при энергиях частиц, меньших энергии связи «атома», состоящего из X и \overline{X} , т. е. $E < \alpha^2 M_X$. В примерах, рассмотренных ниже, эта особенность играть роли не будет.

Пользуясь законом Бете и подставляя равновесное значение (9.6) плотности числа частиц в уравнение (9.8), получаем следующее уравнение, определяющее температуру T_f ,

$$\frac{1}{g_X \sigma_0} \left(\frac{2\pi}{M_X T_f}\right)^{3/2} e^{M_X/T_f} = H^{-1}(T_f) \equiv \frac{M_{Pl}^*}{T_f^2}, \qquad (9.10)$$

где мы считаем, что закалка X-частиц происходит на радиационно-доминированной стадии. В дальнейшем мы будем считать, что масса X-частицы мала по сравнению с M_{Pl}^* . Тогда правая часть уравнения (9.10) содержит большой множитель, и поэтому температура закалки заметно меньше M_X .

Взяв логарифм от обеих частей уравнения (9.10) приведем его к виду (6.18):

$$x=\ln{(Ax^{\alpha})},$$

где

$$x = \frac{M_X}{T_f}, \quad A = \frac{g_X}{(2\pi)^{3/2}} \sigma_0 M_{Pl}^* M_X, \quad \alpha = \frac{1}{2}.$$
 (9.11)

Будем считать, что постоянную σ_0 для сечения аннигиляции можно совсем грубо оценить из размерных соображений как

$$\sigma_0 \sim M_X^{-2}.$$

Этой оценки достаточно, чтобы понять, что для частиц с массами $M_X \ll M_{Pl}^*$ выполнено условие логарифмического приближения, $\ln A \gg 1$. Тогда с логарифмической точностью получаем

$$r = \ln A$$

т. е.

$$T_f = M_X \left[\ln \left(\frac{g_X M_X M_{Pl}^* \sigma_0}{(2\pi)^{3/2}} \right) \right]^{-1}.$$
 (9.12)

Видно, что температура закалки T_f слабо (логарифмически) зависит от сечения аннигиляции. Эта температура отличается от M_X малым множителем

$$\left[\ln\left(\frac{g_{\chi}M_{X}M_{Pl}^{*}\sigma_{0}}{\left(2\pi\right)^{3/2}}\right)\right]^{-1},$$

что оправдывает сделанное в самом начале предположение, что Х-частицы отщепляются, будучи нерелятивистскими.

Плотность X-частиц в момент закалки $n_X(t_f)$ можно определить⁶⁾ из уравнения (9.8):

$$n_X(t_f) = \frac{T_f^2}{M_{Pl}^* \sigma_0}.$$
 (9.13)

После закалки плотность n_X меняется лишь за счет расширения Вселенной и в настоящий момент равна

$$\boldsymbol{n}_{\boldsymbol{X}}(t_0) = \left(\frac{\boldsymbol{a}(t_f)}{\boldsymbol{a}(t_0)}\right)^3 \boldsymbol{n}_{\boldsymbol{X}}(t_f). \tag{9.14}$$

Пользуясь законом сохранения энтропии в сопутствующем объеме (см. уравнение (5.36)), можно переписать (9.14) в следующем виде:

$$n_X(t_0) = \left(\frac{s_0}{s(t_f)}\right) n_X(t_f), \qquad (9.15)$$

где $s(t_f)$ и s_0 — плотности энтропии на момент закалки и в настоящее время, при этом современная плотность энтропии равна (см. (5.40))

$$s_0 = 2 \cdot \frac{4\pi^2}{90} \left(T_{\gamma}^3 + 3 \cdot \frac{7}{8} T_{\nu}^3 \right) = 2.8 \cdot 10^3 \text{ cm}^{-3}. \tag{9.16}$$

Следовательно, современная плотность числа Х-частиц дается соотношением

$$n_X(t_0) = \frac{s_0 T_f^2}{s(t_f) M_{Pl}^* \sigma_0} = 3.8 \cdot \frac{s_0}{T_f \sigma_0 M_{Pl} \sqrt{g_*(t_f)}},$$
(9.17)

где мы воспользовались тем, что

$$M_{Pl}^* = rac{M_{Pl}}{1,66\sqrt{g_*}}$$
 и $s(t_f) = g_*(t_f) \cdot rac{4\pi^2}{90}T_f^3.$

196

⁶⁾ Подчеркнем, что подстановка температуры (9.12) в выражение (9.6) для плотности привела бы к больщой погрешности, поскольку температура входит экспоненциально в (9.6), а выражение (9.12) имеет лишь логарифмическую точность.

Наконец, пользуясь выражением (9.12) для температуры закалки, получаем следующее выражение для современной относительной плотности массы частиц X и \overline{X} :

$$\Omega_X = 2 \cdot \frac{M_X n_X(t_0)}{\rho_c} = \frac{7.6s_0}{\rho_c \sigma_0 M_{Pl} \sqrt{g_*(t_f)}} \cdot \ln\left(\frac{g_X M_{Pl}^* M_X \sigma_0}{(2\pi)^{3/2}}\right).$$
(9.18)

Подставляя численные значения s_0 , ρ_c и M_{Pl} , имеем окончательно

$$\Omega_X = 3 \cdot 10^{-10} \left(\frac{\Gamma_{\vartheta} B^{-2}}{\sigma_0} \right) \frac{1}{\sqrt{g_*(t_f)}} \ln \left(\frac{g_X M_{Pl}^* M_X \sigma_0}{(2\pi)^{3/2}} \right) \cdot \frac{1}{2h^2}.$$
 (9.19)

Видно, что параметр, от которого Ω_X зависит наиболее существенным образом — это сечение аннигиляции σ_0 . Зависимость от массы частицы — лишь логарифмическая, а эффективное число степенй свободы g_* слабо меняется на протяжении большей части расширения Вселенной.

Отметим, что в этом разделе мы обсуждаем условия нарушения химического равновесия в космической плазме. Вообще говоря, представляет интерес и вопрос о кинетическом равновесии, т. е. вопрос о том, являются ли равновесными функции распределения X-частиц по импульсам. Кинетическое равновесие имеет место благодаря рассеянию X-частиц на обычных частицах, поэтому время между столкновениями не зависит от концентрации X-частиц и является коротким по сравнению со временем пробега до аннигиляции (9.7). Это означает, что кинетическое равновесие поддерживается гораздо дольше, чем химическое, т. е. оно нарушается при температуре $T_{kin} \ll T_f$. Например, если X-частицы участвуют в слабых взаимодействиях, то сечение их упругого рассеяния, скажем, на электронах при энергии электронов $E \ll 100$ ГэВ по размерности оценивается величиной

$$\sigma_{el} \sim G_F^2 E^2. \tag{9.20}$$

Время свободного пробега Х-частиц равно по порядку величины

$$au_{el} \sim (n_e \cdot \sigma_{el} \cdot v)^{-1}$$
,

где n_e — концентрация электронов, а v — относительная скорость X-частиц и электронов, $v \simeq 1$ при $T \gg 1$ МэВ. Для грубой оценки температуры нарушения кинетического равновесия приравняем τ_{el} времени жизни Вселенной $H^{-1}(T)$ и получим (соответствующая выкладка повторяет сделанную в разделе 7.1) $T_{kin} \sim 1$ МэВ. В действительности эта оценка — довольно грубая, но она показывает, что кинетическое равновесие нарушается для X-частиц весьма поздно.

Задача 1. Уточнить приведенную оценку для T_{kin} в случае, когда сечение упругого рассеяния X-частиц на электронах имеет вид (9.20). Указание: воспользоваться соображениями, приведенными в начале раздела 6.3.

Рассмотрим теперь несколько конкретных примеров применения формулы (9.19).

9.3. Слабовзаимодействующие массивные частицы (WIMPs)

В качестве основного применения формулы (9.19) обсудим возможность того, что неизвестные пока стабильные тяжелые частицы составляют холодную темную материю. Формула (9.19) тогда позволяет оценить параметры (в первую очередь сечение аннигиляции) этих частиц. Плотность холодной темной материи в современной Вселенной составляет

$$\Omega_{CDM} \approx 0.2 \div 0.3,$$

где мы используем консервативный диапазон значений (в действительности, как мы неоднократно упоминали, Ω_{CDM} известна сегодня с лучшей точностью). Чтобы получить оценку для сечения аннигиляции, можно положить из размерных соображений $\sigma_0 \sim 1/M_X^2$ в выражении под логарифмом в формуле (9.19). Взяв для оценки значения $M_X = 100$ ГэВ и $g_* = 100$, получим для логарифмического множителя в (9.19)

$$\ln\left(\frac{g_X M_{Pl}^* M_X \sigma_0}{(2\pi)^{3/2}}\right) \sim \ln\left(\frac{g_X M_{Pl}^*}{(2\pi)^{3/2} M_X}\right) \sim 30.$$
(9.21)

Эта оценка справедлива в широком диапазоне значений массы M_X и сечения σ_0 из-за того, что логарифм является медленно меняющейся функцией. Корень из эффективного числа степеней свободы $\sqrt{g_*(t_f)}$, также меняется незначительно: при $T \ge 100$ ГэВ он принимает значение $\sqrt{g_*(T)} \sim 10$, а при $T \sim 100$ МэВ имеем $\sqrt{g_*(T)} \sim 3$ (см. Приложение В). Таким образом, из выражения (9.19) получаем следующую оценку для сечения аннигиляции частиц, составляющих холодную темную материю:

$$\sigma_0 \sim \frac{3 \cdot 10^{-10} \cdot 30 \ \text{F} \Rightarrow \text{B}^{-2}}{(3 \div 10) \cdot (0, 2 \div 0, 3)} = (0, 3 \div 1, 5) \cdot 10^{-8} \ \text{F} \Rightarrow \text{B}^{-2}.$$
(9.22)

Замечательно, что эта величина сравнима с сечениями, характерными для слабых взаимодействий при энергиях порядка 100 ГэВ, $\sigma_w \sim \alpha_w^2 / M_W^2 \sim 10^{-7}$ ГэВ⁻².

Из результата (9.22) следует сразу несколько важных выводов. Во-первых, его можно рассматривать как космологическое ограничение снизу на сечение аннигиляции гипотетических стабильных частиц, которые могут появляться в расширениях Стандартной модели физики частиц. Действительно, если сечение аннигиляции меньше, чем приведенное в оценке (9.22), то плотность массы таких частиц в настоящее время превышает наблюдаемое значение плотности энергии нерелятивистского вещества во Вселенной. Основным предположением, заложенным в это ограничение, является допущение, что *X*-частицы когда-либо находились в термодинамическом равновесии. Заметим, что для сечения аннигиляции частиц массы M_X можно дать ограничение сверху

$$\sigma_0 \leq \frac{4\pi}{M_X^2}.\tag{9.23}$$

Рис. 9.1. Аннигиляция гипотетических стабильных частиц *X* в частицы Стандартной модели *f*₁ и *f*₂

В случае, когда работает теория возмущений, это ограничение связано с тем, что аннигиляция описывается диаграммами типа изображенной на рис. 9.1. Предполагается, что виртуальная частица Y, изображенная горизонтальной линией, для медленных X-частиц имеет энергию $E = 2E_X = 2M_X$ в системе центра масс. Пропагатор этой частицы приводит к появлению размерного множителя $1/M_X^2$ в выражении для сечения⁷⁾. Кроме того, в общем случае есть дополнительное подавление сечения, связанное с малостью константы взаимодействия.

Ограничение (9.23) может не выполняться в теориях с сильной связью. Грубо говоря, это означает, что *X*-частица является «рыхлым» объектом, состоящим из элементарных частиц (примером такой частицы является протон). Трудно, однако, придумать пример ситуации, когда сечение аннигиляции на много порядков превышает ограничение (9.23).

Со сделанной оговоркой можно использовать выражения (9.22) и (9.23) для получения космологического ограничения сверху на массу стабильных частиц

$$M_X \lesssim 100 \text{ T} \Rightarrow \text{B}. \tag{9.24}$$

Еще раз подчеркнем, что это ограничение получается в предположении о том, что *X*-частицы находились в термодинамическом равновесии в ранней Вселенной. Если взаимодействия *X*-частиц не слишком слабы, для этого достаточно, чтобы в ранней Вселенной реализовывались температуры порядка $(1/30)M_X$, см. (9.12) и (9.21).

Задача 2. Добавим к составу полей Стандартной модели новое вещественное скалярное поле *X*, взаимодействующее только с хиггсовским дублетом *H*. К лагранжиану Стандартной модели добавим выражение

$$\Delta \mathcal{L} = \frac{1}{2} \partial_{\mu} X \partial^{\mu} X - \frac{\kappa}{2} H^{\dagger} H X^{2} - \frac{\nu}{4} X^{4}.$$

Дискретная симметрия $(X \to -X)$ обеспечивает стабильность скаляра X, который будет кандидатом на роль темной материи.

Пусть в получившейся теории вакуумное среднее поля X равно нулю. Рассматривая массу хиггсовского бозона m_h в феноменологически приемлемом интервале

199

⁷⁾ Если $M_Y > M_X$, то пропагатор Y-частицы подавлен как M_Y^{-2} , что только усиливает ограничение (9.23).

115 ГэВ $< m_h \leq 300$ ГэВ, найти область значений массы скаляра X, в которой реликтовые X-частицы полностью сформируют темную материю во Вселенной.

Отметим, что в последнее время активно обсуждается возможность того, что часть темной материи (или даже вся она) состоит из более тяжелых частиц. Чтобы такой сценарий работал, необходимо, чтобы эти частицы никогда не были в термодинамическом равновесии и рождались в ранней Вселенной нетепловым образом (например, за счет эффекта рождения частиц зависящим от времени гравитационным полем). Возможные механизмы рождения сверхтяжелых частиц в ранней Вселенной кратко рассмотрены в разделе 9.7.2.

Оценка (9.22) представляет основной интерес с иной точки зрения. В предположении, что изложенный здесь простой механизм ответственен за образование холодной темной материи, она прямо указывает на энергетический масштаб взаимодействий гипотетических *X*-частиц, $\sigma_0^{-1/2} \sim 10$ ТэВ. В действительности этот масштаб несколько ниже, поскольку в реалистических теориях со слабой связью сечение аннигиляции содержит подавление малой константой связи, которую мы обозначим α_X . Полагая, что энергетический масштаб взаимодействий *X*-частиц не превышает по порядку величины их массу, имеем

$$\sigma_0 \sim \frac{\alpha_X^2}{M_X^2}.\tag{9.25}$$

Взяв в качестве примера $\alpha_X \sim 1/30$ (константа связи *W*-бозона в Стандартной модели), получим из (9.12) и (9.22)

$$T_f \simeq \frac{M_X}{20},\tag{9.26}$$

$$M_X \sim 200 \div 600$$
 ГэВ. (9.27)

Такая оценка означает, что имеются реальные шансы обнаружить частицы, составляющие холодную темную материю, на новом поколении ускорителей. Стоит отметить, что наша оценка (9.27) для массы является весьма грубой. Аккуратные вычисления в конкретных моделях показывают, что масса частиц темной материи может оказаться даже ниже 100 ГэВ, что еше более перспективно с точки зрения обнаружения этих частиц на ускорителях. Отметим еще, что эта оценка особенно интересна в свете того, что стабильные частицы с массой в области 100 ГэВ – 1 ТэВ, участвующие в слабых взаимодействиях, предсказываются в одном из перспективных расширений Стандартной модели — теориях с низкоэнергетической суперсимметрией, см. раздел 9.5.

Таким образом, имеются основания ожидать, что новые стабильные частицы, составляющие холодную темную материю, будут в обозримое время экспериментально обнаружены. Экспериментальное исследование их свойств, вычисление на этой основе их концентрации в современной Вселенной и сравнение ее с наблюдательными данными позволят тогда подтвердить картину эволюции Вселенной при температурах порядка десятков ГэВ. Для сравнения, как мы уже указывали в Главе 1, самая ранняя стадия эволюции горячей Вселенной, для которой сегодня возможно прямое сопоставление теории с наблюдениями — это стадия первичного нуклеосинтеза, происходившего при температурах порядка МэВ и ниже (см. Главу 8). Мы заключаем, что исследование частиц темной материи позволит продвинуться на четыре порядка по температуре (на восемь порядков по времени) к моменту Большого взрыва.

Поиск частиц темной материи интенсивно проводится, однако пока без положительных результатов. Прямой поиск слабовзаимодействующих реликтовых тяжелых частиц (WIMPs — weakly interacting massive particles) ведется в экспериментах, нацеленных на регистрацию энерговыделения в детекторе, вызванного возможным рассеянием тяжелой реликтовой частицы на ядре вещества детектора. Темная материя, как и обычное вещество, имеет повышенную плотность в галактиках, при этом ожидается, что в окрестности Земли плотность массы темной материи сравнима с плотностью обычного вещества и составляет

$$\rho_{CDM} \simeq 0.3 \ \frac{\text{FbB}}{\text{cm}^3}.$$

Принимая во внимание, что ожидаемая скорость частиц темной материи в Галактике $v_X \sim 0.5 \cdot 10^{-3}$ (скорость орбитального вращения вокруг центра Галактики), для энергии, переданной ядру массы M_A , будем иметь оценку

$$\Delta E \lesssim \frac{2}{M_A} \cdot \left(\frac{v_X M_A M_X}{M_A + M_X}\right)^2 \simeq 50 \cdot \left[\left(\frac{\min\{M_A, M_X\}}{100 \text{ f} \Im \text{B}}\right)^2 \frac{100 \text{ f} \Im \text{B}}{M_A}\right] \text{ k} \Im \text{B}$$

Видно, что передача энергии составляет десятки кэВ, т. е. весьма мала. Тем не менее, в экспериментах ведется поиск энерговыделений такой величины. Они должны происходить с частотой

$$\nu\simeq v_X n_X\cdot N_A\cdot \sigma_{AX},$$

определяемой сечением упругого рассеяния реликтовой частицы на ядре σ_{AX} , скоростью v_X и локальной плотностью числа частиц темной материи $n_X = \rho_{CDM}/M_X$, а также количеством ядер в детекторе N_A . В качестве примера, при сечении упругого рассеяния на ядрах $\sigma_{AX} \sim 10^{-38}$ см² и массе X-частиц $M_X = 100$ ГэВ в детекторе массой 10 кг с ядрами мишени с атомным номером A = 100 ожидается

$$\nu \sim 10^{-3} \left(0,3 \, \frac{\Gamma \Im B}{c M^3} \cdot \frac{1}{100 \, \Gamma \Im B} \right) \left(6 \cdot 10^{23} \cdot 10^4 \, \Gamma \Im B \cdot \frac{1}{100 \, \Gamma \Im B} \right) \cdot 10^{-38} \, c M^2 \sim 5 \cdot 10^{-8} \, c^{-1},$$

т. е. порядка одного события в год⁸⁾. Отсутствие сигнала позволяет исключить соответствующую область в пространстве модельно-независимых⁹⁾ параметров (M_X, σ_{AX}) , см. рис. 9.2.

⁸⁾ В действительности существенен эффект когерентного рассеяния на ядрах мишени, значительно увеличивающий вероятность регистрации частиц темной материи в детекторе.

⁹⁾ Вообще говоря, сечение рассеяния может существенно зависеть от спина ядра. Это обстоятельство учитывается при поиске возможного сигнала от частиц темной материи. Для случая зависящего от спина ядра сечения упругого рассеяния также существуют ограничения, аналогичные приведенным на рис. 9.2.

Рис. 9.2. (Цветную версию рисунка см. на вклейке.) Исключенные области в пространстве параметров (M_X, σ_{AX}) [34]. Области выше кривых исключены соответствующими экспериментами на 90 %-м уровне достоверности. Выделенные области в нижней части рисунка показывают области параметров, ожидаемых в суперсимметричных расширениях стрималов и растии тариметров, ожидаемых в суперсимметричных расширениях

Станадартной модели, темная область соответствует модели mSUGRA (см. раздел 9.6)

Задача 3. Найти плотность реликтовых массивных нейтрино четвертого гипотетического поколения Стандартной модели, считая основным каналом аннигиляции этих нейтрино *s*-канальную аннигиляцию в виртуальный *Z*-бозон. Полагать, что масса новых нейтрино удовлетворяет неравенству $m_{\nu} > M_Z/2$. Оценить сечение их рассеяния на ядрах и получить ограничение на их массу из данных, приведенных на рис. 9.2. *Указание*: считать, что концентрация новых нейтрино в галактиках усилена по сравнению с их средней концентрацией во Вселенной множителем 10⁵, как для обычного вещества.

Помимо прямого поиска частиц темной материи, ведутся эксперименты по их косвенному обнаружению. Это, в частности, эксперименты, направленные на поиск продуктов аннигиляции этих частиц, происходящей в современной Галактике.

Наиболее перспективными для поиска аннигиляции темной материи в гало Галактики представляются монохроматические фотоны, появляющиеся в процессах $2 \rightarrow 2$, $XX \rightarrow \gamma\gamma$, $XX \rightarrow Z\gamma$, а также рождающиеся при аннигиляции античастицы, такие как позитроны и антипротоны. Для фотонов соответствующий сигнал должен быть усилен в некоторых направлениях (например, из центра Галактики, из центров карликовых галактик и галактики Андромеда и т. д.), где ожидается повышенная концентрация частиц темной материи.

Тяжелые реликтовые частицы также могут скапливаться в астрофизических объектах (для такой возможности существенно, чтобы частицы темной материи могли хоть и редко, но все же рассеиваться на обычных частицах, чтобы уменьшить свой импульс и под действием гравитационного притяжения остаться внутри астрофизического объекта). С течением времени концентрация частиц темной материи внутри астрофизических объектов будет повышаться. В результате интенсивность аннигиляции частиц темной материи в обычные частицы увеличится (число актов аннигиляции в единичном объеме в единицу времени пропорционально квадрату плотности аннигилирующих частиц). Если среди аннигиляционных каналов есть аннигиляция в энергичные нейтрино, например в процессе $XX \to \overline{\nu} \nu$, то рожденные нейтрино могут без потери энергии покинуть источник, и поток таких нейтрино может быть зарегистрирован на специальных детекторах — нейтринных телескопах. В качестве астрофизических объектов, накапливающих частицы темной материи, наиболее перспективными для наблюдения являются Земля и Солнце; поиск потоков монохроматичных нейтрино высоких энергий из центра Земли и Солнца интенсивно ведется на подземных, глубоководных и подледных нейтринных телескопах. Непрямые поиски частиц темной материи также пока не увенчались успехом.

Задача 4. Предположим, что в природе имеются стабильные электрически заряженные X^{\pm} -частицы с массой, много большей массы протона. Будем считать, что все барионы в ранней Вселенной состоят из протонов и α -частиц (ядер ⁴He). Плотность числа α -частиц по отношению к протонам равна 6%.

- 1) Найдите энергию связи «атома», состоящего из X^- -частицы и протона (α -частицы).
- 2) Считая концентрацию X^- -частиц малой по сравнению с концентрацией барионов, найдите, в каком виде они преимущественно доживут до настоящего времени в виде связанного состояния с α -частицей, с протоном или в свободном состоянии.
- 3) Предположив, что в ранней Вселенной X^{\pm} -частицы находились в состоянии равновесия с частицами первичной плазмы и асимметрия между X^- - и X^+ -частицами равна η_X , найти плотность числа реликтовых X-частиц в зависимости от их массы M_X и величины асимметрии η_X .
- 4) Используя результаты, полученые в предыдущих пунктах задачи, найти ограничение на величину асимметрии η_X , исходя из того, что безрезультатные поиски тяжелых аномальных изотопов («дикий водород»), образованных гипотетическими **X**-частицами, дают ограничение не слабее чем $\Omega_X < 10^{-6}$ на их долю в современной плотности энергии Вселенной для $M_X < 20$ ТэВ.

9.4. Другие применения результатов раздела 9.2

Прежде чем переходить к обсуждению конкретных моделей, в которых имеются кандидаты на роль частиц темной материи, приведем два примера применения результатов раздела 9.2.

9.4.1. Остаточная плотность барионов в барион-симметричной Вселенной

Найдем плотность протонов, остающихся после аннигиляции протонантипротонных пар в гипотетической ситуации, когда во Вселенной нет барионной асимметрии, т. е. плотности протонов и антипротонов равны друг другу¹⁰. Подставляя массу протона

$$m_n pprox 1$$
ГэВ

и сечение аннигиляции протон-антипротонной пары, по порядку величины равное¹¹⁾

$$\sigma_0 \approx 100 \text{ FbB}^{-2}, \tag{9.28}$$

в соотношение (9.12), получаем следующее значение температуры закалки:

$$T_f \approx 20 \text{ M} \Rightarrow \text{B},$$
 (9.29)

где при вычислении M_{Pl}^{*} мы учли, что при таких температурах

$$g_* = 2 + \frac{7}{8} \cdot (2 \cdot 2 + 3 \cdot 2) = \frac{43}{4},$$

что соответствует вкладам фотонов, электрон-позитронных пар и трех типов нейтрино. Из формулы (9.19) получаем следующее значение барионной плотности в барион-симметричной Вселенной:

$$\Omega_B \approx 5 \cdot 10^{-11}$$
.

Это примерно на девять порядков ниже реальной плотности барионов во Вселенной. Барионного вещества в нашей Вселенной сравнительно много только благодаря тому, что она является барион-асимметричной.

9.4.2. * Тяжелые нейтрино

В качестве еще одного примера найдем космологическое ограничение на массу гипотетического тяжелого нейтрино 4-го поколения, не взаимодействующего с лептонами через заряженные токи, но участвующего во взаимодействиях с нейтральными токами. Будем считать, что его масса невелика, $m_{\nu} \ll M_{Z,W}$. Анализ, приведенный в Главе 7, применим к случаю малой массы, когда $T_f \gg m_{\nu}$. В обратной ситуации, когда нейтрино аннигилирует будучи нерелятивистским, сечение аннигиляции по порядку величины равно

$$\sigma_0 \sim G_F^2 m_\nu^2 \tag{9.30}$$

и не зависит от температуры. Подставляя это сечение в формулу (9.19), получаем для плотности таких нейтрино следующую оценку:

$$\Omega_{\nu} \approx 0.55 \left(\frac{3\Gamma 9B}{m_{\nu}}\right)^2, \qquad (9.31)$$

¹⁰⁾ Кроме протонов во Вселенной имелись также и нейтроны. Для наших целей в этом разделе отличие их массы и сечения аннигиляции от массы и сечения аннигиляции протонов несущественно. Поэтому мы будем говорить о протонах, имея в виду все барионы.

¹¹⁾ Заметим, что сечение (9.28) на два порядка превышает ограничение (9.23). Это связано с тем, что протон является «рыхлым» объектом, состоящим из кварков и глюонов.

где под знаком логарифма мы положили $m_{\nu} = 3$ ГэВ и эффективное число степеней свободы взяли равным

$$g_* = 2 \cdot (1+8) + \frac{7}{8} \cdot (2 \cdot 4 + 2 \cdot 3 + 3 \cdot 4 \cdot 3) = 61\frac{3}{4},$$

что соответствует учету фотона, глюонов, двух типов заряженных лептонов и нейтрино и трех типов кварков 12 u, d и s.

Таким образом, мы видим, что существование тяжелых стабильных нейтрино с массой $m_{\nu} \leq 3$ ГэВ противоречит космологическим данным. В течение долгого времени это было самым сильным ограничением на массу тяжелого нейтрино. Сегодня из ускорительных экспериментов запрещена вся область масс $m_{\nu} < M_Z/2$. Этот результат следует из измерения ширины распада Z-бозона в недетектируемые частицы.

Задача 5. Проверьте, что для нейтрино с массой $m_{\nu} = 3$ ГэВ действительно выполнено предположение, что закалка происходит в нерелятивистском режиме, $T_f < m_{\nu}$. Найдите массу нейтрино, при которой это предположение перестает выполняться. Покажите, тем не менее, что космологически исключена вся область масс стабильных нейтрино

20 э
$$\mathrm{B} \leq m_{\nu} \leq 3$$
 Гэ B ,

где нижнее ограничение было получено в Главе 7, формула (7.10).

9.5. Новые частицы — кандидаты на роль темной материи

В следующих разделах мы рассмотрим некоторые популярные модели физики частиц, в которых имеются кандидаты на роль частиц темной материи¹³⁾. В Стандартной модели таких кандидатов нет, поэтому космологические данные о темной материи свидетельствуют о необходимости выхода за рамки Стандартной модели. Это весьма важное для физики частиц утверждение.

С точки зрения прямой экспериментальной регистрации частиц темной материи всех кандидатов можно расклассифицировать, используя всего два параметра — массу частицы M_X и сечение ее рассеяния¹⁴⁾ на ядрах σ_{AX} . Для наиболее популярных кандидатов результат представлен на рис. 9.3.

Из этой диаграммы видно, насколько сильно отличаются между собой кандидаты. Поиск кандидатов, занимающих области в разных частях этой диаграммы, проводится, как правило, с использованием разных методов детектирования. В ряде случаев, особенно для очень тяжелых и для очень слабо взаимодействующих частиц (wimpzilla и гравитино соответственно) реалистичный способ детектирования реликтовых частиц пока вообще неизвестен.

¹²⁾ При $m_{\nu} > 20$ ГэВ температура закалки превышает 1 ГэВ, и вклад в g_* дают τ -лептон и более тяжелые кварки. Это, однако, несильно меняет оценку (9.31).

¹³⁾ Один из таких кандидатов — тяжелые стерильные нейтрино — был рассмотрен в разделе 7.3.

¹⁴⁾ Для аксиона и аксино — сечение конверсии в другие частицы, поскольку для этих кандидатов оно существенно больше упругого сечения.

9.6. * Стабильные частицы в суперсимметричных теориях

Суперсимметрия — это симметрия между бозонами и фермионами. В (3+1)-мерных простейших (так называемых N = 1) суперсиметричных моделях у всякой частицы имеется *суперпартнер* — частица с другой статистикой (и спином, отличающимся на 1/2), но теми же самыми взаимодействиями. Иными словами, суперпартнеры имеют те же квантовые числа по отношению к калибровочной группе теории, что и сами частицы, а константы других взаимодействий (например, юкавских) жестко связаны. При этом суперпартнером векторной частицы (например, глюона) является частица со спином 1/2 (глюино), а суперпартнером фермиона со спином 1/2 (например, кварка) служит скаляр (скварк). Более точно, число спиновых степеней свободы для частицы и суперпартнера должно совпадать; так, кварку (две спиновые степени свободы) соответствуют две скалярные частицы (по одной спиновой степени свободы на каждую).

Поясним сделанные утверждения на примере суперсимметричного обобщения квантовой электродинамики — теории массивного дираковского фермиона ψ (электрон), взаимодействующего с абелевым калибровочным полем A_{μ} (фотон). Лагранжиан КЭД имеет вид

$${\cal L}_{QED} = -rac{1}{4}F_{\mu
u}F^{\mu
u} + iar\psi\gamma^\mu(\partial_\mu + ieA_\mu)\psi + mar\psi\psi.$$

Суперсимметризация электродинамики приводит к появлению в теории четырех скалярных степеней свободы (по числу фермионных степеней свободы в электродинамике: два для электрона и два для позитрона) — двух комплексных скалярных полей ϕ_+ и ϕ_- , несущих относительно калибровочной группы U(1) заряды +1 и -1 соответственно. Очевидный вклад в лагранжиан для них имеет вид

$$egin{aligned} \mathcal{L}_1 &= \mathcal{D}_\mu \phi_+^* \mathcal{D}^\mu \phi_+ + m_+^2 \phi_+^* \phi_+ + \mathcal{D}_\mu \phi_-^* \mathcal{D}^\mu \phi_- + m_-^2 \phi_-^* \phi_-, \ &\mathcal{D}_\mu \phi_\pm &= (\partial_\mu \mp i e A_\mu) \phi_\pm, \end{aligned}$$

где $m_{+} = m_{-} = m$ — массы скалярных полей, в случае ненарушенной суперсимметрии совпадающие с массой электрона (для случая спонтанно нарушенной суперсимметрии массы партнеров и суперпартнеров могут отличаться — см. ниже). Кроме того, появляется электрически нейтральный безмассовый майорановский фермион λ_L (две степени свободы) — фотино, суперпартнер фотона, свободный лагранжиан которого имеет вид

$${\cal L}_2 = i ar\lambda_L \gamma^\mu \partial_\mu \lambda_L$$

Помимо обычных калибровочных взаимодействий, имеющих место в U(1)-калибровочной теории с фермионами и скалярами, в модели есть их суперсимметричные «дополнения» — калибровочно-инвариантное юкавское взаимодействие между фотино, электроном и скалярами,

$${\cal L}_3=i\sqrt{2}ear\lambda_L\psi\cdot \phi_--i\sqrt{2}ear\psi\lambda_L\cdot \phi_++h.\,c.,$$

и самодействие в скалярном секторе,

$$\mathcal{L}_4 = -rac{e^2}{2}(\phi_+^*\phi_+ - \phi_-^*\phi_-)^2.$$

Величины констант связи «дополнительных» взаимодействий однозначно фиксированы величиной калибровочной константы связи. Жесткая связь между константами связи для разных секторов модели — общее свойство лагранжианов суперсимметричных теорий.

Аналогичным образом выглядят N = 1 суперсимметричные обобщения и других (3 + 1)-мерных моделей. В частности, суперсимметризация обычного юкавского взаимодействия приводит к появлению скалярного самодействия и наоборот.

В моделях с ненарушенной суперсимметрией массы частиц и их суперпартнеров совпадают. Эта особенность сразу делает такие суперсимметричные обобщения Стандартной модели феноменологически неприемлемыми: ни один суперпартнер частиц Стандартной модели не был до сих пор обнаружен. В феноменологически приемлемых обобщениях Стандартной модели суперсимметрия должна быть спонтанно нарушена. В этом случае спектр масс будет существенно другим: массы частиц и их суперпартнеров не будут совпадать. Многочисленные и пока безрезультатные поиски суперпартнеров дают на их массы ограничения снизу; грубо говоря, $M_S \gtrsim 100$ ГэВ. Отметим, что для моделей со спонтанным нарушением суперсимметрии теоретические соображения ¹⁵⁾ указывают на диапазон масс суперпартнеров 30 ГэВ – 3 ТэВ как на наиболее предпочтительный. Поиск суперпартнеров является одной из важных задач экспериментов в области физики высоких энергий. В частности, большие надежды возлагаются на поиски суперпартнеров на протонпротонном коллайдере LHC в CERN с энергией 14 ТэВ в системе центра масс.

Суперсимметричные обобщения Стандартной модели в общем случае содержат взаимодействия, приводящие к процессам с нарушением барионного и/или лептонных чисел. Многолетние поиски такого рода процессов (в частности, поиски распада протона) не принесли пока положительных результатов, однако существенно сузили класс феноменологически приемлемых теорий, обобщающих Стандартную модель физики частиц. В частности, в феноменологически приемлемых суперсимметричных обобщениях константы взаимодействий, приводящих к процессам с нарушением барионного и лептонных чисел, обязаны быть нулевыми или крайне малыми. Поэтому наиболее реалистичными представляются суперсимметричные модели с так называемой R-четностью, которая, среди прочего, запрещает появление при низких энергиях взаимодействий, нарушающих барионное или лептонные числа.

R-четность — дополнительная дискретная симметрия, которая делит все частицы в модели на два класса: четные и нечетные (положительная и отрицательная R-четность). Все известные частицы Стандартной модели, а также хиггсовские бозоны считаются четными, а их суперпартнеры — нечетными. Четность состояния с несколькими частицами равна произведению четностей всех частиц, поэтому состояние с одним суперпартнером и любым количеством обычных частиц имеет отрицательную *R*-четность, а состояние с двумя суперпартнерами — положительную. Предполагается, что все взаимодействия сохраняют *R*-четность. Как результат, в столкновении обычных частиц суперпартнеры рождаются парами (конечно, пара не обязательно должна состоять из частицы и ее же античастицы). Отсюда же следует, что в суперсимметричных обобщениях Стандартной модели с сохраняющейся *R*-четностью существует по крайней мере одна стабильная частица — это легчайшая среди *R*-нечетных частиц. Именно она — легчайшая среди суперпартнеров частиц Стандартной модели (LSP — the lightest superpartner) и является кандидатом на роль темной материи. Поскольку электрически за-

¹⁵⁾ Среди таких соображений наиболее важные — сокращение квадратичных расходимостей при вычислении квантовых поправок в суперсимметричных моделях и, как следствие, ослабление проблемы иерархии калибровочных масштабов ($M_W \ll M_{Pl}$), а также объединение калибровочных констант связи при высоких энергиях.

ряженные стабильные частицы с массой 30 ГэВ – 20 ТэВ не могут составлять темную материю (см. задачу 3), то потенциально интересными кандидатами в суперсимметричных моделях являются нейтралино, снейтрино и гравитино ¹⁶⁾. Рассмотрим их по порядку.

9.6.1. Нейтралино

Весьма популярным кандидатом на роль частиц темной материи являются нейтралино: большинство экспериментов по поиску темной материи так или иначе ориентированы именно на поиск слабо взаимодействующих тяжелых частиц, WIMPob, каковыми и являются, в частности, нейтралино. Причин такой популярности три. Во-первых, нейтралино предсказываются в суперсимметричном обобщении Стандартной модели физики частиц. Вовторых, в теоретически привлекательных моделях массы нейтралино и их константы связи автоматически лежат в той области, которую мы рассматривали в разделе 9.3, т. е. плотность массы реликтовых нейтралино, находившихся в равновесии в ранней Вселенной, без точной подстройки параметров может составлять необходимую величину $\rho_{CDM} \sim 0.2 \rho_c$. Наконец, нейтралино принимают участие в слабых взаимодействиях, что дает надежду обнаружить их в экспериментах по прямому и косвенному поиску частиц темной материи: сечения упругого рассеяния нейтралино на частицах Стандартной модели и аннигиляции нейтралино хоть и малы, но находятся в экспериментально доступной области (см. рис. 9.3).

Нейтралино — общее название для электрически нейтральных фермионов, являющихся линейными комбинациями суперпартнеров Z-бозона, фотона и нейтральных хиггсовских бозонов в суперсимметричных расширениях Стандартной модели. В минимальном суперсимметричном расширении нейтралино — четыре майорановских фермиона. Дело в том, что суперсимметричные расширения Стандартной модели с необходимостью содержат не менее двух хиггсовских дублетов, поэтому суперпартнеров хиггсовских бозонов — хиггсино — как минимум два. Еще два нейтральных фермиона — это фотино и суперпартнер Z-бозона, которые объединяют термином *калибрино* (gaugino в англоязычной литературе).

Нейтралино участвуют в калибровочных взаимодействиях Стандартной модели наравне со своими партнерами. Поэтому если в ранней Вселенной реализовывались температуры выше энергетического масштаба масс суперпартнеров, $T \gtrsim M_S$, то нейтралино, наряду с другими суперпартнерами частиц Стандартной модели, находились в тепловом равновесии в первичной плазме.

Если легчайшее из массовых состояний нейтралино является легчайшим и среди всех суперпартнеров, т. е. является LSP, то такие нейтралино образуют по крайней мере одну из компонент темной материи. Эффективно взаимодействуя в первичной плазме, нейтралино с массой $M_N \sim 30$ ГэВ – 3 ТэВ

¹⁶⁾ Мы рассматриваем здесь только минимальное суперсимметричное расширение Стандартной модели, оставляя без обсуждения такие кандидаты на роль темной материи, как синглино, аксино и др.

хорошо подходят под рассмотренный в разделе 9.2 общий случай холодной темной материи. Вклад нейтралино в современую плотность энергии Вселенной можно грубо оценить, воспользовавшись формулой (9.19), где следует положить $g_X = 2$, $g_*(t_f) \simeq 100$, а для сечения аннигиляции — воспользовавшись оценкой (9.25). В результате будем иметь

$$T_{f} \simeq \frac{M_{N}}{20},$$

$$\Omega_{N} = 3 \cdot 10^{-4} \frac{10^{-3}}{\alpha_{W}^{2}} \left(\frac{M_{N}}{100 \text{ F} \text{sB}}\right)^{2} \ln\left(10^{12} \cdot \frac{100 \text{ F} \text{sB}}{M_{N}}\right) \approx \qquad (9.32)$$

$$\approx 0.8 \cdot 10^{-2} \cdot \left(\frac{M_{N}}{100 \text{ F} \text{sB}}\right)^{2}, \qquad (9.33)$$

где α_W — калибровочная константа слабого взаимодействия. Для наиболее интересного диапазона масс нейтралино

100 Гэ
$$B < M_N < 3$$
 Тэ B

будем иметь

$$0,01 \leq \Omega_N \leq 10,$$

т. е. плотность энергии реликтовых нейтралино достаточно велика, чтобы полностью объяснить темную материю.

В этом разделе мы уточним оценку (9.33), рассматривая случай, когда нейтралино является единственной существенной новой частицей, присутствующей в космической плазме при интересных температурах. Перед этим, однако, отметим, что в общем случае точная оценка реликтовой плотности нейтралино требует аккуратного описания многочисленных процессов, происходящих в эпоху закалки нейтралино. Поскольку при суперсимметризации Стандартной модели каждая частица получает своего суперпартнера, то при температурах выше масс суперпартнеров число релятивистских степеней свободы в плазме удваивается по сравнению с обычным случаем Стандартной модели; добавляется около сотни дополнительных степеней свободы. Поскольку суперпартнеры участвуют в тех же калибровочных и юкавских взаимодействиях, что и обычные частицы, и массы их в пределах порядка величины одинаковы между собой и в этом смысле совпадают с массой LSP, то процесс закалки LSP сопровождается одновременным замораживанием большого количества реакций рассеяния суперпартнеров, их аннигиляции и процессов распада суперпартнеров, чьи времена жизни $\tau_{\rm s}$ обычно существенно меньше характерного хаббловского времени при температурах $T \leq 100$ ГэВ,

$$au_s \lesssim rac{8\pi}{lpha M_s} \ll t_H = rac{M_{Pl}^*}{T^2}.$$

Будучи LSP, нейтралино будет рождаться не только при рассеянии суперпартнеров на (супер)партнерах, но и в двухчастичных распадах суперпартнеров, например в распаде слептона в лептон и нейтралино. Кроме того, необходимо учесть существование нескольких каналов аннигиляции нейтралино, часть из которых, в зависимости от параметров модели (а в общем случае таких параметров около сотни), может быть резонансно усилена. В ряде случаев (например, если масса некоторого суперпартнера оказывается достаточно близка к массе LSP) распад некоторых суперпартнеров оказывается сильно подавленным. Тогда оказывается важным оценить их концентрации сразу после закалки (замораживания аннигиляционных процессов), поскольку распад каждого отщепившегося суперпартнера даст в конце концов по крайней мере одну частицу LSP, т. е. дополнительно увеличит плотность реликтовых нейтралино.

Эволюцию плотности числа взаимодействующих частиц в плазме получают из решения системы уравнений Больцмана, учитывающих доминирующие процессы распада и двухчастичные процессы (процессы перерассеяния и аннигиляции с двумя частицами в начальном состоянии). Рассмотрим простой случай, когда закалка нейтралино происходит позже отщепления и последующего быстрого распада других суперпартнеров, и существенными являются только процессы аннигиляции нейтралино в частицы Стандартной модели. Этот случай реализуется, если масса нейтралино заметно меньше масс остальных суперпартнеров, а в спектре масс суперпартнеров нет скольконибудь значительного вырождения. Обозначая полное сечение аннигиляции нейтралино как σ_{NN}^{ann} , запишем в этой ситуации уравнение Больцмана для плотности нейтралино n_N в расширяющейся Вселенной (ср. с разделом 5.4),

$$\frac{dn_N}{dt} + 3Hn_N = -\langle \sigma_{NN}^{ann} \cdot v \rangle \cdot \left(n_N^2 - n_N^{eq\,2}\right), \qquad (9.34)$$

здесь n_N^{eq} — равновесная плотность нейтралино при данной температуре, $\langle \sigma_{NN}^{ann} \cdot v \rangle$ — усредненное по импульсам с равновесными функциями распределения произведение сечения аннигиляции и относительной скорости аннигилирующих частиц v.

Простой способ получить уравнение (9.34) состоит в следующем. Вероятность аннигиляции какого-то фиксированного нейтралино в единицу времени в среде с плотностью нейтралино n_N равна

$$\Gamma_{ann} = \langle \sigma_{_{NN}}^{ann} \cdot v \rangle \cdot n_{_{N}}.$$

Отсюда изменение числа нейтралино в сопутствующем объеме a^3 за счет их аннигиляции равно

$$\left[\frac{d(n_N a^3)}{dt}\right]_{ann} = -\Gamma_{ann} \cdot n_N a^3 = -\langle \sigma_{NN}^{ann} \cdot v \rangle \cdot n_N^2 a^3.$$
(9.35)

В термодинамическом равновесии, т. е. при $n_N = n_N^{eq}$, это изменение числа нейтралино должно компенсироваться процессами их парного рождения, т. е. увеличение числа нейтралино за счет процессов рождения равно

$$\left[\frac{d\left(n_{N}a^{3}\right)}{dt}\right]_{creation} = +\langle\sigma_{NN}^{ann}\cdot v\rangle\cdot n_{N}^{eq\ 2}\cdot a^{3}.$$
(9.36)

Сумма (9.35) и (9.36) и дает полное изменение числа нейтралино в сопутствующем объеме, что приводит к уравнению (9.34).

В общем случае система уравнений Больцмана описывает баланс взаимодействующих частиц в системе. Уравнение (9.34) является примером уравнения Больцмана, записанного для одного типа частиц с учетом процессов аннигиляции и парного рождения. Более аккуратно это уравнение можно получить из следующих рассуждений. Рассмотрим процесс двухчастичной аннигиляции частиц в пространстве Минковского. Пусть \mathbf{p}_1 , \mathbf{p}_2 — 3-импульсы частиц в начальном состоянии. Число частиц с импульсами между \mathbf{p} и $\mathbf{p} + d\mathbf{p}$ в элементе объема плазмы $d\mathbf{x}$ равно

$$dN = n(t, \mathbf{x})F(t, \mathbf{p}) d\mathbf{x} d\mathbf{p},$$

где $n(t, \mathbf{x})$ — плотность числа частиц, а функция $F(t, \mathbf{p})$ описывает распределение частиц по 3-импульсам и нормирована условием

$$\int F(t,\mathbf{p}) d\mathbf{p} = 1,$$

выполненным в каждый момент времени. Рассмотрим некоторую частицу с импульсом **р**₁. В единицу времени с ней аннигилирует

$$\sigma \cdot \boldsymbol{v} \cdot \boldsymbol{n}(t, \mathbf{x}) \boldsymbol{F}(t, \mathbf{p}_2) \, d\mathbf{p}_2 \tag{9.37}$$

частиц того же типа с импульсами между \mathbf{p}_2 и $\mathbf{p}_2 + \mathbf{d}\mathbf{p}_2$, где v — относительная скорость фиксированной и рассеивающихся частиц, и введено сечение аннигиляции частиц (по предположению, важны только аннигиляционные процессы)

$$\boldsymbol{\sigma}=\boldsymbol{\sigma}(\mathbf{p}_1,\mathbf{p}_2),$$

характеризующее вероятность аннигиляции пары сталкивающихся частиц с импульсами (\mathbf{p}_1 , \mathbf{p}_2). Отсюда среднее число приводящих к аннигиляции столкновений частиц, заключенных в объеме $d\mathbf{x}$, с импульсами, заключенными между \mathbf{p}_1 и $\mathbf{p}_1 + d\mathbf{p}_1$, равно

$$\frac{1}{2}dN(\mathbf{p}_1, \mathbf{x}) \cdot \boldsymbol{\sigma} \cdot \boldsymbol{v} \cdot \boldsymbol{n}(t, \mathbf{x})F(t, \mathbf{p}_2) d\mathbf{p}_2 =$$

$$= \frac{1}{2}\boldsymbol{n}(t, \mathbf{x})F(t, \mathbf{p}_1) d\mathbf{x} d\mathbf{p}_1 \cdot \boldsymbol{\sigma} \cdot \boldsymbol{v} \cdot \boldsymbol{n}(t, \mathbf{x})F(t, \mathbf{p}_2) d\mathbf{p}_2.$$
(9.38)

Множитель 1/2 в выражении (9.38) учитывает тот факт, что частицы одинаковы (иначе дважды учитывался бы вклад одинаковых начальных состояний, (**p**₁, **p**₂) и (**p**₂, **p**₁)).

Поскольку в результате каждого столкновения из объема dx убывает пара частиц, то удвоеннное выражение (9.38) является скоростью уменьшения числа частиц в этом объеме из-за двухчастичных аннигиляций,

$$n^{2}(t, \mathbf{x})F(t, \mathbf{p}_{1}) d\mathbf{x} d\mathbf{p}_{1} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{v} \cdot F(t, \mathbf{p}_{2}) d\mathbf{p}_{2}.$$

$$(9.39)$$

Для не очень плотных сред именно двухчастичная аннигиляция является основной причиной уменьшения числа частиц.

Существует и обратный процесс, в результате которого число частиц в объеме dx увеличивается. Это — парное рождение частиц, происходящее вследствие всевозможных столкновений других частиц в плазме. По условию, эти частицы интенсивно взаимодействуют между собой и поэтому находятся в состоянии кинетического равновесия. В равновесной ситуации скорости прямых и обратных процессов совпадают, поэтому скорость увеличения числа частиц в объеме dx в результате их парного рождения в равновесной плазме в точности совпадала бы с величиной, получаемой по формуле (9.39), в которой все функции распределения следует считать равновесными. В данном случае интересующая нас аннигилирующая компонента выходит из равновесия с плазмой, однако частицы, в которые происходит аннигиляция, принадлежат к равновесным компонентам плазмы, а значит, для скорости парного рождения можно использовать равновесный ответ. Таким образом, скорость увеличения числа частиц в объеме dx вследствие парных рождений равна

$$n^{eq} (t, \mathbf{x}) F^{eq}(t, \mathbf{p}_1) d\mathbf{x} d\mathbf{p}_1 \cdot \boldsymbol{\sigma} \cdot \boldsymbol{v} \cdot F^{eq}(t, \mathbf{p}_2) d\mathbf{p}_2,$$

где n^{eq} , f^{eq} — равновесные распределения. Окончательно, проинтегрировав по всем импульсам \mathbf{p}_2 , получим для баланса частиц в элементе фазового объема $d\mathbf{p} \, d\mathbf{x}$ в единицу времени

$$\left[\frac{\partial \left(n(t,\mathbf{x})F(t,\mathbf{p}_{1})\right)}{\partial t}\right]d\mathbf{p}_{1} d\mathbf{x} = \\ = -\left[\int \left(n^{2}(t,\mathbf{x})F(t,\mathbf{p}_{1})F(t,\mathbf{p}_{2}) - n^{eq^{2}}(t,\mathbf{x})F^{eq}(t,\mathbf{p}_{1})F^{eq}(t,\mathbf{p}_{2})\right) \cdot \mathbf{v} \cdot \sigma d\mathbf{p}_{2}\right]d\mathbf{p}_{1} d\mathbf{x}.$$
(9.40)

Правая часть здесь называется интегралом столкновений.

Мы будем интересоваться ситуацией, когда пространственное распределение частиц однородно и изотропно, т. е. плотность распределения числа частиц $n(t, \mathbf{x})$ не зависит от точки пространства, но зависит от времени,

$$n(t, \mathbf{x}) \equiv n(t), \quad n^{eq}(t, \mathbf{x}) \equiv n^{eq}(t),$$

а распределение частиц по импульсам, наоборот, соответствует кинетическому равновесию и от времени явно не зависит,

$$F(t, \mathbf{p}) \equiv F(\mathbf{p}), \quad F^{eq}(t, \mathbf{p}) \equiv F^{eq}(\mathbf{p}).$$

Тогда соотношение (9.40) после интегрирования по импульсу **p**₁ дает уравнение Больцмана

$$\frac{\partial n(t)}{\partial t} = -\langle \sigma v \rangle (n^2 - n^{eq \, 2}), \qquad (9.41)$$

где правая часть также называется интегралом столкновений. При получении множителя $\langle \sigma v \rangle$ мы пренебрегли под знаком интеграла в (9.40) различием равновесных и неравновесных функций распределения по импульсам, т. е. положили $F(\mathbf{p}) = F^{eq}(\mathbf{p})$. Это соотношение выполняется, если в среде есть быстрые процессы (рассеяние нейтралино на частицах среды) без изменения числа нейтралино, см. конец раздела 9.2. Таким образом, мы считаем, что имеем дело со случаем, рассмотренным в разделе 5.4. В (9.41) мы ввели обозначение

$$\langle \sigma v \rangle \equiv \frac{\int d\mathbf{p}_1 \, d\mathbf{p}_2 \, F^{eq}(\mathbf{p}_1) F^{eq}(\mathbf{p}_2) \cdot v \cdot \sigma}{\int F^{eq}(\mathbf{p}_1) \, d\mathbf{p}_1 \cdot \int F^{eq}(\mathbf{p}_2) \, d\mathbf{p}_2} = \int d\mathbf{p}_1 \, d\mathbf{p}_2 \, F^{eq}(\mathbf{p}_1) F^{eq}(\mathbf{p}_2) \cdot v \cdot \sigma$$

— усредненное с функциями распределением частиц по импульсам произведение относительной скорости частиц на сечение их аннигиляции (для равновесных функций распределения $F^{eq}(\mathbf{p})$, характеризующихся температурой — «температурное среднее»).

Обратим внимание, что в выражении (9.41) n^{eq} — равновесная плотность числа частиц в системе, а n — собственно плотность числа частиц — однородная, но, вообще говоря, отличная от равновесной. Правая часть уравнения квадратично зависит от плотностей частиц, что обеспечивает устойчивость системы: любое отклонение плотности от равновесной приводит к такому воздействию на систему, что плотность числа частиц приближается к равновесной величине.

Для описания процессов, протекающих в расширяющейся Вселенной, уравнение Больцмана (9.41) требуется модифицировать, чтобы учесть изменение физического объема системы. Эта модификация и приводит к уравнению (9.34), используемому для анализа процессов в первичной плазме, см. также раздел 5.4.

Найдем приближенное решение уравнения Больцмана (9.34) для случая закалки нерелятивистских частиц. Для этого оказывается удобным переписать уравнение (9.34) как уравнение на отношение плотности нейтралино к плотности энтропии. Итак, введем переменные

$$\Delta_{N} \equiv \frac{n_{N}}{s}, \quad \Delta_{N}^{eq} \equiv \frac{n_{N}^{eq}}{s},$$

$$s = \frac{2\pi^{2}}{45}g_{*}T^{3}, \quad (9.42)$$

где

— плотность энтропии при температуре T, а g_* — число релятивистских степеней свободы. На интересующий нас момент в плазме были только релятивистские частицы Стандартной модели, поэтому для реалистичных масс нейтралино

$$M_N \gtrsim 50$$
ГэВ

будем иметь (см. рис. В.4 в Приложении В)

$$70 \leq q_* \leq 106,75.$$

Используя закон изменения плотности энтропии в сопутствующем объ еме (5.35),

$$\frac{ds}{dt} + 3Hs = 0,$$

найдем, что

1. 25 - 1

$$\frac{dn_N}{dt} = s \cdot \frac{d\Delta_N}{dt} - 3Hn_N.$$

Это позволяет записать уравнение на Δ_N в виде

$$\frac{d\Delta_N}{dt} = -\langle \sigma v \rangle \cdot s \cdot \left(\Delta_N^2 - \Delta_N^{eq \ 2} \right). \tag{9.43}$$

Для дальнейшего удобно перейти от переменной t к переменной

$$x \equiv rac{T}{M_N},$$

которая с учетом связи средней кинетической энергии нерелятивистских частиц и их температуры,

$$\langle E_k \rangle = \frac{M_N \langle v_N^2 \rangle}{2} = \frac{3}{2}T = \frac{3}{2}xM_N, \qquad (9.44)$$

показывает, насколько аннигилирующие частицы являются нерелятивистскими. Поскольку в пренебрежении слабой зависимостью величины g_* от температуры имеет место равенство (см. (3.32))

$$\frac{dT}{dt} = -HT,\tag{9.45}$$

то уравнение (9.43) в терминах переменной x будет иметь вид

$$rac{d\Delta_{\scriptscriptstyle N}}{dx} = rac{\langle \sigma v
angle}{Hx} \cdot s \cdot \left(\Delta_{\scriptscriptstyle N}^2 - \Delta_{\scriptscriptstyle N}^{eq \ 2}
ight)$$

или, после подстановки явных выражений для s = s(T) и H = H(T) (см. (9.42) и (3.29)),

$$\frac{d\Delta_N}{dx} = \langle \sigma v \rangle \cdot \frac{\sqrt{\pi g_*}}{3\sqrt{5}} \cdot M_N \cdot M_{Pl} \cdot \left(\Delta_N^2 - \Delta_N^{eq\,2}\right). \tag{9.46}$$

Для случая аннигиляции нерелятивистских частиц, который мы и рассматриваем, величину $\langle \sigma v \rangle$ можно разложить в ряд по степеням отношения температуры к массе частицы, $x = T/M_N$, что эквивалентно разложению в ряд по отношению средней кинетической энергии частиц к массе (см. (9.44)) или разложению в ряд по среднему от квадрата относительной скорости сталкивающихся частиц¹⁷, $\langle v^2 \rangle = 2 \langle v_N^2 \rangle$,

$$\langle \sigma v \rangle \equiv a_0 + a_1 \cdot v^2 + \ldots \approx a_0 + 6a_1 \cdot x,$$
 (9.47)

где мы оборвали ряд на двух первых членах, поскольку для интересных температур порядка температуры закалки справедливо $x \ll 1$. Подставляя разложение (9.47) в (9.46), получим окончательно

$$\frac{d\Delta_N}{dx} = (a_0 + 6a_1 \cdot x) \cdot \frac{\sqrt{\pi g_*}}{3\sqrt{5}} \cdot M_N \cdot M_{Pl} \cdot \left(\Delta_N^2 - \Delta_N^{eq\,2}\right). \tag{9.48}$$

Это уравнение можно было бы решить точно. Мы вместо этого качественно проанализируем поведение решения уравнения (9.48). При температуре закалки T_f (т. е. при малых $x_f \equiv T_f/M_N$) величина $\Delta_N(T_f)$ примерно совпадает с равновесным значением $\Delta_N^{eq}(T_f)$, а при малых температурах $T \ll T_f$ (т. е. при $x \ll x_f$) $\Delta_N^{eq}(T)$ экспоненциально подавлена по сравнению с $\Delta_N(T)$. Такое поведение позволяет для получения приближенного решения пренебречь при $T \leq T_f$ в правой части уравнения (9.48) величиной $\Delta_N^{eq 2}$. Упрощенное таким образом уравнение легко проинтегрировать и, воспользовавшись тем, что $\Delta_N(T=0) \ll \Delta_N^{eq}(T_f)$, получить

$$\Delta_N^{-1}(T=0) = \left(a_0 x_f + 3a_1 x_f^2\right) \cdot \frac{\sqrt{\pi g_*}}{3\sqrt{5}} \cdot M_N \cdot M_{Pl}.$$
 (9.49)

¹⁷⁾ Учитываем, что $\overline{v^2} = (v_1 - v_2)^2 = v_1^2 - 2v_1 \cdot v_2 + v_2^2$, и перекрестный член выпадает при усреднении.
Отсюда для вклада реликтовых нейтралино в современную плотность энергии Вселенной будем иметь

$$\Omega_N h^2 \approx 0.9 \cdot 10^{-10} \frac{1}{x_f \sqrt{g_*}} \frac{\Gamma \bar{\rho} B^{-2}}{a_0 + 3a_1 x_f}, \qquad (9.50)$$

где параметры a_0 и a_1 имеют размерность ГэВ⁻² и определены соотношением (9.47) при температуре закалки нейтралино

$$T_f = M_N \cdot x_f.$$

Сама эта температура закалки определяется в результате итеративного решения уравнения (9.10), где в качестве сечения следует подставить

$$\langle \sigma v
angle_0 = a_0 + 6 rac{T_f}{M_N} a_1.$$

В итоге получим¹⁸⁾

$$x_f^{-1} = \ln\left[\frac{3\cdot\sqrt{10}}{8\pi^3}\frac{g_N}{\sqrt{g_*x_f}}\cdot M_N\cdot M_{Pl}\cdot (a_0+6a_1x_f)\right].$$
 (9.51)

Оценки (9.50), (9.51) уточняют сделанную выше оценку (9.19).

Теперь найдем коэффициенты a_0 и a_1 , связав их с константами взаимодействия нейтралино и другими параметрами суперсимметричной теории. При этом в качестве первого примера рассмотрим легкие нейтралино, $M_N \leq M_Z$.

Сначала рассмотрим совсем легкие LSP, $M_N \ll M_Z$. При этом основной вклад в LSP должно давать бино — суперпартнер калибровочного бозона группы гиперзаряда $U(1)_r$: тогда связь LSP с Z-бозоном будет достаточно слабой, чтобы кинематически разрешенный распад $Z \rightarrow NN$ не давал заметного вклада в хорошо измеренную ширину Z-бозона. Для случая легчайших феноменологически приемлемых нейтралино доминирующим каналом их аннигиляции в ранней Вселенной является *s*-канальное рождение легкого виртуального аксиального хиггсовского бозона A, распадающегося затем в пару *b*-кварков, рис. 9.4. Для сечения этого процесса аннигиляции справедлива оценка

$$\langle \sigma v
angle_0 \sim \xi^2 y_b^2 rac{lpha M_N^2}{m_A^4},$$

a the set of the set

где m_A — масса аксиального хиггсовского бозона A, y_b — юкавская константа связи b-кварков с бозоном A, параметр ξ определяется углами смешивания массовой матрицы нейтралино; для обеспечения эффективной аннигиляции LSP существенна примесь хиггсино.

¹⁸⁾ Выражения (9.49) и (9.51) все еще справедливы лишь с логарифмической точностью. Для получения точного выражения для $\Delta_N(T=0)$ необходимо найти точное решение уравнения (9.48). В дальнейшем нам это не понадобится.

Рис. 9.4. Аннигиляция легких нейтралино через виртуальный аксиальный хиггсовский бозон

Ограничения снизу на массу легчайшего нейтралино составляют около 5 ГэВ [36], а на массу аксиального хиггсовского бозона — около 100 ГэВ [4]. Рассматривая модели с большой константой связи¹⁹⁾ $y_b \sim 1$, получим

$$\langle \sigma v \rangle_0 \approx a_0 \sim \left(\frac{\xi}{0,1}\right)^2 \cdot \left(\frac{M_N}{10 \text{ F} \Rightarrow \text{B}}\right)^2 \cdot \left(\frac{100 \text{ F} \Rightarrow \text{B}}{m_A}\right)^4 \cdot 10^{-10} \text{ F} \Rightarrow \text{B}^{-2}.$$

Тогда, оценивая температуру закалки LSP из (9.51), получим $x_f \sim 1/20$, и для доли легких реликтовых нейтралино в современной плотности энергии Вселенной (9.50) будем иметь

$$\Omega_N \sim 0.1 \cdot \left(\frac{0.1}{\xi}\right)^2 \cdot \left(\frac{10 \text{ fyb}}{M_N}\right)^2 \cdot \left(\frac{m_A}{100 \text{ fyb}}\right)^4,$$

т. е. как раз нужную для объяснения темной материи величину при реалистических значениях $M_N \simeq 10$ ГэВ, $\xi \simeq 0.1$.

Другая интересная возможность — легкие нейтралино с массами $M_Z \gtrsim M_N > M_Z/2$. Класс моделей, интересных с точки зрения космологии, здесь шире, что связано во многом с новыми каналами аннигиляции, эффективными для этой области масс. Оценим сечение аннигиляции нейтралино в моделях с тяжелыми новыми хиггсовскими бозонами²⁰, $M_{H,A} \gg M_Z$. Для наиболее интересных с точки зрения космологии случаев оно оказывается существенно подавленным по сравнению с оценкой, фигурирующей в (9.32). Действительно, рассмотрим доминирующий для легких нейтралино канал аннигиляции в фермионы Стандартной модели²¹,

$$NN \to \tilde{f}f.$$
 (9.52)

¹⁹⁾ Это условие реализуется в моделях с большой исрархией между вакуумными средними двух хиггсовских дублетов.

²⁰⁾ Этот случай является довольно характерным для феноменологически приемлемых суперсимметричных моделей; отметим, что в минимальных суперсимметричных обобщениях Стандартной модели масса легчайшего хиггсовсого бозона ограничена сверху величиной около 140 ГэВ, однако вклад этого легчайшего хиггсовского бозона в аннигиляцию нейтралино пренебрежимо мал.

²¹⁾ В ряде случаев этот канал является основным и для аннигиляции тяжелых нейтралино. К таким случаям относятся, например, модели, где основной вклад в LSP дает бино.

Рис. 9.5. Диаграммы, дающие вклад в аннигиляцию легких нейтралино в пару фермионов

Эти процессы идут через *s*-канальный обмен *Z*-бозоном, а также посредством t-канального обмена виртуальными суперпартнерами \tilde{f} рождающихся фермионов²²⁾, см. рис. 9.5.

Поскольку мы интересуемся сечением аннигиляции в эпоху, когда аннигилирующие частицы являются существенно нерелятивистскими ($v \sim T/M_N \leq 0,1$), а нейтралино считается легчайшим суперпартнером, то протекающими в *s*- и *t*-каналах 3-импульсами можно пренебречь по сравнению с массой соответствующей виртуальной частицы. Иными словами, аннигиляция (9.52) в нашем случае эффективно описывается контактным 4-фермионным взаимодействием,

$$\mathcal{L} = \sum_{f} \overline{N} \gamma^{\mu} \gamma_{5} N \cdot \overline{f} \gamma_{\mu} \left(a_{f} + b_{f} \gamma^{5} \right) f, \qquad (9.53)$$

где параметры a_f и b_f имеют размерность ГэВ⁻². Эти параметры — эффективные константы связи — определяются суммой вкладов виртуального Z-бозона и вкладов виртуальных суперпартнеров фермионов. Вклады виртуального Z-бозона зависят только от элементов матрицы смешивания нейтралино (напомним, что здесь нейтралино N — легчайшее массовое состояние в секторе из четырех нейтральных майорановских фермионов), массы Z-бозона и слабых констант связи соответствующих фермионов. Вклады виртуальных суперпартнеров зависят от элементов матрицы смешивания в секторе из четырех нейтральных соответствующих фермионов, массы Z-бозона и слабых констант связи соответствующих фермионов. Вклады виртуальных суперпартнеров зависят от элементов матрицы смешивания в секторе нейтралино, слабых констант связи соответствующих фермионов, масс суперпартнеров фермионов Стандартной модели и углов смешивания в соответствующих секторах слептонов и скварков. По порядку величины можно считать, что в моделях с $2M_N \sim M_Z$ учет обмена Z-бозоном приводит к вкладу в параметры a_f и b_f порядка фермиевской константы связи (см. раздел B.5),

$$a_t, b_t \sim G_F = 1,17 \cdot 10^{-5} \, \text{FsB}^{-2}.$$
 (9.54)

Вклад более тяжелых суперпартнеров, а также вклад Z-бозона в моделях с $M_N > M_Z/2$ меньше по сравнению с оценкой (9.54) за счет факторов

²²⁾ Для более тяжелых нейтралино существенным оказывается *s*-канальный обмен тяжелыми нейтральными хиггсовскими бозонами. В резонансной области этот вклад будет доминировать, что позволяет существенно увеличить сечение аннигиляции тяжелых нейтралино, тем самым уменьшив плотность энергии реликтовых нейтралино до космологически приемлемых значений.

подавления M_Z^2/M_S^2 и $M_Z^2/4M_N^2$ соответственно (заметим в связи с этим, что при $M_N > M_Z/2$ обмен Z-бозоном действительно доминирует для $M_S \gg M_Z$).

Взаимодействие (9.53) дает для аннигиляции нейтралино (майорановский фермион, $N = N^c$) в нерелятивистском пределе $v \ll 1$ (где v — величина относительной скорости аннигилирующих частиц)

$$\sigma v \approx \frac{1}{2\pi} \sum_{f} \left[a_{f}^{2} \cdot m_{f}^{2} + \frac{1}{3} \left(\left(a_{f}^{2} + b_{f}^{2} \right) M_{N}^{2} + \left(a_{f}^{2} - 2b_{f}^{2} \right) m_{f}^{2} \right) \cdot v^{2} \right], \qquad (9.55)$$

откуда для параметров a_0 и a_1 , определенных соотношением (9.47), получим

$$egin{aligned} a_0 &= rac{1}{2\pi} \sum_f a_f^2 \cdot m_f^2, \ a_1 &= rac{1}{6\pi} \sum_f \left[\left(a_f^2 + b_f^2
ight) M_N^2 + \left(a_f^2 - 2 b_f^2
ight) m_f^2
ight]. \end{aligned}$$

Сечение аннигиляции в *s*-волне подавлено массой фермиона: в пределе $m_f \rightarrow 0$ имеем $a_0 = 0$, т. е. аннигиляция нейтралино в безмассовые фермионы происходит только в *p*-волне. Это связано с тем, что левые безмассовые фермионы Стандартной модели рождаются «ток-токовым» взаимодействием (9.53) только в состоянии с полным моментом J = 1. Нерелятивистские майорановские фермионы — нейтралино — должны быть в состоянии с угловым моментом 1 (*p*-волна), чтобы перейти в пару частиц с J = 1. Состояние с угловым моментом 0 (*s*-волна) и полным спином 1 запрещено для майорановских частиц принципом Паули. Этим объясняется *p*-волновой характер подавления сечения (9.55) при малых m_f . Для приведенных оценок параметров a_0 и a_1 будем иметь из (9.50)

$$\Omega_N \sim 0.2$$
 для $M_N \simeq 60$ ГэВ.

Такие нейтралино являются вполне приемлемыми кандидатами на роль частиц темной материи.

Обсудим, наконец, возможность того, что $M_N < M_Z/2$. Напомним, что для легких нейтралино с массами $M_N < M_Z/2$ константа связи нейтралино с Z-бозонами должна быть достаточно мала, чтобы подавить вклад нейтралино в ширину Z-бозона. В моделях, где (некоторые) суперпартнеры фермионов Стандартной модели являются достаточно легкими, $M_S \leq M_Z$, основные каналы аннигиляции легких нейтралино в ранней Вселенной будут связаны с t-канальными обменами этих частиц. Именно они обеспечивают необходимое количество темной материи в моделях с $M_N < M_Z/2$. В частности, положив $M_S \sim M_Z$ и взяв для величин a_f, b_f оценку (9.54), получим из (9.50), что нейтралино с массой $M_N \simeq 30$ ГэВ может объяснить темную материю во Вселенной.

Трудность описанных сценариев с $M_N \ll M_Z$ и $M_N \lesssim M_Z$ состоит, однако, в том, что в большинстве простейших конкретных суперсимметричных моделей области параметров, в которых имеются легкие нейтралино, исключены многочисленными экспериментальными поисками проявлений суперсимметрии.

Перейдем теперь к случаю более тяжелых нейтралино, $M_N \gtrsim M_Z$ (всюду речь идет о нейтралино, являющихся LSP). В этом случае вклад Z-бозона в константы a_f и b_f подавлен множителем $M_Z^2/4M_N^2$; вклад более тяжелых суперпартнеров (правая диаграмма на рис. 9.5) также, вообще говоря, мал. С учетом подавления сечения аннигиляции нейтралино в фермионы по сравнению с оценкой (9.25) мы заключаем, что предсказываемая плотность массы реликтовых нейтралино с $M_N \gtrsim M_Z$, как правило, превышает требуемое значение $\rho_{CDM} \simeq 0, 2\rho_c$, т.е. для таких масс имеет место проблема перепроизводства нейтралино.

Относительно тяжелые нейтралино, $M_N \gtrsim M_Z$, все же могут обеспечить необходимую плотность массы темной материи, однако это возможно только при определенных условиях на параметры модели, подразумевающих обычно специальные соотношения между массой нейтралино и массами некоторых суперпартнеров (например, вырождение в спектре масс калибрино). Такое решение проблемы перепроизводства темной материи вполне возможно, однако возникает вопрос о степени натуральности соответствующих соотношений между параметрами модели.

Задача 6. Рассмотреть минимальное суперсимметричное расширение Стандартной модели, в котором все суперпартнеры, кроме слептонов и фотино, очень тяжелые, а потому распадаются на обычные частицы и фотино или слептоны задолго до достижения во Вселенной температур порядка 100 ГэВ. Пусть массы слептонов и фотино порядка 100 ГэВ, а фотино является LSP. Пренебрегая смешиванием слептонов, найти плотность реликтовых фотино. *Указание*: лагранжиан взаимодействия между фотино, лептоном и слептоном можно найти в самом начале раздела 9.6.

В качестве примера самосогласованного и феноменологически приемлемого суперсимметричного обобщения Стандартной модели, где многочисленные массы и константы связи в низкоэнергетической теории определяются лишь несколькими параметрами, рассмотрим модели mSUGRA (minimal supergravity). В этих моделях предполагается, что суперсимметрия нарушается спонтанно в специальном «скрытом» секторе, и это нарушение передается в сектор полей Стандартной модели благодаря гравитационным взаимодействиям. При этом на некотором энергетическом масштабе М, вне зависимости от аромата и заряда по калибровочной группе Стандартной модели, все скаляры — суперпартнеры фермионов Стандартной модели и хигтсовские дублеты — приобретают одинаковые массы m_0 , а все суперпартнеры калибровочных бозонов — калибрино — приобретают одинаковые массы $M_{1/2}$. Кроме того, появляются нарушающие суперсимметрию трилинейные константы связи хиггсовских дублетов (а их в минимальном суперсимметричном обобщении два — один, H_{v} , взаимодействует с верхними кварками, а другой, H_{D} — с нижними кварками и с лептонами) с другими скалярными полями. Эти константы имеют размерность массы и полагаются пропорциональными соответствующим юкавским константам связи с общим размерным коэффициентом А.

Отметим, что в простейших (однако реалистичных) моделях масштаб M полагается равным масштабу теории Большого объединения $M_{GUT} \sim 10^{16}$ ГэВ. Это обусловлено тем обстоятельством, что калибровочные константы связи Стандартной модели (чьи величины из-за квантовых эффектов изменяются с энергетическим масштабом) приближаются друг к другу с ростом энергетического масштаба. В минимальных суперсимметричных обобщениях Стандартной модели все три калибровочные константы связи объединяются на масштабе M_{GUT} , т. е. становятся равными друг другу. Это является сильным доводом в пользу суперсимметричных моделей Большого объединения, происходящего как раз на масштабе M_{GUT} .

Помимо трех размерных параметров $m_0, M_{1/2}, A$, есть еще безразмерный параметр tg β , фиксирующий отношение вакуумных средних хиггсовских полей, tg $\beta \equiv \langle H_U \rangle / \langle H_D \rangle$. Массы хиггсино на масштабе M полагаются равными еще одному размерному параметру μ , величина которого оказывается зафиксированной величиной массы Z-бозона M_Z , однако знак μ остается еще одним (дискретным) свободным параметром²³.

С учетом квантовых поправок все массовые параметры $\{m_{0i}, A_{ij}^{U}, A_{ij}^{D}, M_i\}$ и константы связи $\{\alpha_i, Y_{ij}^{U}, Y_{ij}^{D}\}$ модели mSUGRA изменяются при понижении энергетического масштаба Q от M до M_Z . Окончательный набор масс и констант связи на электрослабом масштабе можно получить из решения ренормгрупповых уравнений, описывающих эволюцию констант связи и масс. Заданные на масштабе M величины констант связи и масс через четыре параметра (и знак) являются начальными условиями для уравнений ренормгруппы. Описанный нами набор начальных условий называют универсальным, и с феноменологической точки зрения его выбор обусловлен необходимостью подавить взаимодействия, приводящие при низких энергиях к пронессам с нарушением ароматов в кварковом и лептонном секторах.

Учет квантовых поправок приводит к важным результатам. При низких энергиях константы связи и массовые параметры перестают удовлетворять условиям универсальности. В частности, массы частиц с разными квантовыми числами существенно различаются. Массы калибрино — суперпартнеров калибровочных бозонов — при учете лидирующих квантовых поправок эволюционируют с энергетическим масштабом пропорционально соответствующим калибровочным константам связи. В минимальных суперсимметричных расширениях Стандартной модели калибровочная константа сильных взаимодействий растет с понижением энергетического масштаба, а калибровочные константы электрослабого сектора, наоборот, падают. Таким образом, имея на масштабе М универсальные начальные условия для уравнений ренормгруппы, на электрослабом масштабе получим глюино в качестве самого тяжелого калибрино, а бино — суперпартнер калибровочного бозона группы $U(1)_r$ — будет легчайшим. Для массовых параметров скалярного сектора m_i^2 ситуация сложнее, поскольку вклад в ренормгрупповую эволюцию уже в лидирующем порядке теории возмущений дают и калибровочные, и юкавские константы взаимодействия. При понижении энергии квантовые поправки, обусловленные калибровочными взаимодействиями, приводят к увеличению массовых параметров, а поправки, обусловленные юкавским взаимодействием, наоборот, уменьшают их. Чем больше величина константы связи, тем больше эффект. В результате самыми тяжелыми оказываются левые скварки, а самым легким — один из слептонов — суперпартнер правого τ -лептона. Ренормгрупповая эволюция масс суперпартнеров проиллюстрирована на рис. 9.6.

²³⁾ В общем случае параметр μ может быть комплексным, что служит дополнительным источником *СР*-нарушения в хиггсовском секторе.

Рис. 9.6. Пример ренормгрупповой эволюции для массовых параметров mSUGRA [32]. В качестве начальных данных на масштабе $M_{GUT} \approx 10^{16}$ ГэВ выбрано: $M_{1/2} = 250$ ГэВ, $m_0 = 100$ ГэВ, A = 0, tg $\beta = 3$ и $\mu < 0$

В хиггсовском секторе квантовые поправки, обусловленные взаимодействиями с тяжелыми кварками третьего поколения (t- и b-кварками), приводят в конечном итоге к спонтанному нарушению электрослабой симметрии на масштабе порядка 100 ГэВ (см. рис. 9.6, где выражение $\sqrt{m_0^2 + \mu^2}$, являющееся массой хиггсовского поля, становится отрицательным при $Q \sim 100$ ГэВ): у хиггсовских дублетов повляются отличные от нуля вакуумные средние. Слабые калибровочные бозоны становятся массивными благодаря механизму Хиггса, а фермионы Стандартной модели получают массы посредством юкавских взаимодействий. Суперпартнеры, взаимодействующие с хиггсовскими бозонами, также получают дополнительные вклады в массовые матрицы. В ряде случаев эти вклады существенно изменяют иерархию массовых состояний в секторе суперпартнеров.

Отметим, что в модели mSUGRA на масштабе энергии M вакуум $\langle H_U \rangle = 0$, $\langle H_D \rangle = 0$ является истинным вакуумом скалярного потенциала. Спонтанное нарушение происходит на масштабе энергии ~ 100 ГэВ лишь благодаря появлению квантовых поправок к эффективному (с точки зрения высокоэнергетичной теории) скалярному потенциалу. Такой механизм нарушения электрослабой симметрии является еще одной привлекательной чертой суперсимметричных обобщений Стандартной модели.

С учетом современных жестких ограничений на параметры mSUGRA, следующих из многочисленных безрезультатных поисков ее проявлений, в пространстве параметров имеется лишь три узкие области, для которых реликтовое нейтралино

Рис. 9.7. (Цветную версию рисунка см. на вклейке.) Феноменологически неприемлемые области и космологически предпочтительные области в пространстве $(M_{1/2}, m_0)$ для модели mSUGRA [32] с tg $\beta = 10$ и 50 (на масштабе $M_{GUT} \approx 10^{16}$ ГэВ, A = 0; массы кварков третьего поколения приняты равными $m_t = 175$ ГэВ, $m_b = 4,25$ ГэВ)

будет полностью обеспечивать все необходимое количество темной материи во Вселенной, см. рис. 9.7.

Это связано с тем обстоятельством, что существующие экспериментальные данные оказываются несовместны с существованием легких стабильных нейтралино в количестве, необходимом для объяснения темной материи. Более тяжелые нейтралино, приемлемые с точки зрения эксперимента, для большей части пространства параметров неприемлемы из-за космологического ограничения: как следует из сделанных выше оценок, тяжелые реликтовые нейтралино будут давать слишком большой вклад в плотность энергии Вселенной. Космологически приемлемые области в пространстве параметров ($M_{1/2}$, m_0), представленные на рис. 9.7, отвечают ситуациям, когда сечение аннигиляции нейтралино тем или иным способом существенно увеличено, что приводит к уменьшению плотности массы реликтовых нейтралино по сравнению с оценкой (9.32). Вообще говоря, такое решение проблемы темной материи с точки зрения низкоэнергетических параметров mSUGRA уже не выглядит естественным. Тем не менее, с точки зрения начальных значений параметров это решение еще не выглядит вычурно, если не уходить в область слишком больших величин $M_{1/2}$, m_0 , см. диаграмму внизу на рис. 9.8.

Итак, в модели mSUGRA все интересные для космологии области относятся к случаю тяжелых нейтралино, при этом требуется увеличить сечение аннигиляции нейтралино, чтобы они не давали избыточного вклада в плотность энергии Вселенной.

Одна из областей, где этого удается достигнуть, появляется только в моделях с большим tg β (нижние диаграммы на рис. 9.7). В этой области пространства параметров массы тяжелых нейтральных хиггсовских бозонов (их два для двухдублетного хиггсовского сектора — скалярный H и псевдоскалярный A, и их массы близки, $m_H \approx m_A$) оказываются почти совпадающими с массой пары нейтралино, $2M_N \approx m_H \approx m_A$. Поскольку в нерелятивистском пределе энергия нейтралино почти совпадает с их массой, то для вырожденного случая нейтралино резонансно аннигилируют в *s*-канале в слабовиртуальные хиггсовские бозоны, распадающиеся затем в частицы Стандартной модели,

 $NN \rightarrow A^*, H^* \rightarrow$ частицы Стандартной модели,

в результате чего сечение анигиляции возрастает в несколько раз²⁴⁾. Ясно, что такого рода решение проблемы перепроизводства нейтралино требует достаточно специального подбора параметров, и хотя соответствующие области в центрах правых диаграмм на рис. 9.7 не кажутся чрезвычайно узкими, с точки зрения иерархии масс в хиггсовском секторе они являются не совсем естественными.

Две другие области отвечают моделям с так называемыми со-LSP. Это модели, в которых массы LSP и ближайшего к нему по массе суперпартнера, NLSP (the nextto-lightest superpartner), почти вырождены. В данном случае в качестве со-LSP для одной области (узкая полоса на рис. 9.7 вдоль границы космологически запрещенной области, поскольку там LSP является заряженным скаляром) выступает легчайший слептон — смешанное состояние, доминированное суперпартнером правого τ -лептона, а для другой области (узкая полоса на левой диаграмме рис. 9.8 вдоль области, запрещенной из требования спонтанного нарушения электрослабой симметрии) легчайшее массовое состояние сектора заряженных хиггсино и электрически заряженных калибрино — суперпартнеров W[±]-бозонов. В последнем случае тяжелые нейтралино распадаются в основном в пару W^+W^- посредством t-канального обмена калибрино. Сечение этого процесса при $M_N^2 \gg M_W^2$ не зависит от массы нейтралино, определяется величиной электрослабого масштаба и подавлено отношением квадратов масс нейтралино и калибрино. Чем меньше это отношение, тем больше сечение, достигающее максимального значения при почти вырожденных по массе калибрино и нейтралино. Большое сечение аннигиляции позволяет решить проблему перепроизводства темной материи для тяжелых нейтралино.

Частицы NLSP после закалки распадутся с образованием LSP, что служит дополнительным каналом рождения реликтовых нейтралино. Поскольку массы LSP и со-LSP почти вырождены, а аннигиляция происходит по аналогичным каналам, закалка

²⁴⁾ Как всегда, рост сечения прекращается, когда разница между суммой масс пары нейтралино и массой соответствующего хиггсовского бозона в *s*-канале станет равной ширине соответствующего хиггсовского бозона.

Рис. 9.8. (Цветную версию рисунка см. на вклейке.) Верхний рисунок: то же, что и на верхнем рис. 9.7, но с учетом возможности больших значений m_0 ; закрашенная розовым область в левом верхнем углу запрещена из условия существования спонтанного нарушения электрослабой симметрии. Нижний рисунок: космологически предпочтительные области (0,094 < $\Omega_N h^2$ < 0,129) для различных величин tg $\beta = 5, 10, \ldots, 55$; нижние полосы отвечают меньшим величинам tg β [32]

обеих компонент плазмы происходит практически одновременно, $T_f^{LSP} \approx T_f^{co-LSP}$. Поэтому для получения точной оценки остаточной плотности LSP оказывается важным учесть все аннигиляционные каналы:

 $LSP + LSP \rightarrow$ частицы Стандартной модели,

 $NLSP + LSP \rightarrow$ частицы Стандартной модели,

 $NLSP + NLSP \rightarrow$ частицы Стандартной модели.

Увеличение количества аннигиляционных каналов позволяет сократить остаточное количество нейтралино. Роль этих каналов действительно важна для оценки остаточной плотности нейтралино лишь в узкой области пространства параметров модели, где

$$\frac{m_{NLSP} - m_{LSP}}{m_{LSP}} \equiv \frac{\Delta m}{m_{LSP}} \lesssim 0.1.$$
(9.56)

Эта оценка следует из того факта, что плотность NLSP по отношению к плотности LSP подавлена больцмановским множителем

$$e^{-\Delta m/T_f} = \exp\left\{-20 \cdot \frac{\Delta m}{m_{LSP}} \cdot \left(\frac{m_{LSP}/20}{T_f}\right)\right\}$$

который становится меньше 15%, если неравенство (9.56) не выполняется.

В завершение раздела отметим, что в ряде суперсимметричных моделей основная доля реликтовых нейтралино появляется не в результате отщепления от плазмы, а в результате распада более тяжелых частиц, при этом количество рожденных нейтралино оказывается меньше, чем для теплового механизма. Есть и модели с обратной ситуацией, когда нейтралино — долгоживущая; но все же нестабильная частица. Истинно стабильная частица — кандидат на роль темной материи — появляется в результате распада нейтралино. Этот последний вариант также позволяет решить проблему с перепроизводством темной материи в суперсимметричных моделях, поскольку плотность числа появляющихся частиц совпадает с плотностью числа нейтралино, а их масса меньше — в результате плотность энергии темной материи падает. Оба этих варианта обсуждаются в разделе, посвященном гравитино — именно гравитино является интересным партнером нейтралино в паре LSP—NLSP.

9.6.2. Снейтрино

Снейтрино является суперпартнером нейтрино. Если обобщение Стандартной модели, приводящее в конечном итоге к наблюдаемым осцилляциям нейтрино, происходит на энергетическом масштабе, существенно превышающем масштаб масс суперпартнеров, то и в суперсимметричном обобщении Стандартной модели сектор нейтральных лептонов совпадает с сектором нейтрино Стандартной модели — три поколения по две степени свободы. Таким образом, в минимальном суперсимметричном обобщении Стандартной модели имеется три поколения снейтрино, описываемых тремя комплексными, но электрически нейтральными скалярными полями. Каждое поколение снейтрино состоит из одной скалярной и одной псевдоскалярной частицы всего шесть бозонных степеней свободы. Если в моделях с R-четностью легчайшее снейтрино является LSP, то именно снейтрино будет давать вклад в темную материю Вселенной. Оценка реликтовой плотности снейтрино производится аналогично рассмотренному выше случаю LSP нейтралино. Как и нейтралино, снейтрино активно взаимодействует в первичной плазме. В отличие от случая нейтралино, где благодаря смешиванию четырех различных состояний те или иные константы связи LSP-нейтралино с частицами Стандартной модели могут быть подавлены, взаимодействия снейтрино с W- и Z-бозонами являются прямым суперсимметричным обобщением соответствующих взаимодействий лептонов, что существенно сказывается как на интенсивности аннигиляции снейтрино-LSP в ранней Вселенной, так и на чувствительности к ним экспериметов по прямому поиску частиц темной материи.

Снейтрино аннигилируют в лептоны посредством *t*-канальных обменов виртуальными хигтсино, вино и зино или аннигилируют в *s*-канале в виртуальный Z-бозон, распадающийся потом в частицы Стандартной модели. По порядку величины численная оценка для плотности реликтовых снейтрино совпадает с оценкой (9.19) для плотности тяжелых реликтовых частиц (дополнительного р-волнового подавления, имеющего место для аннигиляции нейтралино, здесь нет), так что реликтовая плотность массы снейтрино действительно может иметь необходимое значение. Из теоретических соображений снейтрино является, однако, менее естественным кандидатом на роль темной материи, чем нейтралино, поскольку снейтрино является LSP в заметно меньшем классе суперсимметричных обобщений Стандартной модели, чем нейтралино (в большинстве суперсимметричных обобщений легчайшей в секторе скаляров является линейная комбинация суперпартнеров правых заряженных лептонов). Что более существенно, снейтрино как реликтовые частицы, полностью составляющие темную материю, экспериментально запрещены. Действительно, как мы отмечали, взимодействие снейтрино с Z-бозоном по силе не уступает взаимодействию Z-бозона с нейтрино, в результате типичное сечение упругого рассеяния снейтрино на ядрах оказывается на дватри порядка выше существующих ограничений на величину упругого сечения частиц темной материи, приведенных на рис. 9.2. Снейтрино с массами до нескольких ТэВ могут составлять лишь небольшую часть темной материи. Более перспективными в этой связи представляются так называемые правые снейтрино, появляющиеся в суперсимметричных обобщениях Стандартной модели с правыми нейтрино, имеющими массы порядка 100 ГэВ. Эти снейтрино очень слабо взаимодействуют с частицами Стандартной модели и сечение их упругого рассеяния на ядрах лежит заметно ниже существующих ограничений сверху на сечение рассеяния частиц темной материи, приведенных на рис. 9.2.

9.6.3. Гравитино

В моделях с локальной суперсимметрией, т.е. в моделях, где действие инвариантно относительно локальных (зависящих от точки пространствавремени) суперсимметричных преобразований, гравитон — переносчик гравитационного взаимодействия — также приобретает суперпартнера — \tilde{G}_{μ} ,

получившего называние гравитино²⁵⁾. Если бы суперсимметрия была не нарушена, гравитино было бы безмассовым фермионом со спином 3/2. Теории с локальной суперсимметрией получили название супергравитации — действие преобразований суперсимметрии затрагивает все поля теории, включая гравитационное. В связи с этим теории с локальной суперсимметрией являются более фундаментальными. Супергравитационные модели получаются в некоторых низкоэнергетических пределах суперструнных теорий, являющихся сегодня наиболее перспективными кандидатами на роль теории, объединяющей все четыре известных взаимодействия.

Есть и феноменологическая причина, по которой локальная суперсимметрия предпочтительнее своего «глобального» аналога. Дело в том, что в феноменологически приемлемых моделях суперсимметрия должна быть спонтанно нарушена, а значит, по теореме Голдстоуна в случае глобальной суперсимметрии в низкоэнергетическом спектре должны появиться безмассовые степени свободы — по одной на каждый нарушенный генератор преобразований суперсимметрии. В случае суперсимметрии нарушенные генераторы являются фермионными операторами (они и осуществляют преобразование бозон \leftrightarrow фермион, изменяя спин на 1/2, а потому и статистику), поэтому в низкоэнергетическом спектре появляется не безмассовый бозон, а *безмассовый майорановский фермион* ψ — голдстино. Как и положено голдстоуновскому полю, и в полной аналогии со случаем бозонов, голдстино взаимодействует с соответствующим током — в данном случае с супертоком,

$$\mathcal{L} = \frac{1}{F} \partial^{\mu} \psi \cdot J^{SUSY}_{\mu}.$$
(9.57)

Это прямой аналог обобщенной формулы Голдбергера—Треймана, описывающей взаимодействие пионов — (псевдо)голдстоуновских бозонов, возникающих при нарушении киральной симметрии. Параметр F, входящий в формулу (9.57), имеет размерность квадрата массы и определяется вакуумным средним, появление которого привело к спонтанному нарушению суперсимметрии. По порядку величины \sqrt{F} совпадает с масштабом нарушения суперсимметрии в полной теории (так же, как в электрослабой модели величина v совпадает по порядку величины с масштабом нарушения электрослабой симметрии, или в киральной модели величина константы связи пионов f_{π} совпадает по порядку величины с масштабом нарушения симетрии.

В моделях со спонтанным нарушением *локальной* суперсимметрии работает суперхиггсовский механизм: голдстино становится продольной компонентой гравитино,

$$\widetilde{G}_{\mu} \to \widetilde{G}_{\mu} + i\sqrt{4\pi} \frac{M_{Pl}}{F} \partial_{\mu} \psi, \qquad (9.58)$$

которое в результате такого поглощения приобретает массу $m_{3/2}$, пропорциональную *F*. Из требования сокращения космологической постоянной на масштабе нарушения суперсимметрии следует связь между массой гравитино

²⁵⁾ Как и у гравитона, у безмассового гравитино две степени свободы на массовой поверхности.

 $m_{3/2}$, нарушающим суперсимметрию вакуумным средним F и гравитационным масштабом M_{Pl} ,

$$m_{3/2} = \sqrt{\frac{8\pi}{3}} \frac{F}{M_{Pl}}.$$
 (9.59)

Поскольку никаких проявлений суперсимметрии пока экспериментально не обнаружено, величина \sqrt{F} феноменологически может принимать любое значение в интервале

1 Тэ
$$\mathrm{B} \lesssim \sqrt{F} \lesssim M_{Pl},$$

где нижняя граница определяет масштаб масс суперпартнеров частиц Стандартной модели. Отсюда и широкий разброс оценок для массы гравитино,

Формула (9.57), где в качестве ψ выступает продольная компонента гравитино, показывает, что формально лагранжиан взаимодействия гравитино с полями материи имеет довольно простой вид. Взаимодействие «исходных» поперечных компонент гравитино с полями материи подавлено планковским масштабом, как и взаимодействие обычного гравитона. Для подавляющего большинства моделей нарушение суперсимметрии происходит на масштабе энергий ниже планковского, $\sqrt{F} \ll M_{Pl}$, поэтому массивное гравитино взаимодействие продольной компоненты усилено множителем $M_{Pl}^2/F \gg 1$. Взаимодействие продольной компоненты гравитино по-прежнему описывается формулой (9.57). Для оценки величины эффективных констант связи гравитино с полями материи можно проинтегрировать действие по частям, получив

$$\mathcal{L} = -rac{1}{F} \psi \cdot \partial^{\mu} J^{SUSY}_{\mu}.$$

В теориях со спонтанным нарушением суперсимметрии суперток перестает сохраняться на уравнениях поля, что с точки зрения низкоэнергетической теории, в частности, обусловлено появившимся различием между массами партнеров и суперпартнеров. Отсюда величину эффективной безразмерной константы связи гравитино с полями материи можно оценить как отношение квадрата масс суперпартнеров m_S^2 к нарушающему суперсимметрию вакуумному среднему ²⁶ *F*,

$$\frac{m_S^2}{F}.$$
 (9.60)

²⁶⁾ Может создаться ложное впечатление, что выражение (9.60) является некорректным, поскольку в нем нельзя перейти к пределу ненарушенной суперсимметрии $F \to 0$. Это не так. Массовые параметры суперпартнеров (порядка m_S^2) также пропорциональны параметру F, и величина (9.60) определяется многочисленными юкавскими и калибровочными константами связи тех взаимодействий, посредством которых после спонтанного нарушения суперсимметрии в полной теории суперпартнеры частиц Стандартной модели приобрели массы.

Ясно, что в большинстве феноменологически приемлемых и интересных моделей, где

100 ГэВ
$$\leq m_S \leq$$
 10 ТэВ

И

1 ТэВ
$$\ll \sqrt{F} \ll M_{Pl}$$
,

величина эффективной константы связи (9.60) мала (как правило, очень мала), чем и обусловлено существенное отличие феноменологии и космологии гравитино по сравнению с феноменологией и космологией суперпартнеров частиц Стандартной модели. Но есть между ними и общее. Как видно из выражений (9.57), (9.58), в моделях с R-четностью гравитино является нечетной частицей, а значит, при рассеянии обычных частиц Стандартной модели гравитино, как и суперпартнеры, будут рождаться парами («пару» может помочь составить и обычный суперпартнер). Кроме того, гравитино в широком интервале своих масс,

$$2 \cdot 10^{-4}$$
 эВ $\leq m_{3/2} \leq 100$ ГэВ,

будет являться легчайшим суперпартнером, LSP, а значит, стабильной частицей. Это происходит в теориях с относительно низким масштабом нарушения суперсимметрии, см. (9.59),

$$\sqrt{F} \lesssim 10^{10}$$
 ГэВ.

В таких моделях реликтовые гравитино могут претендовать на роль частиц темной материи. Отметим однако, что если действительно темную материю образуют реликтовые гравитино, то возможность прямой регистрации частиц темной материи в экспериментах обозримого будущего вызывает сомнения гравитино слишком слабо взаимодействует с другими частицами.

Обсудим возможную роль гравитино в космологии. Как мы видели, гравитино взаимодействует с остальными частицами очень слабо, поэтому в ранней Вселенной процессами с участием двух гравитино можно пренебречь. В частности, можно пренебречь двухчастичным рождением гравитино, а также аннигиляцией гравитино в обычные частицы.

Задача 7. Оценить, гравитино каких масс могут эффективно рождаться в первичной плазме при температуре T в результате рассеяния частиц Стандартной модели. Убедиться, что закалка гравитино феноменологически приемлемых масс $m_{3/2} \ge 10^{-4}$ эВ происходит задолго до эпохи нуклеосинтеза, а значит, присутствие легких стабильных гравитино заведомо не противоречит ограничениям на число релятивистских компонент в плазме в эпоху нуклеосинтеза.

Начнем с моделей, где гравитино находилось в равновесии с частицами первичной плазмы (другие возможности будут рассмотрены ниже). Гравитино \tilde{G} будет находиться в равновесии до тех пор, пока скорости реакций

$$X_1 + \widetilde{G} \leftrightarrow X_2 + X_3 \tag{9.61}$$

(где X_i , i = 1, 2, 3 — другие частицы плазмы) превышают темп расширения Вселенной. Процесс (9.61) происходит через *s*-, *t*- и *u*-канальные обмены

230

Рис. 9.9. Диаграммы, дающие вклад в $2 \rightarrow 2$ процессы с рождением (поглощением) гравитино в первичной плазме, $Y, X_i, i = 1, 2, 3$ — другие частицы, например частицы Стандартной модели и их суперпартнеры (в модели с R-четностью по крайней мере одна из частиц $X_i, i = 1, 2, 3$ должна быть суперпартнером)

виртуальными частицами $Y = X_1, X_2, ...$ (см. рис. 9.9). Каждая диаграмма включает вершину взаимодействия частиц $X_1, X_2, ...,$ пропорциональную, например, некоторой калибровочной константе связи g, и вершину взаимодействия этих частиц с гравитино, обратно пропорциональную вакуумному среднему F и прямо пропорциональную массам суперпартнеров. В результате для сечения рассеяния (9.61) получим оценку

$$\sigma_{\widetilde{G}}\simeq lpha rac{m_S^2}{F^2},$$
 где $lpha=rac{g^2}{4\pi}.$

Гравитино перестает взаимодействовать с плазмой при температуре T_f , определяемой условием остановки реакций (9.61),

$$\sum_X \sigma_{\widetilde{G}} \cdot n_X \cdot v_{\widetilde{G}} \simeq H(T_f) = rac{T_f^2}{M_{Pl}^*},$$

где n_X — равновесная плотность частиц, на которых рассеивается гравитино, а $v_{\tilde{G}}$ — скорость гравитино. Предположим, что гравитино перестает взаимодействовать с частицами плазмы, когда гравитино и частицы $X_{1,2,\ldots}$ являются релятивистскими, тогда прямые и обратные процессы (9.61) замораживаются одновременно. Подставляя

$$n_X \sim T^3, \quad v_{\tilde{G}} = 1$$

и учитывая, что имеется порядка $g_*(T_f)$ отдельных реакций с разными частицами X, получим для температуры закалки

$$T_f \sim m_{3/2} \cdot \frac{\alpha \pi}{\sqrt{30g_*(T_f)}} \cdot \frac{F}{m_S^2},\tag{9.62}$$

где мы выразили одно вакуумное среднее F через массу гравитино, воспользовавшись выражением (9.59), и подставили определение (3.30) для M_{Pl}^* .

Поскольку $F \gg m_S^2$, то ясно, что гравитино действительно отщепляется от первичной плазмы, будучи ультрарелятивистской частицей²⁷⁾. Таким об-

²⁷⁾ Для гравитино с $m_{3/2} \leq 10$ кэВ оценка (9.62) дает температуру его закалки меньше масштаба масс суперпартнеров, $T_f \leq m_s$. В этом случае процессы (9.61) перестают в действительности

разом, оценка современной плотности числа реликтовых гравитино производится аналогично оценке плотности числа нейтрино Стандартной модели. Соответствующее выражение для гравитино имеет вид

$$n_{3/2,0} = \frac{3}{4} \cdot \left(\frac{g_{3/2}}{2}\right) \cdot \frac{43}{11} \cdot \frac{1}{g_*(T_f)} \cdot n_{\gamma,0}, \qquad (9.63)$$

где было использовано явное выражение (5.40) для энтропии первичной плазмы при T < 1 МэВ, $n_{\gamma,0} = 410$ см⁻³ — современная плотность реликтовых фотонов, а $g_{3/2}$ — число степеней свободы гравитино, причем поскольку взаимодействие поперечных степеней свободы подавлено величиной массы Планка M_{Pl} , то следует положить $g_{3/2} = 2$. Отщепление от плазмы поперечных степеней свободы гравитино (если они когда-либо были в равновесии с плазмой) происходит на существенно более ранних этапах эволюции Вселенной, чем закалка продольных степеней свободы, т. е. собственно голдстино.

Задача 8. Убедиться в справедливости формулы (9.63).

Задача 9. Определить температуру отщепления от первичной плазмы поперечных степеней свободы гравитино.

Из (9.63) следует, что доля гравитино в полной плотности энергии современной Вселенной равна

$$\Omega_{3/2} = \frac{m_{3/2} \cdot n_{3/2}}{\rho_c} = 0.2 \frac{m_{3/2}}{200 \ \Im B} \left(\frac{g_{3/2}}{2}\right) \cdot \left(\frac{210}{g_*(T_f)}\right) \cdot \frac{1}{2h^2}.$$
 (9.64)

Итак, стабильные гравитино с массами, превышающими $m_{3/2} \sim 1$ кэВ, запрещены космологически, если в ранней Вселенной они находились в равновесии с частицами первичной плазмы. Температура закалки зависит от деталей конкретных моделей, однако в реалистичных моделях это утверждение всегда остается справедливым. С учетом связи между массой гравитино и нарушающим суперсимметрию вакуумным средним (9.59) получаем (почти) модельнонезависимое ограничение на масштаб нарушения суперсимметрии в теории, где гравитино является LSP и находилось в равновесии в ранней Вселенной,

$$\sqrt{F} < 2 \cdot 10^3 \text{ T}$$
эB.

В обсуждаемой ситуации гравитино в точности обеспечат нужный вклад в плотность энергии современной Вселенной, если их масса составляет

$$m_{3/2} \simeq 200$$
 эВ.

Эта величина меньше, чем ограничение снизу на массу частиц темной материи (9.4), следующее из изучения структур, поэтому реликтовые гравитино, находившиеся в равновесии в ранней Вселенной, не могут полностью составлять темную материю. Чтобы гравитино было кандидатом на роль частиц

идти, грубо говоря, при $T_f \sim m_S$, поскольку по крайней мере одна из частиц X_1 , X_2 , X_3 является суперпартнером. Гравитино по-прежнему закаливаются, будучи релятивистскими (см. также задачу 7), так что последующие рассуждения остаются справедливыми.

темной материи, требуется, чтобы маскимальная температура во Вселенной была ниже T_f , а гравитино рождались неравновесным образом. К обсуждению неравновесных механизмов рождения гравитино мы и перейдем.

В ранней Вселенной гравитино могут появиться в результате распадов когерентных полевых конфигураций (например, конденсатов или *Q*-шаров) или «термально» при рассеянии и в распадах обычных частиц в первичной плазме. Остановимся на последнем механизме и рассмотрим суперсимметричные модели, в которых гравитино являются LSP (другой интересный случай гравитино NLSP мы обсудим ниже).

Итак, рассмотрим ситуацию, когда история горячей Вселенной начиналась с некоторой температуры $T_{\rm max}$ (т. е. плазмы с температурой выше $T_{\rm max}$ во Вселенной никогда не было). Природа механизма, обеспечившего достаточную энергию для создания плазмы, нам здесь несущественна. Важно лишь, что начиная с некоторого момента Вселенную можно считать вышедшей на горячую стадию развития, так что в этот момент первичная плазма состоит только из частиц Стандартной модели и их суперпартнеров, имеющих равновесные функции распределения (как мы увидим ниже, добавление новых более тяжелых частиц только усиливает космологические ограничения на модели с LSP гравитино). Никаких гравитино в плазме при температуре $T_{\rm max}$ нет по предположению.

На самом деле, это довольно реалистичная ситуация с точки зрения возможных вариантов начала эпохи горячей Вселенной, в частности, с точки зрения инфляционной теории. Первичный разогрев мог произойти, например, в результате распада некоторого скалярного конденсата, взаимодействующего с обычными частицами посредством юкавских, трилинейных или иных взаимодействий. В результате этого взаимодействия накопленная в конденсате энергия перейдет другим полям, частицы которых, активно взаимодействуя друг с другом, образуют через некоторый промежуток времени горячую плазму. Величина этого промежутка времени опередляется различными факторами, однако она тем больше, чем слабее взаимодействия. В момент, когда среду из обычных частиц можно уже считать термализованной плазмой (т. е. когда соответствующие релаксационные процессы завершились), температура этой плазмы равна Т_{тах}. Взаимодействия гравитино (голдстино) универсальны и определяются лишь величинами нарушающих суперсимметрию параметров (массами суперпартнеров и вакуумным средним F). Предполагая, что и для конденсата соответствующие массовые параметры малы по сравнению с \sqrt{F} , так что гравитино взаимодействует с конденсатом очень слабо, получим, что в такой ситуации подавляющая доля первоначальной энергии конденсата перейдет в энергию взаимодействующих с ним полей, а в гравитино энергия переходить не будет. Поэтому в образовавшейся плазме «первичных» гравитино будет действительно очень мало, как мы и предположили.

Гравитино могут появляться при $T \leq T_{\text{max}}$ в результате распадов суперпартнеров (обычно доминируют двухчастичные распады)

$$\widetilde{X}_i \to \widetilde{G} + X_i, \quad i = 1, \dots$$
 (9.65)

и в результате рассеяния частиц в плазме (доминируют процессы $2 \rightarrow 2$)

$$X_i + X_j \rightarrow X_k + \widetilde{G}, \quad i, j, k = 1, \dots$$
 (9.66)

Учет этих двух основных каналов рождения позволяет записать уравнение Больцмана для плотности числа стабильных гравитино $n_{3/2}$ в ранней Вселенной,

$$\frac{dn_{3/2}}{dt} + 3Hn_{3/2} = \sum_{i} \Gamma_{\widetilde{X}_{i}} \cdot \gamma_{i}^{-1} \cdot n_{\widetilde{X}_{i}} + \langle \sigma_{tot} \rangle \cdot n_{\gamma}^{2}, \qquad (9.67)$$

где $\Gamma_{\tilde{X}_i}$ — ширина распада (9.65), γ_i — гамма-фактор частин \tilde{X}_i , в релятивистском случае приводящий к уменьшению темпа их распадов, $n_{\tilde{X}_i}$ — плотность числа распадающихся в гравитино частиц \tilde{X}_i ; $n_{\gamma} = \zeta(3)T^3/\pi^2$ — плотность числа фотонов при температуре T = T(t), $\langle \sigma_{tot} \rangle$ — усредненное с равновесными функциями распределения полное сечение рождения гравитино в 2 \rightarrow 2 процессах (9.66). При записи последнего слагаемого в (9.67) было учтено, что эффективное рождение гравитино в 2 \rightarrow 2 процессах происходит при достаточно высоких концентрациях сталкивающихся частиц плазмы, т. е. при высоких температурах, когда частицы можно считать релятивистскими. Плотности числа этих частиц мы оцениваем как n_{γ} . Мы пренебрегли процессов рассеяния, обратных (9.66),

$$X_k + \widetilde{G} \to X_i + X_j$$

и процессов слияния

$$X_i + \widetilde{G} \to \widetilde{X}_i.$$

Эти процессы несущественны ²⁸⁾, пока плотность гравитино далека от равновесной, $n_{3/2} \ll n_{\gamma}$.

Учитывая особенности взаимодействия голдстино с другими полями и исходя из соображений размерности, для параметров $\Gamma_{\tilde{X}}$ и $\langle \sigma_{tot} \rangle$ можно записать следующие оценки:

$$\Gamma_{\tilde{X}_i} \sim \frac{M_{\tilde{X}_i}^5}{16\pi F^2} = \frac{M_{\tilde{X}_i}^5}{6m_{3/2}^2 M_{Pl}^2},$$
(9.68)

$$\langle \sigma_{tot} \rangle = \text{const} \cdot \frac{m_S^2}{F^2} = \text{const} \cdot \frac{8\pi}{3} \cdot \frac{m_S^2}{m_{3/2}^2 M_{Pl}^2},$$
(9.69)

²⁸⁾ Учет первых процессов привел бы к модификации второго слагаемого в (9.67),

$$\langle \sigma_{tot} \rangle n_{\gamma}^2 \rightarrow \langle \sigma_{tot} \rangle n_{\gamma}^2 \cdot \left(1 - \frac{n_{3/2}}{n_{3/2}^{eq}} \right)$$

которое учитывает «убыль» гравитино. Аналогично, процесс слияния приводит к модификации первого слагаемого,

$$\Gamma_{\widetilde{X}}\gamma_i^{-1}n_{\widetilde{X}_i}\to\Gamma_{\widetilde{X}}\gamma_i^{-1}n_{\widetilde{X}_i}\left(1-\frac{n_{3/2}}{n_{3/2}^{eq}}\right)$$

где $n_{3/2}^{eq}$ — равновесная плотность гравитино. Все эти модификации несущественны, пока $n_{3/2} \ll n_{\gamma}$.

где множитель $1/(16\pi)$ в формуле (9.68) появился из-за фазового объема, а const — число, определяемое суммированием вкладов всех возможных каналов рождения гравитино, т. е. сумма численных коэффициентов, пропорциональных квадратам соответствующих калибровочных (и юкавских) констант связи. Вычисления показывают, что в минимальном суперсимметричном расширении Стандартной модели при высоких температурах основной вклад в сечение дает рассеяние цветных частиц, при этом численно const $\simeq 10$.

Ни одна из величин $\Gamma_{\tilde{X}_i}$, $\langle \sigma_{tot} \rangle$ не зависит от температуры (если не учитывать уменьшения числа каналов с понижением температуры), и обе растут с уменьшением массы гравитино. Поэтому чем легче гравитино, тем быстрее идет процесс их образования в первичной плазме. При высоких температурах

$$n_{\widetilde{X}_i} \sim n_\gamma \propto T^3, \quad \gamma_i^{-1} \propto T^{-1}.$$

Отсюда ясно, что при достаточно высоких максимальных температурах $T_{\rm max}$ основным источником гравитино являются процессы рассеяния (9.66).

Найдем решение уравнения Больцмана (9.67), предварительно переписав его как уравнение на гравитино-энтропийное отношение $\Delta_{3/2} = n_{3/2}/s$. Для этого, по аналогии с решением уравнения Больцмана для случая LSP нейтралино, мы перейдем от переменной t к переменной T и воспользуемся соотношениями (5.35) и (9.45). Уравнение для $\Delta_{3/2}$ будет иметь вид

$$\frac{d\Delta_{3/2}}{dT} = -\sum_{i} \frac{\Gamma_{\tilde{X}_{i}} \gamma_{i}^{-1}}{HT} \cdot \frac{n_{\tilde{X}_{i}}}{s} - \langle \sigma_{tot} \rangle \cdot \frac{n_{\gamma}}{s} \cdot \frac{n_{\gamma}}{HT}.$$
(9.70)

Заметим, что второе слагаемое справа в уравнении (9.70) почти не зависит от температуры (поскольку $H \propto T^2$), а первое растет с уменьшением температуры как $\propto T^{-4}$ для релятивистских частиц X_i , откуда можно заключить, что распадные каналы рождения гравитино наибольший вклад дают на поздних этапах эволюции. Более того, при выполнении условия термализации для обычных частиц этот вклад практически перестает зависеть от величины максимальной температуры $T_{\rm max}$.

Решение уравнения (9.70) для температур $T \ll T_{max}$ и начального условия

$$\Delta(T_{\max})=0,$$

L

имеет вид

$$\Delta_{3/2}(T) = \sum_{i} \int_{T}^{T_{\max}} \frac{\Gamma_{\widetilde{X}_{i}}}{\gamma_{i}} \cdot \frac{n_{\widetilde{X}_{i}}}{s} \cdot \frac{dT'}{T'H(T')} + \langle \sigma_{tot} \rangle \cdot \frac{n_{\gamma}(T_{\max})}{H(T_{\max})} \cdot \frac{n_{\gamma}(T_{\max})}{s(T_{\max})}.$$
 (9.71)

Поскольку между плотностью энтропии, плотностью числа фотонов и числом релятивистских степеней свободы в плазме справедливо соотношение

$$rac{n_\gamma(T)\cdot g_*(T)}{s(T)}={
m const}$$

(где const не зависит от температуры), то решение (9.71) можно переписать в виде

$$n_{3/2}(T) = n_{\gamma}(T) \cdot \frac{g_{*}(T)}{g_{*}(T_{\max})} \times \left[\sum_{i} \int_{T}^{T_{\max}} \frac{\Gamma_{\tilde{X}_{i}}}{\gamma_{i}} \cdot \frac{n_{\tilde{X}_{i}}}{n_{\gamma}} \cdot \frac{g_{*}(T_{\max})}{g_{*}(T')} \cdot \frac{dT'}{T'H(T')} + \langle \sigma_{tot} \rangle \cdot \frac{n_{\gamma}(T_{\max})}{H(T_{\max})} \right].$$
(9.72)

Отметим, что для предельных значений температур числа релятивистских степеней свободы равны

$$g_*(T \leq 1 \text{ M} \Rightarrow \text{B}) = rac{43}{11}, \quad g_*(T \geq m_S) = 228,75.$$

Подчеркнем, что решение (9.72) применимо для оценки плотности до тех пор, пока гравитино не термализовались, т.е. пока справедливо неравенство

$$n_{3/2} \ll n_{3/2}^{eq}(T) \simeq n_{\gamma}(T).$$

Проанализируем решение (9.72). Рассмотрим вклад первого слагаемого в скобках в (9.72). Поскольку при $n_{\tilde{X}_i} \sim n_{\gamma}$ подынтегральное выражение ведет себя как $\propto T^{-4}$ для релятивистских частиц X_i , то интеграл для вклада каждой частицы \tilde{X}_i набирается на нижнем пределе, т. е. при низких температурах (при этом частицы X_i уже можно считать слабо релятивистскими, $\gamma_i^{-1} \simeq 1$). Вклады NLSP и других суперпартнеров ведут себя по-разному. Для всех суперпартнеров, кроме NLSP, помимо распада (9.65) кинематически открыты также распады в NLSP и соответствующие частицы Стандартной модели. Эти распады обусловлены обычными калибровочными или юкавскими взаимодействиями, поэтому происходят значительно быстрее распадов (9.65). По порядку величины время жизни суперпартнера равно

$$au_S = rac{1}{\Gamma^{tot}_{\widetilde{X}}} = rac{1}{lpha m_S},$$

где α — соответствующая константа связи. Сравнивая τ_S с временем жизни Вселенной $t_H \sim H^{-1}$, найдем, что распады суперпартнеров при температурах

$$T \lesssim 0.1 \cdot \sqrt{m_S M_{Pl}}$$

являются быстрыми процессами. Это означает, что как только температура станет меньше массы соответствующего суперпартнера, все такие частицы почти мгновенно распадутся, в основном с рождением NLSP. Отсюда ясно, что для оценки вклада в рождение гравитино от суперпартнеров не-NLSP следует обрезать интеграл в (9.72) на $T \sim M_{X_i}$. В результате получим

$$n_{3/2}(T) \sim n\gamma rac{g_*(T)}{g_*(M_{\widetilde{X}_i})} rac{\Gamma_{\widetilde{X}_i}}{H(T=M_{\widetilde{X}_i})}.$$

Из (9.68) следует, что современная плотность массы гравитино, образовавшихся в распадах тяжелых суперпартнеров, может быть сравнима с ρ_c при $m_{3/2} \leq 1$ МэВ. Для более тяжелых гравитино указанный механизм неэффективен.

Обратимся к гравитино с $m_{3/2} \gg 1$ МэВ.

Оценим вклад распадов NLSP в их рождение. Из (9.68) будем иметь оценку для ширины NLSP,

$$\Gamma_{\rm NLSP} = \frac{M_{\rm NLSP}^5}{6m_{3/2}^2 M_{Pl}^2}.$$
(9.73)

Процессы парного рождения и аннигиляции NLSP прекращаются, и NLSP закаливаются при температуре

$$T_{f,\,\mathrm{NLSP}}\sim \frac{M_{\mathrm{NLSP}}}{20}.$$

К этому времени NLSP не успевают распасться, если

$$\Gamma_{\text{NLSP}} < H(T_{f, \text{NLSP}}) = \frac{T_{f, \text{NLSP}}^2}{M_{Pl}^*}.$$

Из (9.73) следует, что это неравенство действительно выполняется для $m_{3/2} \gg 1$ МэВ. Распады NLSP в конечном итоге приводят к тому, что все закалившиеся NLSP превращаются в гравитино, т. е. число гравитино в сопутствующем объеме равно закалившемуся числу NLSP (вклад процессов рассеяния, т. е. второй вклад в (9.72), пока не учитываем; этот вклад действительно неважен, например, в моделях с $T_{\text{max}} \leq m_S$). Отсюда сразу следует оценка для современной плотности массы гравитино (конечно, она совпадает с оценкой, получаемой интегрированием первого вклада в (9.72)),

$$\rho_{0,3/2} = \frac{m_{3/2}}{M_{\rm NLSP}}\rho_{0,{\rm NLSP}},$$

где $\rho_{0,\text{NLSP}}$ — вклад NLSP в современную плотность энергии в случае стабильных NLSP. Последний мы оценили в разделе 9.6.1, где мы увидели, в частности, что при достаточно больших (и вполне реалистичных) массах NLSP, $M_{\text{NLSP}} \gtrsim M_Z$, современная плотность их массы может оказаться на один-три порядка больше, чем критическая плотность,

$$ho_{0,\mathrm{NLSP}} \sim (10 \div 1000)
ho_c.$$

Поэтому описанный механизм может приводить к требуемому значению

$$\Omega_{3/2}\equiv\frac{\rho_{0,3/2}}{\rho_c}\simeq 0.2$$

для довольно тяжелых гравитино,

$$m_{3/2} \sim (0,1 \div 10) \ \ \Gamma \Rightarrow \mathbf{B} \cdot \left(\frac{100 \ \ \Gamma \Rightarrow \mathbf{B}}{M_{\mathrm{NLSP}}} \right).$$

Трудность такого сценария состоит в том, что время жизни NLSP, вычисленное согласно (9.73), оказывается большим,

$$\tau_{\rm NLSP} \equiv \Gamma_{\rm NLSP}^{-1} \sim 5 \cdot 10^4 \, \rm c \cdot \left(\frac{m_{3/2}}{1 \, \rm F \bar{>} B}\right)^2 \cdot \left(\frac{100 \, \rm F \bar{>} B}{M_{\rm NLSP}}\right)^5.$$

При $\tau_{\rm NLSP} \gtrsim 100$ с распады NLSP, сопровождающиеся рождением высокоэнергичных частиц Стандартной модели (например, фотонов для NLSP нейтралино), происходят в эпоху образования легких химических элементов или после нее, что может приводить к противоречию с результатами теории первичного нуклеосинтеза (см. конец Главы 8). Этой трудности не возникает, если гравитино все же относительно легкие ($m_{3/2} \leq 100$ МэВ) и/или NLSP имеют достаточно большие массы ($M_{\rm NLSP} \gtrsim 300$ ГэВ).

Отметим, что в описанном сценарии гравитино, образующиеся в распадах NLSP, являются изначально релятивистскими. Они практически не взаимодействуют с частицами обычной материи, и «остывают» только за счет расширения Вселенной. Это означает, что гравитино эффективно выступают в роли *темлой* темной материи. Они имеют нетепловые функции распределения по импульсам, что, вообще говоря, сказывается на росте мелкомасштабных структур в таких моделях из-за большой дисперсии скоростей частиц темной материи.

Задача 10. Найти функции распределения по импульсам для стабильных частиц, появившихся в результате двухчастичных распадов тяжелых частиц, отщепившихся нерелятивистскими от первичной плазмы.

Задача 11. Пусть гравитино образует темную материю и имеет массу 100 МэВ, а NLSP имеет массу 200 ГэВ и время жизни 10 с. Оценить пространственный размер областей, в которых неоднородности плотности подавлены по сравнению со случаем холодной темной материи (см. раздел 9.1).

Рассмотрим теперь обратный случай, когда NLSP эффективно распадается до закаливания,

$$\Gamma_{\mathrm{NLSP}} \gtrsim H(T_{f,\mathrm{NLSP}}) \sim \frac{1}{M_{Pl}^*} \left(\frac{M_{\mathrm{NLSP}}}{20}\right)^2.$$

Он реализуется для легких гравитино,

$$m_{3/2} \lesssim 3,5$$
 кэ $\mathrm{B} \cdot \left(rac{M_{\mathrm{NLSP}}}{100 \; \mathrm{F}$ эB}
ight)^{3/2}.

В этой ситуации плотность NLSP в момент распада не подавлена, и, как видно из общего решения уравнения Больцмана (9.72), плотность гравитино быстро растет, так что для ее вычисления требуется учитывать обратные процессы аннигиляции гравитино в NLSP при столкновении с частицами Стандартной модели, которыми мы пренебрегали. В результате плотность числа реликтовых гравитино почти совпадает с плотностью числа гравитино в моделях, где гравитино находится в равновесии в первичной плазме. В этом случае для доли гравитино в полной плотности энергии современной Вселенной с небольшими поправками справедлива оценка (9.64).

Обратимся теперь к генерации гравитино в рассеянии частиц материи. Она существенна при

$$T_{\max} \gtrsim m_S.$$

В этом случае при $T \sim T_{\rm max}$ все частицы материи термализованы. За процессы рассеяния отвечает второе слагаемое в выражении (9.72), линейно растущее с $T_{\rm max}$ при $T_{\rm max} \gg M_S$. В этом пределе для доли реликтовых гравитино будем иметь

$$\Omega_{3/2} = rac{m_{3/2} n_{3/2}}{
ho_c} = rac{m_{3/2} T_{ ext{max}}}{
ho_c} \cdot n_{\gamma,0} \cdot rac{g_\star(T_0)}{g_\star(T_{ ext{max}})} \cdot \langle \sigma_{tot}
angle \cdot rac{n_\gamma(T_{ ext{max}})}{T_{ ext{max}} H(T_{ ext{max}})}.$$

Подставляя в эту формулу выражение для полного сечения рождения гравитино (9.69), явные выражения для плотности числа фотонов и параметра Хаббла, получаем

Отсюда очевидно ограничение сверху на максимальную температуру первичной плазмы, которое растет линейно с увеличением массы гравитино.

Рис. 9.10. Ограничения на параметры $(T_{\max}, m_{3/2})$, следующие из вклада реликтовых гравитино в современную плотность энергии Вселенной. Область выше сплошной линии запрещена из-за перепроизводства реликтовых нейтралино. Сплошная линия отвечает оценке $\Omega_{3/2}h^2 \simeq 1$

Оценку (9.74) можно уточнить в результате явного численного интегрирования уравнения Больцмана (9.70). Соответствующий результат [37] для суперсимметричной модели с NLSP бино и иерархией масс $M_{\rm NLSP} = 50$ ГэВ $\ll m_S = 1$ ТэВ представлен на рис. 9.10. Область параметров ($T_{\rm max}, m_{3/2}$) выше сплошной линии запрещена космологически из-за перепроизводства стабильных гравитино в ранней Вселенной. Это космологическое ограничение весьма существенно, поскольку в простейших моделях разогрева Вселенной температура разогрева превышает $T \sim 10^8$ ГэВ.

Отметим, что при указанной иерархии в спектре масс суперпартнеров, в моделях с $(T_{\max}, m_{3/2})$ чуть ниже линии, представленной на рис. 9.10, реликтовые стабильные гравитино будут полностью обеспечивать темную материю Вселенной. Для областей существенно ниже сплошной линии плотность реликтовых гравитино будет недостаточна для объяснения всей темной материи. Как мы видим из (9.74) и из приведенного графика, для обеспечения необходимого количества темной материи реликтовыми гравитино требуется точная подстройка параметров разной природы: величина $m_{3/2}$ определяется деталями модели, в то время как величина T_{\max} определяется эволюцией Вселенной.

В качестве примера самосогласованного и феноменологически приемлемого суперсимметричного обобщения Стандартной модели, где многочисленные массы и константы связи в низкоэнергетической теории определяются лишь несколькими параметрами, и масштаб нарушения суперсимметрии достаточно низок, так что гравитино естественным образом оказывается LSP, рассмотрим модель с калибровочным механизмом передачи нарушения суперсимметрии в сектор полей Стандартной модели. В этой модели предполагается, что суперсимметрия нарушается спонтанно в некотором специальном секторе полей в результате нетривиальной динамики. Суперпартнеры частиц Стандартной модели приобретают нарушающие суперсимметрию массы в результате обычных калибровочных взаимодействий Стандартной модели. Связь между «скрытым» сектором, в котором происходит спонтанное нарушение суперсимметрии, и сектором полей Стандартной модели обеспечивается посредством гипотетических тяжелых полей, получивших название *медиаторы* (messengers).

Эти поля заряжены по калибровочной группе Стандартной модели, а взаимодействие со «скрытым» сектором приводит к расщеплению масс в скалярном секторе медиаторов q,

$$M_q^2 = M^2 \left(1 \pm \frac{\Lambda}{M} \right), \quad \Lambda < M,$$

где M — масса медиаторов-фермионов (и масштаб масс медиаторов), а параметр Λ^2 пропорционален вакуумному среднему F, чье появление и привело к спонтанному нарушению суперсимметрии в полной теории. Обычно поля медиаторов выбирают так, чтобы они образовывали полные мультиплеты относительно группы теории Большого объединения (например, SU(5)). В этом случае не портится объединение калибровочных констант связи Стандартной модели на масштабе M_{GUT} . Помимо этого, спектр медиаторов должен содержать наряду с фермионами левой киральности такое же количество фермионов правой киральности, чтобы избежать квантовых аномалий.

Медиаторы непосредственно взаимодействуют с полями из калибровочного сектора Стандартной модели. Однопетлевые квантовые поправки, обусловленные обменом виртуальными медиаторами, приводят к появлению на масштабе *M* ненулевых масс калибрино,

$$M_{\lambda}(M) \sim \frac{\alpha}{4\pi} \Lambda,$$
 (9.75)

где α — соответствующая калибровочная константа связи. Поля из скалярного сектора суперсимметричного расширения Стандартной модели получают ненулевые вклады в квадраты масс на двухпетлевом уровне теории возмущений,

$$m_{\overline{f}}^2(M) \sim \left(\frac{\alpha}{4\pi}\right)^2 \Lambda^2.$$
 (9.76)

Коэффициенты пропорциональности в (9.75) и (9.76), вообще говоря, различны для различных полей.

Итак, в моделях с калибровочным механизмом передачи нарушения суперсимметрии массы суперпартнеров частиц Стандартной модели зависят от их квантовых чисел, причем массы скаляров и фермионов оказываются одного порядка,

$$M_{\lambda} \sim m_{\tilde{f}} \sim \frac{lpha}{4\pi} \Lambda.$$

Независимость калибровочных взаимодействий от ароматов обеспечивает на масштабе M отсутствие дополнительных (по сравнению с уже имеющимися в Стандартной модели) параметров, нарушающих аромат. К такого рода параметрам относятся, например, недиагональные в калибровочном базисе элементы матрицы квадратов масс скварков и слептонов, $m_{f_{ab}}^2$. Гравитационные взаимодействия в общем случае могут привести к появлению таких вкладов. Оценивая величину этих вкладов как

$$\Delta m_{f_{ab}} \sim \frac{F}{M_{Pl}} \sim m_{3/2},$$

найдем, что феноменологические ограничения на величины внедиагональных элементов (следующие, например, из поиска редких распадов лептонов и мезонов),

$$rac{\Delta m_{f_{ab}}}{m_{\widetilde{f}}} \lesssim 10^{-2} \div 10^{-3}, \quad m_{\widetilde{f}} \sim 500 ext{ F3B},$$

дают верхний предел на массу гравитино в этих моделях,

$$m_{3/2} \lesssim (10^{-2} \div 10^{-3}) \cdot m_{\widetilde{f}} \sim 1$$
 ГэВ.

Отсюда непосредственно следует ограничение сверху на масштаб нарушения суперсимметрии в этих моделях:

$$\sqrt{F} \leq 10^9$$
 ГэВ.

Наконец, ограничения снизу на массу гравитино и масштаб нарушения суперсимметрии следуют из общего ограничения на масштаб масс суперпартнеров,

$$M_{\lambda}, m_{\tilde{f}} \gtrsim 300$$
 ГэВ.

Подставляя эту оценку в (9.75), (9.76), получим

$$\sqrt{F} \gtrsim \Lambda \gtrsim 30$$
 T \Rightarrow B, $m_{3/2} \gtrsim 1$ \Rightarrow B.

В данных моделях гравитино являются LSP. Что касается спектра суперпартнеров обычных частиц Стандартной модели, то в зависимости от параметров модели NLSP будут либо нейтралино, либо суперпартнер правого τ -лептона. Последний случай является более распространенным.

Отметим, что в моделях с калибровочным механизмом передачи нарушения суперсимметрии в качестве дополнительного источника гравитино выступают медиаторы и поля скрытого сектора. Их вклад может несколько изменить оценки, приведенные на рис. 9.10.

Мы рассмотрели модели с легкими гравитино, $m_{3/2} \leq 1$ ГэВ, для которых основные космологические ограничения связаны с возможным перепроизводством гравитино в ранней Вселенной. В моделях с более тяжелыми гравитино время жизни NLSP

$$\tau_{\rm NLSP} \sim \frac{m_{3/2}^2 M_{Pl}^2}{m_S^5} \tag{9.77}$$

увеличивается настолько, что распад NLSP происходит уже в эпоху или даже несколько позже первичного нуклеосинтеза. Распады NLSP сопровождаются испусканием высокоэнергичных (с точки зрения температуры первичной плазмы) частиц, начинающих активно взаимодействовать с частицами плазмы, в частности с первичными ядрами. Разрушение этих ядер (например, в процессе фотодиссоциации) привело бы к изменению предсказаний стандартного нуклеосинтеза для современной распространенности первичных легких ядер²⁹⁾, см. конец раздела 8.4. Учитывая связь между временем жизни NLSP и массой гравитино (9.77), ограничения, приведенные на рис. 8.4, можно представить как ограничения в плоскости параметров $(n_{
m NISP}, m_{3/2})$. Величина n_{NLSP} модельно-зависима, поэтому заключение о космологической пригодности модели требует детальной оценки остаточной плотности NLSP. Отметим, что в качестве NLSP могут выступать, вообще говоря, любые суперпартнеры: многочисленные ограничения из экспериментов по поиску частиц темной материи не имеют никакого отношения к частицам, распадающимся за время $\tau_{\rm NLSP} \ll H_0$.

В качестве иллюстрации применения ограничений из нуклеосинтеза рассмотрим модель mSUGRA, обсуждавшуюся в разделе 9.6.1. Добавим в модель легкое гравитино, так что в получившейся модели оно будет LSP. Массу гравитино будем рассматривать как свободный параметр (что, вообще говоря, неверно в простейших моделях супергравитации, где гравитино на один-два порядка тяжелее суперпартнеров частиц Стандартной модели). В качестве NLSP будут выступать нейтралино или суперпартнер правого τ -лептона.

Поскольку распад NLSP происходит при существенно более поздних временах, чем времена, при которых происходила закалка NLSP, то остаточная плотность числа NLSP при промежуточных временах и температурах оценивается так же, как если бы частицы NLSP были стабильными. Распад NLSP приводит к появлению релятивистских гравитино и релятивистских частиц Стандартной модели: фотонов, Z-бозонов, τ -летопнов. Нестабильные частицы распадаются, рождая в конце концов энергичные фотоны, релятивистские электроны и позитроны. Помимо подогрева плазмы, эти

²⁹⁾ Отметим, что NLSP, распадающиеся в слабовзаимодействующие частицы (например, NLSP снейтрино), не приводят к разрушению первичных ядер, а лишь добавляют дополнительные высокоэнергичные частицы (например, нейтрино) в плазму.

Рис. 9.11. (Цветную версию рисунка см. на вклейке.) Ограничения в пространстве параметров $(M_{1/2}, m_0)$ модели mSUGRA (см. описание модели в разделе 9.6.1) [32]

релятивистские частицы могут разрушать легкие ядра, изменяя относительную концентрацию первичных химических элементов. Результаты анализа космологии в такой модели приведены на рис. 9.11.

В завершение раздела кратко обсудим модели с нестабильным, но не очень тяжелым гравитино. Этот случай характерен для простейших моделей mSUGRA.

Роль частиц темной материи будет играть LSP нейтралино. Время жизни гравитино, вообще говоря, весьма велико, поэтому в таких моделях может реализовываться космологический сценарий, в котором гравитино доминируют в течение некоторого этапа эволюции, а затем распадаются. Это — первый из двух сценариев, рассмотренных в разделе 5.3. Для тяжелых гравитино основной вклад в распад дают взаимодействия «оригинальных» поперечных компонент (не голдстино), и оценка для ширины гравитино имеет вид

$$\Gamma_{3/2} \simeq rac{m_{3/2}^3}{M_{Pl}^2}.$$

Пусть начальные температуры во Вселенной существенно превышали $m_{3/2}$, так что гравитино были в равновесии в первичной плазме (это предположение, как следует из результатов раздела 5.3, можно ослабить). Поскольку гравитино закаливаются релятивистскими, то при температурах $T \leq m_{3/2}$, когда гравитино являются нерелятивистскими, плотность их массы имеет порядок

$$ho_{3/2}(T) \sim m_{3/2}T^3$$

Начиная с некоторой температуры и до тех пор, пока гравитино не распадутся, они доминируют в полной плотности энергии Вселенной, т.е. временно реализуется пылевидная стадия эволюции, см. раздел 5.3. Условие (см. (5.55))

$$\Gamma_{3/2} \lesssim \frac{T_{NS}^2}{M_{Pl}^*(T_{NS})}$$

дает для массы гравитино довольно жесткое ограничение снизу,

$$m_{3/2} > \left[rac{T_{NS}^2 M_{Pl}^2}{M_{Pl}^*(T_{NS})}
ight]^{1/3},$$
 t. e. $m_{3/2} > 45$ TəB,

несколько ограничивающее класс моделей супергравитации, где масса гравитино на один-два порядка больше масс суперпартнеров. К моделям, где тяжелое гравитино не давало основной вклад в плотность энергии ранней Вселенной (например, никогда не было в тепловом равновесии), это ограничение неприменимо.

9.7. * Другие кандидаты

9.7.1. Аксионы и другие легкие долгоживущие частицы

Во многих обобщениях Стандартной модели имеются новые скалярные или псевдоскалярные частицы. В ряде моделей некоторые из них оказываются настолько легкими и слабовзаимодействующими, что их время жизни значительно превышает хаббловское время, а значит, при изучении космологии ранней и современной Вселенной их можно считать стабильными и рассматривать в качестве кандидатов на роль частиц темной материи. Среди таких моделей, потенциально интересных с точки зрения космологии, можно перечислить модели с легкими аксионами (см. ниже), дилатонами, фамилонами, сголдстино и др.

Слабое взаимодействие этих частиц с частицами Стандартной модели и малая масса, определяющие столь долгое время жизни этих частиц, связаны со специфическими особенностями соответствующих обобщений Стандартной модели, направленных на решение тех или иных проблем, напрямую не связанных с космологией. Если по каким-либо причинам (решение проблем Стандартной модели, соображения естественности и т. п.) параметры этих моделей автоматически принимают значения, обеспечивающие стабильность этих частиц на космологических временах, то их можно считать естественными кандидатами на роль частиц темной материи. Также представляют интерес модели, в которых параметры, определяющие время жизни легких частиц, оказываются свободными в широком диапазоне значений, часть которого допускает стабильность частиц на космологических временах. В этих моделях легкие частицы нельзя назвать естественными кандидатами, поскольку с теоретической точки зрения нет никаких причин ожидать, что параметры должны принимать значения, обеспечивающие стабильность частиц на космологических временах. Наоборот, из этого требования соответствующие подклассы моделей можно считать более предпочтительными с точки зрения космологии и значит более достойными дальнейшего исследования.

Итак, рассмотрим общие свойства таких моделей. Поскольку по предположению новые частицы очень слабо взаимодействуют с частицами Стандартной модели, то они должны быть нейтральными относительно калибровочных взаимодействий Стандартной модели, а константы возможных юкавских взаимодействий должны быть очень малы. Для скалярных частиц S и псевдоскалярных частиц P эти требования позволяют написать для взаимодействия с векторными бозонами Стандартной модели калибровочно-инвариантные лагранжианы вида

$$\mathcal{L}_{SFF} = \frac{C_{SFF}}{4\Lambda} \cdot SF_{\mu\nu}F^{\mu\nu}, \quad \mathcal{L}_{PFF} = \frac{C_{PFF}}{8\Lambda} \cdot PF_{\mu\nu}F_{\lambda\rho}\epsilon^{\mu\nu\lambda\rho}, \quad (9.78)$$

где $F_{\mu\nu}$ — напряженность калибровочного поля либо группы $SU(3)_c$, либо группы $SU(2)_w$, либо группы $U(1)_r$. Здесь параметр Λ имеет размерность массы и по смыслу является энергетическим масштабом новой физики, с которой и связано появление новых легких частиц S и/или P. Этот параметр должен быть достаточно велик, тогда взаимодействия S и P с калибровочными бозонами действительно будут слабыми. В связи с этим в (9.78) фигурируют калибровочно-инвариантные операторы низшей размерности; в принципе, к выражениям (9.78) можно было бы добавить, например, члены типа $\Lambda^{-5}S(F_{\mu\nu})^4$, но их эффекты были бы еще сильнее подавлены при энергиях, много меньших Λ . Безразмерные константы C_{SFF} , C_{PFF} определяются деталями высокоэнергетической теории и, вообще говоря, аналогично константам взаимодействия Стандартной модели, несколько изменяются с масштабом энергии Q^2 , характерным для конкретных рассматриваемых процессов. Однако для наших оценок это несущественно, и их можно считать числами порядка единицы. В обычном базисе полей Стандартной модели калибровочно-инвариантные взаимодействия (9.78) представляют собой вза-имодействия скаляров и псевдоскаляров с парой фотонов $\gamma\gamma$, глюонами, $Z\gamma$ -, ZZ- и W^+W^- -парами.

Взаимодействия с фермионами Стандартной модели также можно построить, используя калибровочно-инвариантные комбинации полей. Поскольку *S* и *P* являются синглетами относительно $SU(3)_c \times SU(2)_w \times U(1)_r$, никакие комбинации типа $S\bar{\psi}\psi$ и $P\bar{\psi}\gamma^5\psi$ не являются калибровочно-инвариантными (здесь и далее ψ обозначают поля фермионов Стандартной модели). Калибровочно-инвариантные операторы низшей размерности имеют вид $H\bar{\psi}\psi$, где H — хиггсовское поле, поэтому в ведущем порядке по Λ можно записать взаимодействия вида

$$\mathcal{L}_{SHff} = rac{Y_{SHff}}{\Lambda} \cdot SH\overline{\psi}\psi, \quad \mathcal{L}_{PHff} = rac{Y_{PHff}}{\Lambda} \cdot PH\overline{\psi}\gamma^5\psi.$$

Предположив для определенности, что константы Y_{SHff} и Y_{SPff} по порядку величины сравнимы с обычными юкавскими константами фермионов в Стандартной модели, с учетом отличного от нуля вакуумного среднего хиггсовского поля для скаляров и псевдоскаляров можно ожидать низкоэнергетические лагранжианы взаимодействия следующей структуры:

$$\mathcal{L}_{Sff} = \frac{C_{Sff}m_f}{\Lambda} \cdot S\bar{\psi}\psi, \quad \mathcal{L}_{Pff} = \frac{C_{Pff}m_f}{\Lambda} \cdot P\bar{\psi}\gamma^5\psi, \quad (9.79)$$

где безразмерные константы C_{Sff} и C_{Pff} также будем считать порядка единицы³⁰⁾.

Взаимодействия (9.78) и (9.79) позволяют оценить ширины распадов частиц P и S в частицы Стандартной модели (конечно, речь идет о кинематически разрешенных распадах),

$$\Gamma_{P(S)\to AA} \sim \frac{m_{P(S)}^3}{64\pi\Lambda^2}, \quad \Gamma_{P(S)\to ff} \sim \frac{m_f^2 m_{P(S)}}{8\pi\Lambda^2}, \tag{9.80}$$

где *А* обозначают векторные бозоны (мы опустили возможные пороговые множители). Из требования, чтобы время жизни частиц превышало возраст Вселенной,

$$au_{S(P)} = rac{1}{\Gamma_{S(P)}} > H_0^{-1},$$

получим при фиксированном масштабе Λ ограничение сверху на массу частиц, которые могут претендовать на роль частиц темной материи,

$$m_{P(S)} < (16\pi\Lambda^2 H_0)^{1/3}.$$
 (9.81)

³⁰⁾ Вообще говоря, в конкретных моделях между различными константами связи $\{C_{PFF}, \ldots, C_{Pff}\}$ (и аналогично для случая скаляра) возможна иерархия. Для простоты мы такие случаи рассматривать не будем.

Считая, что новая физика имеет масштаб $\Lambda < M_{Pl}$, будем иметь численную оценку

$$m_{P(S)} < 100 \text{ M} \Im B.$$
 (9.82)

Для таких масс кинематически разрешеными являются распады в конечные состояния, содержащие фотоны, электроны и/или нейтрино. Как следует из (9.80), доминирующим распадным каналом является распад в два фотона, если $m_{P(S)}$ не совпадает по порядку величины с массой электрона.

Рассмотрим теперь вопрос о генерации реликтовых скаляров или псевдоскаляров в ранней Вселенной. Существует несколько механизмов, приводящих к появлению этих частиц в расширяющейся Вселенной. Два из них можно считать достаточно универсальными для этого класса моделей: это генерация частиц в результате распада плоских направлений (конденсатов) и тепловое рождение частиц в первичной плазме (другие механизмы генерации будут рассмотрены ниже на примере модели с аксионами). Обсудим эти механизмы.

Пусть в ранней Вселенной некоторое скалярное поле ϕ образовало ненулевой конденсат с плотностью энергии ρ_{ϕ} . Иными словами, пусть во Вселенной имелись покоящиеся ϕ -частицы. Будем считать, что масса этих частиц равна m_{ϕ} , а взаимодействуют они со скалярами S посредством лагранжиана $\mu \phi S^2/2$, где μ — константа связи размерности массы (соображения, приводимые ниже, прямо переносятся на случай псевдоскаляров P). Тогда ширина распада $\phi \to SS$ оценивается величиной

$$\Gamma_{\phi \to SS} \sim \frac{\mu^2}{16\pi m_{\phi}}.$$
(9.83)

Если ширины распадов ϕ -частиц по другим каналам не превышают по порядку величины значение (9.83), то распад ϕ -конденсата будет происходить при температуре T_{ϕ} , такой, что³¹⁾

$$\Gamma_{\phi
ightarrow SS} \sim H(T_{\phi}) = rac{T_{\phi}^2}{M_{Pl}^{*}}.$$

Пусть как частицы ϕ , так и частицы S настолько слабо взаимодействуют с другими частицами, что не приходят в состояние равновесия в первичной плазме. Во Вселенной с температурой $m_S < T < T_{\phi}$ плотность энергии, накопленной в легких частицах S, будет равна

$$\rho_S \sim \epsilon \rho_\phi \cdot \frac{T^4}{T_\phi^4},\tag{9.84}$$

а при температурах $T < m_S$, когда скаляры S становятся нерелятивистскими,

$$ho_S\sim\epsilon
ho_\phi\cdotrac{m_ST^3}{T_\phi^4},$$

³¹⁾ Считаем для определенности, что плотность энергии ϕ -конденсата мала по сравнению с плотностью энергии горячей компоненты среды, $\rho_{\phi} \ll g_* T_{\phi}^4$.

где ϵ — доля энергии конденсата, перешедшая в энергию частиц S. Условие $\rho_S(T_0) \simeq 0.2\rho_c$ определяет соотношение между параметрами теории, при выполнении которого частицы S могут объяснить темную материю Вселенной,

$$\Omega_S = \frac{\rho_S}{\rho_c} \sim \frac{m_S T_0^3}{\rho_c} \cdot \frac{\epsilon \rho_{\phi}}{T_{\phi}^4} \sim 0.2 \cdot \left(\frac{m_S}{1 \text{ sB}}\right) \cdot \frac{\epsilon \rho_{\phi}}{T_{\phi}^4} \sim 0.2.$$
(9.85)

Отметим, что последний множитель должен быть существенно меньше единицы. Действительно, в эпоху первичного нуклеосинтеза, $T = T_{NS} \sim 70$ кэВ, вклад новых релятивистских частиц должен быть мал, $\rho_S(T_{NS})/T_{NS}^4 \leq 0.03$. Полагая сначала, что скаляры S еще были релятивистскими, получим отсюда, воспользовавшись оценкой (9.84),

$$rac{
ho_S(T_{NS})}{T_{NS}^4}\sim rac{\epsilon
ho_\phi}{T_\phi^4}\lesssim 0.03.$$

В моделях, где скаляры уже были нерелятивистскими в эпоху нуклеосинтеза,

$$m_S > T_{NS} \simeq 70$$
 кэВ, (9.86)

более сильное ограничение возникает из требования генерации нужного количества темной материи (см. (9.85)),

$$\frac{\epsilon\rho_{\phi}}{T_{\phi}^4} \lesssim 10^{-5},$$

причем, как видно из (9.85), чем больше масса m_S , тем меньше это отношение.

Теперь рассмотрим рождение легких скаляров или псевдоскаляров в результате рассеяния частиц Стандартной модели в первичной плазме. Поскольку взаимодействия (9.78) и (9.79) являются трехчастичными, и соответствующие константы связи очень малы, то основными процессами в плазме при температуре $T \ll \Lambda$, приводящими к рождению и поглощению P или S, будут процессы $2 \leftrightarrow 2$ рассеяния

$$P(S) + X_1 \leftrightarrow X_2 + X_3. \tag{9.87}$$

Эти процессы аналогичны процессам (9.66), играющим основную роль в тепловой динамике гравитино. Диаграммы, относящиеся к процессам (9.87), схематически совпадают с диаграммами 9.9, описывающими процессы $2 \leftrightarrow 2$ для случая гравитино (с очевидной заменой \tilde{G} на S или P). Роль частиц X_1, X_2, X_3, Y играют те частицы Стандартной модели, которые являются релятивистскими при температуре T. Из (9.78) и (9.79) получаем следующую оценку для сечения доминирующих процессов рассеяния (9.87), верную в интересном нам случае $m_{S(P)} < T < \Lambda$,

$$\sigma_{S(P)} \sim rac{lpha}{\Lambda^2},$$

где $\alpha = g^2/(4\pi)$, а g — константа связи Стандартной модели, определяющая соответствующую вершину взаимодействия YX_2X_3 (см. рис. 9.9). Сравнивая длину свободного пробега релятивистских частиц Стандартной модели относительно рассеяния с образованием S(P)-частиц,

$$l_{S(P)} \sim rac{1}{\sigma_{S(P)} n_{\gamma}(T)},$$

и размер горизонта

$$l_H \sim rac{1}{H(T)} \sim rac{M_{Pl}^*}{T^2},$$

получим оценку для характерной температуры закалки процессов с образованием и исчезновением S(P)-частиц,

$$T_{S(P)} \sim \alpha^{-1} \Lambda \cdot \frac{\Lambda}{M_{Pl}^*}.$$
(9.88)

Если температура в ранней Вселенной превышала величину $T_{S(P)}$, то S(P)-частицы находились в равновесии с частицами первичной плазмы. В интересующем нас случае, когда реликтовые S(P)-частицы образуют темную материю, они отщепляются, будучи релятивистскими. Действительно, требование, чтобы отщепление произошло до начала эпохи первичного нуклеосинтеза,

$$T_{S(P)}\gtrsim T_{NS}\simeq 70$$
 кэВ

дает ограничение на масштаб новой физики³²⁾

$$\Lambda \gtrsim 2,5 \cdot 10^6$$
 ГэВ.

При таких значениях Λ правая часть (9.81) заведомо меньше температуры закалки (9.88), поэтому частицы действительно отщепляются, будучи релятивистскими.

Оценка доли S(P)-частиц в плотности энергии современной Вселенной проводится аналогично случаю гравитино, см. (9.64). В результате будем иметь

$$\Omega_{S(P)} = \frac{m_{S(P)} \cdot n_{S(P)}}{\rho_c} = 0.2 \cdot \left(\frac{m_{S(P)}}{200 \ 9B}\right) \cdot g_{S(P)} \cdot \left(\frac{106}{g_*(T_{S(P)})}\right) \frac{1}{2h^2}.$$
 (9.89)

Таким образом, в качестве оценки массы скаляра или псевдоскаляра мы получили то же число, что и для массы реликтовых гравитино (9.64).

Будучи релятивистскими на момент отщепления от плазмы, S(P)-частицы могли бы быть кандидатами на роль теплой (а не холодной) темной материи. Однако полученное значение массы 200 эВ является слишком малым для частиц теплой темной материи, см. раздел 9.1. Таким образом, находившиеся в равновесии S(P)-частицы не подходят на роль частиц темной материи.

³²⁾ Мы не обсуждаем здесь другие ограничения на параметры моделей с легкими частицами, следующие из астрофизики и прецизионных измерений.

Задача 12. Пренебрегая ограничением из нуклеосинтеза, оценить долю S(P)-частиц в полной плотности энергии современной Вселенной для моделей, в которых S(P)-частицы отщепляются от плазмы уже будучи нерелятивистскими, а значит могут претендовать на роль холодной темной материи.

Если максимальная температура в ранней Вселенной не превышала $T_{S(P)}$, то плотность реликтовых S(P)-частиц $n_{S(P)}(T_0)$ подавлена по сравнению с равновесным случаем. При этом масса $m_{S(P)}$ может достигать значения 1 кэВ и выше, согласующегося с наблюдаемой картиной мелкомасштабных структур во Вселенной. Обсуждение естественности такого решения проблемы темной материи требует знания деталей конкретных моделей.

В качестве примера самосогласованной модели, в которой возникают легкие долгоживущие слабовзаимодействующие частицы, обсудим модели с аксионами типа Печчеи—Куинн. Эти частицы участвуют в компенсационном механизме, используемом для решения проблемы *СР*-нарушения в сильных взаимодействиях.

Суть проблемы в следующем. К лагранжиану Стандартной модели (см. Приложение В), можно добавить следующий вклад:

$$\Delta \mathcal{L}_0 = \frac{\alpha_s}{8\pi} \cdot \theta_0 \cdot G^a_{\mu\nu} \tilde{G}^{\mu\nu\,a},\tag{9.90}$$

где $\alpha_s = g_s^2/(4\pi)$ — константа сильного взаимодействия, $G_{\mu\nu}^a$ — тензор напряженности глюонного поля, $\tilde{G}^{\mu\nu a} = \frac{1}{2} \epsilon^{\mu\nu\lambda\rho} G_{\lambda\rho}^a$ — дуальный тензор, а θ_0 — произвольный безразмерный параметр (коэффициент $\alpha_s/(8\pi)$ введен для удобства дальнейшего изложения). Взаимодействие (9.90) инвариантно относительно калибровочной группы Стандартной модели, однако оно нарушает *P*-и *CP*-симметрии. Отметим, что вклад (9.90) можно записать как дивергенцию от вектора (для простоты мы рассматриваем лагранжиан (9.90) в пространстве Минковского), составленного из глюонных полей G_u^a ,

$$\Delta \mathcal{L}_0 = rac{lpha_s}{4\pi} \cdot heta_0 \cdot \partial_\mu K^\mu$$

где

$$K^{\mu} = \epsilon^{\mu
u\lambda
ho} \cdot \left(G^a_{
u} \partial_{\lambda} G^a_{
ho} + rac{1}{3} f^{abc} G^a_{
u} G^b_{\lambda} G^c_{
ho}
ight).$$

Это означает, что лагранжиан (9.90) не дает вклада в уравнения движения, а вклад в действие Стандартной модели можно свести к поверхностному интегралу. Для любых пертурбативных конфигураций калибровочных полей (малых возмушений относительно $A_{\mu} = 0$) этот вклад равен нулю, однако это не так для конфигураций типа инстантонов. Это означает, что на непертурбативном уровне в квантовой хромодинамике (КХД) нарушена *СР*-симметрия.

Кроме того, учет квантовых эффектов, обусловленных кварками, приводит к появлению аномального вклада³³⁾ вида (9.90), пропорционального фазе детерминанта массовой матрицы кварков \widehat{M}_{a} ,

$$\Delta \mathcal{L}_m = \frac{\alpha_s}{8\pi} \cdot \operatorname{Arg} \left(\det \widehat{M}_q \right) \cdot G^a_{\mu\nu} \widetilde{G}^{\mu\nu\,a}.$$
(9.91)

³³⁾ Имеется в виду аномалия в аксиальном токе $U(1)_A$, $\partial_\mu J^\mu_A \propto \frac{\alpha_s}{2\pi} G^a_{\mu\nu} \widetilde{G}^{\mu\nu a}$.

Нет никаких оснований ожидать, что Arg (det \widehat{M}_q) = 0. Еще меньше оснований ожидать, что «древесный» вклад (9.90) и аномальный вклад (9.91) сократятся. Действительно, первый вклад имеется, вообще говоря, даже в отсутствие кварков, второй же связан с юкавским сектором теории, поскольку массы кварков в Стандартной модели пропорциональны юкавским константам связи полей кварков с хиггсовским бозоном.

Итак, к лагранжиану Стандартной модели следует дописать дополнительные вклады:

$$\Delta \mathcal{L}_{\theta} = \Delta \mathcal{L}_{0} + \Delta \mathcal{L}_{m} = \frac{\alpha_{s}}{8\pi} \left(\theta_{0} + \operatorname{Arg} \left(\det \widehat{M}_{q} \right) \right) G^{a}_{\mu\nu} \widetilde{G}^{\mu\nu \, a} \equiv \frac{\alpha_{s}}{8\pi} \cdot \theta \cdot G^{a}_{\mu\nu} \widetilde{G}^{\mu\nu \, a}.$$
(9.92)

Эти вклады нарушают *CP*-симметрию, причем в общем случае величина параметра θ может быть порядка единицы, $\theta \sim 1$.

Вклад (9.92) приводит к нетривиальным феноменологическим следствиям. Одно из наиболее важных — генерация ненулевого электрического дипольного момента (ЭДМ) нейтрона³⁴⁾ d_n , оценка которого имеет вид

$$d_n \sim \theta \cdot 10^{-16} \cdot e \cdot \mathrm{cM}. \tag{9.93}$$

Экспериментально ЭДМ нейтрона пока не обнаружен. Существующие данные позволяют довольно существенно ограничить его величину,

$$d_n \lesssim 3 \cdot 10^{-26} \cdot e \cdot \mathrm{cM},\tag{9.94}$$

Отсюда для величины в возникает ограничение

$$|\theta| \leq 0.3 \cdot 10^{-9}$$
.

Необходимость найти объяснение малости θ -параметра и называется *CP*-проблемой сильных взаимодействий.

В рамках Стандартной модели физики частиц, по-видимому, не удается найти решение CP-проблемы сильных взаимодействий ³⁵⁾. Для ее решения были предложены модели с аксионами. В этих моделях использовано следующее простое наблюдение: если бы лагранжиан кварков был на классическом уровне инвариантен относительно аксиальной симметрии $U(1)_A$,

$$q_L \to e^{i\beta} q_L, \quad q_R \to e^{-i\beta} q_R,$$
 (9.95)

то θ -член был бы обращен в нуль в результате фазовых вращений кварковых полей. Эта симметрия получила в литературе название симметрии Печчеи—Куинн, $U(1)_{PQ}$. В Стандартной модели физики частиц юкавское взаимодействие хиггсовского бозона с кварками (ниже мы опускаем групповые индексы, а также индексы, нумерующие поколения)

$$Y^{d}\bar{Q}_{L}HD_{R} + Y^{u}\bar{Q}_{L}i\tau^{2}H^{*}U_{R}$$

$$(9.96)$$

³⁴⁾ ЭДМ нейтрона характеризует взаимодействие спина нейтрона S с электрическим полем E, описываемое гамильтонианом

$$H = d_n \frac{\mathbf{S}}{|\mathbf{S}|} \cdot \mathbf{E}$$

³⁵⁾ Если хотя бы один из легких кварков был бы безмассовым (например, *u*-кварк), то все вклады, пропорциональные θ , были бы ненаблюдаемы. На классическом уровне в модели имелась бы глобальная киральная $U(1)_A$ -симметрия; действием этой группы на поля безмассового кварка — вращением $u_L \to e^{i\beta} u_L$, $u_R \to e^{-i\beta} u_R$ — можно было бы воспользоваться, чтобы обратить θ в нуль. Экспериментальные данные свидетельствуют против безмассовости легких кварков (в частности, *u*-кварка), поэтому данное решение *CP*-проблемы сильных взаимодействий, по-видимому, невозможно в рамках Стандартной модели физики частиц.
нарушает $U(1)_{PQ}$ -симметрию явно: первое слагаемое в (9.96) было бы инвариантно относительно преобразований (9.95), если бы одновременно хиггсовское поле изменило фазу как $H \rightarrow e^{i\beta}H$, а второе слагаемое было бы инвариантным, если бы фаза хиггсовского поля изменилась на противоположную величину, $H \rightarrow e^{-i\beta}H$.

Стандартную модель можно обобщить так, чтобы на классическом уровне $U(1)_{PQ}$ симметрия (9.95) действительно была симметрией нового лагранжиана. Массовые члены в низкоэнергетическом лагранжиане кварков нарушают эту симметрию, поэтому $U(1)_{PQ}$ -симметрия заведомо спонтанно нарушена. Это приводит к появлению безмассового (опять-таки на классическом уровне) голдстоуновского поля a(x), получившего название аксион. Как обычно, его свойства определяются тем, что при преобразованиях симметрии (в данном случае — $U(1)_{PQ}$), поле аксиона преобразуется как

$$a(x) \rightarrow a(x) + \beta \cdot f_{PQ},$$
 (9.97)

где β — параметр преобразования, фигурирующий в (9.95), а f_{PQ} — параметр размерности массы, характеризующий масштаб нарушения симметрии $U(1)_{PQ}$. Из симметрии низкоэнергетического лагранжиана кварков относительно преобразований (9.95), (9.97) следует, что поле аксиона и массы кварков входят в лагранжиан в комбинации

$$\mathcal{L}_m = \bar{q}_R m_q \exp\left\{-2i\frac{a}{f_{PQ}}\right\} q_L + h. c.$$
(9.98)

Используя (9.91), получаем отсюда, что на квантовом уровне в низкоэнергетическом лагранжиане имеется слагаемое

$$\mathcal{L}_a = C_g \frac{\alpha_s}{8\pi} \cdot \frac{a}{f_{PQ}} G^a_{\mu\nu} \widetilde{G}^{\mu\nu\,a}, \qquad (9.99)$$

где константа C_g — порядка единицы; она определяется зарядами кварков³⁶⁾ относительно $U(1)_{PQ}$. Видно, что на квантовом уровне $U(1)_{PQ}$ -симметрия (9.95), (9.97) нарушена явно, а аксион является псевдоголдстоуновским бозоном.

Таким образом, θ -параметр перед оператором $G^a_{\mu\nu} \widetilde{G}^{\mu\nu a}$ получает сдвиг, зависящий от точки пространства-времени и определяемый полем аксиона,

$$\theta \to \bar{\theta}(x) = \theta + C_g \frac{a(x)}{f_{PQ}}.$$
(9.100)

CP-инвариантность будет иметь место в сильных взаимодействиях, если вакуумное среднее поля аксиона таково, что $\langle \bar{\theta} \rangle = 0$. Именно так обстоит дело в КХД. В результате нарушения киральной симметрии на масштабе, близком к масштабу сильных взаимодействий $\Lambda_{QCD} \sim 200$ МэВ, появляется ненулевой кварковый конденсат, $\langle \bar{q}q \rangle \sim \Lambda_{QCD}^3$, что приводит к нетривиальному эффективному потенциалу³⁷⁾ для $\bar{\theta}$

$$q_{nL}
ightarrow {
m e}^{ieta e_n^{(PQ)}} q_{nL}, \quad q_{nR}
ightarrow {
m e}^{-ieta e_n^{(PQ)}} q_{nR},$$

где величины $e_n^{(PQ)}$, вообще говоря, разные для разных типов кварков q_n .

252

³⁶⁾ Вообще говоря, разные типы кварков q_n могут нести разные заряды $e_n^{(PQ)}$ относительно $U(1)_{PQ}$, т. е. преобразовываться относительно $U(1)_{PQ}$ как

³⁷⁾ Отметим, что поскольку симметрия (9.95) — это симметрия относительно фазовых вращений, потенциал для аксиона должен быть инвариантен относительно дискретных преобразований с $\beta = 2\pi$, т. е. $\bar{\theta} \to \bar{\theta} + 2\pi$, см. (9.97). Простейшее обобщение выражения (9.101), удовлетворяющее этому условию, имеет вид $V_a = m_a^2 f_{PQ}^2 \cdot (1 - \cos \bar{\theta})$.

с минимумом в нуле,

$$V_a \sim -\frac{1}{2}\bar{\theta}^2 \frac{m_u m_d}{m_u + m_d} \langle \bar{q}q \rangle + \mathcal{O}(\bar{\theta}^4) \approx \frac{1}{8}\bar{\theta}^2 \cdot m_\pi^2 f_\pi^2 + \mathcal{O}(\bar{\theta}^4), \qquad (9.101)$$

где $m_{\pi} \approx 135$ МэВ и $f_{\pi} \approx 93$ МэВ — масса и константа распада пиона. Из (9.101) видно, что $\langle \bar{\theta} \rangle$ действительно равно нулю, т. е. сильная *CP*-проблема находит свое элегантное решение. Кроме того, из (9.100) и (9.101) следует, что аксион имеет массу³⁸⁾

$$m_a \approx C_g \frac{m_\pi f_\pi}{2 f_{PQ}}.$$
(9.102)

В качестве примеров обобщения Стандартной модели, в которых имеются аксионы, приведем два наиболее популярных. В одном в Стандартную модель вводится дополнительный хиггсовский дублет, а юкавское взаимодействие кварков принимает вид

$$Y^{d}\bar{Q}_{L}H_{1}D_{R} + Y^{u}\bar{Q}_{L}i\tau^{2}H_{2}^{*}U_{R}.$$
(9.103)

При этом хиггсовские поля будут вращаться под действием $U(1)_{PQ}$ -преобразований (9.95) следующим образом:

$$H_1 \rightarrow \mathrm{e}^{2\imath\beta}H_1, \quad H_2 \rightarrow \mathrm{e}^{-2\imath\beta}H_2,$$

что обеспечит $U(1)_{PQ}$ -инвариантность лагранжиана (9.103), а значит, и возможность обратить θ -член в нуль.

Глобальная $U(1)_{PQ}$ -симметрия нарушается спонтанно вакуумными средними хиггсовских бозонов. Не будем пока добавлять в теорию другие поля. Тогда безмассовым (на классическом уровне) голдстоуновским полем будет относительная фаза хиггсовских полей H_1 и H_2 . При низких энергиях запишем

$$H_1 = e^{2i\beta(x)} \begin{pmatrix} 0\\ \frac{v_1}{\sqrt{2}} \end{pmatrix}, \quad H_2 = e^{-2i\beta(x)} \begin{pmatrix} 0\\ \frac{v_2}{\sqrt{2}} \end{pmatrix}, \quad (9.104)$$

где v_1 и v_2 — вакуумные средние хиггсовских полей. В теории с двумя хиггсовскими дублетами они оба вносят вклад в массы W^{\pm} - и Z-бозонов, поэтому

$$\sqrt{\boldsymbol{v}_1^2+\boldsymbol{v}_2^2}\equiv\boldsymbol{v}=247\,\,\text{F}_2\text{B}.$$

Кинетический член для поля $\beta(x)$ возникает из кинетического члена хиггсовских дублетов,

$$\mathcal{L}_{kin,H} = \partial_{\mu}H_{1}^{\dagger}\,\partial^{\mu}H_{1} + \partial_{\mu}H_{2}^{\dagger}\,\partial^{\mu}H_{2}$$

Подставляя сюда (9.104), получим для кинетического члена поля $\beta(x)$,

$$\mathcal{L}_{kin,eta}=rac{f_{PQ}^2}{2}\partial_\mueta\;\partial^\mueta,$$

где

$$f_{PQ} = 2\sqrt{v_1^2 + v_2^2} = 2v. \qquad (9.105)$$

³⁸⁾ Тот факт, что аксион имеет массу, не противоречит теореме Голдстоуна: мы уже упоминали, что $U(1)_{PQ}$ -симметрия нарушена явно квантовыми эффектами КХД, т.е. аксион является *псевдоголдстоуновским* бозоном.

Поле аксиона связано с $\beta(x)$ соотношением

$$a(x) = f_{PO} \cdot \beta(x),$$

именно при таком соотношении поле a(x) будет иметь стандартный («канонический») кинетический член. В такой теории аксион является довольно тяжелым: из (9.102) имеем

$$m_a \sim 15$$
 кэВ

Взаимодействие аксиона с кварками, глюонами, а также фотонами (см. ниже) — довольно сильное. Такой аксион (его называют аксионом Вайнберга—Вильчека) экспериментально исключен.

Эта трудность обходится в моделях Дайна—Фишлера—Средницки—Житницкого (ДФСЖ) и Кима—Шифмана—Вайнштейна—Захарова (КШВЗ). В модели ДФСЖ это происходит следующим образом. Масштабы нарушений $U(1)_{PQ}$ -симметрии и электрослабой симметрии можно сделать независимыми, добавив в модель с лагранжианом (9.103) комплексное скалярное поле S — синглет по калибровочной группе Стандартной модели — и добавив в скалярный сектор теории помимо взаимодействий, определяемых инвариантами

$$H_1^{\dagger}H_1, \quad H_2^{\dagger}H_2, \quad H_1^{\dagger}H_2 \cdot H_2^{\dagger}H_1,$$

также взаимодействия, зависящие от инвариантов

$$S^{\dagger}S, \quad H_1^{\dagger}H_2\cdot S^2.$$

Под действием группы $U(1)_{PQ}$ поле S будет вращаться как

$$S \to e^{2i\beta}S. \tag{9.106}$$

В этом случае поле аксиона a(x) является линейной комбинацией фаз полей H_1 , H_2 и S. Повторяя выкладку, приводящую к (9.105), получим

$$f_{PQ} = 2\sqrt{v_1^2 + v_2^2 + v_s^2}, \qquad (9.107)$$

где v_s — вакуумное среднее поля S. Вакуумное среднее v_s может быть сколь угодно большим, что, как видно из (9.107), обеспечивает малость массы аксиона и, что самое главное, слабость взаимодействия поля аксиона с фермионами Стандартной модели: соответствующие вершины взаимодействия обратно пропорциональны масштабу $f_{PQ} \sim v_s$ нарушения $U(1)_{PQ}$ -симметрии. Помимо взаимодействия с кварками, аксион взаимодействует и с лептонами.

Вариант КШВЗ, позволяющий обратить в нуль θ -член, состоит во введении дополнительных полей кварков Ψ_R и Ψ_L , преобразующихся по фундаментальному представлению $SU(3)_c$ и являющихся синглетами относительно $SU(2)_W \times U(1)_Y$. Именно эти новые кварки нетривиально преобразуются относительно $U(1)_{PQ}$, обычные же кварки имеют нулевой $U(1)_{PQ}$ -заряд. Введение дополнительного комплексного поля S, синглета относительно калибровочной группы Стандартной модели, позволяет записать $U(1)_{PQ}$ -симметричное юкавское взаимодействие с новыми полями:

$$\mathcal{L} = y_{\Psi} S \Psi_R \Psi_L + h. c.$$

При этом S преобразуется относительно $U(1)_{PQ}$ согласно (9.106). $U(1)_{PQ}$ -симметрия нарушается ненулевым вакуумным средним поля S,

$$\langle S \rangle = rac{v_s}{\sqrt{2}}.$$

В данной модели поле аксиона a(x) определяется фазой поля S, и

$$f_{PQ} = 2v_s. (9.108)$$

Отметим, что модель КШВЗ не содержит явно взаимодействия аксиона с обычными кварками и лептонами.

Итак, аксион является легкой частицей, взаимодействующей слабо с полями Стандартной модели. Как следует из (9.102), его масса связана с масштабом нарушения $U(1)_{PQ}$ -симметрии f_{PQ} . Слабость взаимодействия объясняется тем обстоятельством, что аксион является псевдоголдстоуновским бозоном, соответствующим глобальной симетрии, спонтанно нарушенной на масштабе $f_{PQ} \gg M_W$. Как и для всякого голдстоуновского поля, взаимодействие аксиона с полями, заряженными относительно нарушенной группы симметрии, описывается обобщенной формулой Голдбергера—Треймана

$$\mathcal{L}_a = \frac{1}{f_{PQ}} \cdot \partial_\mu a \cdot J^\mu_{PQ}, \qquad (9.109)$$

где

$$J_{PQ}^{\mu} = \sum_{f} e_{f}^{(PQ)} \cdot \overline{f} \gamma^{\mu} \gamma^{5} f. \qquad (9.110)$$

Здесь вклад в ток J_{PQ}^{μ} дают фермионы, несущие заряд $e_f^{(PQ)}$ относительно группы $U(1)_{PQ}$; величины зарядов для разных типов фермионов зависят от вариантов модели. Кроме того, имеются аномальные взаимодействия с глюонами (см. (9.99)) и фотонами,

$$\mathcal{L}_{ag} = C_g \frac{\alpha_s}{8\pi} \cdot \frac{a}{f_{PQ}} \cdot G^a_{\mu\nu} \widetilde{G}^{\mu\nu \ a}, \quad \mathcal{L}_{a\gamma} = C_\gamma \frac{\alpha}{8\pi} \cdot \frac{a}{f_{PQ}} \cdot F_{\mu\nu} \widetilde{F}^{\mu\nu}, \quad (9.111)$$

где безразмерные константы C_g и C_{γ} определяются деталями конкретной модели и в общем случае являются величинами порядка единицы. В полном согласии с (9.98), действие слагранжианом (9.109) можно проинтегрировать по частям и записать вместо (9.109)

$$\mathcal{L}_{a} = -\frac{1}{f_{PQ}} \cdot a \cdot \partial_{\mu} J^{\mu}_{PQ} = -\frac{a}{f_{PQ}} \cdot \sum_{f} 2e_{f}^{(PQ)} m_{f} \cdot \overline{f} \gamma^{5} f, \qquad (9.112)$$

где мы опустили аномальные вклады, приводящие к взаимодействиям (9.111). Взаимодействия (9.111) и (9.112) действительно имеют вид (9.78), (9.79) (для случая P(x) = a(x)), т. е. модели с аксионами являются примером рассмотренного нами класса моделей с легкими слабовзаимодействующими псевдоскалярами. В данном случае масса аксиона m_a не является свободным параметром: из (9.102) имеем

$$m_a \approx m_\pi \cdot \frac{f_\pi}{2f_{PQ}} \approx 0.6 \ \Im B \ \cdot \left(\frac{10^7 \ \Gamma \Im B}{f_{PQ}}\right).$$
 (9.113)

Для легкого аксиона основным каналом распада является распад на два фотона; время жизни аксиона τ_a можно определить из (9.80), где следует положить $\Lambda = 2\pi f_{PQ}/\alpha$ и учесть соотношение (9.113),

$$\tau_a = \frac{1}{\Gamma_{a \to \gamma\gamma}} = \frac{64\pi^3 m_\pi^2 f_\pi^2}{\alpha^2 m_a^5} \simeq 4 \cdot 10^{24} \text{ c } \cdot \left(\frac{\Im \text{B}}{m_a}\right)^5.$$

Требуя, чтобы время жизни аксиона превышало современный возраст Вселенной, $\tau_a > t_0 \approx 14$ млрд лет, получим ограничение сверху на массу интересного с точки зрения космологии аксиона,

$$m_a < 25 \ B.$$
 (9.114)

Аксион легче 25 эВ с точки зрения его времени жизни подходит на роль темной материи.

Как и другие частицы, аксионы могут рождаться в космической плазме за счет теплового механизма, т. е. в процессах

$$q+g
ightarrow q+a, \ q+\gamma
ightarrow q+a$$

и т. д. Образованные в результате такого механизма аксионы не могут выступать в роли темной материи. Во-первых, даже если аксионы находились в тепловом равновесии, оценка их вклада в современную плотность энергии (9.89) дает слишком малое значение Ω_a с учетом (9.114).

Во-вторых, находившиеся в равновесии аксионы выступали бы в роли *теплой* темной материи, а она, как мы уже неоднократно упоминали, не может состоять из частиц легче 1 кэВ, чтобы не противоречить наблюдаемой картине мелкомасштабных структур Вселенной. Кроме того, аксионы в модели с $f_{PQ} \leq 10^9$ ГэВ (т. е. аксионы тяжелее 10^{-2} эВ) эффективно рождались бы в звездах, что привело бы к изменению эволюции последних по сравнению со стандартной эволюцией. Такие модели закрыты из астрономических наблюдений.

Задача 13. Найти концентрацию реликтовых аксионов, образовавшихся за счет теплового механизма, в зависимости от массы аксиона и максимальной температуры во Вселенной.

Казалось бы, возможность того, что темная материя образована из аксионов, исключена. Это не так. Помимо теплового, в моделях с аксионами имеется два специфических механизма, приводящих к рождению аксионов в ранней Вселенной. Один механизм связан с распадом глобальных струн (топологических дефектов пространственной размерности один), имеющихся в теории со спонтанным нарушением абелевой группы симметрии (роль нарушенной группы играет $U(1)_{PQ}$). Другой механизм основан на осцилляциях аксионного поля при температурах $T \leq \Lambda_{QCD}$, когда имеется кварковый конденсат, явно нарушающий $U(1)_{PQ}$ -симметрию, и для аксиона генерируется эффективный потенциал. Рассмотрим последний из этих механизмов. Как видно из (9.101), эффективный потенциал аксиона при низких температурах пропорционален кварковому конденсату $\langle \bar{q}q \rangle$. Кварковый конденсат нарушает киральную симметрию сильных взаимодействий, а при высоких температурах эта симметрия восстанавливается ³⁹⁾. Поэтому можно ожидать, что при $T \gg \Lambda_{QCD}$ эффективный потенциал аксиона пренебрежимо мал. Так и происходит: потенциал для поля

$$ar{ heta}= heta+rac{a}{f_{PQ}}$$

при высоких температурах отсутствует, и это поле может принимать любое значение

$$\bar{\theta} \in [0, 2\pi)$$
.

Нет никаких оснований ожидать, что начальное значение $\bar{\theta}_i$ равно нулю. При понижении температуры у аксиона появляется масса, и поле $\bar{\theta}$ начинает однородно скатываться от значения $\bar{\theta}_i$ в сторону минимума аксионного потенциала $\bar{\theta} = 0$. Однородная эволюция фазы описывается эффективным лагранжианом

$$\mathcal{L} = rac{f_{PQ}^2}{2} \cdot \left(rac{dar{ heta}}{dt}
ight)^2 - rac{m_a^2(T)}{2} f_{PQ}^2 ar{ heta}^2,$$

где $m_a(T)$ — функция температуры, такая, что

 $egin{array}{ll} m_a(T)\simeq 0 & ext{при} & T\gg \Lambda_{QCD}, \ m_a(T)\simeq m_a & ext{при} & T\ll \Lambda_{QCD}. \end{array}$

Здесь и далее m_a — масса аксиона при нулевой температуре.

В разделе 4.8.1 мы рассматривали общий случай эволюции скалярного поля в расширяющейся Вселенной. Из этого рассмотрения следует, что при $m_a(T) \ll H(T)$ аксионное поле практически не меняется со временем, а начиная с того момента, когда $m_a(T) \sim H(T)$, оно осциллирует и ведет себя как система нерелятивистских частиц, т. е. как холодная темная материя. Сделаем оценку современной плотности энергии аксионного поля в такой картине, не конкретизируя пока вида функции $m_a(T)$.

Во время начала осцилляций t_{osc} , когда

$$m_a(t_{osc}) \sim H(t_{osc}), \tag{9.115}$$

плотность энергии аксионного поля по порядку величины равна

$$ho_a(t_{osc})\sim m_a^2(t_{osc})f_{PQ}^2ar{ heta}_i^2.$$

Как мы обсуждали в конце раздела 4.8.1, осциллирующее скалярное поле можно воспринимать как набор покоящихся частиц, в данном случае аксионов. Плотность их числа в момент t_{osc} оценивается величиной

$$n_a(t_{osc})\sim rac{
ho_a(t_{osc})}{m_a(t_{osc})}\sim m_a(t_{osc})f_{PQ}^2ar{ heta}_i^2\sim H(t_{osc})f_{PQ}^2ar{ heta}_i^2.$$

³⁹⁾ Здесь имеется определенная аналогия с фазовыми переходами, рассматриваемыми в Главе 10.

Впоследствии она падает, как обычно, как a^{-3} (мы в этом убедимся явно в конце раздела).

Аксион-энтропийное отношение в момент t_{osc} равно

$$rac{n_a}{s} \sim rac{H(t_{osc})f_{PQ}^2}{g_*rac{2\pi^2}{45}T_{osc}^3} \cdot ar{ heta}_i^2 \simeq rac{f_{PQ}^2}{\sqrt{g_*}T_{osc}M_{Pl}} \cdot ar{ heta}_i^2,$$

где мы воспользовались соотношением

$$H=rac{1,66\sqrt{g_*}T^2}{M_{Pl}}$$

Аксион-энтропийное отношение держится постоянным после начала осцилляций, и современная плотность энергии аксионного поля равна

$$\rho_{a,0} = \frac{n_a}{s} m_a s_0 \simeq \frac{m_a f_{PQ}^2}{\sqrt{g_* T_{osc} M_{Pl}}} s_0 \cdot \bar{\theta}_i^2. \tag{9.116}$$

Она на самом деле является убывающей функцией m_a . Действительно, в теории аксиона имеется обратная пропорциональность между f_{PQ} и m_a , см. (9.102); в то же время аксион приобретает массу вблизи фазового перехода КХД, т.е. вблизи $T \sim \Lambda_{QCD}$, поэтому T_{osc} слабо зависит от m_a .

Для первоначальной оценки положим

$$T_{osc} \sim \Lambda_{QCD} \simeq 200 \text{ M} \Rightarrow \text{B},$$

воспользуемся (9.102) с $C_q \sim 1$ и получим

$$\Omega_a \equiv \frac{\rho_{a,0}}{\rho_c} \simeq \left(\frac{10^{-6} \ \Im B}{m_a}\right) \bar{\theta}_i^2. \tag{9.117}$$

При этом естественно считать, что начальное значение фазы $\bar{\theta}_i$ не слишком мало, $\bar{\theta}_i \sim 1$. Отсюда видно, что аксион с массой $10^{-5}-10^{-6}$ эВ служит хорошим кандидатом на роль частицы темной материи⁴⁰⁾. Это будет *холодная* темная материя, поскольку она представляет собой однородное осциллирующее поле, давление которого равно нулю (см. раздел 4.8.1). Иными словами, аксионы в такой картине имеют нулевые пространственные импульсы, а потому являются нерелятивистскими. Таким образом, аксионы с массой $m_a \sim 10^{-5}-10^{-6}$ эВ являются и феноменологически, и космологически приемлемыми кандидатами на роль частиц темной материи.

⁴⁰⁾ Отметим, что аксионы с меньшими массами, $m_a < 10^{-6}$ эВ, также могут составлять темную материю в моделях, где по тем или иным причинам начальное значение фазы $\bar{\theta}_i$ оказывается существенно меньше единицы. Кроме того, в моделях с рождением аксионов в результате распадов топологических дефектов (космических струн, доменных стенок), сопровождающих нарушение симметрии Печчеи—Куинн, более тяжелые аксионы, $m_a > 10^{-5}$ эВ, также могут образовывать темную материю.

Отметим, что модели с аксионами — приемлемыми кандидатами на роль темной материи — крайне трудно подтвердить или опровергнуть экспериментально: поиск реликтовых аксионов с массой $m_a \sim 10^{-5} - 10^{-6}$ эВ представляет собой весьма трудную, хотя и не безнадежную задачу для современных экспериментов [39].

Для уточнения приведенных оценок используем то, что при высоких температурах, $T > \Lambda_{QCD}$, масса аксиона зависит от температуры следующим образом [38]:

$$m_a(T) \simeq 0.1 \cdot m_a(0) \cdot \left(\frac{\Lambda_{QCD}}{T}\right)^{3,7}, \quad T > \Lambda_{QCD}.$$
 (9.118)

Отсюда и из (9.115) получим оценку для температуры Вселенной, при которой начинаются осцилляции однородного аксионного поля:

$$T_{osc} \sim 200 \text{ M} \ni \text{B} \cdot \left(\frac{m_a}{10^{-9} \text{ }_{9}\text{B}}\right)^{0,2} \cdot \left(\frac{\Lambda_{QCD}}{200 \text{ }_{9}\text{B}}\right)^{0,7}.$$
 (9.119)

Отметим, что для не слишком легкого аксиона, $m_a > 10^{-9}$ эВ, использумое нами приближение (9.118) справедливо, поскольку для таких аксионов

$$T_{osc} > \Lambda_{QCD}.$$

Подставляя температуру осцилляций (9.119) в (9.116), получим

$$\Omega_a \simeq 0.2 \cdot \overline{\theta}_i^2 \cdot \left(\frac{4 \cdot 10^{-6} \ \Im B}{m_a}\right)^{1,2} \cdot \frac{1}{2h^2}.$$

Видно, что оценка (9.117) является вполне удовлетворительной, а зависимость от массы аксиона близка к обратной пропорциональности. Это, разумеется, связано с сильной зависимостью (9.118) массы аксиона от температуры.

В заключение этого раздела проверим явно, что для однородного осциллирующего скалярного поля с массой, зависящей от температуры, величина

$$n_a=rac{
ho_a(t)}{m_a(t)}$$

убывает как a^{-3} . Мы по-прежнему будем использовать для этого поля обозначение $\bar{\theta}$. Запишем уравнение поля в расширяющейся Вселенной,

$$\frac{d^2\bar{\theta}}{dt^2} + 3H(T)\frac{d\bar{\theta}}{dt} + m_a^2(T)\bar{\theta} = 0.$$
(9.120)

Умножив это уравнение на $d\bar{\theta}/dt$, получим

$$\frac{1}{2}\frac{d}{dt}\left(\frac{d\bar{\theta}}{dt}\right)^2 + 3H \cdot \left(\frac{d\bar{\theta}}{dt}\right)^2 + \frac{m_a^2(t)}{2}\frac{d}{dt}\bar{\theta}^2 = 0.$$
(9.121)

Учитывая осцилляционое поведение решения, при $m_a(T) \gg H(T)$ уравнение (9.121) можно решить приближенно, воспользовавшись равенством средних по периоду

осцилляций,

$$\left\langle \left(\frac{d\bar{\theta}}{dt}\right)^2 \right\rangle = m_a^2(t) \langle \bar{\theta}^2 \rangle.$$

В результате получим уравнение

$$rac{d\langlear{ heta}^2
angle}{dt}+\left(3H+rac{1}{m_a(t)}rac{dm_a(t)}{dt}
ight)\langlear{ heta}^2
angle=0.$$

Из него следует, что

$$m(t)\langle \bar{\theta}^2 \rangle(t) = rac{\mathrm{const}}{a^3}$$

Стоящая в левой части величина совпадает с n_a , поскольку

$$\rho_a = \text{const} \cdot \left\langle \left(\frac{d\bar{\theta}}{dt}\right)^2 \right\rangle = \text{const} \cdot m_a^2(t) \langle \bar{\theta}^2 \rangle$$

(для аксиона константа здесь равна f_{PQ}^2 , а для канонически нормированного поля она равна единице).

9.7.2. Сверхтяжелые реликтовые частицы

Более экзотическими кандидатами на роль частиц темной материи являются стабильные сверхтяжелые частицы (мы будем называть их Х-частицами),

$$M_X \gg 100$$
 T $_{2}$ B.

Напомним, что сверхтяжелые стабильные частицы, находившиеся в термодинамическом равновесии в ранней Вселенной, запрещены из-за перепроизводства темной материи, см. (9.24). Чем тяжелее частицы, тем меньше их сечение аннигиляции и тем при более высокой температуре замораживается их концентрация. Отсюда ясно, что если используя нетермальные механизмы рождения удалось достигнуть требуемой концентрации сверхтяжелых X-частиц, такой что $\Omega_X \sim 0.2$, то такие частицы никогда не были (и не придут) в состоянии равновесия, а поэтому и ограничение (9.24) к ним будет неприменимо.

Нетермальные механизмы, которые мы кратко обсудим в этом разделе, имеют довольно общий характер и работают для широкого класса моделей. Сам факт работы этих механизмов генерации частиц в ранней Вселенной доступен экспериментальным проверкам, хотя и косвенным. Таким образом, модели со сверхтяжелыми частицами в качестве темной материи в какой-то мере могут быть подвержены экспериментальной проверке.

Перечислим несколько возможных механизмов генерации тяжелых частиц, способных в принципе обеспечить необходимое количество темной материи. Во-первых, это генерация за счет столкновений легких частиц в первичной плазме в моделях, где максимальная температура плазмы T_{max} несколько ниже M_X . Из анализа, аналогичного приведенному в разделе 9.2, можно найти, что для обеспечения условия $\Omega_X \approx 0.2$ требуется, чтобы максимальная температура T_{max} , с которой начинается горячая стадия эволюции Вселенной, и масса X-частиц M_X были довольно жестко связаны,

$$\frac{M_X}{T_{\text{max}}} \sim 25 + \frac{1}{2} \cdot \ln\left(M_X^2\langle\sigma\rangle\right),\tag{9.122}$$

где σ — сечение рождения X-частиц в столкновениях частиц плазмы. Тот факт, что M_X почти на полтора порядка превышает температуру T_{max} , связан с больцмановским множителем, который в данном случае обеспечивает существенное подавление концентрации частиц по сравнению с равновесным случаем.

Задача 14. Получить соотношение (9.122).

Отметим, что условие обеспечения необходимой плотности энергии X-частиц требует подстройки двух параметров, вообще говоря, абсолютно разной природы: если величина M_X есть модельный параметр, то величина максимальной температуры Вселенной $T_{\rm max}$ зависит от механизма, стоящего за первичным разогревом Вселенной.

Тяжелые частицы могут также рождаться в ходе самого первичного разогрева — процесса, безусловно необходимого в космологических моделях с инфляционной стадией. В этих моделях все частицы появляются в результате распада инфлатона — конденсата скалярного поля, обеспечившего инфляцию. Мы рассмотрим постинфляционный разогрев во второй части книги. Процесс разогрева Вселенной в большинстве моделей довольно продолжителен по сравнению с соответствующим хаббловским временем, определяющим темп расширения на переходной стадии от инфляции к горячей Вселенной. На начальном, также довольно продолжительном этапе разогрева (много хаббловских времен) можно условно считать, что плазма характеризуется эффективной температурой, которая оказывается много больше той температуры T_{\max} , которая установится во Вселенной в конце процесса, когда действительно наступит термодинамическое равновесие. В результате возможно образование тяжелых частиц с массами, заметно превосходящими Т_{тах}. Как мы будем обсуждать во второй части книги, такой механизм приводит к возможности генерации частиц, например, с массой $M_X \sim 10^{11}$ ГэВ в количестве, достаточном для объяснения темной материи, в инфляционных моделях с температурой разогрева $T_{\rm max} \sim 10^8$ ГэВ. Такое решение проблемы темной материи также требует довольно тонкой подстройки массы Х-частиц и температуры разогрева T_{max}.

Отдельно следует отметить также возможность эффективного рождения тяжелых частиц в самом начале эпохи постинфляционного разогрева, связанную с ускоренным распадом конденсата инфлатона благодаря параметрическому резонансу. Реализация этой возможности существенно зависит от деталей конкретной модели.

Еще одна, более экзотическая возможность появляется в моделях, где инфляция завершается фазовым переходом первого рода. Образующиеся в результате пузыри нового вакуума начинают быстро расширяться, причем стенки разных пузырей сталкиваются (перколяция). Локально это столкновение можно представлять как столкновение частиц с характерной массой m (величина порядка энергетического масштаба фазового перехода или обратной толщины стенки, см. раздел 12.4) и характерной энергией γm , где γ — лоренцев множитель, величина которого определяется скоростью стенок, степенным образом со временем приближающейся к скорости света. Таким образом, можно ожидать генерации частиц с массами вплоть до $M_X \sim \gamma m$, т.е. существенно превышающими температуру последующего разогрева $T_{\rm max} \ll m$. Количество произведенных частиц зависит от деталей столкновений, т.е. определяется параметрами модели. Таким образом, этот механизм генерации тяжелых частиц также требует точной подстройки параметров, для того чтобы объяснить темную материю Вселенной.

Наконец, упомянем о механизме гравитационного рождения тяжелых частиц, работающем на стадии окончания инфляции. Речь идет о рождении частиц из вакуума в нестационарном гравитационном поле, имеющемся в данном случае благодаря быстрому расширению Вселенной на стадии инфляции. Для этого механизма не требуется каких-либо непосредственных взаимодействий между тяжелыми X-частицами и другими полями теории. В этом смысле предсказываемая плотность числа реликтовых X-частиц является модельно независимой. Этот механизм мы также будем обсуждать во второй части книги.

Отметим, что рождение частиц гравитационным полем в расширяющейся Вселенной происходит и на других стадиях, причем наиболее эффективно генерация происходит на этапах, когда $M_X \sim H$. В частности, можно показать [40], что на радиационно-доминированной стадии расширения Вселенной плотность числа частиц, образованных при $H \sim M_X$, дает на более поздних временах следующий вклад в полную плотность энергии Вселенной:

$$\rho_X \simeq 5 \cdot 10^{-4} \cdot M_X \cdot \left(\frac{M_X}{t}\right)^{3/2}.$$

Отсюда для доли *X*-частиц в полной плотности энергии современной Вселенной получим

$$\Omega_X \sim \left(\frac{M_X}{10^9 \text{ F} \cdot \text{B}}\right)^{5/2}.$$

В отсутствие инфляционной стадии стабильные частицы тяжелее 10⁹ ГэВ будут настолько эффективно генерироваться гравитационным механизмом в ходе расширения Вселенной, что приведут к избыточной плотности темной материи. Инфляционная стадия является естественным фактором обрезания для этого процесса.

9.7.3. Экзотика

В заключение Главы отметим, что вне рамок нашего обсуждения остался целый ряд более экзотических, по сравнению с рассмотренными нами, кандидатов на роль темной материи — стабильных на космологических временах

частиц или частицеподобных объектов. Среди них — реликтовые черные дыры, гипотетические чрезвычайно сильно взаимодействующие частицы, аксино — суперпартнер аксиона, зеркальная материя и многие другие. Нередко для объяснения требуемого количества темной материи параметры соответствующих моделей должны принимать нереалистичные значения и/или требуется привлекать дополнительные нереалистические предположения о ходе тех или иных экзотических процессов в ранней Вселенной. В любом случае, предсказания для плотности темной материи в таких сценариях оказываются сильно модельно-зависимыми.

ФАЗОВЫЕ ПЕРЕХОДЫ В РАННЕЙ ВСЕЛЕННОЙ

Как мы упоминали в Главе 1, прямых экспериментальных указаний на то, что во Вселенной реализовывались температуры выше нескольких МэВ, пока не существует. Тем не менее, естественно предполагать, что Вселенная в далеком прошлом была разогрета до гораздо более высоких температур¹⁾. В связи с этим значительный интерес представляет изучение свойств космической плазмы при высоких температурах.

Как и во всякой эволюционирующей системе, допускающей термодинамическое описание, в ранней Вселенной могли происходить фазовые переходы, связанные с перестройкой структуры основного состояния при изменении температуры плазмы. При температурах выше 200 МэВ кварки и глюоны в горячей среде не образуют связанных состояний — адронов, и вещество находится в фазе кварк-глюонной плазмы. При таких температурах отсутствует и кварковый конденсат, т. е. реализуется фаза ненарушенной киральной симметрии. Если в развитии Вселенной был такой этап, когда температура плазмы превышала 1 ГэВ, то в ходе расширения Вселенной и понижения ее температуры должен был произойти фазовый переход от кварк-глюонной плазмы к адронному веществу²⁾, состоящему из бесцветных (т. е. не заряженных по калибровочной группе $SU(3)_c$, см. Приложение В) частиц — пионов, каонов, нуклонов и других адронов. Кроме того, должен был произойти киральный фазовый переход, в результате которого образовался кварковый конденсат.

Вполне вероятно, что во Вселенной была эпоха с еще бо́льшими температурами, $T \gtrsim M_{\rm EW} \sim 100$ ГэВ. Несколько огрубляя ситуацию, можно сказать, что при таких температурах электрослабая симметрия была не нарушена, а среднее значение поля Хиггса было равно нулю. При понижении темпе-

¹⁾ Так в Главе 9 мы отмечали, что простой и эффективный (а потому весьма вероятный) механизм генерации небарионной темной материи работает при температурах порядка десятков ГэВ или выше; экспериментальное подтверждение этого механизма стало бы прямым свидетельством того, что в развитии Вселенной была эпоха, характеризовавшаяся столь высокими температурами. Многие механизмы генерации барионной асимметрии Вселенной (хотя и не все) требуют еще бо́льших температур, от 100 ГэВ до 10¹⁵ ГэВ (см. Главу 11), в зависимости от конкретного механизма.

²⁾ Не исключено, что вместо фазового перехода имеет место гладкий кроссовер.

ратуры произошел электрослабый фазовый переход³⁾, в результате которого появилось ненулевое среднее хиггсовского поля и произошло спонтанное нарушение электрослабой симметрии $SU(2)_w \times U(1)_r$ до электромагнитной $U(1)_{em}$.

В зависимости от того, с каких максимальных температур началась горячая стадия расширения Вселенной, и от того, как устроена физика на сверхмалых расстояниях и при сверхвысоких энергиях, во Вселенной могли происходить фазовые переходы при еще более высоких температурах. Так, если во Вселенной были температуры порядка 10^{16} ГэВ (что является очень сильным и, по-видимому, мало реалистичным предположением), а физика при таких энергиях описывается теорией Большого объединения, то во Вселенной должен был произойти фазовый переход Большого объединения при температуре, сравнимой с $M_{GUT} \sim 10^{16}$ ГэВ. Не исключено, что фазовые переходы происходили и при промежуточных температурах $M_{EW} \ll T \ll M_{GUT}$.

Изучение фазовых переходов в остывающей Вселенной не только представляет академический интерес, но и позволяет пролить свет на некоторые загадки современной космологии. Среди них можно отметить проблемы барионной асимметрии и темной материи. Фазовые переходы ответственны за возможное образование топологических дефектов в ранней Вселенной и играют важную роль в некоторых инфляционных моделях.

В этой Главе мы вспомним общую классификацию фазовых переходов и познакомимся с методами, позволяющими описывать фазовые переходы в ранней Вселенной. В основном мы будем обсуждать теории с механизмом Хиггса и интересоваться фазовыми переходами, приводящими к спонтанному нарушению соответствующей симметрии. Важным примером здесь является Стандартная модель, в которой возможен электрослабый фазовый переход; именно этот пример мы будем иметь в виду в дальнейшем. Как обычно в теории поля, применимость аналитических методов ограничена теориями с малыми константами связи (это свойство имеет не только электрослабый сектор Стандартной модели, но и квантовая хромодинамика при высоких температурах, $T \gg 1$ ГэВ), однако мы увидим, что этого недостаточно: детальное описание фазовых переходов возможно лишь тогда, когда масса бозона Хиггса в вакууме достаточно мала. Тем не менее, аналитические методы нередко позволяют сделать качественно правильные выводы относительно типа соответствующего фазового перехода и определить наиболее важные космологические следствия. Полученные результаты будут использованы в Главах, посвященных бариогенезису и топологическим дефектам.

В теориях, где константы связи не малы, аналитическое изучение фазовых переходов «из первых принципов», как правило, невозможно, и наиболее надежным источником информации о них являются численные методы

³⁾ Тонкость здесь состоит в том, что в Стандартной модели и многих ее расширениях не существует калибровочно-инвариантных и локальных параметров порядка, которые различали бы фазы с нарушенной и ненарушенной электрослабой симметрией. Другими словами, эти «фазы» в действительности не различимы, и электрослабого фазового перехода может не быть вообще. Мы подробнее обсудим этот вопрос в разделе 10.2.

в рамках теории поля на решетке. Важным примером являются переходы конфайнмент-деконфайнмент и переход с нарушением/восстановлением киральной симметрии в КХД. Они происходят при температуре $T \sim 200$ МэВ, когда константа связи КХД, $\alpha_s(T)$, велика. Мы не будем сколько-нибудь подробно изучать фазовые переходы КХД в этой книге, хотя нет сомнений, что они действительно происходили в ранней Вселенной (в предположении, что во Вселенной действительно реализовывались температуры $T \gtrsim 200$ МэВ). Дело в том, что эти фазовые переходы, по-видимому, не оставили «следов» в современной Вселенной, доступных экспериментальной проверке (исключение составляют довольно экзотические предложения, например формирование кварковых «самородков» с большим количеством странных кварков [41] в процессе фазового перехода КХД; упомянем в этой связи еще об аксионах как претендентах на роль темной материи, один из механизмов генерации которых основан на самом факте кирального фазового перехода в ранней Вселенной и мало чувствителен к динамике этого перехода, см. раздел 9.7.1.)

10.1. Типы фазовых переходов

Существование фазовых переходов обусловлено несовпадением свойств основных состояний теории при нулевой и отличной от нуля температурах. Как мы покажем ниже, в теориях с механизмом Хиггса это связано с появлением нетривиальных добавок, зависящих от температуры, к эффективному потенциалу теории. При конечных температурах равновесное состояние среды соответствует минимуму большого термодинамического потенциала. Как мы обсуждали в Главе 5, химические потенциалы в ранней Вселенной при интересных температурах $T \ge 1$ ГэВ пренебрежимо малы, и большой термодинамический потенциал сводится к свободной энергии F, так что в дальнейшем мы будем рассматривать именно свободную энергию того или иного состояния первичной плазмы. Чтобы понять, чему равно среднее значение хиггсовского поля $\langle \phi \rangle_{\tau}$ при температуре T, рассмотрим систему, в которой среднее хиггсовского поля зафиксировано и равно ϕ всюду в пространстве, а в остальном имеет место термодинамическое равновесие. Свободная энергия такой системы зависит, разумеется, от выбранного значения ϕ , а также от температуры. В силу пространственной однородности свободная энергия пропорциональна пространственному объему Ω ,

$$F = \Omega V_{eff}(T, \phi). \tag{10.1}$$

Эффективным потенциалом называют функцию $V_{eff}(T, \phi)$ — плотность свободной энергии среды при температуре T, при условии, что среднее хиггсовского поля однородно и положено равным ϕ . В термодинамическом равновесии свободная энергия находится в минимуме по отношению ко всем макроскопическим параметрам, включая среднее хиггсовского поля. Поэтому $\langle \phi \rangle_T$ является абсолютным минимумом эффективного потенциала $V_{eff}(T, \phi)$ при фиксированной температуре (аргумент T мы будем в дальнейшем часто опускать).

Рис. 10.1. Форма эффективного потенциала хиггсовского поля при нулевой (*a*) и высокой (*b*) температурах

При нулевой температуре свободная энергия сводится к энергии системы, а эффективный потенциал совпадает со скалярным потенциалом $V(\phi)$, входящим в действие теории поля⁴⁾. При конечных температурах $V_{eff}(T, \phi)$ не совпадает с $V(\phi)$. В результате, например, симметрия, спонтанно нарушенная при нулевой температуре, может *восстанавливаться* при высоких температурах. Это общее утверждение, относящееся к любой системе. В частности, такое явление имеет место в Стандартной модели физики частиц⁵⁾. При нулевой температуре основное состояние не инвариантно относительно калибровочных $SU(2)_w \times U(1)_y$ преобразований — симметрия спонтанно нарушена до калибровочной группы $U(1)_{em}$ благодаря ненулевому вакуумному среднему

$$v=\langle \phi
angle pprox 2$$
47 ГэВ

дублета бозонов Хиггса (см. рис. 10.1 а).

При ненулевой температуре эффективный потенциал хиггсовского сектора Стандартной модели получает дополнительные вклады, растущие с увеличением температуры. С учетом этих вкладов среднее значение поля Хиггса оказывается равным нулю при высоких температурах $T \gtrsim v$, т. е. симметрия восстанавливается (см. рис. 10.1 *b*).

С понижением температуры переход от $\langle \phi \rangle_T = 0 \kappa \langle \phi \rangle_T \neq 0$ происходит при некоторой температуре T_c — температуре фазового перехода, и в зависимости от параметров теории может быть довольно продолжительным или почти мгновенным, происходить сразу во всем объеме системы или в отдельных ее частях.

⁴⁾ В действительности и при нулевой температуре эффективный потенциал не совпадает со скалярным потенциалом, фигурирующим в классическом действии. Это связано с наличием квантовых поправок. В теориях со слабой связью квантовые поправки к эффективному потенциалу часто оказываются малыми.

⁵⁾ Подчеркнем еще раз, что здесь мы огрубляем ситуацию, см. обсуждение в разделе 10.2.

Рис. 10.2. Величина среднего поля $\langle \phi \rangle_T$ как функция температуры для систем с фазовым переходом I рода (*a*) и II рода (*b*)

Традиционно выделяют два типа фазовых переходов — фазовые переходы I и II рода. С точки зрения общего формализма термодинамики фазовый переход I рода сопровождается скачком теплоемкости (в теории поля этому отвечает скачок среднего поля $\langle \phi \rangle_T$ как функции температуры, см. рис. 10.2 *a*), в то время как для фазового перехода II рода характерно непрерывное поведение теплоемкости (и среднего поля $\langle \phi \rangle_T$) при изменении температуры (см. рис. 10.2 *b*). Это отличие можно проиллюстрировать, изобразив на графиках характерные для фазовых переходов I и II родов семейства эффективных потенциалов $V_{eff}(\phi, T)$ как функции ϕ при различных значениях температуры *T*, см. рис. 10.3. Левая половина рисунка относится к фазовым переходам I рода, завершающимся скачкообразным изменением значения $\langle \phi \rangle_T$. Правая половина рисунка относится к фазовому переходу II рода — непрерывному изменению температурного среднего поля $\langle \phi \rangle_T$.

Самым известным примером фазового перехода I рода является кипение жидкости. Примерами фазового перехода II рода служат переходы в ферромагнетиках, переходы порядок—беспорядок в сплавах металлов, переходы в состояния сверхпроводимости и сверхтекучести.

Представление о различных фазах, в которых может находиться система, и о соответствующих фазовых переходах имеет наиболее простой смысл в тех случаях, когда фазы различаются симметрией и/или имеется параметр (его называют *параметром порядка*), равный нулю в одной фазе и отличный от нуля в другой. Указанные выше примеры фазовых переходов II рода относятся к этой категории (параметром порядка в ферромагнетике служит спонтанная намагниченность, в сверхпроводнике — плотность конденсата куперовских пар и т. д.). К этой категории относится и киральный фазовый переход КХД в пределе безмассовых U – и d – кварков, параметром порядка здесь служит кварковый конденсат. Если же система такова, что в ней параметра порядка нет, то в ней также возможны фазовые переходы, но их существование или отсутствие может зависеть от внутренних или внешних параметров. Известный пример — переход вода—пар, который является фазовым переходом I рода

Рис. 10.3. Формы эффективного потенциала $V_{eff}(\phi)$ при различных температурах: более высоким температурам соответствуют более темные кривые, изображенные выше. Левая половина рисунка относится к системам с фазовым переходом I рода, правая — к системам с фазовым переходом II рода. Черные кружки показывают состояние системы — величину среднего поля $\langle \phi \rangle_T$

при низких давлениях, и не является фазовым переходом вообще при высоких давлениях. В последнем случае свойства среды (например, плотность) непрерывно, хотя и довольно быстро, меняются с изменением температуры; в этом случае говорят, что имеет место не фазовый переход, а гладкий кроссовер. Эта же ситуация реализуется в электрослабом секторе Стандартной модели физики частиц: если все остальные параметры модели фиксированы, то при малой вакуумной массе хиггсовского бозона происходит фазовый переход I рода при температуре $T \sim 100$ ГэВ (в этом мы убедимся в разделе 10.2), а при большой массе имеет место гладкий кроссовер [42].

Динамика протекания фазовых переходов совершенно различна для фазовых переходов I и II рода. Нас интересует случай, когда темп изменения температуры со временем мал по сравнению с характерным темпом взаимодействий частиц в среде; именно этот случай реализуется в ранней Вселенной. При фазовом переходе II рода характеристики среды (например, среднее значение $\langle \phi \rangle_T$) медленно меняются сразу во всем пространстве при медленном уменьшении температуры; в каждый момент времени среда находится в состоянии, близком к состоянию термодинамического равновесия. Это же относится и к гладкому кроссоверу. Иная ситуация имеет место при фазовом переходе I рода. До фазового перехода среднее значение $\langle \phi \rangle_T$ равно нулю, но как только минимум эффективного потенциала с $\phi = \langle \phi \rangle_T \neq 0$ станет глубже минимума с $\phi = 0$, термодинамически выгодным станет основное состояние с $\langle \phi \rangle_T \neq 0$, см. рис. 10.4. Сразу во всем пространстве переход из состояния с $\langle \phi \rangle = 0$ в состояние с $\langle \phi \rangle_T \neq 0$ произойти не может: среднее значение поля ϕ при таком переходе изменялось бы сразу во всем пространстве от $\phi = 0$

Рис. 10.4. Вид эффективного потенциала системы, в которой происходит фазовый переход I рода

сразу во всем пространстве от $\varphi = 0$ до $\phi = \langle \phi \rangle_T$, и в системе с бесконечным объемом свободная энергия (10.1) в промежуточных состояниях была бы бесконечно велика по сравнению с ее начальным значением (соответствующим $\phi = 0$). Переход из состояния с $\phi = 0$ в состояние с $\phi = \langle \phi \rangle_T$ происходит путем образования пузырей новой фазы, их последующего расширения и слияния, см. рис. 10.5.

Образование в среде с $\phi = 0$ пузырька, внутри которого $\phi = \langle \phi \rangle_r \neq$ 0, — это локальный в пространстве процесс, и он может происходить за счет тепловых флуктуаций⁶⁾. Если образовавшийся пузырек имеет достаточно большой раз-

мер, то термодинамически выгодным является его последующее расширение, поскольку отрицательная (по сравнению с исходным состоянием $\phi = 0$) свободная энергия внутренней части пузырька пропорциональна его объему, а положительная свободная энергия поверхности (стенки) пропорциональна ее площади. Расширяющиеся пузырьки сталкиваются своими стенками, и после этого процесса «кипения» система в конечном итоге возвращается в пространственно-однородное состояние термодинамического равновесия, но уже с $\phi = \langle \phi \rangle_T \neq 0$, а высвободившаяся свободная энергия переходит в тепло.

Описанный процесс «кипения» среды — это сильно неравновесный процесс. Мы уже отмечали, что в эволюции горячей Вселенной наиболее важны этапы, когда космическая плазма не находится в состоянии термодинамического равновесия. Поэтому именно фазовые переходы I рода, в отличие от фазовых переходов II рода и переходов типа гладкого кроссовера, представляют особый интерес для космологии.

Оценим вероятность образования пузыря новой фазы при температуре T. Пусть $V_- = V_{eff}(T, \phi = 0)$ — плотность свободной энергии старой фазы, а $V_+ = V_{eff}(T, \phi = \langle \phi \rangle_T)$ — плотность свободной энергии новой фазы, $V_+ < V_-$, см. рис. 10.4. Свободная энергия пузыря размера R, отсчитываемая от свободной энергии среды с $\phi = 0$ без пузыря, складывается из двух частей — объемной и поверхностной. Первая связана с тем, что внутри пузыря плотность свободной энергии V_+ меньше плотности энергии окружающей

⁶⁾ Иногда доминирующим процессом является квантовое туннелирование.

Рис. 10.5. Образование пузырей нового вакуума при фазовом переходе І рода

среды; она отрицательна и равна

$$\frac{4}{3}\pi R^{3}\left(V_{+}-V_{-}\right).$$

Поверхностная часть возникает из-за того, что поле ϕ вблизи поверхности неоднородно и отличается и от нуля, и от $\langle \phi \rangle_r$; вклад в нее вносят как эффективный потенциал $V_{eff}(\phi)$, так и градиентные слагаемые в свободной энергии — функционале $F[\phi(\mathbf{x})]$. Поверхностное слагаемое в свободной энергии пропорционально площади поверхности пузыря и равно $4\pi R^2 \cdot \mu$, где μ свободная энергия единицы поверхности (поверхностное натяжение). Таким образом, свободная энергия пузыря размера R, отсчитываемая от свободной энергии старой фазы, равна (см. рис. 10.6)

$$F(R) = 4\pi R^{2} \mu - \frac{4\pi}{3} R^{3} \cdot \Delta V, \qquad (10.2)$$

где

$$\Delta V = V_- - V_+ > 0$$

— разность плотностей свободной энергии старой и новой фаз (скрытая теплота фазового перехода). Из (10.2) видно, что при достаточно малых размерах свободная энергия пузырька убывает с *уменьшением* R; это означает, что спонтанно образовавшийся пузырек малого размера будет схлопываться за счет сил поверхностного натяжения, и система возвратится в исходное однородное состояние с $\phi = 0$. Наоборот, при достаточно больших R свободная энергия убывает с *ростом* R, т.е. пузырек будет неограниченно расширяться, и система перейдет в новую фазу. Минимальный размер, с которого пузырек начнет

расширяться, определяется уравнением

$$\frac{\partial F}{\partial R} = 0,$$

т.е. он равен

$$R_c = \frac{2\mu}{\Delta V}.$$
(10.3)

Пузырек такого размера называют критическим пузырем; его свободная энергия положительна и равна

$$F_c = 4\pi R_c^2 \mu - \frac{4\pi}{3} R_c^3 \cdot \Delta V = \frac{16\pi}{3} \frac{\mu^3}{\Delta V}.$$
 (10.4)

Отметим, что как размер критического пузыря, так и его свободная энергия растут при уменьшении ΔV — разности плотностей свободной энергии старой и новой фаз.

Спонтанное образование пузырей новой фазы в горячей среде происходит за счет тепловых флуктуаций, т. е. тепловых скачков на вершину барьера, изображенного на рис. 10.6. Вероятность такого скачка в единицу време-

Рис. 10.6. Свободная энергия пузыря новой фазы как функция его радиуса

ни в единице объема определяется в основном больцмановским множителем $e^{-F_c/T}$:

$$\Gamma = AT^4 \mathrm{e}^{-F_c/T} \qquad (10.5)$$

(формула Аррениуса), где множитель T^4 введен из соображений размерности, а предэкспонента A не слишком сильно зависит от температуры и других параметров. Отметим, что формула (10.5) справедлива при $F_c \gg T$, т. е. когда вероятность образования пузырька мала. Из этой формулы и (10.4) сразу следует, что при конечном темпе остывания среда некоторое время находится в переохлажденном состоянии с $\phi = 0$, когда

термодинамически уже выгодна новая фаза, но $\Delta V \equiv V_- - V_+$ все еще настолько мало, что темп образования пузырей меньше темпа остывания. В космологическом контексте образование пузырей новой фазы начинает эффективно происходить тогда, когда вероятность образования одного пузыря в хаббловском объеме за хаббловское время становится порядка единицы, т. е.

$$AT^4 e^{-\frac{P_c}{T}} \sim H^4(T) = \left(\frac{T^2}{M_{Pl}^*}\right)^4.$$
 (10.6)

В конкретных моделях это соотношение определяет, в какой степени переохлаждается космическая плазма до фазового перехода и какая скрытая

272

теплота ΔV выделяется в результате фазового перехода. Можно сделать, впрочем, и общий вывод о картине фазового перехода первого рода во Вселенной (если такие происходили): фазовый переход начинается тогда, когда в хаббловском объеме образуются *единичные* пузырьки. Их размер в момент образования определяется микроскопической физикой⁷⁾ и составляет величину, много меньшую хаббловского размера H(T), а расстояние между их центрами сравнимо с хаббловским размером. Пузыри успевают расшириться на много порядков до того, как их стенки начнут сталкиваться, а новых пузырьков за это время образуется мало.

Для примера, при $T \sim 100$ ГэВ (электрослабый масштаб) хаббловский размер составляет

$$H^{-1} = rac{M_{Pl}^{*}}{T^{2}} \sim 1$$
 см.

Размер пузырька в момент образования составляет, грубо говоря, величину порядка T^{-1} (в действительности он на один-два порядка больше), т. е. $R_c \sim 10^{-16}$ см. Итак, фазовый переход во Вселенной происходит путем образования в кубическом сантиметре космической плазмы нескольких пузырьков субъядерного размера, их расширения до макроскопических размеров и слияния в результате столкновения стенок.

Отметим, что теоретически имеется возможность того, что в расширяющейся Вселенной фазовый переход не заканчивается вовсе, несмотря на то, что эффективный потенциал имеет вид, изображенный на рис. 10.4. Ложный вакуум имеет положительную плотность энергии V_- , так что даже в отсутствие частиц Вселенная, заполненная ложным вакуумом, расширяется с параметром Хаббла

$$H_-=\sqrt{\frac{8\pi}{3}GV_-}\,.$$

Если темп образования пузырей за хаббловское время в хаббловском объеме мал,

$$rac{\Gamma}{H_{-}^4}\ll 1,$$

то стенки пузырей не будут сталкиваться, поскольку центры соседних пузырей будут удаляться друг от друга со скоростями, превышающими скорость света (иными словами, ближайший к данному пузырек будет находиться вне горизонта событий этого пузырька; о горизонте событий см. раздел 3.2.3). Области ложного вакуума будут расширяться быстрее областей новой фазы, и фазовый переход не закончится.

С учетом гравитационных взаимодействий распад ложного вакуума может не происходить и из-за того, что пузыри истинного вакуума не образуются совсем [45]. Это имеет место тогда, когда плотность энергии истинного

⁷⁾ С точностью до $\ln (M_{Pl}^*/T)$, как это следует из (10.3), (10.4) и (10.6).

вакуума отрицательна, а гравитационные эффекты достаточно сильны. Соответствующее рассмотрение выходит за рамки этой книги.

В заключение этого раздела обсудим в общих чертах, как найти поверхностное натяжение стенки пузыря. Мы будем пренебрегать кривизной стенки (т. е. считать размер пузыря R большим) и считать разность свободных энергий старой и новой фаз ΔV малой величиной. В этом случае конфигурация поля $\phi_w(r)$ в области стенки является минимумом свободной энергии $F(\phi(r))$ как функционала теперь уже неоднородного поля $\phi(r)$. При этом с одной стороны стенки, при $r \ll R$ (т. е. внутри пузыря), поле стремится к $\phi = \phi_+$, а с другой стороны стенки, при $r \gg R$, — к $\phi = 0$. Если R достаточно велико, то внутри пузыря координату (r - R) можно формально считать стремящейся к $-\infty$ и записать граничные условия как

$$\phi_w(x) \to \langle \phi \rangle_r$$
 при $(r-R) \to -\infty,$ (10.7)

$$\phi_w(x) \to 0$$
 при $(r-R) \to +\infty.$ (10.8)

Будем предполагать, что температурные поправки к градиентному члену в функционале энергии малы (это предположение действительно выполняется в теориях со слабой связью). Тогда свободная энергия (отсчитываемая от свободной энергии старой фазы) как функционал поля $\phi(r)$ запишется в виде

$$F[\phi] = \int_{0}^{\infty} 4\pi r^{2} dr \left[\frac{1}{2} \left(\frac{d\phi}{dr} \right)^{2} + V_{eff}(\phi) - V_{-} \right].$$
(10.9)

При большом размере пузыря толщина стенки мала по сравнению с R, и медленно меняющийся множитель $4\pi r^2$ можно считать постоянным в области стенки, т. е.

$$F[\phi] = 4\pi R^2 \int_{-\infty}^{+\infty} d\tilde{r} \left[\frac{1}{2} \left(\frac{d\phi}{d\tilde{r}} \right)^2 + V_{eff}(\phi) - V_{-} \right], \qquad (10.10)$$

где

 $\widetilde{r} = r - R$

и мы формально распространили интегрирование по этой переменной до $-\infty$ (ср. с (10.7)). Конфигурация поля $\phi_w(r)$ удовлетворяет уравнению Эйлера— Лагранжа для экстремума функционала (10.10)

$$\frac{d^2\phi}{d\tilde{r}^2} = \frac{\partial V_{eff}(\phi)}{\partial\phi}.$$
(10.11)

Это уравнение формально совпадает с уравнением движения одномерной классической механики частицы в потенциале

$$U(\phi) = -V_{eff}(\phi),$$

причем в роли времени выступает \tilde{r} , и в пренебрежении величиной ΔV справедливо $U(\langle \phi \rangle_T) = U(0)$, т. е. потенциал $U(\phi)$ имеет два равновысоких максимума, см. рис. 10.7 *a*.

Рис. 10.7. *а*) Вид потенциала с двумя вырожденными максимумами; *b*) Вид конфигурации поля, образующей решение с пузырем нового вакуума

Решение $\phi_w(r)$ уравнения (10.10) описывает «скатывание» частицы с правого горба, в соответствии с (10.7), и «закатывание» ее за бесконечное «время» на левый горб, см. (10.8). Используя аналогию с классической частицей, нетрудно найти решение уравнения (10.11) с граничными условиями (10.7), (10.8) в квадратурах,

$$\int_{\phi_1}^{\phi_W} \frac{d\phi}{\sqrt{2\left(V_{eff} - V_{-}\right)}} = -(R - r), \qquad (10.12)$$

где предел интегрирования выбран так, что при r = R поле $\phi(r)$ имеет промежуточное значение между $\phi = 0$ и $\phi = \langle \phi \rangle_r$. Конфигурация $\phi_w(r)$ схематически изображена на рис. 10.7 *b*. Отметим, что в одномерной теории скалярного поля с вырожденными минимумами скалярного потенциала для этого решения используют термин «кинк». С учетом (10.12) свободная энергия стенки (10.10) равна

$$F_w = 4\pi R^2 \mu,$$

$$\mu = \int_{0}^{\langle \phi \rangle_T} \sqrt{2 \left[V_{eff}(\phi) - V_{-} \right]} \, d\phi. \qquad (10.13)$$

Отметим, что коэффициент поверхностного натяжения μ конечен в пределе $\Delta V \rightarrow 0$.

Задача 1. Проверить справедливость формул (10.12), (10.13).

где

Выражение (10.2) для свободной энергии пузыря, как и анализ поведения поля вблизи его стенки, справедливы, когда толщина стенки мала по сравнению с размером пузыря R, т.е. работает тонкостенное приближение. В соответствии с (10.3) оно

действительно работает, если разность свободных энергий ΔV является малым параметром. В противном случае конфигурацию критического пузыря нужно получать, находя экстремум (седловую конфигурацию) функционала свободной энергии (10.9), при этом единственным граничным условием является $\phi(r \to \infty) = 0$. Подробности можно найти в книге [43].

Задача 2. Пусть эффективный потенциал имеет вид

$$V_{eff}(\phi) = rac{\lambda}{4} \phi^2 \left(\phi - v\right)^2 - \epsilon \phi^2,$$

где λ , v и ϵ — параметры модели, принимающие положительные значения. При каком соотношении между этими параметрами справедливо тонкостенное приближение? Найти поверхностное натяжение и толщину стенки в тонкостенном приближении, а также размер критического пузыря R_c ; оценить вероятность образования пузыря новой фазы внутри фазы с $\phi = 0$ в тонкостенном приближении при температуре T.

Сделаем в заключение замечание о распаде ложного вакуума при *нулевой* температуре. Речь идет о моделях со скалярным полем, в которых скалярный потенциал (при нулевой температуре) имеет локальный минимум (при $\phi \neq 0$), т.е. имеет

Рис. 10.8. Вид скалярного потенциала с двумя невырожденными минимумами

вид, изображенный на рис. 10.8. Состояние, в котором среднее значение поля пространственно однородно и равно нулю, является метастабильным; его называют ложным вакуумом. Распад ложного вакуума также происходит путем спонтанного образования пузырей новой фазы, однако, в отличие от среды при конечной температуре, пузырь возникает не за счет тепловых флуктуаций, а в результате туннельного процесса. Описание соответствующих туннельных переходов в квазиклассическом приближении приведено, например, в книге [43]. В теориях со слабой связью вероятность образования пузыря экспоненциально мала,

 $\Gamma \propto e^{-\operatorname{const}/\alpha}$,

где α — малая константа связи. Наконец, в некотором диапазоне температур возможна ситуация, когда при образовании пузыря доминирующую роль играет комбинация тепловой флуктуации и туннельного процесса.

10.2. Эффективный потенциал в однопетлевом приближении

В соответствии с (10.1) эффективный потенциал представляет собой плотность свободной энергии плазмы при условии, что среднее хигтсовское поле принимает значение ϕ всюду в пространстве. Свободная энергия F системы связана с ее энергией E и энтропией S известным из термодинамики соотношением F = E - TS, так что для плотности свободной энергии имеем

$$f=\rho-Ts,$$

где, как обычно, ρ и s — это плотность энергии и плотность энтропии соответственно. Из раздела 5.2 мы знаем, что плотность энтропии выражается через плотность энергии и давление,

$$s=rac{
ho+p}{T},$$

поэтому плотность свободной энергии равна⁸⁾

$$f=-p$$
.

Итак, для вычисления эффективного потенциала необходимо найти давление в системе при условии, что среднее хиггсовского поля зафиксировано равным ϕ во всем пространстве.

Мы будем рассматривать теории с малыми константами связи при интересных температурах. Например, при температуре $T \sim 100$ ГэВ, характерной для электрослабых взаимодействий, космическая плазма состояла из кварков, лептонов, W^{\pm} - и Z-бозонов, бозонов Хиггса, а также фотонов и глюонов, константы взаимодействия которых между собой были малы. В этом разделе мы пренебрежем взаимодействиями между частицами в космической плазме, т. е. будем рассматривать свободную энергию идеального газа элементарных частиц. Тем не менее, свободная энергия этого газа нетривиально зависит от среднего значения ϕ поля Хиггса, поскольку от него зависят массы частиц, а следовательно, и их вклады в давление. По причинам, которые изложены в Приложении D, приближение идеального газа при вычислении эффективного потенциала называют однопетлевым приближением.

В этом приближении давление является суммой вклада самого однородного поля ϕ и вкладов каждого типа частиц и античастиц, т.е.

$$f = V_{eff}(T, \phi) = V(\phi) + \sum_{i} f_{i},$$
 (10.14)

где $V(\phi)$ — скалярный потенциал, входящий в действие скалярного поля⁹⁾

$$S_{\phi} = \int \left[\partial_{\mu}\phi\partial^{\mu}\phi - V(\phi)\right] d^{4}x. \qquad (10.15)$$

Первый член в (10.14) возникает из-за того, что тензор энергии-импульса для постоянного по времени и однородного в пространстве скалярного поля равен

$$T_{\mu
u}(\phi) = g_{\mu
u} \cdot V(\phi),$$

277

⁸⁾ Тот факт, что среда стремится перейти в состояние с наименьшей свободной энергией, имеет простое физическое истолкование: в этой фазе давление максимально, и достаточно большая область этой фазы, образовавшаяся внутри фазы с меньшим давлением, будет расширяться, «расталкивая» среду с меньшим p.

⁹⁾ В Стандартной модели физики частиц хиггсовское поле является комплексным дублетом, кинетический член в лагранжианае которого соответствует формуле (В.8). С этим связан выбор коэффициента перед кинетическим слагаемым в (10.15). Связь рассматриваемого здесь поля ϕ с хиггсовским бозоном Стандартной модели имеет вид $\phi(x) = \frac{v+h(x)}{\sqrt{2}}$.

т. е. однородное скалярное поле вносит вклад в давление, равный

$$p(\phi) = T_{11} = T_{22} = T_{33} = -V(\phi).$$

Это, разумеется, — переформулировка того факта, что в пустоте свободная энергия совпадает с энергией, и ее плотность равна $V(\phi)$ для однородного скалярного поля. В дальнейшем мы будем считать, что скалярный потенциал дается стандартным выражением

$$V(\phi) = \lambda \left(\phi^2 - \frac{v^2}{2}\right)^2,$$

где v — вакуумное среднее скалярного поля при нулевой температуре, а λ — константа самодействия хиггсовского поля, причем $\lambda \ll 1$.

Второе слагаемое в (10.14) — это вклад среды в приближении невзаимодействующих частиц, при этом

$$f_i = -p_i(T, m_i(\phi)),$$

где $p_i(T, m_i(\phi))$ — вклад в давление частиц и античастиц *i*-го типа, масса которых равна m_i и зависит от ϕ . Согласно разделу 5.1, имеем

$$f_i = -p_i = -\frac{g_i}{6\pi^2} \int_0^\infty \frac{k^4 dk}{\sqrt{k^2 + m_i^2}} \cdot \frac{1}{e^{\sqrt{k^2 + m_i^2}/T} \mp 1},$$
 (10.16)

где g_i — число спиновых состояний и введено обозначение $k \equiv \sqrt{\mathbf{k}^2}$, верхний знак относится к бозонам, а нижний — к фермионам. Вклады тяжелых частиц с $m_i \gg T$ в свободную энергию экспоненциально малы, поэтому интерес представляет случай $m_i \leq T$.

Интеграл (10.16) не удается взять аналитически. Поэтому мы проанализируем его для частного случая высоких температур, $T \gg m$, и используем разложение по m/T (индекс *i* мы будем опускать, если это не будет приводить к недоразумениям). Такой подход называют высокотемпературным разложением. В безразмерных переменных

$$x=rac{k}{T}$$
и $z_i=rac{m_i}{T}$

выражения (10.16) примут вид

$$f_i = -\frac{g_i}{6\pi^2} T^4 \cdot I(z_i)_{\mp}, \quad I(z)_{\mp} = \int_0^\infty \frac{x^4 \, dx}{\sqrt{x^2 + z^2}} \frac{1}{e^{\sqrt{x^2 + z^2}} \mp 1}.$$
 (10.17)

Нас интересует поведение этих интегралов при малых z.

В нулевом порядке по z вклады f_i соответствуют давлениям свободных газов безмассовых частиц (см. раздел 5.1); они не зависят от ϕ , и мы их будем опускать. Подынтегральное выражение в (10.17) является функцией z^2 ,

и можно было бы ожидать, что I(z) представляет собой ряд по z^2 . Первый член этого ряда равен

$$I(z) = z^{2} \left(\frac{dI}{dz^{2}}\right)_{z^{2}=0} = -\frac{z^{2}}{2} \left(\int_{0}^{\infty} \frac{x \, dx}{e^{x} \mp 1} + \int_{0}^{\infty} \frac{x^{2} e^{x} \, dx}{(e^{x} \mp 1)^{2}}\right).$$
(10.18)

Фигурирующие здесь интегралы конечны, так что первый нетривиальный член высокотемпературного разложения действительно квадратичен по $z \equiv \phi/T$. Выполняя интегрирование с использованием формул, приведенных в конце раздела 5.1 (при этом второе слагаемое в (10.18) удобно проинтегрировать по частям), получаем в этом порядке

$$V_{eff}(\phi) = \lambda \left(\phi^2 - rac{v^2}{2}
ight)^2 + rac{T^2}{24} \left[\sum_{6030
m HM} g_i m_i^2(\phi) + rac{1}{2} \sum_{\phi
m epmuohi} g_i m_i^2(\phi)
ight].$$
 (10.19)

Из этого выражения сразу следует важный вывод о том, что в теориях типа Стандартной модели симметрия не нарушена при высоких температурах, хотя она нарушена при T = 0.

Действительно, в таких моделях частицы приобретают массы именно благодаря конденсату скалярного поля, т. е.

$$m_i(\phi) = h_i \phi, \tag{10.20}$$

где h_i — константы связи. Исключение составляет лишь сам хиггсовский бозон, вклад которого в (10.19) мал, и мы им будем пренебрегать. В Стандартной модели для кварков и заряженных лептонов, обозначаемых символом f, и W^{\pm} - и Z-бозонов соотношение (10.20) имеет конкретный вид:

$$m_f(\phi) = y_f \phi, \quad M_w(\phi) = \frac{g}{\sqrt{2}} \phi, \quad M_z(\phi) = \frac{\sqrt{g^2 + g'^2}}{\sqrt{2}} \phi,$$
 (10.21)

где y_f — юкавские константы, а g и g' — калибровочные константы связи (обозначения и подробности см. в Приложении В). В вакууме $\phi = v/\sqrt{2}$, и мы возвращаемся к известным формулам для масс частиц (см. Приложение В), а именно:

$$m_f(\phi) = \frac{y_f}{\sqrt{2}}v, \quad M_w(\phi) = \frac{g}{2}v, \quad M_z(\phi) = \frac{\sqrt{g^2 + g'^2}}{2}v.$$
 (10.22)

Если включить в эффективный потенциал только выписанные в (10.19) слагаемые, то с учетом (10.20) поведение эффективного потенциала вблизи $\phi = 0$ имеет вид

$$V_{eff}(\phi) = \left(-\lambda v^2 + \frac{\alpha}{24}T^2\right)\phi^2 + \lambda\phi^4$$
(10.23)

(не зависящие от ϕ слагаемые опущены), где

$$\alpha = \sum_{\text{бозоны}} g_i h_i^2 + \frac{1}{2} \sum_{\text{фермионы}} g_i h_i^2$$
(10.24)

— положительная величина. При низких температурах выражение (10.23) имеет минимум при $\phi \neq 0$ (симметрия нарушена), а при высоких температурах единственным минимумом служит минимум при $\phi = 0$, соответствующий восстановленной симметрии. Минимум при $\phi = 0$ исчезает и превращается в максимум, когда первое слагаемое в (10.23) меняет знак, т. е. при температуре (смысл обозначений будет ясен из дальнейшего)

$$T_{c2} = 2v \left(\frac{6\lambda}{\alpha}\right)^{1/2}.$$
 (10.25)

В дальнейшем, при общем обсуждении теорий с малыми константами связи мы будем считать, что существенные константы h_i малы и имеют порядок $h \ll 1$, а $\lambda \sim h^2$, так что масса бозона Хиггса,

$$m_h \sim \sqrt{\lambda v}$$
,

имеет тот же порядок величины, что массы остальных частиц, дающих заметные вклады в эффективный потенциал. В таком предположении оценка для критической температуры имеет вид

$$T_{c2} \sim v$$

как это следует из (10.24) при не слишком большом числе типов частиц.

В Стандартной модели основной вклад в α дают наиболее тяжелые частицы — W^{\pm} - и Z-бозоны и t-кварк, и сравнение формул (10.20), (10.21) и (10.22) дает

$$\alpha = \frac{2}{v^2} \left(6M_W^2 + 3M_Z^2 + 6m_t^2 \right),$$

где имеются в виду массы при нулевой температуре. Здесь мы учли, что W^+ и W^- -бозоны вместе имеют шесть поляризаций, Z-бозон имеет три поляризации, а t-кварк вместе со своей античастицей — четыре; кроме того, t-кварк может находиться в трех состояниях по цвету. Вспоминая еще, что масса бозона Хиггса равна

$$m_h = \sqrt{2\lambda} v$$
,

получаем следующее однопетлевое выражение для критической температуры T_{c2} в Стандартной модели:

$$T_{c2} = \left(rac{6m_h^2}{6M_W^2 + 3M_Z^2 + 6m_t^2}
ight)^{1/2} \cdot v = 121 \cdot \left(rac{m_h}{100 \; \mathrm{F} \mathrm{sB}}
ight) \;\mathrm{F} \mathrm{sB}$$

(напомним, что $M_W = 80,4$ ГэВ, $M_Z = 91,2$ ГэВ, $m_t \approx 175$ ГэВ, v = 247 ГэВ, см. Приложение В).

Если бы высокотемпературное разложение интегралов (10.16) действительно представляло собой ряд по $z^2 \equiv m^2(\phi)/T^2$, то можно было бы заключить, что мы имеем дело с фазовым переходом II рода: поправки четвертого и более высоких порядков по ϕ малы по сравнению с членами, выписанными в (10.23) (см. ниже), а положение минимума выражения (10.23) плавно меняется в сторону больших ϕ , начиная с $\phi = 0$, при уменьшении температуры от T_{c2} до нуля, так что поведение выражения (10.23) соответствует правому рис. 10.3. Однако на самом деле интегралы (10.16) не аналитичны по z^2 , и однопетлевой эффективный потенциал в действительности соответствует фазовому переходу I рода. Отсутствие аналитичности видно из поведения вкладов в интегралы (10.17) из области малых импульсов $k \ll T$, т. е. $x \ll 1$ (инфракрасная область). При малых z и x разложение экспоненты в подынтегральных выражениях дает

$$I_{-}^{(IR)} = \int_{0}^{\Lambda} \frac{x^{4} dx}{x^{2} + z^{2}} - \text{бозоны;}$$

$$I_{+}^{(IR)} = \frac{1}{2} \int_{0}^{\Lambda} \frac{x^{4} dx}{\sqrt{x^{2} + z^{2}}} - \text{фермионы,}$$
(10.26)

где $\Lambda \ll 1$ — фиктивный параметр, ограничивающий инфракрасную область. Формальное разложение подынтегральных выражений в этих формулах по z^2 привело бы в порядке z^4 к вкладам типа

$$z^4 \int\limits_0^{\Lambda} \frac{dx}{x^2}$$
 — бозоны; $z^4 \int\limits_0^{\Lambda} \frac{dx}{x}$ — фермионы,

Первый из них расходится на нижнем пределе интегрирования линейно, а второй — логарифмически. Поэтому можно ожидать, что помимо вычисленного выше вклада порядка z^2 бозоны дают вклад порядка z^3 , а фермионы — вклад порядка $z^4 \ln z$. Вклады последнего типа соответствуют членам в эффективном потенциале, имеющим вид

$$m_i^4(\phi) \ln \frac{\phi}{T} = h_i^4 \phi^4 \ln \frac{\phi}{T}.$$
 (10.27)

Большинство из них малоинтересны, поскольку при $\lambda \gg h_i^4$ (что выполняется при не слишком малой массе хиггсовского бозона) они малы по сравнению с членом $\lambda \phi^4$, происходящим из скалярного потенциала $V(\phi)$. Лишь вклады, обусловленные *t*-кварком, оказываются существенными при определении некоторых параметров фазового перехода, что мы увидим ниже. Наоборот, члены порядка z^3 существенны для описания фазового перехода: именно благодаря этим членам переход (в рамках однопетлевого приближения) является переходом I рода.

Для вычисления члена порядка z^3 в бозонном интеграле I_- разобьем этот интеграл на две части, введя фиктивный параметр Λ ,

$$I_{-} = \int\limits_{\Lambda}^{\infty} rac{x^4 dx}{\sqrt{x^2 + z^2}} rac{1}{\mathrm{e}^{\sqrt{x^2 + z^2}} - 1} + I_{-}^{(IR)}.$$

Первое слагаемое здесь аналитично по z^2 , а во втором слагаемом можно разложить экспоненту и ограничиться членом (10.26), т. е. записать

$$I^{(IR)}_{-} = \int\limits_{0}^{\Lambda} (x^2 - z^2) \, dx + z^4 \int\limits_{0}^{\Lambda} \frac{dx}{x^2 + z^2}.$$

Первое слагаемое в этом выражении снова аналитично по z^2 , а второе дает интересный вклад порядка z^3 ,

$$I^{(IR)}_{-}
ightarrow rac{\pi}{2} z^3 + \mathcal{O}igg(rac{z^4}{\Lambda}igg).$$

В результате эффективный потенциал в однопетлевом приближении имеет вид

$$egin{aligned} V_{eff}(\phi) &= \lambda igg(\phi^2 - rac{v^2}{2}igg)^2 + rac{T^2}{24}igg(\sum_{ ext{бозоны}} g_i m_i^2(\phi) + rac{1}{2}\sum_{ ext{фермионы}} g_i m_i^2(\phi)igg) - \ &- rac{T}{12\pi}\sum_{ ext{бозоны}} g_i m_i^3(\phi) + \mathcal{O}igg(m_i^4(\phi)\lnrac{m_i(\phi)}{T}igg). \end{aligned}$$

В моделях, где массы частиц связаны с хигтсовским средним соотношением (10.20), это выражение переписывается в виде

$$V_{eff}(\phi) = \frac{\alpha}{24} \left(T^2 - T_{c2}^2 \right) \phi^2 - \gamma T \phi^3 + \lambda \phi^4, \qquad (10.28)$$

где параметр γ положителен и равен

$$\gamma = \frac{1}{12\pi} \sum_{\text{бозоны}} g_i |h_i|^3 = \frac{\sqrt{2}}{6\pi} \sum_{\text{бозоны}} g_i \left(\frac{m_i}{v}\right)^3, \quad (10.29)$$

а остальные обозначения введены в (10.24) и (10.25).

Задача 3. Вычислить слагаемые порядка $\phi^4 \ln (\phi/T)$ в высокотемпературном разложении эффективного потенциала, используя соотношение (10.20). Показать, что при $\lambda \sim h_i^2$ (масса бозона Хиггса сравнима с массами остальных частиц) и $h_i \ll 1$ (константы связи малы) эти слагаемые малы по сравнению с выписанными в (10.28) во всей интересующей нас области изменения ϕ , т. е. $0 < \phi \leq v$.

Поведение эффективного потенциала (10.28) как функции температуры соответствует левому рис. 10.3, т. е. фазовому переходу І рода. Экстремумы эффективного потенциала определяются уравнением

$$\frac{\partial V_{eff}}{\partial \phi} = \frac{\alpha}{12} \left(T^2 - T_{c2}^2 \right) \phi - 3\gamma T \phi^2 + 4\lambda \phi^3 = 0.$$
(10.30)

При температуре T_{c0} такой, что

$$9\gamma^2 T_{c0}^2 = \frac{4\alpha\lambda}{3} (T_{c0}^2 - T_{c2}^2),$$

у эффективного потенциала появляются два экстремума при $\phi \neq 0$ — минимум и максимум. Видно, что эта температура лишь ненамного превышает T_{c2} : при $\lambda \sim h^2$ (где h — характерная константа связи) справедливы оценки $\gamma \sim h^3$, $\alpha \lambda \sim h^4$, так что

$$\frac{T_{c0}^2 - T_{c2}^2}{T_{c2}^2} = \frac{27\gamma^2}{4\alpha\lambda} \sim h^2.$$
(10.31)

Из-за малого отличия T от T_{c2} в интересной области температур можно заменить T на T_{c2} во втором слагаемом в (10.30). Существенно, что второй минимум эффективного потенциала (если $\phi = 0$ считать первым минимумом) появляется при отличном от нуля $\phi = \Phi_c(T_{c0})$:

$$\Phi_{c0} = \Phi_c(T_{c0}) = \frac{3\gamma}{8\lambda} T_{c0}.$$
 (10.32)

С понижением температуры второй минимум становится глубже, эффективный потенциал в этом минимуме сравнивается с эффективным потенциалом в минимуме $\phi = 0$ при температуре T_{c1} , причем выполняется как уравнение (10.30), так и уравнение¹⁰⁾ $V_{eff} = 0$. Решение этих двух уравнений дает первую критическую температуру T_{c1} ,

$$rac{T_{c1}^2-T_{c2}^2}{T_{c2}^2}=rac{6\gamma^2}{lpha\lambda},$$

и положение второго минимума при этой температуре

$$\Phi_{c1} = \Phi_c(T_{c1}) = \frac{\gamma}{2\lambda} T_{c1}. \qquad (10.33)$$

С учетом (10.29) в пределе слабой связи, $h \ll 1$, это значение гораздо меньше критической температуры, $\Phi_c(T_{c1}) \sim hT_{c1}$. При дальнейшем понижении температуры до второй критической температуры T_{c2} минимум эффективного потенциала при $\phi = 0$ пропадает и превращается в максимум. В этот момент второй минимум находится при

$$\Phi_{c2} = \Phi_c(T_{c2}) = \frac{3\gamma}{4\lambda} T_{c2}.$$
 (10.34)

Таким образом, изменение однопетлевого эффективного потенциала, изображенное на рис. 10.3 слева, происходит в теориях с малыми константами связи в узком интервале температур вблизи критической температуры (10.25), $T_{c0} \leq T \leq T_{c2}$, где T_{c0} определяется соотношением (10.31). При этом сразу после фазового перехода среднее значение поля Хиггса значительно меньше его вакуумного среднего,

$$\Phi_c \sim rac{\gamma}{\lambda} T_{c2} \sim h T_{c2} \sim h v \ll v.$$

¹⁰⁾ Напомним, что мы отбросили не зависящие от ϕ слагаемые в эффективном потенциале, т. е. отсчитываем его от значения в фазе $\phi = 0$.

Отметим, что условие применимости высокотемпературного разложения формально выполняется в теориях со слабой связью, поскольку

$$m_i(\Phi) = h_i \Phi \sim h^2 T_{c2} \ll T_{c2}.$$

Еще одно замечание касается скрытой теплоты фазового перехода. При $T = T_{c2}$ значение эффективного потенциала в минимуме (10.34), отсчитанное от его значения при $\phi = 0$, равно

$$V_{eff} ig(T_{c2}, \Phi_c(T_{c2}) ig) = -rac{27}{256} rac{\gamma^4}{\lambda^3} T_{c2}^4.$$

Это значение (с обратным знаком) определяет максимальную скрытую теплоту перехода, которая по порядку величины равна

$$-V_{eff} \sim h^6 T_{c2}^4 \ll T_{c2}^4. \tag{10.35}$$

Таким образом, в результате фазового перехода выделяется мало энергии по сравнению с энергией частиц в плазме, плотность которой по порядку величины равна T_c^4 . В результате фазового перехода космическая плазма подогревается слабо.

Задача 4. Используя выражение (10.28) для эффективного потенциала и результаты предыдущего раздела, найти профиль стенки критического пузыря и его коэффициент поверхностного натяжения μ при температуре, близкой к T_{c1} . Найти температуру, при которой темп образования пузырей становится порядка хаббловского, т. е. Вселенная «закипает». Каково при этом соотношение между размером пузыря и хаббловским размером? Найти соотношение между выделившейся в этот момент скрытой теплотой перехода и плотностью энергии частиц в плазме, уточнив тем самым оценку (10.35). Провести численные оценки для Стандартной модели с массой бозона Хиггса 40 ГэВ (экспериментально запрещено) и 120 ГэВ.

Высокотемпературное разложение интегралов (10.16) заведомо работает при малых значениях ϕ . Поэтому сделанный на его основе вывод о том, что в рамках использованного в этом разделе однопетлевого приближения фазовый переход является переходом I рода, с этой точки зрения обоснован. В то же время, для однопетлевого вычисления критических температур T_{c0} и T_{c1} , средних значений Φ_{c0} , Φ_{c1} , Φ_{c2} и других характеристик фазового перехода использование высокотемпературного разложения отнюдь не обязательно. Интегралы (10.16) достаточно просто вычислить численно, и таким образом найти точный однопетлевой эффективный потенциал. Соответствующие графики для Стандартной модели приведены на рис. 10.9, 10.10. Видно, что при $\phi \leq T$ полученные с использованием высокотемпературного разложения результаты для эффективного потенциала с разумной точностью согласуются с точным однопетлевым вычислением. В то же время, результаты для ряда характеристик фазового перехода совпадают лишь качественно, по порядку величины (см. рис. 10.11).

284

Рис. 10.9. Эффективные однопетлевые потенциалы при разных значениях температуры T, полученные численно (сплошные линии) и аналитически с использованием высокотемпературного разложения (пунктирные линии) для массы хиггсовского бозона $m_h = 50$ ГэВ. Следует обратить внимание на различия в масштабах по осям для разных температур

Для аналитических оценок этих характеристик оказываются важными опущенные нами старшие по m/T поправки. Действительно, отношения $\Phi_c(T_{c1})/T_{c1}$ и $\Phi_c(T_{c2})/T_{c2}$ обратно пропорциональны коэффициенту при ϕ^4 в эффективном потенциале (см. формулы (10.33), (10.34)), а именно этот коэффициент получает заметный вклад при учете опущенных нами следующих членов разложения (10.27).

Рис. 10.11. Сравнение численных результатов (черные линии) с аналитическими результатами, полученными с использованием высокотемпературного разложения (серые линии) для однопетлевых величин: *a*) $\Phi_c(T_{c1})/T_{c1}$ и *b*) $\Phi_c(T_{c2})/T_{c2}$ при различных массах бозона Хиггса m_h

Задача 5. В рамках высокотемпературного разложения вычислить величины $\Phi_c(T_{c1})/T_{c1}$ и $\Phi_c(T_{c2})/T_{c2}$ с учетом вкладов вида (10.27). Убедиться, что полученные результаты лучше согласуются с точными численными результатами.

Гораздо более серьезным вопросом является вопрос о применимости самого однопетлевого приближения и, говоря шире, о применимости теории возмущений по константам связи при конечных температурах. Обсуждению этих вопросов посвящен следующий раздел. Важный вывод состоит в том, что в Стандартной модели однопетлевое приближение теории возмущений не работает для описания фазового перехода, с учетом экспериментального ограничения $m_h > 114$ ГэВ.

287
10.3. Инфракрасная проблема

В этом разделе мы увидим, что при конечных температурах теория возмущений по константам связи применима далеко не всегда, даже если эти константы связи малы. Обсудим этот вопрос сначала на качественном уровне. Физическая причина неприменимости теории возмущений состоит в том, что функции распределения бозонов

$$\boldsymbol{f}_B = (\mathrm{e}^{\omega/T} - 1)^{-1}$$

велики при малых энергиях частицы ω . Из-за этого взаимодействие между бозонами при низких энергиях усилено в среде. Действительно, при малых импульсах и массах частиц, $p \ll T$, $m \ll T$, бозонная фунция распределения имеет вид

$$f_B(p) = rac{T}{\omega_p}$$

В квантовой теории поля это означает, что усредненные по состоянию среды плотности числа частиц с малыми импульсами,

$$\langle\langle a^{\dagger}_{\mathbf{p}}a_{\mathbf{p}'}
angle
angle=f_{B}(p)\delta(\mathbf{p}-\mathbf{p}'),$$

велики сравнению с коммутатором

97.9 197

$$\langle \langle [a_{\mathbf{p}}, a_{\mathbf{p}'}^{\dagger}] \rangle \rangle = \delta(\mathbf{p} - \mathbf{p}').$$

A MARKED SPICE

거 등 _____

Поэтому инфракрасная часть соответствующего бозонного поля Φ — это *классическое поле*. Для него запишем

$$\Phi(x) = rac{1}{(2\pi)^{3/2}}\int rac{d^3p}{\sqrt{2\omega_p}} ig(\mathrm{e}^{-ipx}a_\mathrm{p} + \mathrm{e}^{-ipx}a_\mathrm{p}^\daggerig),$$

где при малых импульсах $a_{\mathfrak{p}}, a_{\mathfrak{p}}^{\dagger} - c$ -числа. Отсюда, опуская численные факторы, имеем для флуктуации поля

$$\langle\langle \Phi^2(x)\rangle\rangle = \int \frac{d^3p}{\omega_p} f_B(p).$$

Нас интересует вклад инфракрасной (IR) области,

$$\langle\langle\Phi^2(x)
angle
angle_{IR}=\int rac{p^2\,dp}{\omega_p}rac{T}{\omega_p}=T\int rac{dp}{p}rac{p^3}{\omega_p^2}.$$

Таким образом, амплитуда флуктуаций поля с импульсами порядка *p* оценивается как

$$\langle\langle \Phi^2(x)
angle
angle_p = Trac{p^3}{\omega_p^2}.$$

Поле находится в линейном режиме, если квадратичный (свободный) вклад в свободную энергию велик по сравнению со вкладом взаимодействия. При $p^2 \gtrsim m^2$ свободный вклад можно оценить как $(\nabla \Phi)^2 = p^2 \Phi^2$. В соответствии с процедурой, используемой в этой Главе, самодействие поля Φ выберем в виде $h^2 \Phi^4$, где h — малая константа связи. Сравнение вклада взаимодействия и свободного вклада в свободную энергию дает

$$\frac{\hbar^2 \Phi^4}{(\nabla \Phi)^2} \sim \frac{\hbar^2 T^2 p^6}{\omega_p^4} \left(p^2 T \frac{p^3}{\omega_p^2} \right)^{-1} \sim \frac{\hbar^2 T p}{\omega_p^2}.$$
 (10.36)

Отсюда для безмассового поля получаем

$$rac{h^2\Phi^4}{(
abla\Phi)^2}\simrac{h^2T}{p}.$$

Поле находится в линейном режиме, если это отношение мало, что выполняется при $p \gg h^2 T$. В инфракрасной области $p \leq h^2 T$, наоборот, имеет место сильно нелинейный режим, теория возмущений неприменима. Для массивного поля отношение (10.36) мало при всех импульсах, только если $m_{\Phi} \gg h^2 T$. В противном случае инфракрасная область находится в режиме сильной связи. Отметим, что это — режим сильной связи в классической теории поля.

В калибровочных теориях приведенное рассуждение работает для *про*странственных компонент неабелева калибровочного поля, взаимодействие которых содержит, в частности, коммутаторное слагаемое типа $g^2 A^4$. При этом вместо h^2 имеем g^2 , и условие применимости теории возмущений имеет вид

$$M_W(T) \gg g^2 T.$$

Для компоненты A_0 данное рассуждение неприменимо из-за дебаевской массы $m_D \sim gT \gg g^2 T$.

Итак, вычисление эффективного потенциала по теории возмущений оправдано тогда, когда $M_W(T) \gg g^2 T$, т.е.

$$\phi \gg gT. \tag{10.37}$$

Отсюда следует, что эффективный потенциал невозможно вычислить по теории возмущений вблизи $\phi = 0$. Более того, описанная в предыдущем разделе картина фазового перехода первого рода справедлива только тогда, когда положение второго минимума эффективного потенциала, заданное формулами (10.32), (10.33) или (10.34), удовлетворяет соотношению $\Phi_c \gg gT_c$. В терминах констант связи это ограничение имеет вид

$$\lambda \ll rac{\gamma}{g}.$$

Учитывая, что $\gamma \sim g^3$ (см. (10.29)), и опуская численные множители (они в действительности работают в сторону усиления ограничения), получим отсюда $\lambda \ll g^2$, т. е. в терминах нуль-температурных масс

$$m_h^2 \ll M_W^2. \tag{10.38}$$

Уточнить эту оценку трудно: найти более аккуратно, до каких именно значений m_h имеет место фазовый переход первого рода, аналитически не удается. Тем не менее, ограничение (10.38) показывает, что однопетлевые результаты раздела 10.2 скорее всего не имеют отношения к реальности в Стандартной модели с учетом экспериментального ограничения $m_h > 114$ ГэВ.

Поскольку указанная трудность связана с взаимодействиями частиц среды с низкими энергиями, ее называют инфракрасной проблемой. Главную роль при этом играют взаимодействия калибровочных бозонов между собой, имеющиеся в любой неабелевой калибровочной теории.

Рассматривая. Стандартную модель и ее обобщения, нужно иметь в виду еще одно обстоятельство. Само хиггсовское поле ϕ в Стандартной модели калибровочным инвариантом не является. Калибровочно-инвариантными являются величины типа $\phi^{\dagger}\phi$ ($H^{\dagger}H$, см. Приложение В), однако они инвариантны относительно всех симметрий лагранжиана, поэтому не могут служить параметрами порядка. Иными словами, «фазы» с «нарушенной» и «ненарушенной» симметрией, по-видимому, в действительности не различимы¹¹). Если это так, то вместо фазового перехода при высоких температурах может иметь место гладкий кроссовер. Именно картина гладкого кроссовера наблюдается в решеточных исследованиях Стандартной модели при высоких температурах для $m_h > 80$ ГэВ.

Убедимся на формальном уровне, что применимость теории возмушений для вычисления эффективного потенциала действительно ограничена средними хиггсовского поля, удовлетворяющими соотношению (10.37). Нас будут интересовать вклады в эффективный потенциал, связанные с взаимодействием калибровочных бозонов между собой. Эти вклады, как и в разделе 10.2, зависят от среднего поля ϕ через массы векторных бозонов (10.21), т.е.

$$M(\phi) \sim g\phi$$
,

где мы опустили индексы, обозначающие W- и Z-бозоны, пренебрегли различием M_W и M_Z и факторами порядка единицы.

Как показано в Приложении D, эффективный потенциал дается функциональным интегралом

$$e^{-\beta V(\phi)} = \int \mathcal{D}A_{\mu} e^{-S^{(\beta)}[A]} , \qquad (10.39)$$

где мы опустили все поля, кроме калибровочных. Здесь $\beta = T^{-1}$, функционал $S^{(\beta)}[A]$ – евклидово действие на интервале евклидова времени $0 \le \tau \le \beta$,

$$S^{(\beta)}[A] = \int_{0}^{\beta} d\tau \int d^{3}x \left[\frac{1}{4} F^{b}_{\mu\nu} F^{b}_{\mu\nu} + \frac{M^{2}(\phi)}{2} A^{b}_{\mu} A^{b}_{\mu} \right], \qquad (10.40)$$

суммирование ведется с евклидовой метрикой. Интегрирование в (10.39) ведется по полям $A^{b}_{\mu}(\mathbf{x}, \tau)$, периодичным по τ с периодом β .

290

÷.,

¹¹⁾ Оговорка здесь связана с имеющимся в литературе утверждением о существовании «скрытой» симметрии и нелокального параметра порядка в Стандартной модели [44].

В силу периодичности, поля $A^b_\mu(\mathbf{x}, \tau)$ можно представить в виде дискретной суммы

$$A_{\mu}(\mathbf{x},\tau) = \frac{1}{\sqrt{\beta}} a_{\mu}(\mathbf{x}) + \sum_{n=\pm 1,...,} \frac{1}{\sqrt{\beta}} a_{\mu}^{(n)}(\mathbf{x}) e^{i\omega_{n}\tau}, \qquad (10.41)$$

где

$$\omega_n = \frac{2\pi n}{\beta} \equiv 2\pi nT$$

— мацубаровские частоты; мы опустили групповой индекс и явно выделили слагаемые в (10.41) с нулевой мацубаровской частотой. После подстановки разложения (10.41) действие будет представлять собой действие трехмерной евклидовой теории с бесконечным набором полей $a_{\mu}(\mathbf{x})$, $a_{\mu}^{(n)}(\mathbf{x})$. Нас будет интересовать инфракрасная область, точнее, область пространственных импульсов

 $|\mathbf{p}| \ll gT.$

При таких импульсах существенны только легкие трехмерные поля, чья масса много меньше gT. Заметим прежде всего что a_0 , $a_0^{(n)}$ легкими полями не являются: они приобретают дебаевскую массу $m_D \sim gT$ (ср. с разделом D.5). Поэтому поля a_0 , $a_0^{(n)}$ можно из рассмотрения исключить. Далее, поля $a_i^{(n)}$ с $n \neq 0$ также являются тяжелыми трехмерными полями: слагаемое $F_{0i}^a F_{0i}^a$ в исходном лагранжиане приводит к появлению члена

$$\sum_{n=\pm 1,\pm 2,\ldots}\int d^3x\,\omega_n^2 a_i^{(n)}a_i^{(-n)},$$

т. е. массового члена в трехмерной теории с большими массами $|\omega_n|$. В результате легкими полями являются только поля $a_i(\mathbf{x})$, т. е. однородные в евклидовом времени компоненты пространственных вектор-потенциалов A_i . Подставляя выражение $A_i(\mathbf{x}) = \beta^{-1/2} a_i(\mathbf{x})$ в действие (10.40), получим эффективное трехмерное действие, описывающее инфракрасные свойства теории при конечных температурах

$$S^{eff} = \int d^3x \left(\frac{1}{4} f^b_{ij} f^b_{ij} + \frac{1}{2} M^2(\phi) a^b_i a^b_i \right), \qquad (10.42)$$

где

$$f_{ij}^b = \partial_i a_j^b - \partial_j a_i^b + g \sqrt{T} f^{bcd} a_i^c a_j^d$$
(10.43)

и f^{bcd} — структурные константы неабелевой калибровочной группы (в случае калибровочной группы SU(2) имеем $f^{bcd} = \epsilon^{bcd}$). Фактор $T^{1/2} = \beta^{-1/2}$ возник в (10.43) из-за нормировки в (10.41), подобранной так, чтобы квадратичная часть трехмерного действия (10.42) имела канонический вид.

Отвлекаясь от основного изложения, сделаем замечание, касающееся фермионов. В рамках описываемого подхода *все* трехмерные фермионы являются тяжелыми, поскольку они антипериодичны по β , и все их мацубаровские частоты $\omega_{n'} = 2\pi T n'$, $n' = \pm 1/2, \pm 3/2, \ldots$, отличны от нуля и пропорциональны T. Поэтому фермионные поля несущественны с точки зрения инфракрасных свойств теории. Это следует и из соображений, изложенных в начале этого раздела: функции распределения фермионов $f_F = (e^{\omega/T} + 1)^{-1}$ не растут при низких энергиях ω .

Возвращаясь к действию (10.42), заметим, что оно представляет собой действие трехмерных векторных полей с массой $M(\phi)$ и размерной константой связи

$$g^{(3)} = g\sqrt{T}.$$
 (10.44)

Отношение размерных величин $[g^{(3)}]^2/M(\phi)$ и представляет собой эффективную константу связи. Действительно, в рамках теории возмущений эффективный потенциал (точнее, $-\beta V(\phi)$) дается суммой одночастично-неприводимых диаграмм без внешних

Рис. 10.12. Пример диаграммы, дающей вклад в эффективный потенциал

линий (см. Приложение D), типа изображенной на рис. 10.12. В данном случае речь идет о диаграммах в трехмерной теории с действием (10.42). Диаграммы с n петлями дают вклад в βV_{eff} , пропорциональный $[g^{(3)}]^{2(n-1)}$, и просто из размерных соображений этот вклад имеет порядок

$$eta V_{eff}^{(n)} \sim rac{[g^{(3)}]^{2(n-1)}}{[M(\phi)]^{n-4}} = [M(\phi)]^3 igg(rac{[g^{(3)}]^2}{M(\phi)}igg)^n$$

Итак, параметром разложения в теории возмущений служит $[g^{(3)}]^2/M(\phi)$, т. е. теория возмущений применима при ¹²⁾ $M(\phi) \gg g^2 T$, или, с учетом $M(\phi) \sim g\phi$, при выполнении соотношения (10.37).

В заключение этого раздела сделаем несколько замечаний. Прежде всего, отметим, что при импульсах и энергиях, малых по сравнению с g^2T , теория эффективно сводится к трехмерной калиб-

ровочной теории (вообще говоря, со скалярными полями) с калибровочной константой (10.44). Такая теория имеет вполне нетривиальные непертурбативные свойства, ее исследованию на решетке посвящен целый ряд работ.

Далее, для полей $A_i(\mathbf{x})$, не зависящих от евклидова времени τ , статистическая сумма (10.39) сводится к

$$e^{-\beta F} = \int \mathcal{D}A_i(\mathbf{x}) e^{-\beta \mathcal{H}[A_i]},$$

где

$$\mathcal{H}[A_i] = \int d^3x \left(rac{1}{4}F^b_{ij}F^b_{ij}+\ldots
ight),$$

и многоточием обозначены члены, содержащие скалярные поля (мы здесь сохранили четырехмерную нормировку векторного поля). Выражение в правой части представляет собой статистическую сумму классической четырехмерной калибровочной теории поля (вообще говоря, со скалярными полями) с гамильтонианом $\mathcal{H}[A_i]$. Таким образом, наш анализ подтверждает вывод о том, что поведение квантовой теории при высоких температурах на масштабах длин и времен, сравнимых или превышающих $(g^2T)^{-1}$, по-существу совпадает с поведением классической теории поля¹³⁾. Этим обстоятельством бывает полезно воспользоваться для изучения статических, а особенно динамических (проявляющихся при эволюции во времени) свойств теории при высоких температурах.

¹²⁾ В случае полей a_0 и $a_i^{(n)}$ роль $M(\phi)$ выполняют дебаевская масса $m_D \sim gT$ и $\omega_n \sim T$ соответственно, так что эти поля действительно несущественны в инфракрасной области при достаточно малых g.

¹³⁾ Здесь имеется тонкость, связанная с необходимостью ультрафиолетового обрезания классической теории поля: для распределения Рэлея—Джинса плотность энергии ультрафиолетово расходится.

ГЕНЕРАЦИЯ БАРИОННОЙ АСИММЕТРИИ

Как мы обсуждали в разделе 5.2, в современной Вселенной антибарионы отсутствуют, а современная концентрация барионов характеризуется величиной

$$\eta_{\scriptscriptstyle B} = \frac{n_{\scriptscriptstyle B,0}}{n_{\gamma,0}} \simeq 6.1 \cdot 10^{-10}.$$

Отношение плотности барионного числа к плотности энтропии на достаточно поздних этапах эволюции равно (см. раздел 5.2)

$$\Delta_{B} = \frac{n_{B} - n_{\bar{B}}}{s} \simeq 0.86 \cdot 10^{-10}.$$
 (11.1)

Эта величина остается постоянной на горячей стадии расширения Вселенной, если в космической плазме отсутствуют процессы с несохранением барионного числа и процессы с большим выделением энтропии. Одна из задач космологии состоит в объяснении происхождения барионной асимметрии (11.1). При этом, как мы обсуждали в разделах 1.5.5 и 5.2, начальное состояние выбирается симметричным по отношению к барионному числу.

Нужно сразу подчеркнуть, что однозначного ответа на вопрос о механизме генерации барионной асимметрии пока нет. Было предложено несколько механизмов, однако сказать, какой из них действительно ответственен за генерацию наблюдаемой барионной асимметрии, пока нельзя. Вообще говоря, барионная асимметрия могла образоваться как на горячей стадии, так и на предшествующей ей стадии постинфляционного разогрева. Последняя имеет место в инфляционной теории и понимается как стадия, в которой частицы и поля во Вселенной еще далеки от термодинамического равновесия. Стадию постинфляционного разогрева мы будем обсуждать во второй части книги, а в этой Главе рассмотрим некоторые механизмы генерации барионной асимметрии, которые могли работать на горячей стадии. Обсудим прежде всего общие условия, необходимые для генерации барионной асимметрии.

Помимо барионной асимметрии в современной (и в ранней) Вселенной может иметься, и наверняка имеется, лептонная асимметрия. Однако если она не слишком велика, то определить ее значение в экспериментах или наблюдениях не представляется возможным (пока?), поскольку лептонная асимметрия заключена в избытке реликтовых нейтрино над антинейтрино или наоборот (плотность электронов равна плотности протонов в силу электронейтральности), а точное измерение концентрации реликтовых нейтрино надолго останется нерешенной проблемой.

11.1. Необходимые условия генерации асимметрии

Для того чтобы на каком-то этапе эволюции Вселенной произошла генерация барионной асимметрии, необходимо выполнение трех условий; их называют условиями Сахарова. А именно, должны иметь место:

1. Несохранение барионного числа.

2. Нарушение С- и СР-симметрий.

3. Нарушение термодинамического равновесия.

То, что первое условие действительно необходимо для превращения барион-симметричной среды в барион-асимметричную, очевидно. Далее, если бы C- или CP-симметрия была точной, то процессы с участием кварков и с участием антикварков происходили бы одинаково, и генерация асимметрии была бы невозможна.

На формальном уровне последнее утверждение следует из закона эволюции матрицы плотности,

$$\rho(t) = e^{-i\hat{H}(t-t_i)}\rho(t_i) e^{i\hat{H}(t-t_i)}, \qquad (11.2)$$

где \widehat{H} — гамильтониан системы, t_i — начальный момент времени. Симметрия относительно C- или CP-преобразований означает, что соответствующий унитарный оператор U_C или U_{CP} коммутирует с гамильтонианом; например, для CP-симметрии

 $U_{CP}\widehat{H}U_{CP}^{-1}=\widehat{H}.$

Отсюда следует, что

$$U_{CP}\rho(t)U_{CP}^{-1}=\rho(t),$$

если начальное состояние среды (в момент t_i) симметрично, т.е.

$$U_{CP}\rho(t_i)U_{CP}^{-1}=\rho(t_i).$$

Отсюда и из нечетности оператора барионного числа,

$$U_{CP}\widehat{B}U_{CP}^{-1}=-\widehat{B},$$

сразу следует, что если в начальный момент $\langle \widehat{B}(t_i) \rangle = 0$, то

$$\langle \widehat{B}(t) \rangle = \operatorname{Tr} \left(\widehat{B} \rho(t) \right) = 0,$$

т. е. среднее значение барионного числа в среде равно нулю в любой момент времени; среда остается барион-симметричной.

Наконец, третье условие также достаточно очевидно. В ситуации, когда имеет место термодинамическое равновесие по отношению к процессам с несохранением барионного числа, среда эволюционирует в состояние с нулевым химическим потенциалом, т. е. с нулевой плотностью барионного числа. Барионная асимметрия в этой ситуации не генерируется, а наоборот, в общем случае вымывается. Это рассуждение нуждается, впрочем, в уточнении. Оно буквально справедливо, если барионное число является единственным существенным квантовым числом. Мы увидим, что в Стандартной модели физики частиц и ее расширениях существенными являются также лептонные числа, причем при температурах выше $T \sim 100$ ГэВ барионное число само по себе не сохраняется, но сохраняются его линейные комбинации с лептонными числами, в частности (B - L), где $L = L_e + L_\mu + L_\tau$ — полное лептонное число. В состоянии термодинамического равновесия с ненулевым (B - L) выполняется

$$B = C \cdot (B - L), \quad L = (C - 1) \cdot (B - L),$$
 (11.3)

где константа C — порядка (но меньше) единицы, т. е. барионное число отлично от нуля. Это обстоятельство лежит в основе механизма лептогенезиса: при достаточно высоких температурах генерируется лептонная асимметрия (и, следовательно, (B - L)) за счет процессов, не описываемых Стандартной моделью, а затем она частично перерабатывается, уже в результате электрослабых процессов Стандартной модели, в барионную асимметрию.

Подчеркнем, что все три перечисленных в начале раздела необходимых условия должны выполняться на одном и том же этапе эволюции Вселенной — этапе генерации барионной асимметрии (в сценарии лептогенезиса на этапе генерации лептонной асимметрии должно иметь место несохранение лептонного числа, а не барионного). Вообще говоря, каждый из перечисленных в этих условиях эффектов является в той или иной степени малым, что и приводит к малому значению барионной асимметрии. Мы рассмотрим, каким образом выполняются указанные условия, на конкретных примерах в последующих разделах.

В заключение этого раздела убедимся, что независимо от механизма генерации барионной асимметрии сам факт ее существования приводит к отсутствию реликтового антивещества во Вселенной.

Для оценки остаточной концентрации антибарионов (антипротонов, антинейтронов) запишем уравнение для плотности числа антибарионов $n_{\bar{B}}$. Изменение числа антибарионов в сопутствующем объеме происходит, вопервых, за счет их аннигиляции с барионами среды,

$$rac{d(n_{ar B}a^3)^{ann}}{dt}=-\Gamma_{ann}\cdot n_{ar B}a^3,$$

где

$$\Gamma_{ann} = \sigma_{ann} \cdot v \cdot n_B \tag{11.4}$$

— вероятность аннигиляции антибариона в среде с барионами в единицу времени. Здесь σ_{ann} — сечение аннигиляции (различием между сечениями аннигиляции антипротонов и антинейтронов пренебрегаем); в нерелятивист-ском случае $\sigma_{ann} = \sigma_0/v$ (см. раздел 9.3), а

$$\sigma_0 \sim 1 \ \Phi_M^2 = 10^{-26} \ c_M^2 \sim 25 \ \Gamma_2 B^{-2}.$$
 (11.5)

В формуле (11.4) $n_{\scriptscriptstyle B} = \eta_{\scriptscriptstyle B} \cdot n_{\gamma}$ — плотность числа барионов.

Конкурирующий с аннигиляцией процесс — это рождение барион-антибарионных пар в столкновениях между частицами среды. В термодинамическом равновесии число антибарионов меняться не должно, поэтому при равновесной концентрации антибарионов вклады аннигиляции и рождения должны в точности компенсировать друг друга. Следовательно, вклад парного рождения равен

$$rac{d(n_{ar{B}}a^3)^{
m poxg}}{dt}=\Gamma_{ann}\cdot n^{eq}_{ar{B}}a^3,$$

где $n_{\bar{g}}^{eq}$ — равновесная концентрация антибарионов. В итоге для полного изменения числа антибарионов получим уравнение Больцмана

$$\frac{d(n_{\bar{B}}a^3)}{dt} = -\Gamma_{ann} \cdot \left(n_{\bar{B}}a^3 - n_{\bar{B}}^{eq}a^3\right). \tag{11.6}$$

Задача 1. Получить уравнение (11.6), исходя из уравнения (5.64). Указание: учесть, что $\Gamma_{ann} = \tau_{ann}^{-1}$ — вероятность аннигиляции *одного* антибариона в единицу времени (т. е. τ_{ann} — время жизни антибариона в среде). Воспользоваться соотношением (5.57) и учесть, что концентрация барионов гораздо выше концентрации антибарионов, а потому концентрация барионов близка к равновесной.

Если вероятность аннигиляции Γ_{ann} велика, то концентрация антибарионов близка к равновесной. Такая ситуация, как мы сейчас увидим, имеет место при достаточно высоких температурах. Равновесие сильно нарушается тогда, когда необходимый для его поддержания темп изменения числа антибарионов становится велик по сравнению с реальным темпом процессов аннигиляции и рождения. Смена режимов происходит в момент, когда

$$\left|\frac{d(n_{\bar{B}}^{eq}a^3)}{dt}\right| \sim \Gamma_{ann} \cdot n_{\bar{B}}^{eq}a^3.$$
(11.7)

В это время количество антибарионов в сопутствующем объеме закаливается.

Чтобы оценить температуру, при которой выполняется соотношение (11.7), и концентрацию антибарионов $n_{\bar{B}} \approx n_{\bar{B}}^{eq}$ в этот момент, нам осталось найти равновесную концентрацию антибарионов как функцию температуры. Учтем, что в равновесии химические потенциалы частиц и античастиц равны и противоположны по знаку, и запишем для концентраций барионов и антибарионов, считая $T \ll m_p$ (отличием масс протона m_p и нейтрона m_n пренебрегаем, спиновые множители не выписываем),

$$n_{B}^{eq} = \left(\frac{m_{p}T}{2\pi}\right)^{3/2} e^{-(m_{p}-\mu_{B})/T}, \qquad n_{\bar{B}}^{eq} = \left(\frac{m_{p}T}{2\pi}\right)^{3/2} e^{-(m_{p}+\mu_{B})/T}.$$
(11.8)

Отметим, что при $T \ll m_p$ конечное (не экспоненциально малое) значение n_B^{eq} имеет место только при $\mu_B = m_p + O(T)$. Из (11.8) имеем, с учетом $n_B = \eta_B \cdot n_\gamma$,

$$n_{\bar{B}}^{eq} = \frac{1}{n_{B}} \left(\frac{m_{p}T}{2\pi}\right)^{3} e^{-2m_{p}/T} \sim \frac{m_{p}^{3}}{\eta_{B}} \cdot e^{-2m_{p}/T}.$$
 (11.9)

\$° ...

Эта величина быстро меняется с температурой при $T \ll m_p$, поэтому

$$\left|rac{d(n^{eq}_{ar s}a^3)}{dt}
ight|=\left|a^3rac{dn^{eq}_{ar s}}{dt}
ight|.$$

С учетом равенства

$$\left|rac{T}{T}
ight| = H(T) = rac{T^2}{M_{Pl}^*}$$

имеем из (11.9)

$$\left|a^3rac{dn_{\overline{B}}^{eq}}{dt}
ight|\sim a^3rac{m_p}{T}H\cdot n_{\overline{B}}^{eq}.$$

Соотношение (11.7) сводится теперь к

$$rac{m_p}{T}H\equiv rac{m_p}{T}rac{T^2}{M_{Pl}^*}\sim \Gamma_{ann}\sim \sigma_0\eta_{\scriptscriptstyle B}T^3.$$

Отсюда для температуры выхода из равновесия получим

$$T \sim \left(\frac{m_p}{M_{Pl}^* \cdot \eta_B \cdot \sigma_0}\right)^{1/2} \sim 10$$
 кэВ. (11.10)

При такой температуре концентрация антибарионов фантастически мала: из (11.9) имеем

$$n_{\bar{B}} \sim 10^{-10^5},$$
 (11.11)

(неважно, в каких единицах). В видимой части Вселенной не осталось ни одного реликтового бариона.

Разумеется, при столь малом числе антибарионов методы статистической физики, на которых основывалось приведенное здесь вычисление, можно поставить под сомнение. Однако не подлежит сомнению сам факт того, что в барион-асимметричной Вселенной все антибарионы выгорают в результате их аннигиляции с барионами.

Задача 2. Решить уравнение Большмана (11.6) в квадратурах. Вычислив полученный интеграл методом перевала, найти температуру, при которой возникает наибольший вклад в современное значение $n_{\bar{B}}$, уточнив тем самым оценку (11.10). Найти выражение для современного значения $n_{\bar{B}}$. Согласуется ли численное значение с (11.11)?

Задача 3. Найти концентрацию реликтовых позитронов в современную эпоху.

11.2. Несохранение барионного и лептонных чисел во взаимодействиях частиц

В этом разделе мы обсудим два механизма нарушения барионного числа. Один из них скорее всего реализуется в природе, поскольку он имеется уже в Стандартной модели физики частиц. Другой механизм характерен для теорий Большого объединения. Хотя прямых экспериментальных доказательств Большого объединения калибровочных взаимодействий пока не существует, эта гипотеза выглядит весьма правдоподобной. Наконец, мы увидим в дальнейшем, что для генерации барионной асимметрии могут быть существенными и процессы с несохранением лептонных чисел; один из механизмов этого несохранения мы обсудим в конце раздела.

11.2.1. Электрослабый механизм

Несохранение барионного и лептонных чисел в Стандартной модели имеет непертурбативный характер; его не видно на уровне диаграмм теории возмущений. Мы здесь дадим лишь самое общее представление об этом механизме; заинтересованный читатель может узнать подробности в книге [43] или в обзорах по этому вопросу.

Существенную роль в обсуждаемом эффекте (его называют эффектом т'Хоофта) играют калибровочные взаимодействия подгруппы $SU(2)_w$ группы Стандартной модели $SU(3)_c \times SU(2)_w \times U_r$ (см. Приложение В). В этих взаимодействиях участвуют левые кварки и лептоны. Классический лагранжиан инвариантен относительно общих фазовых вращений всех кварковых полей (соответствующая симметрия приводила бы к сохранению барионного числа B), а также фазовых вращений лептонов каждого поколения по отдельности (три лептонных числа, L_n , n = 1, 2, 3; см. Приложение В). Однако на квантовом уровне соответствующие токи j_{μ}^{u} , $j_{\mu}^{L_n}$ имеют аномалии

$$\partial^{\mu} j^{\mu}_{\mu} = 3 \frac{g^2}{16\pi^2} V^{\mu\nu} \, {}^{a} \widetilde{V}^{a}_{\mu\nu}, \qquad (11.12)$$

$$\partial^{\mu} j_{\mu}^{L_{n}} = \frac{g^{2}}{16\pi^{2}} V^{\mu\nu} \,^{a} \widetilde{V}_{\mu\nu}^{a}, \quad n = 1, 2, 3, \qquad (11.13)$$

где 🚲

$$V^a_{\mu
u}=\partial_\mu V^a_
u-\partial_
u V^a_\mu+g\epsilon^{abc}V^b_\mu V^c_
u$$

— напряженность калибровочного поля группы $SU(2)_w$,

$$\widetilde{V}^a_{\mu
u} = rac{1}{2} \epsilon_{\mu
u\lambda
ho} V^{\lambda
ho \ a},$$

g — калибровочная константа связи группы $SU(2)_w$. Причина этой аномалии состоит именно в том, что левые и правые фермионы взаимодействуют с полем V^a_μ по-разному¹⁾ (в данном случае правые фермионы вообще с ним не взаимодействуют).

Соотношения (11.12) указывают на то, что барионное и лептонные числа не сохраняются $^{2)}$, если в вакууме или в среде возникают ненулевые калибро-

¹⁾ В квантовой хромодинамике левые и правые кварки взаимодействуют с глюонами одинаково, поэтому в сильных взаимодействиях барионное число сохраняется.

²⁾ Мы здесь не обсуждаем, в результате какого именно физического механизма изменяется число кварков и лептонов в системе; см. по этому поводу [43] и ссылки там.

Рис. 11.1. Схематическое изображение статической энергии как функционала классических калибровочных и хиггсовских полей. Горизонтальная ось соответствует (бесконечномерному) пространству всех полевых конфигураций $\{V, \phi\}$. Абсолютные минимумы, нумеруемые целым числом $n = 0, \pm 1, \pm 2, \ldots$ — чисто калибровочные конфигурации с нулевой энергией, в которых поля $V(x), \phi(x)$ имеют различные топологические свойства (топологически различные вакуумы). Интеграл в правой части (11.14) равен единице при изменении полей от вакуума с топологическим числом n к вакууму с числом (n + 1) и равен нулю, если поля эволюционируют в окрестности какого-то одного вакуума. «Максимум» с энергией E_{sph} на самом деле является седловой точкой: вдоль одного направления в конфигурационном пространстве статическая энергия понижается, а вдоль всех остальных направлений — увеличивается

вочные поля:

$$\Delta B = B(t_f) - B(t_i) = \int_{t_i}^{t_f} dt \int d^3x \, \partial^\mu j^B_\mu = 3 \int_{t_i}^{t_f} d^4x \, \frac{g^2}{16\pi^2} V^{\mu\nu} \, {}^a \widetilde{V}^a_{\mu\nu}, \quad (11.14)$$

где t_i и t_f — начальный и конечный моменты времени; аналогичное равенство справедливо и для каждого из лептонных чисел. Нарушение барионного числа возникает тогда, когда интеграл (11.14) отличен от нуля; для этого требуются сильные поля, $F^a_{\mu\nu} \propto 1/g$. Энергия таких полей отлична от нуля и пропорциональна $1/g^2$. Таким образом, мы приходим к заключению, что нарушение барионного и лептонного чисел связано с преодолением энергетического барьера, см. рис. 11.1. Оценка для его высоты имеет вид

$$E_{sph} \sim rac{M_W}{g^2},$$

где множитель M_W вставлен из соображений размерности³⁾ (все поля группы $SU(2)_W$ имеют массу M_W , если различием между массами W^{\pm} - и Z-бозонов

³⁾ Обозначение *E_{sph}* связано со следующим обстоятельством. Высота энергетического барьера равна энергии седловой конфигурации — экстремума функционала статической энергии. Эту

пренебречь, т. е. положить $\sin \theta_w = 0$, где θ_w — слабый угол смешивания, см. Приложение B). Аккуратное вычисление для высоты барьера дает

$$E_{sph}=rac{2M_W}{lpha_w}Bigg(rac{m_h}{M_W}igg),
onumber lpha_w\equivrac{g^2}{4\pi},$$

где

а значение функции $B(m_h/M_W)$ изменяется в пределах [52] от

$$B=1,56, \quad \frac{m_h}{M_W}\ll 1,$$

до

$$B=2,72, \quad \frac{m_h}{M_W}\gg 1.$$

Таким образом, в Стандартной модели высота энергетического барьера составляет 7,5–13 ТэВ.

При нулевой температуре (и нулевой плотности фермионов) преодоление энергетического барьера, а значит, несохранение барионного и лептонных чисел, возможно только за счет квантового туннелирования. Такое туннелирование описывается инстантоном⁴⁾, и вероятность его экспоненциально подавлена:

 $\Gamma \propto e^{-4\pi/\alpha_W}$

С учетом того, что $\alpha_w \sim 1/30$, множитель подавления здесь чрезвычайно мал, $\Gamma \propto 10^{-165}$. В обычных условиях процессов с нарушением барионного числа практически не происходит.

Иная ситуация имеет место при конечных температурах: в этом случае преодоление энергетического барьера возможно в результате тепловых скачков на его вершину (точнее, седловую точку). При не слишком высоких температурах самая наивная оценка подавления таких скачков дается больцмановским множителем для конфигурации с энергией E_{sph} ,

$$\Gamma_{sph} \propto \mathrm{e}^{-E_{sph}/T}.$$

Эта оценка, однако, неверна при наиболее интересных температурах, когда множитель подавления не слишком мал. Вероятность реализации той или иной конфигурации определяется не ее энергией, а ее *свободной* энергией. В данном случае главный эффект состоит в том, что среднее хиггсовского поля, а значит и M_W , зависит от температуры, см. Главу 10. Поэтому более аккуратная оценка имеет вид

$$\Gamma_{sph} = C \cdot T^4 \mathrm{e}^{-F_{sph}(T)/T},\tag{11.15}$$

конфигурацию называют сфалероном (sphaleron) (от греческого $\sigma\phi\alpha\lambda\epsilon\rho\sigma\nu$ — ненадежное, готовое упасть).

⁴⁾ В данном случае речь идет об инстантонах Белавина—Полякова—Шварца—Тюпкина в неабелевых калибровочных теориях.

где

$$F_{sph}(T) = \frac{2M_W(T)}{\alpha_W} B\left(\frac{m_h}{M_W}\right), \qquad (11.16)$$

причем можно считать, что аргументом функции B по-прежнему служит отношение нуль-температурных масс (в действительности это не совсем верно, но для дальнейших оценок последнее обстоятельство не слишком существенно ввиду слабой зависимости B от своего аргумента). Величина Γ_{sph} представляет собой вероятность перехода через энергетический барьер в единичном объеме в единицу времени, поэтому в (11.15) выделен множитель T^4 из соображений размерности. Предэкспонента C — безразмерная и зависит от температуры, среднего значения хиггсовского поля и констант связи; в дальнейшем мы, тем не менее, будем полагать

 $C \sim 1$,

поскольку наиболее существенным в (11.15) является экспоненциальный множитель.

Итак, при не слишком высоких температурах вероятность электрослабых процессов с несохранением барионного числа дается формулой (11.15). Эта формула, однако, перестает работать при высоких температурах, когда $F_{sph} \leq T$, и экспоненциальное подавление отсутствует. Последняя ситуация имеет место, в частности, в фазе с ненарушенной электрослабой симметрией⁵⁾, когда $\langle \phi \rangle = 0$ и, следовательно, $M_W(T) = 0$. В этом случае можно воспользоваться размерной оценкой

$$\Gamma_{sph} = \varkappa' \alpha_w^5 T^4, \qquad (11.17)$$

где \varkappa' — численный коэффициент. Оценка (11.17) отчасти вытекает из результатов раздела 10.3. Мы в нем видели, что в теории при высоких температурах и $M_W(T) = 0$ имеется непертурбативный параметр $g_3^2 = g^2 T$. Темп сфалеронных переходов в основном определяется этим параметром; отсюда и из соображений размерности следовала бы оценка

$$\Gamma_{sph} \sim g_3^4 \sim (lpha_W T)^4.$$

Дополнительный множитель α_W возникает благодаря специфически плазменным эффектам [53]. Коэффициент κ' найден из решеточных вычислений и оказался довольно большим [54]:

$$\varkappa' \simeq 25.$$

Отметим, что если в формулу (11.15) вместо $M_W(T)$ подставить непертурбативный масштаб g_3^2 , то свободная энергия сфалерона будет порядка температуры, т. е. больцмановское подавление будет действительно отсутствовать.

⁵⁾ Мы здесь пользуемся общепринятой, хотя и не вполне корректной терминологией, см. обсуждение в Главе 10.

Воспользуемся оценками (11.15) и (11.17), чтобы найти, при каких температурах электрослабые процессы с несохранением барионного числа находятся в термодинамическом равновесии в ранней Вселенной. Эти процессы являются быстрыми в расширяющейся Вселенной, если в течение хаббловского времени каждая частица имеет возможность принять участие хотя бы в одном из них, т. е. $\Gamma_{sph} \gtrsim Hn$, где $n \sim T^3$ — плотность числа частиц в среде. Таким образом, термодинамическое равновесие по отношению к сфалеронным процессам имеет место, когда

$$\frac{\Gamma_{sph}}{T^3} \gtrsim H(T) = \frac{T^2}{M_{Pl}^*}.$$
 (11.18)

При высоких температурах используем (11.17) и получим

$$T \leq 10^{12} \text{ FbB.}$$
 (11.19)

При относительно низких температурах требование (11.18) приводит к ограничению

$$rac{M_W(T)}{T} \lesssim rac{lpha_w}{2B(m_h/M_W)} \ln rac{M_{Pl}^*}{T}.$$

С учетом грубой оценки $T \sim 100$ ГэВ, достаточной в аргументе логарифма, имеем численно

$$\frac{M_W(T)}{T} \lesssim \frac{0.66}{B(m_h/M_W)} \sim 0.24 - 0.43, \tag{11.20}$$

в зависимости от нуль-температурной массы бозона Хиггса. Итак, электрослабые процессы с несохранением барионного числа находятся в термодинамическом равновесии в широком интервале температур, приблизительно от 100 до 10¹² ГэВ.

В заключение этого раздела остановимся на правилах отбора для электрослабых процессов с несохранением барионного числа. Они следуют из соотношений (11.12), (11.13) и имеют вид

$$\Delta B = 3\Delta L_e = 3\Delta L_\mu = 3\Delta L_\tau.$$

Иными словами, сохраняющимися величинами являются три линейно-независимых комбинации барионного и лептонных чисел, которые можно выбрать в виде

$$(B-L), \quad (L_e-L_{\mu}), \quad (L_e-L_{\tau}).$$
 (11.21)

При температурах 100 ГэВ $\leq T \leq 10^{12}$ ГэВ плотности этих чисел, вообще говоря, могут быть отличны от нуля, а сами барионное и лептонные числа подстраиваются так, чтобы большой термодинамический потенциал был минимален.

Найдем в качестве примера плотности барионного и лептонного чисел при температурах выше электрослабого фазового перехода, но ниже (11.19), полагая заданной плотность (B - L) и считая плотности различных лептонных чисел одинаковыми. Вычисление проведем в рамках Стандартной модели физики частиц с v_f поколениями

1.40

131.000

фермионов и ν_s дублетами скаляров Хиггса. Квантовые числа всех частиц Стандартной модели приведены в Приложении В, причем выше электрослабого фазового перехода удобно работать в терминах хиггсовских скаляров, образующих дублеты с компонентами h^+ и h^0 , соответствующих им античастиц, а также безмассовых калибровочных бозонов с двумя поляризациями. Для вычисления плотностей чисел всех частиц введем химические потенциалы ко всем сохраняющимся квантовым числам. В данном случае существенными квантовыми числами являются (B - L) и слабый гиперзаряд Y (см. задачу 2 раздела 5.1). В результате частицы и античастицы типа I будут обладать химическими потенциалами; для частиц это

$$\mu_I = \mu \left(B_I - L_I \right) + \mu_Y \frac{Y_I}{2},$$

а для античастиц $\mu_{\bar{I}} = -\mu_I$. Здесь B_I , L_I и Y_I — барионное число, лептонное число и слабый гиперзаряд частицы I соответственно, μ и μ_Y — химические потенциалы к (B - L) и Y/2. Например, для левого электрона и нейтрино

$$\mu_{\nu}=\mu_{e_L}=-\mu-\frac{1}{2}\mu_{\gamma},$$

для заряженного и нейтрального скаляров (компонент одного из хиггсовских дублетов)

$$\mu_{h^+}=\mu_{h^0}=\frac{1}{2}\mu_Y$$

и т. д. Воспользуемся результатами задачи 2 раздела 5.1 и запишем для асимметрии плотности числа фермионов типа *F* всех поколений

$$n_F - n_{ar{F}} = \Delta n_F = rac{1}{2}
u_f \cdot \mu_F rac{T^2}{3}$$

и для асимметрии плотности числа скаляров типа Н

$$n_H - n_{\overline{H}} = \Delta n_H = \nu_s \cdot \mu_H \cdot \frac{T^2}{3}$$

(считаем эти значения малыми, т. е. $\mu_I \ll T$). Отсюда получаем

$$\Delta n_{h} + \Delta n_{h^{0}} = \nu_{s} \cdot \mu_{Y} \cdot \frac{T^{2}}{3},$$

$$\Delta n_{\nu} + \Delta n_{l_{L}} = \nu_{f} \left(-\frac{1}{2} \mu_{Y} - \mu \right) \cdot \frac{T^{2}}{3},$$

$$\Delta n_{l_{R}} = \frac{1}{2} \nu_{f} \left(-\mu_{Y} - \mu \right) \cdot \frac{T^{2}}{3},$$

$$\Delta n_{u_{L}} + \Delta n_{d_{L}} = \nu_{f} \left(\frac{1}{6} \mu_{Y} + \frac{1}{3} \mu \right) \cdot 3 \cdot \frac{T^{2}}{3},$$

$$\Delta n_{u_{R}} = \frac{1}{2} \nu_{f} \left(\frac{2}{3} \mu_{Y} + \frac{1}{3} \mu \right) \cdot 3 \cdot \frac{T^{2}}{3},$$

$$\Delta n_{d_{R}} = \frac{1}{2} \nu_{f} \left(-\frac{1}{3} \mu_{Y} + \frac{1}{3} \mu \right) \cdot 3 \cdot \frac{T^{2}}{3},$$
(11.22)

где множитель 3 в последних трех выражениях учитывает число цветов кварков. Калибровочные векторные бозоны имеют нулевые барионное и лептонные числа и слабый гиперзаряд, поэтому асимметрия для них отсутствует. Учтем, что среда нейтральна по отношению ко всем калибровочным зарядам (это — аналог условия электронейтральности обычной плазмы). В частности, плотность слабого гиперзаряда равна нулю,

$$\sum_{I} Y_{I} \cdot \Delta n_{I} = 0.$$

Используя (11.22), получим

$$\nu_f\left(\frac{5}{3}\mu_Y + \frac{4}{3}\mu\right) + \frac{1}{2}\nu_s \cdot \mu_Y = 0.$$
(11.23)

Отсюда видно, для чего мы ввели химический потенциал μ_r : если бы мы изначально положили $\mu_r = 0$, то при $\mu \neq 0$ среда не была бы нейтральной по отношению к слабому гиперзаряду.

Исключив с помощью уравнения (11.23) один из химических потенциалов, например μ , выразим все асимметрии (11.22) через единственный оставшийся химический потенциал. В результате для избытка барионного числа, который будем обозначать просто B, получим

$$B \equiv \frac{1}{3} \left(\Delta n_{u_L} + \Delta n_{d_L} + \Delta n_{u_R} + \Delta n_{d_R} \right) = -\frac{T^2}{3} \left(\frac{1}{2} \nu_f + \frac{1}{4} \nu_s \right) \mu_Y, \qquad (11.24)$$

а избыток лептонного числа равен

$$L=\frac{T^2}{3}\left(\frac{7}{8}\nu_f+\frac{9}{16}\nu_s\right)\mu_Y.$$

Таким образом, значение (B-L), которое считаем фиксированным, связано с μ_{γ} соотношением

$$B-L=-\frac{T^2}{3}\left(\frac{11}{8}\nu_f+\frac{13}{16}\nu_s\right)\mu_Y.$$

Вновь используя (11.24), получим окончательно

$$B = \frac{8\nu_f + 4\nu_s}{22\nu_f + 13\nu_s} \cdot (B - L), \qquad (11.25)$$

что и дает константу C, фигурирующую в (11.3). В природе число фермионных поколений (с массами ниже или порядка электрослабого масштаба) равно 3, и в случае одного хиггсовского дублета имеем

$$C = \frac{8\nu_f + 4\nu_s}{22\nu_f + 13\nu_s} = \frac{28}{79} \quad (\nu_f = 3, \ \nu_s = 1). \tag{11.26}$$

Подчеркнем, что это значение, как и весь анализ, справедливо только выше электрослабого фазового перехода; ниже фазового перехода, точнее, при $\Phi(T) \sim T$ параметр *C* становится функцией отношения $\Phi(T)/T$ и несколько (хотя и несильно) отличается от (11.26), см., например, [55].

Задача 4. Для температур выше температуры электрослабого фазового перехода ввести, помимо μ и μ_r , химический потенциал μ_3 к диагональной (третьей) компоненте слабого изоспина T^3 , найти асимметрии плотностей всех частиц, включая векторные бозоны, и показать, что требование равенства нулю плотности слабого изоспина в среде эквивалентно условию $\mu_3 = 0$ при любых μ и μ_r . Примечание: этот результат перестает быть справедливым ниже температуры фазового перехода.

Задача 5. В случае температуры выше температуры электрослабого фазового перехода рассмотреть общую ситуацию, когда плотности всех трех сохранющихся чисел (11.21) отличны от нуля. Показать, что плотность барионного числа по-прежнему определяется формулой (11.25).

11.2.2. Нарушение барионного числа в теориях Большого объединения

Другой механизм нарушения барионного и лептонных чисел возникает в теориях Большого объединения. В них имеются новые сверхмассивные частицы — векторы и скаляры (а в суперсимметричных теориях — и фермионы), — во взаимодействиях которых с обычными кварками и лептонами барионное и лептонные числа нарушаются уже на уровне теории возмущений. Например, возможна вершина типа изображенной на рис. 11.2 a, описывающая взаимодействие векторного бозона V с двумя кварками (в отличие от калибровочных вершин Стандартной модели, в которых фигурируют кварк и антикварк). Наличие такой вершины еще не означает несохранения барионного числа: если бы существовала только она, то бозону V можно было бы приписать барионное число 2/3, и тогда барионное число сохранялось бы. Однако если имеется и вершина типа изображенной на рис. 11.2 b (почему на нем показан антилептон, а не лептон, будет ясно из дальнейшего), то

Рис. 11.2. Взаимодействие векторного бозона с кварками q, антикварками \bar{q} и антилептонами \bar{l}

Рис. 11.4. Диаграмма, приводящая к распаду протона

нарушение барионного числа действительно имеет место: например, обмен бозоном V приводит к процессу, изображенному на рис. 11.3, в котором барионное число явным образом не сохраняется.

Взаимодействия рис. 11.3 приводят к нестабильности протона, см. рис. 11.4. На время жизни протона имеются жесткие экспериментальные ограничения: в зависимости от моды распада

$$\tau_p > 10^{32} - 10^{33}$$
 лет. (11.27)

Отсюда следуют сильные ограничения на параметры взаимодействий с нарушением барионного числа. Из диаграммы рис. 11.4 получаем следующую оценку для ширины распада протона,

$$\Gamma_p\equiv rac{1}{ au_p}\sim rac{lpha_v^2}{M_v^4}m_p^5,$$

где $\alpha_v = g_v^2/(4\pi)$, g_v — константа связи, имеющаяся в каждой из вершин; множитель M_v^{-2} в амплитуде (т. е. M_v^{-4} в ширине) возник из-за пропагатора V-бозона, а множитель m_p^5 поставлен из размерных соображений. Отсюда и из (11.27) получаем ограничение

$$M_{\rm v} \gtrsim 10^{16} \ {\rm F3B}.$$
 (11.28)

Таким образом, взаимодействия, о которых идет речь, могут быть существенными для космологии, только если во Вселенной достигались температуры, сравнимые с масштабом Большого объединения (см., впрочем, сноску в начале этой Главы),

$$M_{GUT} \sim 10^{15} - 10^{16} \text{ FsB.}$$
(11.29)

Если в теорию не включать новых фермионов, а ограничиться только фермионами Стандартной модели, то взаимодействия, нарушающие барионное число, описываются диаграммами рис. 11.2, причем в 11.2 *b* фигурирует именно антилептон. Это следует из инвариантности относительно калибровочной группы Стандартной модели, как мы увидим в конце раздела. С точки зрения генерации барионной асимметрии замечательным является тот факт, что все эти взаимодействия сохраняют (B - L), если векторным бозонам V и аналогичным им скалярным бозонам S приписывать (B - L) = 2/3. Поэтому генерация барионной асимметрии только за счет этих взаимодействий невозможна: такая генерация происходила бы при температурах выше электрослабого фазового перехода, при этом (B - L) оставалось бы равным нулю, и процессы, рассмотренные в предыдущем разделе, приводили бы к практически полному вымыванию барионной асимметрии. Отметим, что аналогичная ситуация имеет место и в суперсимметричных теориях.

Если в теории имеются новые фермионы, то (B-L) может не сохраняться во взаимодействиях, нарушающих барионное число. Простой пример получается, если к фермионам Стандартной модели добавить фермион Λ_L , обладающий нулевыми барионным и лептонным числами и нейтральный по отно-

шению ко всем калибровочным взаимодействиям Стандартной модели. Тогда наряду с вершинами рис. 11.2 возможны вершины, изображенные на рис. 11.5. Конечные состояния, показанные на рис. 11.2, имеют (B - L) = 2/3, в то время как конечные состояния, изображенные на рис. 11.5, имеют (B - L) = -1/3, что и говорит о нарушении (B - L). Другая возможность состоит в том, что Λ_L является лептоном, т. е. имеет лептонное число L = 1.

Рис. 11.5. Вершина взаимодействия, нарушающая (*B* – *L*)

Причина, по которой в теориях Большого объединения имеются взаимодействия типа изображенных на рис. 11.2 а, b, — следующая. Большое объединение сильных и электрослабых взаимодействий подразумевает, что все эти калибровочные взаимодействия при сверхвысоких энергиях являются единым взаимодействием. Иными словами, калибровочная группа Стандартной модели $SU(3)_c \times SU(2)_w \times U_Y$ является подгруппой простой калибровочной группы G, а известные фермионы образуют (возможно, при добавлении новых фермионов) представления группы G. Отсюда сразу следует, что в мультиплете, частью которого является лептонный дублет (и в мультиплете, возможно другом, которому принадлежит правый заряженный лептон), должны иметься фермионы, нетривиально преобразующиеся относительно группы $SU(3)_c$, т. е. обладающие цветом. Если не вводить слишком много новых фермионов, то эти цветные партнеры лептонов следует отождествить с обычными кварками. Далее, поскольку кварки и лептоны теперь находятся вместе в одном калибровочном мультиплете, должны существовать калибровочные бозоны, обладающие взаимодействием типа изображенного на рис. 11.2 b. В одном мультиплете с цветными частицами, образующими дублет относительно группы $SU(2)_W$, могут быть цветные частицы, синглетные относительно $SU(2)_W$. Иными словами, в мультиплете группы G, содержащем левые кварковые дублеты, могут иметься $SU(2)_{w}$ -синглетные цветные фермионы, которые также должны быть левыми. Таковыми являются левые антикварки. Итак, возможны мультиплеты группы G, содержащие как кварки, так и антикварки, что приводит к взаимодействиям типа изображенного на рис. 11.2 а.

Простейшим примером (однако, по-видимому, не реалистичным) служит теория с калибровочной группой G = SU(5), в алгебру которой калибровочные алгебры

Стандартной модели вложены следующим образом:

$$SU(3)_c: \begin{pmatrix} SU(3) & 0_{3\times 2} \\ 0_{2\times 3} & 0_{2\times 2} \end{pmatrix}, \qquad SU(2)_w: \begin{pmatrix} 0_{3\times 3} & 0_{3\times 2} \\ 0_{2\times 3} & SU(2) \end{pmatrix}, \qquad (11.30)$$

$$U(1)_Y: \quad Y = \sqrt{\frac{5}{3}}T^{24}, \quad T^{24} = \frac{1}{2\sqrt{15}} \cdot \text{diag}(2, 2, 2, -3, -3)$$
 (11.31)

(индексы в (11.30) обозначают размерности матриц; $0_{m \times n}$ — нулевая матрица). В этой модели нет необходимости вводить новые фермионы, если расположить фермионы одного поколения Стандартной модели в одном представлении $\overline{5}$ (антифундаментальное представление SU(5)) и одном представлении 10 (антисимметричное представление SU(5)):

$$\bar{\mathbf{5}} = \begin{pmatrix} d_L^{(c)1} & d_L^{(c)2} & d_L^{(c)3} & e_L^-, & \nu_e \end{pmatrix},$$

$$\mathbf{10} = \begin{pmatrix} 0 & u_L^{(c)3} & -u_L^{(c)2} & u_L^1 & d_L^1 \\ -u_L^{(c)3} & 0 & u_L^{(c)1} & u_L^2 & d_L^2 \\ u_L^{(c)2} & -u_L^{(c)1} & 0 & u_L^3 & d_L^3 \\ -u_L^1 & -u_L^2 & -u_L^3 & 0 & e_L^+ \\ -d_L^1 & -d_L^2 & -d_L^3 & -e_L^+ & 0 \end{pmatrix}$$

где верхний индекс относится к цвету, а $u_L^{(c)}$ и $d_L^{(c)}$ обозначают поля левых антикварков (антитриплетов относительно $SU(3)_c$ и $SU(2)_w$ -синглетов).

Задача 6. Показать, что в описанной модели все фермионы имеют в точности квантовые числа фермионов Стандартной модели по отношению к группе $SU(3)_c \times SU(2)_w \times U_Y$, вложенной в SU(5) согласно (11.30), (11.31).

Калибровочные бозоны образуют присоединенное представление SU(5) (24-плет). Помимо известных калибровочных бозонов, соответствующих алгебрам (11.30), (11.31), имеется еще 12 бозонов, поля которых вложены в алгебру SU(5) следующим образом:

$$\begin{pmatrix} 0 & 0 & 0 & V_{\mu}^{1} & U_{\mu}^{1} \\ 0 & 0 & 0 & V_{\mu}^{2} & U_{\mu}^{2} \\ 0 & 0 & 0 & V_{\mu}^{3} & U_{\mu}^{3} \\ V_{\mu}^{1*} & V_{\mu}^{2*} & V_{\mu}^{3*} & 0 & 0 \\ U_{\mu}^{1*} & U_{\mu}^{2*} & U_{\mu}^{3*} & 0 & 0 \end{pmatrix}$$

где каждое из полей U^a_{μ} , V^a_{μ} комплексное и описывает два векторных бозона. Взаимодействия этих бозонов с кварками и лептонами имеют в точности вид, изображенный на рис. 11.2 *a*, *b*.

Задача 7. Выписать все члены лагранжиана взаимодействия бозонов V_{μ} и U_{μ} с кварками и лептонами. Указание: для компактности записи учесть, что поля (V_{μ}, U_{μ}) вместе образуют $SU(2)_{W}$ -дублет и являются $SU(3)_{c}$ -триплетами.

Рис. 11.6. Схематическое изображение эволюции калибровочных констант с переданным импульсом в суперсимметричном расширении Стандартной модели. $\alpha_3 \equiv \alpha_s \equiv g_s^2/(4\pi)$ и $\alpha_2 \equiv \alpha_w \equiv g^2/(4\pi)$, где g_s и g — константы групп $SU(3)_c$ и $SU(2)_w$; $\alpha_1 = (5/3) \cdot g'^2/(4\pi)$, где g' — константа группы $U(1)_r$; множитель 5/3 здесь связан с отличием нормировки генератора $U(1)_r$ от стандартной нормировки генераторов группы Большого объединения (в частности, след генератора T^{24} в SU(5), равный стандартному значению 1/2, отличается от следа квадрата генератора Y именно этим множителем, см. (11.31); отсюда калибровочные константы SU(5) и $U(1)_r$ связаны соотношением $g_{SU(5)} = \sqrt{5/3} \cdot g'$

Масштаб (11.29) появляется в теории естественным образом. С учетом квантовых эффектов (петель) «константы связи» в калибровочных теориях в действительности слабо (логарифмически) зависят от энергии (точнее, от переданного импульса Q). При низких энергиях значения калибровочных констант групп $SU(3)_c$, $SU(2)_w$ и $U(1)_Y$ Стандартной модели сильно различаются, однако при увеличении энергии они сближаются, как схематично показано на рис. 11.6.

В суперсимметричном расширении Стандартной модели все три константы принимают одно и то же значение $\alpha_{GUT} \approx 1/25$ при $Q = M_{GUT} \approx 10^{16}$ ГэВ. Именно так и должно быть в теории, где при энергиях выше M_{GUT} имеется единое калибровочное взаимодействие, характеризующееся одной константой связи. Объединение констант является сильнейшим аргументом, свидетельствующим как об объединении всех трех калибровочных взаимодействий в теории Большого объединения, так и о наличии в природе суперсимметрии и суперсимметричном расширении Стандартной модели при сравнительно низких энергиях.

Продолжая общее рассмотрение, обсудим, какие ограничения на структуру взаимодействий с несохранением барионного числа накладывают симметрии Стандартной модели физики частиц. Будем пока считать, что других фермионов, кроме известных кварков и лептонов, нет. В этой Главе все фермионы Стандартной модели удобно считать левыми, т. е. вместо правых полей кварков и заряженных лептонов U_R , D_R и E_R удобно ввести левые поля, обозначаемые $U_L^{(c)}$, $D_L^{(c)}$ и $E_L^{(c)}$ и описывающие левые антикварки и антилептоны. Они являются синглетами по отношению к группе $SU(2)_W$, антитриплетами ($U_L^{(c)}$, $D_L^{(c)}$) и синглетами ($E_L^{(c)}$) по отношению к группе цвета $SU(3)_c$ и имеют слабые гиперзаряды противоположного знака по отношению к соответствующим частицам, т.е.

$$Y_{U_L^{(c)}} = -\frac{4}{3}, \quad Y_{D_L^{(c)}} = \frac{2}{3}, \quad Y_{E_L^{(c)}} = 2.$$

Слабые гиперзаряды левых дублетов равны, как обычно,

$$Y_{Q_L} = \frac{1}{3}, \quad Y_{L_L} = -1.$$

В терминах левых полей единственный лоренц-инвариантный тип перенормируемого взаимодействия с векторными полями имеет вид

$$\overline{\psi}_L^{(a)} \gamma^{\mu} V_{\mu} \psi_L^{(b)} \propto V \overline{\psi}^{(a)} \psi^{(b)}, \qquad (11.32)$$

а взаимодействие юкавского типа со скалярным полем S может иметь только вид (ср. с майорановским массовым членом нейтрино, Приложение C)

$$\overline{\psi}_L^{(c)} S \psi_L \propto S \psi^{(a)} \psi^{(b)}$$
 или $\overline{\psi}_L S \psi_L^{(c)} \propto S \overline{\psi}^{(a)} \overline{\psi}^{(b)},$ (11.33)

где в качестве $\psi^{(a)}$, $\psi^{(b)}$ могут фигурировать различные фермионные поля Стандартной модели. Подчеркнем, что в (11.32) фигурируют как ψ , так и $\overline{\psi}$, а в (11.33) — только ψ или только $\overline{\psi}$.

Взаимодействия (11.32), (11.33) должны быть инвариантны относительно всех калибровочных симметрий Стандартной модели. Как мы сейчас увидим, это требование накладывает жесткие ограничения на их структуру.

Прежде всего, если имеется вершина рис. 11.2 *a*, то *V* должен быть антитриплетом или секстетом по цвету (поскольку для представлений группы $SU(3)_c$ справедливо $3 \times 3 = 6 + \overline{3}$). В последнем случае других вершин нет (из инвариантности относительно $SU(3)_c$), и этот случай неинтересен. Если *V* — антитриплет, то инвариантность относительно $SU(3)_c$ разрешает еще две вершины: вершину рис. 11.2 *b* и аналогичную вершину с лептоном вместо антилептона. Это же справедливо для скаляра *S*. Случай (анти)триплетных бозонов в действительности исчерпывает все возможности несохранения барионного числа в перенормируемых взаимодействиях, совместных с инвариантностью относительно $SU(3)_c$.

Задача 8. Доказать последнее утверждение.

Дальнейшие ограничения накладывает инвариантность относительно $SU(2)_W$ и слабого гиперзаряда. Начнем со случая векторных частиц V. Учитывая, что $U_L^{(c)}$ и $D_L^{(c)}$ являются полями антикварков, получим, что имеются две комбинации полей, взаимодействие типа (11.32) с которыми приводит к вершине рис. 11.2 а:

$$\overline{U}_{L}^{(c)}Q\left(\mathbf{2},\frac{5}{3}\right),\tag{11.34}$$

$$\overline{D}_{L}^{(c)}Q\left(2,-\frac{1}{3}\right) \tag{11.35}$$

(в скобках указано представление группы $SU(2)_w$ — в данном случае дублетное 2 — и слабый гиперзаряд соответствующего оператора). Такие же квантовые числа должна иметь комбинация антикварка и лептона (или антилептона), с которой взаимодействует поле V. Дублетными по $SU(2)_w$ являются комбинации

$$\overline{Q}E_L^{(c)}\left(\mathbf{2},\frac{5}{3}\right), \quad \overline{L}U_L^{(c)}\left(\mathbf{2},\frac{1}{3}\right), \quad \overline{L}D_L^{(c)}\left(\mathbf{2},\frac{5}{3}\right)$$

(напомним, что для группы SU(2) дублетное представление совпадает со своим сопряженным). Видно, что единственная возможность состоит в том, что векторный бозон V является дублетом относительно $SU(2)_w$, имеет слабый гиперзаряд 5/3 и участвует

Рис. 11.7. Взаимодействия векторных бозонов, нарушающие барионное число. $V^{4/3}$ и $V^{1/3}$ обозначают верхнюю и нижнюю компоненту слабого дублета, 4/3 и 1/3 — электрические заряды соответствующих частиц. Показаны взаимодействия с лептонами и кварками первого поколения; на самом деле в каждой из внешних линий может фигурировать любая линейная комбинация кварковых или лептонных полей всех поколений, обладающая указанными на рисунке квантовыми числами

во взаимодействиях вида

$$V^{\dagger}\overline{U}_{L}^{(c)}Q+V^{\dagger}\overline{Q}E_{L}^{(c)}+V^{\dagger}\overline{L}D_{L}^{(c)}+h.~c.,$$

где лоренцева структура и константы связи не выписаны. В терминах исходных кварков и лептонов вершины с участием верхней и нижней компонент дублета V изображены на рис. 11.7.

Обратимся теперь к скалярам. В этом случае взаимодействия типа (11.33), приводящие к вершине типа изображенной на рис. 11.2 *a*, могут включать комбинации

$$Q_L Q_L \left(3, \frac{1}{3}\right), \tag{11.36}$$

$$Q_L Q_L \left(1, \frac{1}{3}\right), \tag{11.37}$$

$$\overline{U}_{L}^{(c)}\overline{U}_{L}^{(c)}\left(1,\frac{4}{3}\right),\tag{11.38}$$

$$\overline{U}_{L}^{(c)}\overline{D}_{L}^{(c)}\left(1,\frac{1}{3}\right),\tag{11.39}$$

$$\overline{D}_{L}^{(c)}\overline{D}_{L}^{(c)}\left(1,-\frac{2}{3}\right).$$
(11.40)

Имеется единственная триплетная по $SU(2)_W$ комбинация типа (11.33), включающая один антикварк и приводящая к вершине типа изображенной на рис. 11.2 *b*:

$$\overline{Q}\overline{L}\left(3,\frac{1}{3}\right),\tag{11.41}$$

Таблица 11.1

	Взаимодей	йствия, на	арушающие	барионное ч	исло,
B	терминах	обычных	кварковых	и лептонных	к полей

	Квантовые числа относительно $SU(3)_c \times SU(2)_w \times U_Y$	Взаимодействует с
вектор V	3 , 2 , 5/3	$U_R Q_L, \overline{Q}_L \overline{E}_R, \overline{L} \overline{D}_R$
скаляр <i>S</i> ₁	3 , 3 , 1/3	$Q_L Q_L, \overline{Q}_L \overline{L}$
скаляр S_2	3 , 1, 1/3	$Q_L Q_L, U_R D_R, \overline{Q}_L \overline{L}, \overline{U}_R \overline{E}_R$
скаляр S ₃	3 , 1, 4/3	$U_R U_R, \overline{D}_R \overline{E}_R$

и синглетные комбинации

$$\overline{Q}\overline{L}\left(1,\frac{1}{3}\right),\tag{11.42}$$

$$U_L^{(c)} E_L^{(c)} \left(1, \frac{1}{3} \right),$$
 (11.43)

$$D_L^{(c)} E_L^{(c)} \left(1, \frac{4}{3} \right).$$
 (11.44)

Таким образом, триплетный относительно $SU(2)_w$ скаляр со слабым изоспином 1/3 может взаимодействовать с комбинациями (11.36), (11.41), синглетный скаляр со слабым изоспином 1/3 — с комбинациями (11.37), (11.39), (11.42) и (11.43), а синглетный скаляр со слабым изоспином 4/3 — с комбинациями (11.38) и (11.44), см. табл. 11.1. Все эти взаимодействия имеют структуру вершин, изображенную на рис. 11.8. Итак, мы убедились, что в отсутствие новых фермионов заряд (B - L) должен сохраняться.

Рассмотрим теперь взаимодействия, включающие синглет — фермион Λ_L . Антитриплетные по цвету комбинации, участвующие во взаимодействиях с векторами V

Рис. 11.8. Во взаимодействиях со скалярами, как и с векторами, сохраняется заряд (B - L)

типа изображенных на рис. 11.5, имеют вид

$$\overline{Q}_L \Lambda_L \left(\mathbf{2}, -\frac{1}{3} \right), \quad \overline{\Lambda}_L U_L^{(c)} \left(\mathbf{1}, -\frac{4}{3} \right), \quad \overline{\Lambda}_L D_L^{(c)} \left(\mathbf{1}, \frac{2}{3} \right).$$

Первая из этих комбинаций имеет квантовые числа, совпадающие с (11.35), так что векторный бозон с такими квантовыми числами (и антитриплетный по цвету) действительно может иметь как вершину рис. 11.2 а, так и вершину рис. 11.5. Скалярные комбинации антикварков и новых фермионов имеют вид

$$\overline{Q}_L\overline{\Lambda}_L\left(\mathbf{2},-\frac{1}{3}\right), \quad U_L^{(c)}\Lambda_L\left(\mathbf{1},-\frac{4}{3}\right), \quad D_L^{(c)}\Lambda_L\left(\mathbf{1},\frac{2}{3}\right).$$

Две последние имеют те же квантовые числа, что (11.38) и (11.39), соответственно, поэтому возможны два типа скаляров, обладающих как вершинами типа рис. 11.8 а, так и вершинами типа рис. 11.5.

Нейтральный фермион Λ_L может иметь майорановскую массу, см. Приложение С. Если он стабилен, то он космологически разрешен (а при подходящих значениях параметров может выступать в роли частицы темной материи), если возможна аннигиляция двух Λ_L (например, в пару хиггсовских бозонов за счет обмена новым нейтральным скаляром Σ , см. рис. 11.9), причем сечение аннигиляции должно быть достаточно велико⁶⁾. В то же время, если барионная асимметрия генерируется в процессах типа изображенных на рис. 11.2 и 11.5, то должны быть запрешены (или сильно подавлены) взаимодействия с обычными лептонами и хиггсовским дублетом типа

$$h_{\Lambda}H^{\dagger}\Lambda_{L}L + h.c., \qquad (11.45)$$

приводящие к вершине рис. 11.10 (такие вершины разрешены по калибровочным квантовым числам Стандартной модели). В таких взаимодействиях нарушались бы лептонное число и заряд (B-L), что вместе с электрослабым нарушением барионного и лептонного чисел приводило бы к вымыванию барионной асимметрии.

Задача 9. Считая, что массы частиц Λ_L и Σ малы по сравнению с массами бозонов V и S, участвующих во взаимодействиях с нарушением барионного числа, и что при энергиях ниже m_v, m_s частицы Λ_L участвуют только во взаимодействих рис. 11.9, найти космологические ограничения на параметры этих взаимодействий (массы m_Λ , m_Σ и юкавские константы). Отдельно рассмотреть случаи $m_\Lambda \gg m_\Sigma$ и $m_\Lambda \ll m_\Sigma$. При каких значениях параметров фермион Λ_L будет частицей темной материи?

Рис. 11.9. Пример диаграммы, приводящей к аннигиляции двух Λ_L

⁶⁾ Именно благодаря наличию таких процессов лептонное число фермиона Λ_L естественно положить равным нулю.

Рис. 11.10. Вершины взаимодействия с хиггсовским бозоном, нарушающие лептонное число

Задача 10. Пусть фермион Λ_L имеет майорановскую массу $m_\Lambda \gg m_H$, где m_H — масса бозона Хиггса Стандартной модели.

- При каких значениях юкавской константы h_Λ в (11.45) взаимодействия рис. 11.10 несущественны с точки зрения космологии? Считать, что процессы аннигиляции рис. 11.9 приводят к пренебрежимо малой концентрации частиц Λ при низких температурах.
- Взаимодействия (11.45) приводят к вкладам в массы обычных нейтрино за счет механизма качелей (см. Приложение С). С учетом результатов предыдущего пункта найти ограничение на эти вклады.

Задача 11. Пусть взаимодействия рис. 11.9 отсутствуют, а взаимодействия рис. 11.10 имеются. Пусть барионная асимметрия генерируется во Вселенной при $T \gg m_{\Lambda}$ (например, в распадах сверхтяжелых скалярных бозонов S по каналам $S \rightarrow qq$ и $S \rightarrow \bar{q}\Lambda_L$, ср. с рис. 11.8 a и 11.5). Считая, что фермионы Λ_L имеют большую майорановскую массу $m_{\Lambda} \gg m_H$, найти ограничения на m_{Λ} и h_{Λ} из требований: (a) барионная асимметрия должна сохраниться до современной эпохи; (б) фермионы Λ_L должны распадаться задолго до эпохи нуклеосинтеза. Оценить при этих условиях вклад взаимодействий (11.45) в майорановскую массу обычных нейтрино.

Минимальная с точки зрения расширения Стандартной модели возможность того, что нейтральный фермион Λ_L имеет лептонное число +1, лептонное число сохраняется при энергиях и температурах ниже M_{GUT} , а новый лептон имеет короткое время жизни, состоит в том, что Λ_L является левой компонентой дираковского фермиона Λ . Тогда в лагранжиан Стандартной модели можно добавить слагаемые (кинетический член для Λ не выписываем)

$$M_{\Lambda}\overline{\Lambda}\Lambda + h_{\Lambda}\overline{\Lambda}\overline{H}^{\dagger}L + h.c.$$

Если масса Λ велика по сравнению с массой хиггсовского бозона, $M_{\Lambda} > m_{H}$, то лептон Λ будет распадаться в основном по каналам $\Lambda \to h^{0}\nu$, $\Lambda \to h^{\pm}l^{\mp}$; при $M_{\Lambda} < m_{H}$ распад будет идти за счет обмена бозоном Хиггса. Такой тяжелый нейтральный лептон с малым временем жизни космологически разрешен.

Задача 12. Остаются ли в только что описанном расширении Стандартной модели безмассовые нейтрино?

11.2.3. Несохранение лептонных чисел и майорановские массы нейтрино

Как обсуждается в Приложении С, один из привлекательных способов объяснить малые массы известных нейтрино состоит в добавлении к Стандартной модели физики частиц новых фермионных полей N_L^{α} , которые мы будем считать левыми дублетами. Индекс α нумерует эти поля; хотя это и не совсем обязательно, мы будем в дальнейшем считать, что новых полей — три (по числу поколений фермионов Стандартной модели), т. е. $\alpha = 1, 2, 3$. Поля N_L^{α} имеют майорановские массы и взаимодействуют с лептонами и хиггсовским полем Стандартной модели (только такое взаимодействие разрешено инвариантностью относительно калибровочной группы Стандартной модели, если не вводить в рассмотрение неперенормируемые взаимодействия), так что лагранжиан, включающий N_L^{α} , имеет вид (кинетический член имеет стандартный вид, и мы его не выписываем)

$$\mathcal{L} = \frac{M_{\alpha}}{2} \overline{N}_{L}^{(c)\alpha} N_{L}^{\alpha} + \left(y_{\alpha\beta} \overline{N}_{L}^{(c)\alpha} \widetilde{H}^{\dagger} L^{\beta} + h. c. \right), \qquad (11.46)$$

где L^{α} — левые лептонные дублеты Стандартной модели, \tilde{H} связано с хиггсовским полем Стандартной модели H соотношением (см. Приложение B) $\tilde{H}_i = \epsilon_{ij}H_j^*, i, j = 1, 2$ — индекс дублетного представления группы $SU(2)_w$, суммирование по α, β подразумевается, юкавские константы $y_{\alpha\beta}$ принимают, вообще говоря, комплексные значения, а массы M_{α} — действительны.

В пренебрежении вторым членом в (11.46) (это приближение очень хорошо выполняется в данном контексте) поля N_L^{α} описывают три частицы (фермиона) с массой M_{α} . Юкавское взаимодействие в (11.46) приводит к тому, что эти частицы распадаются. Нас будет интересовать случай высоких температур, когда среднее хиггсовского поля равно нулю (см. Главу 10). В этом случае дублет скаляров H описывает скалярные частицы (две электрически нейтральные и одну заряженную). Считая, что $M_{\alpha} \gg v$, получим, что выписанный в (11.46) член юкавского взаимодействия описывает распад (рис. 11.11 *a*)

$$N_{\alpha} \to h l_{\beta},$$
 (11.47)

где l_{β} обозначает обычный заряженный лептон или нейтрино поколения β , а h — одну из хиггсовских частиц. Эрмитово сопряженный член взаимодействия описывает распад, в конечном состоянии которого присутствует

Рис. 11.12. Диаграмма рассеяния нейтрино, сопровождающегося нарушением лептонных чисел

антилептон⁷⁾ (рис. 11.11 *b*),

$$N_{\alpha} \to h \bar{l}_{\beta}.$$
 (11.48)

Ясно, что существование обоих этих процессов означает, что лептонные числа не сохраняются, какие бы лептонные числа не приписать фермионам N_{α} . Этот же вывод следует из возможности рассеяния (рис. 11.12)

$$hl_{lpha}
ightarrow har{l}_{eta}$$

и из существования безнейтринного двойного β -распада. Для дальнейшего полезно отметить, что по порядку величины ширина распада частиц N_{α} равна

$$\Gamma_{N_{\alpha}} \sim \frac{y^2}{8\pi} M_{\alpha}. \tag{11.49}$$

Более точно, полная ширина распада дается величиной (считая $M_{\alpha} \gg v$)

$$\Gamma_{N_{lpha}} = \sum_{eta} rac{|y_{lphaeta}|^2}{8\pi} M_{lpha}.$$

Подчеркнем, что в *древесном приближении* парциальные ширины распадов (11.47) и (11.48) одинаковы,

$$\Gamma(N_{\alpha} \to h l_{\beta}) = \Gamma(N_{\alpha} \to h \bar{l}_{\beta}).$$
(11.50)

Это не так при учете петлевых поправок, что крайне существенно с точки зрения генерации барионной асимметрии (см. обсуждение в разделах В.4 и 11.4).

Задача 13. Рассмотрим теорию одного левого фермионного поля N_L (индекс L в дальнейшем в этой и следующей задачах опускаем) с лагранжианом

$${\cal L}=i\overline{N}\gamma^{\mu}\partial_{\mu}N+rac{M}{2}\overline{N}^{(c)}N.$$

Найти уравнение поля и его решения с положительной энергией при $|\mathbf{p}| \ll M$, где \mathbf{p} – трехмерный импульс. Волновые функции каких частиц они описывают?

⁷⁾ Вообще говоря, в (11.47) и (11.48) фигурируют различные скалярные частицы. Здесь и далее это обстоятельство будет несущественно для нас, и мы будем использовать для этих скаляров одно и то же обозначение h.

Задача 14. Проквантовать модель предыдущей задачи. Добавив юкавское слагаемое $(y\overline{N}^{(c)}\psi\varphi+h.c.)$, где ψ и φ — левый фермион и скаляр соответственно, найти ширины распада $N \to \psi\varphi$ и $N \to \overline{\psi}\varphi^*$ в древесном приближении. Убедиться в справедливости оценки (11.49) и соотношения (11.50) в древесном приближении.

11.3. Генерация асимметрии в распадах частиц

В теориях, расширяющих Стандартную модель, нередко возникает простой механизм генерации барионной асимметрии Вселенной в распадах частиц. Как мы обсуждали в разделах 11.2.2 и 11.2.3, в таких теориях могут иметься новые тяжелые частицы, в распадах которых нарушается барионное и/или лептонное числа. В действительности существенным является нарушение (B - L): в ранней Вселенной распады этих новых тяжелых частиц происходят при температуре выше температуры электрослабого перехода, поэтому из-за электрослабых процессов, описанных в разделе 11.2.1, барионная асимметрия остается ⁸⁾ во Вселенной, только если на ранних стадиях генерируется отличное от нуля (B - L).

Как мы обсуждали в разделе 11.2.2, в теориях Большого объединения возможны, например, процессы распада нового тяжелого скалярного бозона S (или векторного бозона V) по каналам:

(1):
$$S \to qq$$
, $S \to \bar{q}\bar{l};$
(2): $S \to \bar{q}\Lambda,$ (11.51)

где q и l обозначают обычные лептоны и кварки, а Λ — новый фермион, нейтральный по отношению к $SU(3)_c \times SU(2)_w \times U(1)_y$ и имеющий лептонное число 0 или +1 (для определенности будем считать $L_{\Lambda} = 0$). В конечных состояниях процессов первого и второго типа (B - L) имеет значения

$$(B-L)_{(1)} = \frac{2}{3}, \quad (B-L)_{(2)} = -\frac{1}{3}.$$

Бозон S — антитриплет по цвету, поэтому в теории должна иметься его античастица \overline{S} — триплет. Распады последнего по каналам

$$\begin{array}{ll} (\overline{1}): & \overline{S} \to \overline{q}\overline{q}, & \overline{S} \to ql; \\ (\overline{2}): & \overline{S} \to q\overline{\Lambda} \end{array}$$

$$(11.52)$$

имеют в конечных состояниях

$$(B-L)_{(1)} = -\frac{2}{3}, \quad (B-L)_{(2)} = \frac{1}{3}.$$

Если при температуре, превышающей массу S-бозона m_s , частицы S и \overline{S} находятся в термодинамическом равновесии, то их количество, с точностью

⁸⁾ Мы обсудим возможность генерации барионной асимметрии за счет самих электрослабых процессов в разделе 11.5.

до цветового и спинового множителей, — такое же, как количество частиц других типов. При понижении температуры термодинамическое равновесие нарушается: *S*-бозоны распадаются, а обратный процесс их образования не идет. В результате возможно образование (B - L)-асимметрии; для этого требуется, чтобы вероятности распадов (1) и (2) не совпадали с вероятностями распадов ($\overline{1}$) и ($\overline{2}$) соответственно. Обозначим парциальные ширины процессов (1), (2), ($\overline{1}$) и ($\overline{2}$), через $\Gamma_{(1)}$, $\Gamma_{(2)}$, $\Gamma_{(\overline{1})}$, $\Gamma_{(\overline{2})}$. В распадах одного *S*-бозона и одного \overline{S} -бозона образуется (B - L)-асимметрия

$$\delta = \frac{1}{\Gamma_{tot}} \left[\left(\frac{2}{3} \Gamma_{(1)} - \frac{1}{3} \Gamma_{(2)} \right) - \left(\frac{2}{3} \Gamma_{(\overline{1})} - \frac{1}{3} \Gamma_{(\overline{2})} \right) \right],$$

где Γ_{tot} — полная ширина *S*-бозона, которая, согласно *CPT*-теореме, совпадает с полной шириной \overline{S} -бозона,

$$\Gamma_{tot} = \Gamma_{(1)} + \Gamma_{(2)} = \Gamma_{(\overline{1})} + \Gamma_{(\overline{2})}$$

(считаем для простоты, что других каналов распада нет). Учитывая последнее равенство, получим для «микроскопической асимметрии»

$$\delta = \frac{\Gamma_{(1)} - \Gamma_{(\overline{1})}}{\Gamma_{tot}}.$$
(11.53)

Отличие друг от друга парциальных ширин распадов (1) и $(\overline{1})$ возможно только благодаря нарушению C- и CP-симметрий — так проявляется второе из условий, рассматривавшихся в разделе 11.1.

На уровне древесных диаграмм (см. рис. 11.8 a, b) парциальные ширины распадов частицы и античастицы по сопряженным каналам совпадают, например,

$$\Gamma^{tree}(S \to qq) = \Gamma^{tree}(S \to \bar{q}\bar{q}). \tag{11.54}$$

Действительно, с точностью до одинаковых кинематических множителей эти древесные амплитуды равны квадрату модуля константы связи $g_{(1)}$, стоящей в вершине взаимодействия, который одинаков для частицы и античастицы. На однопетлевом уровне равенство типа (11.54), вообще говоря, не имеет места (ср. с разделом В.4). Для того чтобы микроскопическая асимметрия (11.53) была отлична от нуля, достаточно предположить, что помимо бозона S в теории имеются другие бозоны S' с теми же квантовыми числами, и что константы связи всех этих бозонов с фермионами комплексны: именно комплексность констант связи обеспечивает CP-нарушение в моделях рассматриваемого типа. С учетом однопетлевого вклада амплитуда распада S по каналу $S \rightarrow qq$ дается тогда суммой диаграмм, изображенных на рис. 11.13 (есть и другие диаграммы, но для нас достаточно рассмотреть именно эти).

С точностью до общего кинематического множителя парциальная ширина $\Gamma_{(1)}$ в этом приближении равна

$$\Gamma_{(1)} = \text{const} \cdot |g_{(1)} + Dg_{(2)}g^*_{(2')}g_{(1')}|,$$

Рис. 11.13. Во втором порядке теории возмущений амплитуда распады $S \to qq$ дается суммой древесной диаграммы и диаграммы с обменами всевозможными бозонами S', аналогичными по квантовым числам бозону S. Показаны константы связи, стоящие в вершинах взаимодействия

где D — фейнмановский интеграл для однопетлевой диаграммы рис. 11.13, суммирование по всем бозонам S' подразумевается. Аналогичная амплитуда для античастицы содержит комплексно-сопряженные константы связи, поэтому

$$\Gamma_{(\bar{1})} = \text{const} \cdot |g_{(1)}^* + Dg_{(2)}^*g_{(2')}g_{(1')}^*|.$$

В результате для микроскопической асимметрии получаем 9)

$$\delta = -2 \operatorname{Im}(D) \cdot rac{\operatorname{Im}\left(g_{(1)}g_{(2)}^{*}g_{(2')}g_{(1')}^{*}
ight)}{|g_{(1)}|^{2} + |g_{(2)}|^{2}}.$$

Эта величина пропорциональна, грубо говоря, квадрату константы связи; Im (D) содержит дополнительную «петлевую» малость ($\sim 1/(4\pi)$), так что оценка для δ (в предположении, что фазы констант $g_{(i)}$ и $g_{(i')}$ не малы и никак не скоррелированы) имеет вид

$$\delta \sim \frac{g^2}{4\pi} f\left(\frac{m_s}{m_{s'}}\right),$$
 (11.55)

где функция f отношения масс m_s и $m_{s'}$ по порядку величины равна единице при $m_s \gtrsim m_{s'}$ и убывает с уменьшением $m_s/m_{s'}$ (массами фермионов мы пренебрегли).

Задача 15. Вычислить асимметрию δ для рассмотренных процессов, считая S и S' скалярами. Найти ее зависимость от отношения масс S- и S'-бозонов, считая $m_s \leq m_{s'}$ (но не обязательно $m_s \ll m_{s'}$).

Обратимся теперь собственно к генерации космологической (B-L)-асимметрии. Самая простая ситуация имеет место тогда, когда частицы S и \overline{S} находятся в термодинамическом равновесии при $T \gg m_s$, а при $T \leq m_s$

⁹⁾ Отметим, что в этом приближении $\delta = 0$, если имеется только один S-бозон, так что $g_{(1')} = g_{(1)}$ и $g_{(2')} = g_{(2)}$. Условия, при которых имеется ненулевая мнимая часть у величины D, кратко обсуждаются в разделе B.4.

доминирующими процессами являются процессы их распада. Как первое предположение, так и второе — нетривиальны: для первого требуется, вопервых, чтобы во Вселенной достигались высокие температуры, $T \gg m_s$, и, кроме того, чтобы при таких температурах интенсивно происходили процессы образования и аннигиляции $S-\overline{S}$ пар. Второе предположение выполняется, только если эти процессы парного рождения и аннигиляции «выключены» при $T \leq m_s$, и, кроме того, образование частиц S и \overline{S} в процессах, обратных к (11.51) и (11.52) (обратные распады), было пренебрежимо мало. Для последнего требуется, чтобы ширина распада S-частиц была мала по сравнению с темпом расширения при $T \sim m_s$,

$$\Gamma_{tot} \leq H(T \sim m_s) = \frac{m_s^2}{M_{Pl}^s}.$$
(11.56)

Если все эти условия выполнены, то при $T \gtrsim m_s$ плотность числа *S*-частиц (и их античастиц) — такая же, как всех других ультрарелятивистских частиц в космической плазме, $n_s \sim T^3$, т.е.

$$rac{n_s}{s}\sim rac{1}{g_*},$$

где по-прежнему s — это плотность энтропии. В результате последующих распадов S и \vec{S} образуется асимметрия

$$\Delta_{B-L} \sim \delta \frac{n_S}{s} \sim \frac{\delta}{g_*}.$$
(11.57)

Видно, что в этом случае асимметрия получается достаточно большой даже при малой микроскопической асимметрии: необходимое значение $\Delta_{B-L} \sim 10^{-10}$ достигается при $\delta \sim 10^{-8}$ (считаем, что число степеней свободы g_* при $T \sim m_s$ не сильно отличается от его значения в Стандартной модели, $g_*^{\rm CM} \sim 100$).

Условие (11.56) предполагает, что масса *S*-частиц весьма велика. Действительно, учитывая оценку

$$\Gamma_{tot} \sim \frac{g^2}{4\pi} m_s, \qquad (11.58)$$

где *g* — константа связи *S* с фермионами, получим, что условие (11.56) приводится к виду

$$m_s \gtrsim \frac{g^2}{4\pi} M_{Pl}^*. \tag{11.59}$$

Например, для $g^2/(4\pi) \sim 10^{-2}$ получаем $m_s \gtrsim 10^{16}$ ГэВ. Возможность разогрева Вселенной до таких температур представляется весьма проблематичной. При малых константах связи условию (11.59) удовлетворить проще, однако и в этом случае масса *S*-частиц должна быть велика. Действительно, если не подгонять параметры, оценка для микроскопической асимметрии имеет вид (11.55), т. е. $\delta \leq g^2/(4\pi)$. Вместе с (11.57) требование $\Delta_{B-L} \sim 10^{-10}$ дает $g^2/(4\pi) \gtrsim 10^{-8}$, т. е.

$$m_s\gtrsim 10^{10}$$
 ГэВ.

Общее утверждение состоит в том, что генерация асимметрии в распадах частиц может происходить в случае частиц вольшой массы и, соответственно, при высоких температурах.

Отметим, что в описанном сейчас простом сценарии третье условие из перечисленных в разделе 11.1 (отклонение от термодинамического равновесия) выполняется довольно тривиально: при $T \leq m_s$ процессы распада частиц имеют место, а процессы обратного распада не происходят вовсе.

Рассмотрим теперь случай, когда неравенство (11.56) не выполняется. Введем параметр

$$K = \frac{\Gamma_{tot}}{H(T=m_s)} \approx \frac{\Gamma_{tot}M_{Pl}^*}{-m_s^2}$$
(11.60)

и будем считать его большим,

 $K \gg 1$.

Зависимость от этого параметра в действительности не очень сильная, т. е. и в этом случае возможна генерация (B - L)-асимметрии, если величина m_s достаточно велика. В отличие от предыдущего случая, при оценке асимметрии не приходится делать предположения о том, что S и \overline{S} находились в термодинамическом равновесии при $T \gg m_s$; более того, максимальная температура во Вселенной может быть даже несколько меньше m_s .

Мы убедимся в конце раздела, что при $K \gg 1$ оценка для (B - L)-асимметрии имеет вид

$$\Delta_{B-L} = \text{const} \cdot \frac{\delta}{g_* K \ln K}, \qquad (11.61)$$

где константа — порядка единицы. Отсюда, как и в случае малых ширин распада (11.56), следует, что массы *S*-частиц д_{ОЛЖНЫ} быть весьма велики. Если все существенные константы связи имеют 6дин и тот же порядок величины, то для микроскопической асимметрии имеем оценку (11.55), т. е. $\delta \leq g^2/(4\pi)$, а для ширины — оценку (11.56), $\Gamma_{tot} \sim g^2 m_s/(4\pi)$. С учетом определения (11.60) имеем поэтому, с точностью до логарифма,

 $m_s \gtrsim \Delta_{B-L} \cdot g_* M_{Pl}^*,$

т. е. снова получаем

$$m_s \gtrsim 10^{10}$$
 ГэВ.

Это ограничение можно несколько ослабить, рассматривая модели, где константы связи имеют разные порядки величины (например, константы $g_{(1')}$ и $g_{(2')}$ велики по сравнению с $g_{(1)}$ и $g_{(2)}$ на диаграмме рис. 11.13), но в любом случае масса S-частиц оказывается весьма 5ольшой.

Суммируя, можно сказать, что распады тяжелых частиц дают весьма эффективный механизм генерации асимметрии (B - L) и, следовательно, барионной асимметрии. Этот механизм может работать в теориях Большого объединения с несохранением (B - L). Всзможно и его обобщение на суперсимметричные теории Большого объединения, при этом в роли S-частиц могут выступать как бозоны, так и тяжелые фермионы. Некоторую (но преодолимую) трудность для теорий Большого объединения представляет тот факт, что характерный масштаб масс в них очень велик (см. (11.27)), и соответствующие температуры могли не достигаться во Вселенной (в большинстве инфляционных моделей это именно так).

Получим оценку (11.61). Будем пока считать, что при $T \leq m_s$ доминирующими процессами являются распады S и \overline{S} и обратные распады. Может показаться, что обратные распады, т. е. процессы типа

$$qq \to S$$
 (11.62)

должны происходить с очень малой вероятностью, поскольку энергия двух начальных частиц в системе центра масс должна быть подобрана равной массе S-частицы с точностью порядка ее ширины Γ_{tot} . Вероятность обратных процессов, тем не менее, не мала: в термодинамическом равновесии число распадов и обратных распадов S-частиц должно быть одинаково. Следовательно, если кварки и лептоны имеют равновесные функции распределения, число обратных распадов в единицу времени (в сопутствующем объеме) равно

$$\frac{d(n^{\text{obp.}}a^3)}{dt} = \Gamma_{tot} \cdot n_s^{eq} \cdot a^3, \qquad (11.63)$$

где n_s^{eq} — равновесная концентрация S-частиц.

Задача 16. Пренебрежем расширением Вселенной. Показать явным вычислением, используя равновесные функции распределения кварков, что скорость процесса обратного рождения (11.62) равна

$$rac{dn_{qq
ightarrow S}}{dt} = \Gamma \left(S
ightarrow qq
ight) \cdot n_{s}^{eq},$$

где $\Gamma(S \to qq)$ — парциальная ширина распада $S \to qq$. Указание: ограничиться случаем низких температур, $T \ll m_s$; цвет кварков и S-частиц не учитывать.

Распады *S*-частиц дают следующий вклад в изменение их количества в единицу времени в сопутствующем объеме:

$$\frac{d(n^{dec}a^3)}{dt} = -\Gamma_{tot} \cdot \boldsymbol{n}_s \cdot \boldsymbol{a}^3. \tag{11.64}$$

Складывая (11.63) и (11.64), получим уравнение Больцмана для концентрации S-частиц

$$\frac{d(n_s a^3)}{dt} = -\Gamma_{tot} \cdot (n_s \cdot a^3 - n_s^{eq} \cdot a^3).$$
(11.65)

Рассмотрим теперь плотность (B - L) в среде (без ограничения общности будем считать, что S- и \overline{S} -частицы имеют (B - L) = 0), обозначив ее n_{B-L} . Ее изменение происходит из-за нескольких факторов. Во-первых, она образуется в результате распадов S и \overline{S} со скоростью

$$\boldsymbol{\delta}\cdot\boldsymbol{\Gamma}_{tot}\cdot\boldsymbol{n}_{s}\cdot\boldsymbol{a}^{2}$$

(речь всюду идет об изменении (B-L) в сопутствующем объеме). Во-вторых, даже если (B-L) в среде равно нулю, *CP*-нарушение в обратных распадах приводит к вкладу

$$-\delta \cdot \Gamma_{tot} \cdot n_s^{eq} \cdot a^3$$
,

так что в термодинамическом равновесии (B - L) не образуется ¹⁰⁾. Наконец, если в среде уже имеется ненулевое (B - L), то оно замывается за счет образования S-частиц. Действительно, если в среде больше кварков, чем антикварков, процессов обратного распада $qq \rightarrow S$ происходит больше, чем процессов $\bar{q}\bar{q} \rightarrow \bar{S}$. Изменение (B - L)за счет этого механизма пропорционально полному количеству обратных распадов, т. е. величине (11.63), и избытку фермионов с положительным (B - L), т. е. соответствующий вклад равен

$$-c\Gamma_{tot}\cdot n_s^{eq}\cdot a^3\cdot \frac{n_{B-L}}{n_q},$$

где n_q — равновесная концентрация кварков, а константа $c \sim 1$ учитывает количество каналов распада. В итоге получаем уравнение

$$\frac{d(n_{B-L}\cdot a^3)}{dt} = \delta\cdot\Gamma_{tot}\cdot\left(n_S\cdot a^3 - n_S^{eq}\cdot a^3\right) - c\Gamma_{tot}\cdot n_S^{eq}\cdot a^3\cdot\frac{n_{B-L}}{n_q}.$$

Первый член в правой части отвечает за генерацию, а второй — за вымывание (B-L).

Удобно использовать уравнение (11.65) и записать

$$\frac{d(n_{B-L}a^3)}{dt} = -\delta \cdot \frac{d(n_s a^3)}{dt} - c\Gamma_{tot} \cdot n_s^{eq} \cdot a^3 \cdot \frac{n_{B-L}}{n_q}.$$
 (11.66)

Система уравнений (11.65) и (11.66) позволяет найти плотность числа S-частиц и асимметрию (B - L) в любой момент времени, если они заданы в некоторый начальный момент t_i .

Удобно ввести величины

$$N_s = rac{n_s}{T^3}$$
 и $N_{B-L} = rac{n_{B-L}}{T^3},$ (11.67)

так что

$$n_s a^3 = \operatorname{const} \cdot N_s, \quad n_{B-L} a^3 = \operatorname{const} \cdot N_{B-L}$$

с одной и той же константой. Кроме того, введем переменную

$$z = rac{m_s}{T}$$

и воспользуемся тем, что

$$-rac{\dot{T}}{T}=H(T)=H(T=m_s)rac{T^2}{m_s^2}.$$

Тогда, с учетом соотношения $n_q \propto T^3$, уравнения (11.65) и (11.66) примут вид

$$\frac{dN_s}{dz} = -Kz \left(N_s - N_s^{eq} \right), \tag{11.68}$$

$$\frac{dN_{B-L}}{dz} = -\delta \cdot \frac{dN_s}{dz} - \widetilde{K}z \cdot N_s^{eq} \cdot N_{B-L}, \qquad (11.69)$$

¹⁰⁾ Мы несколько упрощаем изложение: помимо распадов и обратных распадов в динамике (B-L) играют роль и процессы резонансного рассеяния фермионов между собой. Последующие формулы, тем не менее, справедливы: по-существу, они вытекают из того соображения, что в термодинамическом равновесии (B-L) = 0 и $n_s = n_s^{eq}$. Нерезонансное рассеяние мы в нашем несколько упрощенном изложении не учитываем, см. в связи с этим раздел 11.4.
где параметр К определен в (11.60) и

7

$$\widetilde{K}=c\frac{T^3}{n_q}\cdot K\sim K.$$

Напомним, что нас интересует случай $K \gg 1$. Далее, интерес представляет случай низких температур, $T \ll m_s$, т. е. $z \gg 1$. В этом случае равновесная концентрация *S*-частиц равна (спиновый и цветовой множители не выписываем)

$$n_s^{eq} = \left(\frac{m_s T}{2\pi}\right)^{3/2} \mathrm{e}^{-m_s/T},$$

т. е. с точностью до несущественной численной постоянной \widehat{c}

$$N_s^{eq} = \hat{c} z^{3/2} e^{-z}.$$
 (11.70)

Таким образом, входящие в уравнения (11.68), (11.69) величины определены явно.

Начнем с уравнения (11.68). Его решение имеет вид

$$N_{s}(z) = \int_{z_{t}}^{z} \exp\left\{-\frac{K}{2}(z^{2}-z'^{2})\right\} K z' N_{s}^{eq}(z') dz' + \exp\left\{-\frac{K}{2}(z^{2}-z_{t}^{2})\right\} N_{s}(z_{t}),$$

где $z_i \equiv m_s/T$ — начальное значение переменной z, при котором задана плотность *S*-частиц $N_s(z_i)$. Из этого решения видно, что при $K \gg 1$ начальное значение плотности *S*-частиц быстро забывается (второе слагаемое быстро стремится к нулю). Далее, при $K \gg 1$ основной вклад в интеграл дает область z', близких к z (если $N_s^{eq}(z)$ не слишком мало), поэтому

$$N_s(z) = N_s^{eq} + \mathcal{O}\left(\frac{1}{K}\right). \tag{11.71}$$

Оба этих свойства совершенно очевидны: большое K соответствует большой вероятности процессов распада и обратного распада, так что S-частицы находятся в состоянии, близком к термодинамическому равновесию со средой.

Обратимся теперь к уравнению (11.69). Опуская поправки порядка K^{-1} , его можно записать в виде, учитывающем (11.71):

$$\frac{dN_{B-L}}{dz} = -\delta \cdot \frac{dN_s^{eq}}{dz} - \widetilde{K}z \cdot N_s^{eq} \cdot N_{B-L}.$$
(11.72)

Отклонение от термодинамического равновесия, приводящее к генерации асимметрии благодаря первому слагаемому в правой части, теперь проявляется довольно тонким образом: хотя концентрация S-частиц близка к равновесной в каждый момент времени, она все же изменяется со временем (и, соответственно, с изменением z), так что ситуация вполне равновесной не является.

Решение уравнения (11.72) имеет вид

$$N_{B-L}(z) = -\delta \cdot \int_{z_t}^{z} e^{-I(z',z)} \frac{dN_s^{eq}}{dz'} dz' + e^{-I(z_1,z)} N_{B-L}(z_1), \qquad (11.73)$$

где

$$I(z,z') = \int_{z}^{z'} N_s^{eq}(z'') \widetilde{K} z'' dz''.$$

Видно, что как и начальная плотность S-частиц, начальная асимметрия тоже быстро забывается при больших K, если начальная температура — порядка или несколько меньше m_s (так что $N_s^{eq}(z_i)$ не слишком мала).

Задача 17. Пусть максимальная температура во Вселенной равна T_i , и $K \gg 1$. Оценить максимальное значение T_i , при котором начальная (B - L)-асимметрия в большей своей части сохраняется до наших дней.

Считая, что начальная температура достаточно близка к m_s или больше m_s , пренебрежем вторым слагаемым в (11.73) и запишем для асимметрии, остающейся при низких температурах,

$$N_{B-L} = -\delta \cdot \int_{0}^{\infty} e^{-\widehat{I}(z)} \frac{dN_{s}^{eq}}{dz} dz, \qquad (11.74)$$

где

$$\widehat{I}(z) \equiv I(z,\infty) = \int_{z}^{\infty} N_{s}^{eq}(z') \widetilde{K}z' dz'.$$

Интеграл (11.74) набирается при довольно больших z (т. е. температурах, малых по сравнению с m_s): асимметрия, образованная при $z \sim 1$ (т. е. $T \sim m_s$) за счет первого члена в (11.72), замывается при последующей эволюции. Из (11.70) имеем при больших z

$$\frac{dN_s^{eq}}{dz} = -\widehat{c}z^{3/2}e^{-z} = -N_s^{eq}(z).$$
(11.75)

Таким образом, подынтегральное выражение в (11.74) является произведением двух экспоненциальных множителей: убывающего множителя e^{-z} из (11.75) (убывание концентрации *S*-частиц и, соответственно, эффекта генерации (*B* – *L*) с ростом *z*, т. е. убыванием температуры) и растущего множителя $e^{-\tilde{I}(z)}$ (ослабление процесса вымывания асимметрии с понижением температуры). Такой седловой интеграл определяется поведением подынтегрального выражения в точке минимума показателя экспоненты, т. е. выражения

$$f(z)=\widehat{I}(z)+z.$$

Этот минимум достигается при $z = z_*$, таком что

$$N_s^{eq}(z_*)\tilde{K}z_* = 1.$$
 (11.76)

Вспоминая (11.75), имеем ¹¹⁾ при больших K (см. Главу 9 по поводу решения уравнений такого типа)

$$z_* = \ln \widetilde{K} + \mathcal{O}(\ln (\ln \widetilde{K})) = \ln K + \mathcal{O}(\ln (\ln K)).$$
(11.77)

В этой точке как сам интеграл $\widehat{I}(z_*)$, так и его первая и вторая производные — порядка единицы, так что

$$f(z_*) = z_* + \mathcal{O}(1)$$

И

$$\frac{d^2f}{dz^2}=\mathcal{O}(1).$$

¹¹⁾ При не слишком больших K приближение $z_* = \ln K$ работает плохо, но для нас это будет несущественно.

Последнее соотношение означает, что интеграл (11.74) набирается в области вокруг z_* размера

$$\Delta z \sim 1 \ll z_*.$$

В итоге получаем

$$N_{B-L} = \delta \cdot \operatorname{const} \cdot N_s^{eq}(z_*)$$

и окончательно, с учетом (11.76),

$$N_{B-L} = \text{const} \cdot \frac{\delta}{\tilde{K}z_*} = \text{const} \cdot \frac{\delta}{K \ln K}, \qquad (11.78)$$

где константа — порядка единицы. Отсюда и следует (11.61).

Обсудим полученный результат и приведенное вычисление. Во-первых, температура T_* , при которой генерируется асимметрия, определяется формулой (11.77), т.е.

$$T_* = \frac{m_s}{\ln K}.\tag{11.79}$$

При этой температуре вымывание асимметрии уже не слишком эффективно ($\widehat{I}(z_*) \sim 1$), а концентрация S-частиц и количество их распадов все еще довольно велики,

$$N_s^{eq} \simeq rac{dN_s^{eq}}{dz} \sim rac{1}{K \ln K}$$

Именно из-за этого результирующая асимметрия не слишком мала даже при больших K. Далее, результат (11.78) справедлив, если во Вселенной достигалась температура T_* , т. е. температура, несколько меньшая m_s . Вся асимметрия генерируется при этом в интервале температур, малом по сравнению с самой температурой,

$$\frac{\Delta T}{T_*} = \frac{\Delta z}{z_*} = \frac{1}{\ln K}.$$

Обратим внимание на следующий факт. В использованном нами основном уравнении (11.72) в действительности потерялась информация о том, какие именно процессы поддерживают концентрацию S-частиц вблизи ее равновесного значения. Вместо процессов распада и обратного распада (или вместе с ними) это могут быть, например, процессы парной аннигиляции и рождения S и \overline{S} . Такая ситуация имеет место для цветных S и \overline{S} , рассмотренных в разделе 11.2.2. Тем не менее, результат (11.61) остается справедливым при $K \gg 1$.

11.4. Барионная асимметрия и массы нейтрино: лептогенезис

Как мы обсуждали в разделе 11.2.3, несохранение лептонного числа, а значит и (B - L), может быть связано с отличием от нуля масс нейтрино. Поэтому представляется привлекательным попытаться объяснить барионную асимметрию в рамках того же подхода, который используется при объяснении масс нейтрино. Источником барионной асимметрии в этом случае могут служить распады N-частиц, рассмотренных в разделе 11.2.3. В этих распадах может образовываться лептонная асимметрия, которая затем частично перерабатывается в барионную асимметрию за счет электрослабого механизма, обсуждавшегося в разделе 11.2.1. В литературе этот сценарий генерации барионной асимметрии называют лептогенезисом.

Рис. 11.14. Амплитуда распада $N_1 \rightarrow l_{\alpha}h$ дается суммой вкладов древесной диаграммы и однопетлевых диаграмм. В последних суммирование по номерам поколений β и γ подразумевается. Однопетлевые диаграммы, не дающие вклада в асимметрию, не показаны. Около вершин указаны фигурирующие в них юкавские константы

По существу, механизм генерации лептонной асимметрии — тот же, что в разделе 11.3, только теперь вместо S-частиц фигурируют майорановские фермионы N_{α} . Если нет специальной подгонки параметров, лептонная асимметрия образуется в распадах легчайших из частиц: асимметрия, появившаяся в распадах более тяжелых частиц, замывается в процессах с участием более легких частиц. Пусть N_1 — самый легкий тип N-частиц. Как мы отмечали в разделах 11.2.3 и 11.3, в древесном приближении парциальные ширины (вероятности) распадов

$$N_1 \to lh$$
 (11.80)

И

$$N_1 \to \bar{l}h$$
 (11.81)

равны между собой. Однако при учете петлевых вкладов это не так, если константы связи, фигурирующие в лагранжиане (11.46), комплексны, т.е имеет место нарушение *СР*. В однопетлевом приближении существенные диаграммы, приводящие к различию парциальных ширин распадов (11.80) и (11.81), приведены на рис. 11.14.

Парциальная ширина распада $N_1 \rightarrow lh$ на однопетлевом уровне дается, таким образом, выражением

$$\Gamma(N_1 \to lh) = \text{const} \cdot \sum_{\alpha} \left| y_{1\alpha} + \sum_{\beta,\gamma} D\left(\frac{M_1}{M_{\gamma}}\right) \cdot y_{1\beta}^* y_{\gamma\alpha} y_{\gamma\beta} \right|^2, \quad (11.82)$$

где M_{γ} — масса частиц N_{γ} (массами остальных частиц пренебрегаем), а $D(M_1/M_{\gamma})$ — выражение для суммы однопетлевых диаграмм, изображенных на рис. 11.14.

Формула для парциальной ширины распада $N_1 \rightarrow \bar{l}h$ получается из (11.82) заменой юкавских констант на сопряженные, $y_{\alpha\beta} \rightarrow y^*_{\alpha\beta}$. Обозначая

$$\operatorname{Im} D\left(\frac{M_1}{M_{\gamma}}\right) = \frac{1}{8\pi} f\left(\frac{M_1}{M_{\gamma}}\right),$$

имеем для микроскопической лептонной асимметрии

$$\delta \equiv \frac{\Gamma(N_1 \to lh) - \Gamma(N_1 \to lh)}{\Gamma_{tot}} =$$
$$= \frac{1}{8\pi} \sum_{\gamma=2,3} f\left(\frac{M_1}{M_{\gamma}}\right) \cdot \frac{\operatorname{Im}\left(\sum_{\alpha} y_{1\alpha} y_{\gamma\alpha}^*\right)^2}{\sum_{\alpha} |y_{1\alpha}|^2}.$$
(11.83)

Здесь учтено, что Im $(y_{1\alpha}y_{\gamma\alpha}^*) = 0$ для $\gamma = 1$, так что вклада в асимметрию диаграммы с обменом самой частицей N_1 не дают. В дальнейшем мы будем рассматривать случай иерархии масс $M_1 \ll M_{2,3}$ и пренебрегать массами обычных лептонов (мы увидим, что для лептогенезиса требуется $M_{\alpha} \gg 100$ ГэВ). В этом случае

$$f\left(\frac{M_1}{M_{\gamma}}\right) = -\frac{2}{3}\frac{M_1}{M_{\gamma}},\tag{11.84}$$

и выражение для микроскопической асимметрии принимает вид (общий знак для нас несущественен)

$$\boldsymbol{\delta} = \frac{M_1}{12\pi} \frac{1}{\sum_{\alpha} |\boldsymbol{y}_{1\alpha}|^2} \sum_{\alpha\beta\gamma} \operatorname{Im} \left[\boldsymbol{y}_{1\alpha} \boldsymbol{y}_{1\beta} \left(\boldsymbol{y}_{\gamma\alpha}^* \frac{1}{M_{\gamma}} \boldsymbol{y}_{\gamma\beta}^* \right) \right].$$
(11.85)

Задача 18. Показать прямым вычислением фейнмановских диаграмм, что при $M_{\gamma} \gg M_1$ выполняется равенство (11.84).

В связи с выражениями (11.83) и (11.85) сделаем следующее замечание. Входящие в них комбинации юкавских констант отличаются от комбинаций констант, фигурирующих в массовой матрице нейтрино (см. Приложение С, формула (С.68)),

$$m_{lphaeta} = -rac{v^2}{2} \sum_{\gamma} y_{\gammalpha} rac{1}{M_{\gamma}} y_{\gammaeta}.$$
 (11.86)

Например, преобразование матрицы $y_{\alpha\beta}$ вида

$$y \to yU$$
 (11.87)

с унитарной матрицей U изменяет массовую матрицу нейтрино $m_{\alpha\beta}$, но оставляет выражения (11.83) и (11.84) инвариантными. Это и не удивительно: преобразование (11.87) соответствует изменению базиса лептонных полей l_{α} , а результат для асимметрии от выбора этого базиса не зависит (мы пренебрегаем массами лептонов Стандартной модели; в этом приближении все базисы лептонных полей эквивалентны). С другой стороны, в базисе лептонных полей, где нейтрино имеют определенные массы (массовый базис), матрица масс нейтрино по определению диагональна и действительна. Отсюда ясно, что асимметрия δ , вообще говоря, не связана прямо с параметрами матрицы Понтекорво—Маки—Накагавы—Сакаты (PMNS), описывающей смешивание обычных нейтрино и ответственной за нейтриные осцилляции.

Измерение параметров нейтринных осцилляций не позволяет, вообще говоря, однозначно ответить на вопрос, имеется ли асимметрия в распадах тяжелых фермионов N_{α} . Тем не менее, факт существования нейтринных осцилляций дает некоторое указание на то, что матрица юкавских констант $y_{\alpha\beta}$ имеет нетривиальную структуру. Дополнительным указанием на возможность асимметрии в распадах частиц N_{α} послужит обнаружение в будущих экспериментах *СР*-нарушения в осцилляциях нейтрино: оно будет означать, что элементы массовой матрицы нейтрино, а значит, и юкавские константы комплексны по крайней мере в калибровочном базисе.

Мы еще вернемся к обсуждению формулы (11.85) для микроскопической асимметрии, а сейчас перейдем к генерации лептонной асимметрии в распадах частиц N_1 . Ее анализ дословно повторяет проведенный в разделе 11.3, так что мы воспользуемся полученными в нем результатами. При фиксированном δ генерация асимметрии наиболее эффективно происходит при

$$\Gamma_{tot}(M_1) \ll H(T = M_1),$$
(11.88)

при этом, правда, приходится предполагать, что частицы N_1 эффективно рождаются в космической плазме при $T \gg M_1$ за счет взаимодействий, дополнительных по сравнению с юкавскими взаимодействиями (11.46). Учитывая, что

$$\Gamma_{tot} = \frac{M_1}{8\pi} \sum_{\alpha} |y_{1\alpha}|^2,$$

и что

$$H=\frac{T^2}{M_{Pl}^*},$$

получим, что неравенство (11.88) можно записать в виде

$$\widetilde{m}_1 \ll \frac{4\pi}{M_{Pl}^*} \cdot v^2 \sim 10^{-3} \text{ sB},$$
 (11.89)

где

$$\widetilde{m}_1 = \sum_{\alpha} \frac{|y_{1\alpha}|^2}{2M_1} \cdot v^2 \tag{11.90}$$

— сумма модулей вкладов частиц N_1 в массовую матрицу нейтрино. Видно, что в этом случае требуется сильная иерархия юкавских констант¹²: если все $y_{\alpha\beta}$ имели бы один порядок величины, то вклады *легчайшей* частицы N_1 в массовую матрицу (11.86) были бы наибольшими, и массы всех легких нейтрино были бы меньше 10^{-3} эВ в противоречии с экспериментом (см. обсуждение в Приложении С перед формулой (С.55)). Продолжим, тем не менее, обсуждать этот случай, и получим для него оценку массы M_1 , считая для

¹²⁾ Хотя такая возможность не выглядит естественной, считать ее исключенной никак нельзя. Напомним, в связи с этим, что сильная иерархия юкавских констант имеет место в Стандартной модели для заряженных лептонов и кварков.

определенности, что в природе реализуется прямая иерархия масс нейтрино (C.57) с малой массой легчайшего массового состояния. При выполнении неравенства (11.88) оценка для образующейся лептонной (а значит, и барионной) асимметрии имеет вид (см. (11.57))

$$\Delta_L \sim \frac{\delta}{g_*}.$$

Далее, формулу (11.85) можно записать как

$$\delta = -\frac{M_1}{6\pi v^2} \frac{1}{\sum_{\alpha} |y_{1\alpha}|^2} \sum_{\alpha\beta} \operatorname{Im}\left(y_{1\alpha}y_{1\beta}\sum_{\gamma=2,3} m_{\alpha\beta}^{(\gamma)*}\right), \qquad (11.91)$$

где

$$m_{\alpha\beta}^{(\gamma)} = y_{\alpha\gamma} \frac{v^2}{2M_{\gamma}} y_{\gamma\beta} \tag{11.92}$$

- вклад частицы N_γ в массовую матрицу нейтрино. Учитывая (С.57), имеем

$$\delta \lesssim rac{M_1}{6\pi v^2} m_{atm}.$$

Асимметрия $\Delta_L \sim 10^{-10}$ получается при $\delta \sim 10^{-8}$ (считая, что $g_* \sim 100$, как в Стандартной модели), поэтому

$$M_1 \gtrsim 10^8$$
 ГэВ.

Если не вводить в рассмотрение подгонку параметров модели, то эта величина дает минимальный масштаб масс тяжелых частиц N_{α} , позволяющий объяснить барионную асимметрию их распадами; при этом максимальная температура, которая достигалась во Вселенной, должна превышать 10⁸ ГэВ.

Пожалуй, более естественная возможность заключается в том, что существует прямая иерархия масс нейтрино (С.57) и связана она с обратной иерархией тяжелых частиц N_{α} , так что $m_3 \propto M_1^{-1}$, $m_2 \propto M_2^{-1}$, $m_1 \propto M_3^{-1}$, причем $M_1 \ll M_2 \ll M_3$. В этом случае для выражения (11.90) имеем оценку

$$\widetilde{m}_1 \sim m_{atm} \simeq 0.05 \ \Im \mathsf{B},\tag{11.93}$$

так что неравенство (11.89) и, следовательно, неравенство (11.88) не выполняются, и генерация лептонной асимметрии подавлена процессом ее вымывания. Воспользуемся оценкой (11.61) и запишем

$$\Delta_L \simeq \operatorname{const} \cdot \frac{\delta}{g_* K \ln K},$$

где константа — порядка единицы, а

$$K = \frac{\Gamma_{tot}}{H(T \sim M_1)} = \frac{\tilde{m}_1 M_{Pl}^*}{4\pi v^2}.$$
 (11.94)

С учетом оценки (11.93) множитель подавления составляет

$$K \sim 100$$
,

и для получения $\Delta_L \sim 10^{-10}$ требуется большее значение микроскопической асимметрии

$$\delta \gtrsim 10^{-5}.\tag{11.95}$$

С другой стороны, для $\gamma = 2,3$ выражение (11.92) оценивается величиной $m_{\alpha\beta}^{(\gamma)} \sim m_{sol}$, поэтому из (11.91) и (11.95) имеем

$$M_1 \gtrsim 10^{12}$$
 ГэВ.

Мы видим, что даже при наименее благоприятном для лептогенезиса случае требуемый масштаб масс новых частиц не является неправдоподобно большим. Отметим, что в этом случае не требуется привлекать дополнительных механизмов образования *N*-частиц при высоких температурах, поскольку они достаточно интенсивно рождаются в процессах обратного распада; достаточно лишь предположить, что Вселенная была разогрета до температур (см. (11.79))

$$T \gtrsim \frac{M_1}{\ln K}.$$

Итак, в сценарии лептогенезиса требуемая барионная асимметрия действительно образуется во Веленной, причем параметры модели могут лежать в достаточно широком диапазоне значений. Замечательно, что значения масс нейтрино, на которые указывают осцилляционные эксперименты, лежат не слишком далеко от величины

$$\frac{4\pi v^2}{M_{Pl}^*} \sim 10^{-3} \text{ >B},$$

так что множитель подавления (11.94) в любом случае не слишком велик. Иными словами, именно в случае масс нейтрино $m \leq 1$ эВ имеется грубое (в пределах двух-трех порядков величины) равенство между темпом расширения Вселенной при температуре лептогенезиса и шириной легчайшей N-частицы, $\Gamma_{tot} \sim (1 \div 1000) \cdot H(T \sim M_1)$. Такое совпадение служит довольно серьезным указанием на то, что наблюдаемая барионная асимметрия образовалась именно в результате лептогенезиса.

Если массы нейтрино больше $m_{atm} \simeq 0,05$ эВ, то между ними должно быть вырождение (поскольку разности квадратов масс известны из осцилляционных экспериментов и максимальная из них составляет $\Delta m^2 = m_{atm}^2$). В этом случае интересные ограничения появляются из рассмотрения процесов нерезонансного рассеяния (рис. 11.15)

$$lh \to \bar{l}h$$
 (11.96)

и кроссинг-процессов, которые также замывают лептонную асимметрию. Они дают новый, не рассматривавшийся в разделе 11.3 вклад в уравнение Больц-

Рис. 11.15. Диаграммы рассеяния лептонов на скалярах. Эти процессы приводят к замыванию лептонной асимметрии

мана для плотности лептонного числа в сопутствующем объеме

$$rac{d\left(n_L\cdot a^3
ight)}{dt} \propto \Gamma_{lh}\cdotig(n_L\cdot a^3ig),$$

где Γ_{lh} — темп процессов рассеяния типа (11.96).

В терминах переменной $z = M_1/T$ этот вклад имеет вид

$$rac{dN_L}{dz} \propto -rac{M_{Pl}^*}{M_1T} \Gamma_{lh}(z) \cdot N_L,$$

где $N_L = n_L/T^3$. Замывание лептонного числа существенно после момента, соответствующего $z = z_* = \ln K$ (см. раздел 11.3): именно в этот момент происходит генерация лептонной асимметрии во Вселенной. Поскольку z_* , как правило, довольно велико, при интересующих нас $z > z_*$ все *N*-частицы нерелятивистские, и для сечения процессов типа (11.96) имеем оценку

$$\sigma_{lh} = ext{const} \cdot \sum_{lphaeta\gamma} \left|rac{y_{\gammalpha}y_{\gammaeta}}{M_{\gamma}}
ight|^2$$

(напомним, что частицы N_{γ} — фермионы, пропагатор которых при малых импульсах и энергиях равен $1/M_{\gamma}$). Учитывая выражение (С.68) для массовой матрицы нейтрино, это сечение можно записать в виде

$$\sigma_{lh} = \operatorname{const} \cdot \frac{\operatorname{Tr}(mm^{\dagger})}{v^4} = \operatorname{const} \cdot \frac{1}{v^4} \sum m_{\nu}^2.$$

Уже из размерных соображений следует, что

$$\Gamma_{lh} = \text{const} \cdot \sigma_{lh} \cdot T^3$$

(лептоны и хиггсовские бозоны — ультрарелятивистские при интересных тепературах). Имеем в итоге, что при $z > z_*$, когда процессы распада и обратного распада несущественны, лептонная асимметрия подчиняется уравнению

$$\frac{dN_L}{dz} = -\text{const} \cdot \frac{M_{Pl}^*T^2}{M_1} \frac{\sum m_\nu^2}{v^4} \cdot N_L = -\text{const} \cdot \frac{M_{Pl}^*M_1}{z^2} \frac{\sum m_\nu^2}{v^4} \cdot N_L,$$

где константа — порядка единицы. Из этого уравнения следует, что процессы рассеяния приводят к дополнительному подавлению результирующей асимметрии множителем

$$\exp\left\{-\int_{z_*}^{\infty} dz \; \frac{\text{const}}{z^2} \cdot M_{Pl}^* M_1 \cdot \frac{\sum m_{\nu}^2}{v^4}\right\} = \exp\left\{-\frac{\text{const}}{z_*} \cdot M_{Pl}^* M_1 \cdot \frac{\sum m_{\nu}^2}{v^4}\right\}.$$

Потребуем, чтобы это подавление было не слишком сильным, и получим

$$\sum m_{\nu}^2 \lesssim \frac{v^4 z_*}{M_{Pl}^* M_1}.$$

Даже для случая относительно малых $M_1 \sim 10^8$ ГэВ, когда $z_* \sim 1$ (случай (11.89)), отсюда получается ограничение (с учетом вырождения масс нейтрино)

$$m_{\nu} \lesssim 1 \text{ } \text{3B.} \tag{11.97}$$

Если же $M_1 \gtrsim 10^{12}$ ГэВ (при этом $z_* \sim 10$), то ограничение усиливается,

$$m_{\nu} \lesssim 0,1$$
 эВ.

Аккуратные оценки рассмотренного только что замывания лептонной асимметрии приводят к ограничению [56]

$$m_{\nu} < 0.12 \ \Im B$$
 (11.98)

для большинства значений параметров модели (в этом смысле наш результат (11.97) не является точным). Это ограничение не противоречит имеющимся экспериментальным и космологическим ограничениям на абсолютные значения масс нейтрино, но вместе с изложенными выше результатами говорит о том, что массы нейтрино находятся как раз в той области, которая необходима для генерации барионной асимметрии в сценарии лептогенезиса. В то же время, лептогенезис ¹³⁾ как источник барионной асимметрии станет заметно менее привлекательной возможностью, если измерения безнейтрин-ного двойного бета-распада войдут в противоречие с ограничением (11.98).

Задача 19. Не принимая во внимание экспериментальные ограничения на массы нейтрино и данные по нейтринным осцилляциям, показать, что успешный лептогенезис возможен лишь при $m_{\nu} \leq 1$ эВ, если считать, что все юкавские константы $y_{i\alpha}$ имеют один и тот же порядок величины.

11.5. Электрослабый бариогенезис

Как мы обсуждали в разделе 11.2.1, несохранение барионного числа имеет место уже в Стандартной модели физики частиц (равно как и в ее обобщениях), причем характерные температуры имеют порядок 100 ГэВ. Естественно

¹³⁾ Речь идет о лептогенезисе на горячей стадии эволюции Вселенной ("thermal leptogenesis"). Возможность лептогенезиса на стадии постинфляционного разогрева мы здесь не обсуждаем.

поэтому задать вопрос о возможности генерации барионной асимметрии при таких низких температурах из симметричного по барионным и лептонным числам состояния за счет самих аномальных электрослабых процессов (электрослабый бариогенезис). Такая возможность особенно интересна в связи с тем, что существенная для электрослабого бариогенезиса область энергий 100 ГэВ – 1 ТэВ доступна экспериментальному изучению на коллайдерах частиц. Исследование физики частиц в этой области энергий позволит выяснить свойства космической плазмы при температурах порядка 100 ГэВ и надежно ответить на вопрос, реализовывался ли электрослабый бариогенезис в ранней Вселенной.

Как требование достаточно сильного CP-нарушения, так и необходимость заметного отклонения от термодинамического равновесия существенно ограничивают класс моделей, где возможен электрослабый бариогенезис. В Стандартной модели CP-нарушения в матрице Каббибо—Кобаяши— Маскава недостаточно для генерации барионной асимметрии, и, кроме того, отклонения от термодинамического равновесия в ранней Вселенной слишком малы. В то же время, в ряде расширений Стандартной модели имеются как дополнительные источники CP-нарушения, так и возможность сильно неравновесной стадии космологической эволюции, так что сценарий электрослабого бариогенезиса может быть реализован.

11.5.1. Условия нарушения термодинамического равновесия

При температурах порядка 100 ГэВ Вселенная расширяется весьма медленно: характерное время расширения составляет

$$t_v \sim H^{-1} = \frac{M_{Pl}^*}{T^2} \sim 10^{14} \text{ Fb} \text{B}^{-1} \sim 10^{-10} \text{ c},$$

что гораздо больше времени, характеризующего слабые взаимодействия частиц в среде (см. также раздел 10.3),

$$t_{int} \sim \frac{1}{\alpha_w T} \sim 1 \text{ fs} B^{-1} \sim 10^{-24} \text{ c.}$$

Поэтому требование нарушения термодинамического равновесия (одно из необходимых условий генерации барионной асимметрии, см. раздел 11.1) весьма нетривиально. По-видимому, единственная возможность его удовлетворить это потребовать, чтобы электрослабый фазовый переход был переходом *первого рода*. Как мы обсуждали в разделе 10.1, фазовый переход первого рода сильно неравновесный процесс, происходящий путем образования пузырей новой фазы, их последующего расширения и перколяции. В процессе фазового перехода первого рода, как мы увидим, действительно возможно образование асимметрии.

Требование, чтобы электрослабый фазовый переход был переходом первого рода, само по себе недостаточно. *После* фазового перехода среда переходит в состояние, близкое к термодинамическому равновесию, и асимметрия, образовавшаяся в процессе фазового перехода, имеет тенденцию к замыванию. Чтобы замывания не происходило, после фазового перехода темп электрослабых процессов с нарушением барионного числа должен быть меньше темпа расширения Вселенной. Как мы сейчас увидим, это условие (как и требование, чтобы фазовый переход был переходом первого рода) не выполняется в Стандартной модели, но может выполняться в некоторых ее расширениях.

В фазе с ненулевым хиггсовским средним, образовавшейся после фазового перехода, электрослабые процессы с нарушением барионного числа выключены, если выполняется неравенство, обратное к (11.20),

$$rac{M_W(T)}{T}\gtrsim rac{0.66}{B(m_h/M_W)}$$

Учитывая, что

$$M_W(T)=rac{g\phi(T)}{\sqrt{2}}, \quad rac{g^2}{4\pi}pproxrac{1}{30}$$
и $Bpprox 2,$

получим отсюда требование 14)

$$\frac{\sqrt{2}\Phi_c}{T_c} \gtrsim 1,\tag{11.99}$$

где T_c и Φ_c — температура фазового перехода и среднее хиггсовского поля сразу после него. Требование (11.99) накладывает сильные ограничения на параметры электрослабой теории. Для их вывода воспользуемся результатами, полученными в разделе 10.2 в однопетлевом приближении. В этом приближении

$$rac{\Phi_c}{T_c} = c \cdot rac{\gamma}{\lambda},$$

где λ — константа самодействия хиггсовского поля, параметр γ определен формулой (10.29), а константа *с* принимает значения от 1/2 до 3/4 в зависимости от того, насколько затягивается фазовый переход (см. формулы (10.33), (10.34)). Учитывая связь массы бозона Хиггса и вакуумного среднего хиггсовского поля, $m_h = \sqrt{2\lambda}v$, получим из (11.99) ограничение на массу бозона Хиггса

$$m_h^2 < c \cdot \frac{2}{3\pi} \cdot \frac{1}{v} \cdot \sum_{\text{бозоны}} g_i m_i^3, \qquad (11.100)$$

где в качестве реалистического значения выступает c = 1/2. В Стандартной модели (с одним дублетом Хиггса) в правую часть дают вклад W- и Z-бозоны с массами 80,4 ГэВ и 91,2 ГэВ и числами состояний g = 6 и g = 3 соответственно (вкладом самого бозона Хиггса можно для оценок пренебречь, что мы и делали в разделе 10.2). Вспоминая, что v = 247 ГэВ, получим из (11.100)

$$m_h < 50$$
 ГэВ.

¹⁴⁾ Напомним, что нормировка поля ϕ , согласно определениям главы 10, такова, что в вакууме $\langle \phi \rangle = v/\sqrt{2}$.

Это свойство не имеет места в природе: экспериментальное ограничение на массу бозона Хиггса (в предположении справедливости Стандартной модели) имеет вид

$$m_h^{3\kappa cn.} > 114 \ \Gamma 3B$$
 (11.101)

(см. Приложение В). Таким образом, в Стандартной модели электрослабый бариогенезис невозможен.

В действительности в Стандартной модели не выполняется и более слабое условие того, что электрослабый фазовый переход был переходом первого рода. Мы отмечали в разделе 10.3, что при реалистических значениях массы бозона Хиггса в Стандартной модели имеет место не фазовый переход, а гладкий кроссовер. При этом среда все время находится в состоянии, близком к термодинамическому равновесию, и генерации барионной асимметрии вообще не происходит.

Указанную трудность можно обойти в некоторых расширениях Стандартной модели. Чтобы получить простой пример, добавим к полям Стандартной модели еще одно скалярное поле — триплет по цвету¹⁵⁾ и синглет относительно $SU(2)_{w} \times U(1)_{y}$. Выберем лагранжиан этого поля χ в виде

$$\mathcal{L}_{\chi} = D_{\mu} \chi^{\dagger} D^{\mu} \chi - \lambda_{\chi} H^{\dagger} H \cdot \chi^{\dagger} \chi, \qquad (11.102)$$

где H — хиггсовский дублет. Существенно, что этот лагранжиан не содержит массового члена ¹⁶⁾, а масса χ -бозона возникает в хиггсовском вакууме с $\langle H^{\dagger}H \rangle \propto v^2$. В этом случае χ -бозон дает вклад в правую часть (11.100) и ограничение (11.100) не противоречит экспериментальному ограничению (11.101), если $m_{\chi} > 140$ ГэВ. В этом случае, правда, как высокотемпературное разложение, так и однопетлевое приближение, использованные при выводе (11.100), работают плохо, однако на качественном уровне результат остается справедливым. Похожая ситуация имеет место в суперсимметричном расширении Стандартной модели. Там аналогом χ -бозона выступает скалярный суперпартнер t-кварка, при этом требуется, чтобы явный «мягкий» массовый член для него был мал. Последнее требование означает, что масса скалярного суперпартнера t-кварка должна быть близка к массе t-кварка. Аналогично обстоит дело и в других расширениях со скалярными синглетами и/или дополнительными скалярными дублетами.

При обсуждении модели (11.102) мы несколько упростили ситуацию. Дело в том, что в результате взаимодействия с хиггсовским полем H само поле χ приобретает «тепловую» массу $m_{eff}(T) \propto \sqrt{\lambda_{\chi}}T$, обусловленную эффектами среды и зависящую

¹⁵⁾ Триплетность по цвету нужна только для того, чтобы число степеней свободы χ -частиц было достаточно велико; в данном случае оно составляет $g_{\chi} = 6$. Отметим, что буквально в рассматриваемой модели имеется трудность, связанная со стабильностью χ -бозона; для ее устранения достаточно ввести взаимодействия, приводящие к распаду χ на известные частицы.

¹⁶⁾ Если бы мы включили в \mathcal{L}_{χ} достаточно большой массовый член, то формула (10.29), как и другие формулы раздела 10.2, перестала бы работать, поскольку при ее выводе предполагалось, что массы частиц связаны с хиггсовским средним соотношением типа (10.20).

от температуры (см. второе слагаемое в (10.19), но для эффективного потенциала поля χ). Для цветного χ -бозона вклад в тепловую массу дает и взаимодействие с глюонами. Поэтому необходимо убедиться в том, что тепловая масса мала по сравнению с массой, возникающей благодаря наличию ненулевого среднего поля H после фазового перехода и пропорциональной $\sqrt{\lambda_{\chi}} \cdot \Phi_c$.

Задача 20. Выяснить, выполняется ли указанное требование в модели (11.102).

11.5.2. * Генерация барионной асимметрии на толстой, медленно движущейся стенке

Как мы обсуждали в разделе 10.1, процесс фазового перехода первого рода происходит путем образования и последующего расширения пузырей новой фазы. Стенки этих пузырей проходят макроскопическое расстояние до столкновения с другими стенками, так что они заметают основной объем космической плазмы, в то время как объем областей, где происходит столкновение стенок, гораздо меньше полного объема (соответствующее отношение объемов пропорционально d/R, где d — толщина стенки, а R — размер пузыря к моменту перколяции). Поэтому при вычислении результирующей барионной асимметрии процессами, происходящими при столкновении стенок, можно пренебречь, а основным процессом является взаимодействие частиц среды со стенками пузырей при движении последних через космическую плазму. Поскольку характерные размеры расширяющихся пузырей велики, их стенки можно считать плоскими и движущимися с постоянной скоростью. Эта скорость определяется «трением» стенки о среду и в большинстве моделей составляет от 0,1 до 0,01 скорости света.

В этом и следующем разделах мы вкратце рассмотрим механизмы генерации барионной асимметрии во взаимодействии частиц космической плазмы с движущейся стенкой пузыря. По необходимости изложение будет довольно схематичным и не претендующим на полноту, поскольку мы не будем учитывать целый ряд факторов, более или менее существенных для этого довольно сложного динамического процесса.

Простой, хотя и не вполне реалистичный механизм электрослабого бариогенезиса возникает в так называемом адиабатическом режиме. Предположим, что стенки образующихся в процессе фазового перехода пузырей имеют размер, заметно превышающий длину свободного пробега частиц в космической плазме. Предположим еще, что эти стенки движутся сквозь среду достаточно медленно. Тогда среда в каждый момент времени всюду, включая область внутри стенки, находится в локальном термодинамическом равновесии по отношению к быстрым процессам типа упругого рассеяния частиц или рождения пар «частица — античастица». В то же время, даже в фазе с ненарушенной симметрией скорости электрослабых процессов с несохранением барионного числа невелики, как это следует из формулы (11.17), и мы предположим, что в области внутри стенки локального термодинамического равновесия по ним не наступает.

Мы проиллюстрируем механизм генерации барионной асимметрии, который работает в этом случае, на примере упрошенной модели с калибровочной группой $SU(2)_L$, двумя хиггсовскими дублетами H_1 и H_2 и одной парой ¹⁷⁾ фермионов Q_L (дублет) и q_R (синглет), взаимодействующей с хиггсовскими полями примерно так же, как в Стандартной модели:

$$\mathcal{L}_{int} = h_1 \overline{Q}_L H_1 q_R + h. c. \tag{11.103}$$

(переопределением хиггсовских полей можно добиться того, чтобы юкавское взаимодействие с H_2 отсутствовало). Случай двух и более хиггсовских дублетов выделен тем, что имеется дополнительный по сравнению со Стандартной моделью источник CP-нарушения — это CP-нарушение в хиггсовском секторе. В дальнейшем будем считать h_1 вещественным параметром. Как в фазе с нарушенной симметрией, так и в области доменной стенки поля H_1 и H_2 приобретают средние

$$\langle H_{1,2} \rangle = \begin{pmatrix} 0\\ \phi_{1,2} \end{pmatrix}, \tag{11.104}$$

где $\phi_{1,2}$ — комплексные величины, которые изменяются вдоль профиля стенки. Общая фаза ϕ_1 и ϕ_2 может быть положена равной нулю выбором калибровки, поскольку при калибровочных преобразованиях с калибровочной функцией $e^{i\alpha \tau^3/2}$ выполняется

$$\phi_1 \to \mathrm{e}^{i\alpha/2}\phi_1, \quad \phi_2 \to \mathrm{e}^{i\alpha/2}\phi_2.$$

Поэтому можно положить

$$\phi_1 = \mathrm{e}^{i\theta}\rho_1, \quad \phi_2 = \mathrm{e}^{-i\theta}\rho_2,$$

где ρ_1 и ρ_2 действительны. Фаза θ является физической.

В присутствии средних (11.104) фермионный лагранжиан имеет квадратичный вклад

$$\mathcal{L}_f = h_1 \bar{q}_L \rho_1 \mathrm{e}^{i\theta} q_R + h. c.$$

где q_L — нижняя компонента дублета Q_L .

Если в хиггсовском секторе имеется *CP*-нарушение, то как ρ_1 , так и θ меняются вдоль профиля доменной стенки. Поскольку стенка движется, в фиксированной точке пространства ρ_1 и θ зависят от времени. Имеем поэтому нетривиальную зависимость от времени фермионного лагранжиана

$$\mathcal{L}_{f} = h_{1} \bar{q}_{L} \rho_{1}(t) e^{i\theta(t)} q_{R} + h. c.. \qquad (11.105)$$

Зависящая от времени фаза $\theta(t)$ приводит к *CP*-нарушению в фермионном секторе и в конечном итоге — к генерации барионной асимметрии (если q_L и q_R считать кварками).

¹⁷⁾ Модель с группой $SU(2)_L$ и одним левым дублетом имеет глобальную аномалию. Для наших целей это несущественно. В реалистических расширениях Стандартной модели основную роль играет юкавское взаимодействие t-кварка, и в этом смысле рассматриваемая упрощенная модель вполне ухватывает ситуацию.

Модель проще всего проанализировать, сделав зависящее от времени фазовое вращение поля q_R^{18} ,

$$q_R \to \mathrm{e}^{-i\theta(t)} q_R. \tag{11.106}$$

Фазовое вращение (11.106) приводит к дополнительному слагаемому в фермионном лагранжиане, возникающему из кинетического члена

$$iar{q}_R\gamma^\mu\partial_\mu q_R o iar{q}_R\gamma^\mu\partial_\mu q_R+ar{q}_R\gamma^0 q_R heta.$$

Видно, что последний член здесь приводит к модификации гамильтониана теории

$$H \to H - \dot{\theta} N_R,$$
 (11.107)

где

$$N_R = \int \bar{q}_R \gamma^0 q_R \, d^3 x$$

— оператор числа правых кварков.

Предположим, что переходы правого кварка в левый (например, $q_R \rightarrow q_L + H)$ — это быстрые процессы по сравнению со скоростью изменения $\dot{\theta}$, а процессы аномального несохранения барионного числа, как говорилось выше, — медленные. В пренебрежении последними барионное число равно нулю. Для гамильтона (11.107) это означает, что в среде имеется химический потенциал μ_B к барионному числу — единственному сохраняющемуся в указанных предположениях квантовому числу. Вычисление свободной энергии при $\mu_B \neq 0$ сводится к дальнейшей замене гамильтониана (11.107) на

$$H - \theta N_R - \mu_B (N_R + N_L),$$

где

 $(N_R+N_L)=B$. The second parameter M_L

— барионное число. Таким образом, эффективный химический потенциал для правых кварков равен ($\mu_B + \dot{\theta}$), а для левых кварков он равен μ_B . Воспользовавшись результатом задачи 2 из раздела 5.1, получим для барионного числа

$$\Delta_{\scriptscriptstyle B} = \Delta_R + \Delta_L = rac{T^2}{6} ig[(\mu_{\scriptscriptstyle B} + \dot{ heta}) + 2\mu_{\scriptscriptstyle B}ig],$$

где мы учли, что имеется два типа левых кварков (множитель 2 в последнем слагаемом). Условие $\Delta_B = 0$ дает

$$\mu_{\scriptscriptstyle B}=-\frac{1}{3}\dot{\theta}.$$

Включим теперь в рассмотрение процессы с аномальным несохранением барионного числа. Из-за наличия химического потенциала μ_B в среде они

¹⁸⁾ Отметим, что фазовое вращение q_L аномально, поэтому исключение с его помошью фазы θ из лагранжиана (11.105) привело бы к θ -зависящему члену в эффективном лагранжиане калибровочных полей; такой подход мы использовать не будем.

приводят к генерации барионного числа. Воспользуемся уравнениями (5.60) и (5.59) и запишем

$$rac{dn_B}{dt} = -rac{\Delta F \cdot \Delta B}{T} \Gamma_{sph};$$

здесь ΔF и ΔB — изменение свободной энергии и барионного числа в результате одного сфалеронного процесса, а Γ_{sph} — темп таких процессов. В случае одного дублета левых кварков $\Delta B = 1$ и $\Delta F = \mu_B \cdot \Delta B = \mu_B$. Таким образом.

$$\frac{dn_B}{dt} = -\frac{\mu_B}{T}\Gamma_{sph} = \frac{1}{3}\frac{\dot{\theta}}{T}\Gamma_{sph}$$
(11.108)

(в этом месте используется предположение о медленности сфалеронных процессов: считается, что влиянием этих процессов на эволюцию μ_B можно пренебречь). В результате получаем плотность барионного числа, образовавшуюся в процессе прохождения доменной стенки:

$$n_{\scriptscriptstyle B} = \frac{1}{3T} \int \dot{\theta} \Gamma_{sph}(t) \, dt. \qquad (11.109)$$

Здесь Г_{sph} зависит от времени, поскольку средние хиггсовских полей в фиксированной точке меняются при прохождении через нее доменной стенки. В качестве неплохого приближения можно считать, что Γ_{sph} дается формулой (11.17)

$$\Gamma_{sph} = \varkappa' \alpha_w^5 T^4, \quad \varkappa' \sim 25,$$

до тех пор, пока хигтсовское вакуумное среднее (в данном случае $\sqrt{|\phi_1|^2 + |\phi_2|^2}$, определяющее массу W-бозона) меньше T (см. (11.99)), и $\Gamma_{sph} = 0$ после этого. Учитывая, наконец, что плотность энтропии равна $s = (2\pi^2/45)g_*T^3$, получим оценку

$$\frac{n_{\scriptscriptstyle B}}{s}\simeq \varkappa' \frac{\alpha_{\scriptscriptstyle W}^5}{g_*} \Delta\theta$$

где $\Delta \theta$ — изменение фазы от начала фазового перехода до момента выключения сфалеронных переходов. Для $g_* \sim 100$ и $\alpha_w \simeq 1/30$ имеем

$$\frac{n_{\scriptscriptstyle B}}{s}\simeq 10^{-8}\cdot\Delta\theta,$$

что вполне приемлемо с точки зрения генерации наблюдаемой асимметрии (11.1). В реалистических моделях, обобщающих Стандартную модель физики частиц, эта оценка остается справедливой по порядку величины, изменяется лишь численный коэффициент в (11.109).

Выполнение необходимых условий генерации асимметрии проявляется в описанном случае следующим образом:

- Барионное число не сохраняется благодаря конечности Γ_{sph} .
- Источником *CP*-нарушения служит зависящая от времени фаза θ . Отметим, что этот источник — дополнительный к имеющемуся в Стан-

дартной модели (фазе в матрице смешивания кварков). Эта ситуация является довольно общей: для электрослабого бариогенезиса требуются новые по сравнению со Стандартной моделью механизмы нарушения *СР*-инвариантности.

Нарушение термодинамического равновесия связано с зависимостью фазы θ от времени и с медленностью электрослабых процессов с несохранением барионного числа.

Убедимся в заключение этого раздела, что зависимость от времени относительной фазы хиггсовских полей действительно возможна. Рассмотрим хиггсовский потенциал вида

$$V(H_1, H_2) = V_1(H_1^{\dagger}H_1) + V_2(H_2^{\dagger}H_2) + \\ + \lambda_+ \left(\operatorname{Re}(H_2^{\dagger}H_1) - v_1v_2\cos 2\xi \right)^2 + \\ + \lambda_- \left(\operatorname{Im}(H_2^{\dagger}H_1) - v_1v_2\sin 2\xi \right)^2,$$

где функции V_1 и V_2 имеют минимумы при $\phi_1 = v_1$ и $\phi_2 = v_2$ соответственно, а λ_{\pm} , ξ — безразмерные параметры потенциала. При $\lambda_{\pm} > 0$ скалярный потенциал имеет минимум при

$$\phi_1=\mathrm{e}^{i\xi}v_1,\quad \phi_2=\mathrm{e}^{-i\xi}v_2$$

что соответствует вакуумному значению фазы

$$\theta_{vac} = \xi.$$

Пусть фазовый переход происходит так, что оба поля развивают средние. В начале фазового перехода ϕ_1 и ϕ_2 малы, поэтому существенна лишь квадратичная часть эффективного потенциала

$$V_{eff} = V_{1,eff}(|\phi_1|^2) + V_{2,eff}(|\phi_2|^2) - v_1 v_2 \operatorname{Re}(\phi_2^* \phi_1 \cdot \lambda e^{2i\zeta}), \qquad (11.110)$$

где

$$\lambda e^{2i\zeta} = \lambda_+ \cos 2\xi + i\lambda_- \sin 2\xi,$$

т. е.

tg
$$2\zeta = \frac{\lambda_-}{\lambda_+}$$
 tg 2ξ .

Минимум эффективного потенциала (11.110) по относительной фазе хиггсовских полей достигается при

$$\theta_i = \zeta.$$

Именно вдоль этого направления в пространстве хиггсовских полей происходит «скатывание» в начале фазового перехода, т. е. в области доменной стенки, близкой к ненарушенной фазе. Таким образом, фаза θ вдоль доменной стенки изменяется от $\theta_i = \zeta$ (передний край) до $\theta_{vac} = \xi$, что и требовалось.

11.5.3. * Бариогенезис на тонкой стенке

Случай, когда толшина стенки мала по сравнению с длиной свободного пробега частиц в среде, является более реалистичным, но и гораздо более сложным для анализа. Мы здесь лишь вкратце обсудим физические процессы, приводящие к генерации барионной асимметрии в этом случае. Предположим, как и в предыдущем разделе, что в области доменной стенки имеется нарушение CP за счет зависящей от положения на стенке фазы скалярного поля. Мы будем работать пока в системе отсчета, связанной с доменной стенкой, поэтому вместо (11.105) запишем лагранжиан взаимодействия фермионов со стенкой

$$\mathcal{L}_{f} = h_{1} \bar{q}_{L} \rho(z) e^{i\theta(z)} q_{R} + h. c., \qquad (11.111)$$

где z — координата, ортогональная стенке. Функция $\rho(z)$ меняется от нуля (при $z \to -\infty$, ненарушенная фаза, считаем, что стенка движется справа налево) до Φ_c (при $z \to +\infty$, фаза с нарушением симметрии); при этом с учетом требования (11.99) имеем

$$\Phi_c \gtrsim T. \tag{11.112}$$

Будем считать юкавскую константу малой ¹⁹⁾,

 $h_1 \ll 1$,

тогда эффективная масса фермиона в нарушенной фазе также мала,

$$m_f = h_1 \Phi_c \ll T$$

Для дальнейших грубых оценок будем считать, что толщина стенки — порядка обратной температуры,

$$l_w \sim T^{-1}$$
. (11.113)

Также будем считать (и это действительно справедливо), что скорость стенки мала,

$$v_w \ll 1$$
.

Наконец, без ограничения общности будем полагать фазу $\theta(z)$ равной нулю в нарушенной фазе, т. е. $\theta(z) = 0$ при $z \to \infty$.

Фермионы среды, налетающие на стенку из симметричной фазы, частично отражаются от нее. Из-за наличия зависящей от координаты z фазы $\theta(z)$ коэффициент отражения R_L левого фермиона не равен коэффициенту отражения \overline{R}_L соответствующей античастицы. Частицы с импульсами p_z , значительно превышающими обратную толщину стенки, отражения от нее практически не испытывают (для них работает ВКБ-приближение), а частицы с несколько меньшими импульсами частично отражаются от нее, хотя для них $R \ll 1$ (высота энергетического барьера равна m_f и мала по сравнению с p_z при $p_z \sim l_w^{-1}$). С другой стороны, частицы с $p_z < m_f$ вообще не проникают в область за стенкой. Поэтому существенной особенностью импульсов является область

$$m_f < p_z < l_w^{-1}.$$

В этой области можно пользоваться теорией возмущений по h_1 , так что амплитуда отражения имеет, грубо говоря, порядок величины h_1 , а коэффициент

¹⁹⁾ Это не справедливо для t-кварка, но связанные с этим эффекты требуют специального рассмотрения.

отражения (квадрат амплитуды) имеет порядок h_1^2 . Асимметрия отражения частиц от стенки грубо оценивается величиной

$$R_L - \overline{R}_L \sim h_1^2 \theta_{CP}, \qquad (11.114)$$

где θ_{CP} определяется изменением фазы θ в области стенки.

Для дальнейшего полезно отметить, что левый фермион, отразившись от стенки, превращается в правый, и наоборот (см. ниже).

Если стенка покоится, то в системе имеется термодинамическое равновесие и от стенки нет *CP*-асимметричного потока левых и правых частиц. Физическая причина этого состоит в том, что асимметрии в потоках отраженных и проходящих сквозь стенку частиц уравновешивают друг друга. Для движущейся стенки это уже не справедливо, и от стенки в сторону симметричной фазы идет поток правых частиц, превышающий поток античастиц (или наоборот), пропорциональный скорости стенки v_w (при $v_w \ll 1$). Для его оценки нужно учесть, что от стенки отражаются частицы с произвольными p_x , p_y и с $p_z \leq l_w^{-1}$, поэтому асимметрия в потоке правых частиц по порядку величины равна

$$J_R \sim v_w T^2 \frac{1}{l_w} [R_L - \overline{R}_L]_{p_z \sim l_w^{-1}}$$
(11.115)

(мы учли, что отраженные правые частицы падали как левые). Для левых частиц имеем (см. ниже)

$$J_L = -J_R. (11.116)$$

Таким образом, вблизи стенки в симметричной фазе образуется избыток правых частиц над античастицами и недостаток левых частиц (если $J_R > 0$). Обратная ситуация имеет место за стенкой, в нарушенной фазе. Движущаяся стенка пузыря выступает в качестве сепаратора частиц различных сортов.

В области за стенкой (в нарушенной фазе) асимметрия между частицами и античастицами не приводит к процессам с нарушением барионного и лептонного чисел, если выполнено неравенство (11.99). В области перед стенкой это не так: хотя в силу (11.116) поток барионного и лептонных чисел равен нулю, в этой области имеется недостаток *левых* фермионов, а именно они участвуют в электрослабых взаимодействиях с нарушением барионного числа. Эти взаимодействия стремятся восполнить недостаток левых фермионов, приблизив тем самым среду в симметричной фазе вблизи стенки к состоянию термодинамического равновесия.

Асимметричное отражение фермионов от стенки изменяет среду локально, на расстоянии от стенки, меньшем некоторого расстояния l (значение lмы скоро найдем). Время, которое проходит с того момента, как в некоторой области возник недостаток левых фермионов, до момента прохождения стенки через эту область равно $t = l/v_w$. Именно в течение этого времени в данной области действуют процессы с нарушением барионного числа. Чтобы найти l, заметим, что за время t отраженная от стенки частица испытает t/t_f столкновений и, в соответствии с законом броуновского движения, удалится на расстояние

$$l = l_f \sqrt{\frac{t}{t_f}},\tag{11.117}$$

где t_f и l_f — время и длина свободного пробега; $l_f = t_f$ для интересующего нас случая ультрарелятивистских частиц. Вместе с $t = l/v_w$ уравнение (11.117) дает

$$l = \frac{l_f}{v_w}, \quad t = \frac{t_f}{v_w^2}.$$
 (11.118)

Из-за потока частиц от стенки избыток (отрицательный) левых частиц, который образуется в области размера l за время t (на единицу площади стенки) равен по порядку величины

$$N_L = J_L \cdot t,$$

так что соответствующая плотность равна

$$n_L^{ind} = J_L \cdot \frac{t}{l} = \frac{J_L}{v_m}.$$
 (11.119)

Будем считать, что сфалеронные процессы настолько медленные, что они успевают переработать лишь небольшую часть избытка (11.119). Тогда (см. (11.109))

$$rac{dn_{\scriptscriptstyle B}}{dt}\sim -rac{\mu_L}{T}\Gamma_{sph},$$

где, как обычно для ультрарелятивистских частиц, $\mu_L \sim n_L/T^2$. Отсюда получаем

$$n_{\scriptscriptstyle B} \sim rac{n_{\scriptscriptstyle L}^{ind}}{T^3} \Gamma_{sph} \cdot t,$$

где время действия сфалеронных процессов дается (11.118). Собирая формулы (11.115), (11.118), (11.119) и учитывая, что плотность энтропии $s \sim g_*T^3$, получаем отсюда барионную асимметрию

$$\Delta_{B} \equiv \frac{n_{B}}{s} \sim \frac{1}{v_{w}^{2} g_{*}} \frac{t_{f}}{l_{w}} \frac{\Gamma_{sph}}{T^{4}} [R_{L} - \overline{R}_{L}]_{p_{z} \sim l_{w}^{-1}}.$$
 (11.120)

Для левых лептонов время свободного пробега — порядка

$$t_f \sim (\alpha_w^2 T)^{-1}.$$

Для кварков оно меньше из-за столкновений, обусловленных сильными взаимодействиями, поэтому наиболее существенным является τ -лептон²⁰⁾ (в соответствии с (11.114) асимметрия растет с $h_1 = m/v$). Подставляя в (11.120)

$$\Gamma_{sph} = \varkappa' \alpha_w^5 T^4, \quad l_w \sim T^-$$

344

 $^{^{20)}}$ Для t-кварка изложенный здесь анализ не применим, поскольку в среде левый t-кварк быстро переходит в правый за счет сильного юкавского взаимодействия.

и воспользовавшись грубой оценкой (11.114), получим для вклада au-лептона

$$\Delta_{\scriptscriptstyle B} \sim rac{arkappa' lpha_{\scriptscriptstyle W}^3}{v_w^2 g_*} h_{ au}^2 heta_{CP},$$

причем $h_{\tau}^2 = m_{\tau}^2/v^2 \sim 10^{-4}$. Для $v_w \sim 3 \cdot 10^{-2}$ (вполне реалистичное значение) и $\varkappa' \simeq 25$ имеем отсюда

$$\Delta_B \sim 10^{-6} \theta_{CP}, \tag{11.121}$$

что вполне достаточно для объяснения наблюдаемой барионной асимметрии.

Задача 21. При каких значениях скорости стенки предположение о медленности сфалеронных процессов, сделанное в тексте, справедливо?

Задача 22. При какой скорости стенки процессы перехода левого τ -лептона в правый несущественны (примером такого процесса служит рассеяние τ -лептона на *Z*-бозоне, $\tau_L + Z \rightarrow \tau_R + h$).

Разумеется, в приведенном упрощенном анализе мы не учли целого ряда факторов, таких как наличие динамических масс частиц в среде, сохранение квантовых чисел типа (B - L) или слабого гиперзаряда, эффект дебаевской экранировки калибровочных зарядов в среде и т. д. Тем не менее, оценка (11.121) остается справедливой по порядку величины, и описанный механизм действительно является достаточно эффективным.

В заключение этого раздела уточним оценку (11.114). Для этого требуется решить уравнение Дирака для фермионов, взаимодействующих со стенкой согласно (11.111). В системе отсчета, связанной со стенкой, сделаем преобразование Лоренца вдоль стенки так, чтобы фермион двигался перпендикулярно стенке. Введем четырехмерный фермионный столбец

$$\psi = \begin{pmatrix} q_L \\ q_R \end{pmatrix},$$

при этом адекватным является киральное (вейлевское) представление γ -матриц (см. Приложение В). В выбранной системе отсчета $\partial_1 \psi = \partial_2 \psi = 0$, и с учетом члена (11.111) в лагранжиане уравнение Дирака сводится к двум уравнениям

$$i\partial_0 q_R + i\sigma^3 \partial_3 q_R + m^*(z)q_L = 0, \qquad (11.122)$$

$$i\partial_0 q_L - i\sigma^3 \partial_3 q_L + m(z)q_R = 0, \qquad (11.123)$$

где $m(z) = h_1 \rho e^{i\theta}$. Волновая функци *левого* фермиона, налетающего на стенку слева (т. е. из области с ненарушенной симметрией, где m(z) = 0), при $z \to -\infty$ имеет вид

$$q_L^{(in)} = e^{-i\omega t + ipz} \cdot \begin{pmatrix} 0\\ 1 \end{pmatrix}, \quad z \to -\infty,$$
(11.124)

где $p = \omega > 0$. Именно такая волновая функция удовлетворяет уравнению (11.123) с m = 0. Для вычисления коэффициента отражения левого фермиона необходимо найти решение уравнений (11.122), (11.123), в котором имеется падающая волна (11.124), при $z \to -\infty$ имеется также отраженная (бегущая налево) волна, а при

 $z \to +\infty$ имеется только прошедшая волна. Из (11.122), (11.123) видно, что решение следует искать в виде

$$q_L = \mathrm{e}^{-i\omega t}\psi_L(z)\cdot \begin{pmatrix} 0\\ 1 \end{pmatrix}, \quad q_R = \mathrm{e}^{-i\omega t}\psi_R(z)\cdot \begin{pmatrix} 0\\ 1 \end{pmatrix}.$$

Уравнения для числовых функций ψ_L и ψ_R выглядят следующим образом:

$$-i\partial_z\psi_R + \omega\psi_R + m^*(z)\psi_L = 0, \qquad (11.125)$$

$$i\partial_z\psi_L + \omega\psi_L + m(z)\psi_R = 0. \qquad (11.126)$$

Отраженная волна имеет при $z \to -\infty$ вид $\psi \propto e^{-ipz}$. Видно, что отраженная волна – целиком правая, поскольку уравнение (11.126) с m = 0 такого решения не имеет. Этот общий результат в действительности следует из закона сохранения углового момента. Итак, для отраженной волны

$$\psi_R = A e^{-\imath p z}, \quad z \to -\infty, \tag{11.127}$$

где A — интересующая нас амплитуда отражения, а $p = \omega$. Чтобы найти амплитуду A, воспользуемся теорией возмущений по m(z). В нулевом порядке $\psi_L = e^{-ipz}$, $\psi_R = 0$. В первом порядке ψ_R определяется из уравнения (11.125), которое приобретает вид

$$-i\partial_z\psi_R+\omega\psi_R=-m^*(z){
m e}^{ipz}$$

Общее решение этого уравнения дается формулой

$$\psi_R = e^{-ipz} \left[-i \int_{z_0}^z m^*(z') e^{2ipz'} dz' + c \right], \qquad (11.128)$$

где z_0 и c — произвольные постоянные. Подберем константу c так, чтобы в области за стенкой $(z \to +\infty)$ не было волны, движущейся налево. Выберем z_0 в области за стенкой. Там $m^* = m_f$ (мы считаем константу h_1 действительной и $\theta(z \to +\infty) = 0$), и решение при $z \to +\infty$ имеет вид

$$\psi_R = \mathrm{e}^{-\imath p z} \left[-\frac{m_f}{2p} \left(\mathrm{e}^{2\imath p z} - \mathrm{e}^{2\imath p z_0} \right) + c \right].$$

При $z \to +\infty$ имеется только прошедшая волна ($\psi_R \propto e^{ipz}$), если

$$c = -\frac{m_f}{2p} e^{2ipz_0}$$

Решение (11.128) действительно имеет вид (11.127), причем

$$A = -i \int_{z_0}^{-\infty} m^*(z) e^{2ipz} dz - \frac{m_f}{2p} e^{2ipz_0}, \qquad (11.129)$$

где нужно положить $p = \omega$ и $z_0 \rightarrow +\infty$.

Амплитуда отражения \overline{A} левой античастицы отличается от (11.129) заменой $m^*(z)$ на m(z).

Задача 23. Доказать последнее утверждение.

◀

Коэффициент отражения левой частицы R_L равен квадрату модуля амплитуды. Нас будет интересовать асимметрия отражения частицы и античастицы:

$$R_L - \bar{R}_L = |A|^2 - |\bar{A}|^2.$$
(11.130)

Для дальнейших оценок представим амплитуду (11.129) в виде

$$A=i\int_{-\infty}^{+\infty}\left[m^*(z)-m_f\theta(z)\right]e^{2ipz}\,dz-\frac{m_f}{2p},$$

где $\theta(z)$ — обычная функция скачка и мы перешли к пределу $z_0 \to \infty$. Будем считать функцию Re $[m(z)] - m_f \theta(z)$ антисимметричной по z и запишем

$$A = -\frac{M}{2p} + \int_{-\infty}^{+\infty} \operatorname{Im} [m(z)] e^{2ipz} dz,$$

где

$$M = m_f + 2 \int_{-\infty}^{+\infty} \left(\operatorname{Re} \left[m(z) \right] - m_f \theta(z) \right) \sin \left(2pz \right) p \, dz.$$

 $M \sim m_f$.

По порядку величины

(11.131)

После этого выражение для асимметрии (11.130) принимает простой вид

$$R_L - \overline{R}_L = -\frac{2M}{p} \int_{-\infty}^{+\infty} \operatorname{Im}[m(z)] \cos(2pz) \, dz$$

Вводя наконец

$$\theta_{CP}(p) = \frac{1}{l_w m_f} \int_{-\infty}^{+\infty} \text{Im}[m(z)] \cos(2pz) \, dz, \qquad (11.132)$$

получим

$$R_L-\overline{R}_L=-rac{2Mm_f l_w}{p} heta_{CP}(p).$$

Интеграл в (11.132) быстро стремится к нулю с ростом импульса при $p \gg l_w$ из-за осциллирующего множителя $\cos(2pz)$, а при $p \leq l_w^{-1}$ он конечен и определяется величиной фазы m(z), т. е. $\theta(z)$. Учитывая (11.131), имеем оценку

$$R_L - \overline{R}_L \sim \frac{2m_f^2 l_w}{p_z} \theta_{CP}, \quad p \leq l_w^{-1}, \tag{11.133}$$

где мы учли, что всюду в предыдущих формулах p был импульсом, перпендикулярным стенке. Эта оценка работает и при произвольных p_x , p_y , поскольку преобразование Лоренца вдоль стенки величину p_z не меняет. Подчеркнем, что в (11.132) фигурирует масса фермиона в нарушенной фазе, т. е. $m_f = h_1 \Phi_c$. Оценка (11.114) получается из (11.133) для $p_z \sim l_w^{-1}$, если считать, что толщина стенки — порядка Φ_c^{-1} (т. е. считать, что выполняются (11.112) и (11.113)).

Для асимметрии отражения правых частиц имеем

$$R_R - \bar{R}_R = -(R_L - \bar{R}_L).$$
 (11.134)

Задача 24. Доказать последнее утверждение в общем случае, используя свойства уравнений (11.122) и (11.123).

В завершение раздела отметим, что во всех рассмотренных нами механизмах генерации барионной асимметрии требуется привлекать дополнительные к имеющимся в Стандартной модели источники нарушения *СР*-симметрии. И хотя величины *СР*-нарушающих фаз, требуемые для генерации наблюдаемой барионной асимметрии, не выглядят неправдоподобно большими, в реалистичных моделях они часто оказываются сильно ограниченными из данных прецизионных измерений.

Одними из наиболе чувствительных к новым источникам CP-нарушения являются эксперименты по измерению электрических дипольных моментов (ЭДМ) электрона d_e и нейтрона d_n . Электрические дипольные моменты dопределяются как параметры гамильтониана взаимодействия электрического поля **E** и спина **S**,

$$H = -d \cdot \mathbf{E} \cdot \frac{\mathbf{S}}{|\mathbf{S}|},$$

поэтому для релятивистской частицы — фермиона ψ — дипольный момент входит в лагранижиан взаимодействия с электромагнитным полем следующим образом:

$${\cal L}=-drac{i}{2}ec\psi\gamma^\mu\gamma^
u\gamma^5\psi F_{\mu
u}.$$

Ненулевой дипольный момент нарушает P- и T-инвариантность (см. раздел В.3 Приложения В), а следовательно, и CP. Для составной частицы нейтрона — дипольный момент по порядку величины совпадает с наибольшим из дипольных моментов составляющих нейтрон кварков, $d_n \sim d_u, d_d$. Современные экспериментальные измерения дипольных моментов электрона и нейтрона дают ограничения

$$d_e < 1.4 \cdot 10^{-27} \cdot e \cdot c_{\mathsf{M}} = 0.7 \cdot 10^{-12} \cdot e \cdot \Gamma_{\mathsf{P}} \mathsf{B}^{-1}, \tag{11.135}$$

$$d_n < 3 \cdot 10^{-26} \cdot e \cdot c_{\rm M} = 0,32 \cdot 10^{-11} \cdot e \cdot \Gamma \Im B^{-1}, \qquad (11.136)$$

где e — заряд электрона. В рассмотренной нами двухдублетной модели (11.103) с дополнительным нарушением CP-симметрии в хиггсовском секторе дипольный момент кварка q определяется вкладом однопетлевой диаграммы с обменом виртуальным хиггсовским бозоном H, аналогичной приведенной на рис. 11.16. По порядку величины вклад этой диаграммы равен

$$d_q \sim \theta_{CP} \frac{e}{(4\pi)^2} \frac{m_q Y_q^2}{m_H^2}.$$
 (11.137)

где m_H — масса хиггсовского бозона, чье взаимодействие с кварками нарушает *CP*-симметрию. В (11.137) мы учли петлевой множитель $(4\pi)^2$, а также тот факт, что нарушающее киральность взаимодействие хиггсовского бозона пропорционально *CP*-нарушающей фазе θ_{CP} . В реалистичном случае, когда

Рис. 11.16. Однопетлевой вклад в электрический дипольный момент *u*-кварка

оба хиггсовских дублета взаимодействуют с полями материи, в спектре теории имеется три электрически нейтральных и один заряженный (две степени свободы) хиггсовский бозон, юкавским образом взаимодействующие с полями кварков. В этом случае сразу несколько хиггсовских бозонов дают вклад в аномальный дипольный момент кварка. Соответствующие диаграммы имеют вид, приведенный на рис. 11.16, причем мы учли, что в общем случае взаимодействия хиггсовских бозонов нарушают аромат, т. е. матрица юкавских констант недиагональна, $\widehat{Y} = Y_{\text{diag}} \cdot \widehat{U}$, где \widehat{U} — матрица смешивания. По порядку величины вклад этой диаграммы равен

$$d_u \sim \theta_{CP} \frac{e}{(4\pi)^2} \frac{m_{q_i} U_{uq_i} U_{q_i u}^* Y_u Y_{q_i}}{m_H^2}, \qquad (11.138)$$

Основной вклад в дипольный момент пропорционален массам виртуальных фермионов m_{q_i} ; зависимость от массы бозона Хиггса для $m_H \gg m_i$ однозначно определяется из размерных соображений.

Главный вклад в (11.138) дает обмен виртуальным t-кварком, поэтому для смешивания $U_{ut} \sim 1$ получим

$$d_n \sim d_u \sim \theta_{CP} \cdot 1.6 \cdot 10^{-11} \cdot \left(\frac{1 \text{ T}\Im\text{B}}{m_H}\right)^2 \cdot e \cdot \Gamma \Im\text{B}^{-1}.$$
 (11.139)

Из сравнения (11.139) с (11.136) видно, что для масс хиггсовских бозонов порядка электрослабого масштаба фаза должна быть небольшой, $\theta_{CP} \leq 10^{-3}$, если смешивание во взаимодействиях хиггсовских бозонов с кварками порядка единицы. Аналогичные ограничения на CP-нарушающие фазы имеют место и во многих других моделях. Эти ограничения имеются независимо от соображений, относящихся к барионной асимметрии. С другой стороны, для электрослабого бариогенезиса требуются довольно большие значения CP-фаз. Поэтому во многих моделях, обеспечивающих правильную величину барионной асимметрии Вселенной за счет электрослабого механизма, предсказываются величины ЭДМ, не слишком малые по сравнению с существующими экспериментальными ограничениями (11.135), (11.136). Так, в рассмотренной нами модели сравнение предсказания для генерируемой барионной

асимметрии (11.121) с величиной наблюдаемой асимметрии $\Delta_B \simeq 10^{-10}$ дает оценку для требуемой величины *CP*-фазы, $\theta_{CP} \sim 10^{-2}$. Подставляя эту оценку в (11.139), получим предсказание для величины дипольного момента нейтрона,

$$d_n \sim 10^{-13} \cdot \left(rac{1 ext{ T} ec{ ext{ B}}}{m_H}
ight)^2 \cdot e \cdot \Gamma ec{ ext{ B}} ext{ B}^{-1}.$$

Для реалистичных значений массы хигтсовского бозона, скажем, $m_H \sim 200$ ГэВ, данное предсказание близко к существующему экспериментальному ограничению. Общее заключение состоит в том, что новые механизмы *СР*-нарушения, приводящие к успешному электрослабому бариогенезису, будуг, скорее всего, доступны для косвенной проверки в экспериментах следующего поколения по измерению электрических дипольных моментов.

11.6. * Механизм Аффлека-Дайна

11.6.1. Скалярные поля, несущие барионное число

В некоторых обобщениях Стандартной модели физики частиц барионное число, помимо кварков, несут новые гипотетические скалярные поля. Возможны также скалярные поля, несущие лептонные числа. В экспериментах скалярные частицы с ненулевым барионным или лептонными числами не наблюдались. Это говорит о том, что они имеют достаточно большие массы²¹; грубо говоря, эти массы должны превышать несколько сотен ГэВ. Тем не менее, нетривиальная динамика таких скалярных полей в расширяющейся Вселенной может приводить к генерации барионной асимметрии; класс соответствующих механизмов обобщенно называют механизмом Аффлека—Дайна Разумеется, и в этом случае для генерации барионной асимметрии требуется выполнение условий, перечисленных в разделе 11.1. В частности, во взаимодействиях с участием скалярных полей барионное число не должно точно сохраняться; должно иметься и CP-нарушение.

В качестве прототипа моделей с указанными свойствами можно выбрать модель, в которой, помимо полей Стандартной модели, имеется комплексное скалярное поле ϕ , несущее барионное число $B_{\phi} \neq 0$, и фермион ψ с нулевым барионным числом. Кинетический и массовый члены в действии поля ψ имееют стандартный вид, действие скалярного поля выберем в виде

$$S_{\phi} = \int d^4x \, \sqrt{-g} \left(g^{\mu\nu} \partial_{\mu} \phi^* \partial_{\nu} \phi - V(\phi) \right), \qquad (11.140)$$

где

$$V(\phi) = m^2 \phi^* \phi + \frac{\lambda}{2} (\phi^* \phi)^2 - \frac{\lambda'}{4} (\phi^4 + \phi^{*4}).$$
(11.141)

²¹⁾ В предположении, что их взаимодействия с частицами Стандартной модели не слишком слабы.

Параметры λ и λ' — действительны и положительны²²⁾, причем $\lambda' \ll \lambda$. Наконец, взаимодействие с участием ϕ и ψ выберем в виде

$$\mathcal{L}_{int} = h\bar{q}\psi\phi + h. c., \qquad (11.142)$$

где h — юкавская константа связи, q — комбинация кварковых полей, преобразующаяся как спинор при преобразованиях Лоренца. При этом q может быть (и, как правило, бывает) составным оператором; он может быть как цветным, так и бесцветным. Важно, чтобы оператор q нес отличное от нуля барионное число B_q , при этом

$$B_{\phi}=B_q.$$

Мы не обсуждаем для простоты свойства полей ϕ и ψ по отношению к калибровочной группе $SU(3)_c \times SU(2)_w \times U(1)_r$ Стандартной модели; соответствующие представления можно подобрать.

Задача 25. Подобрать представления полей ϕ и ψ по отношению к калибровочной группе Стандартной модели и составной оператор q, несущий барионное число, так, чтобы описанная выше модель сохраняла калибровочную инвариантность на древесном уровне.

Если бы последнего слагаемого в (11.141) не было, модель была бы инвариантна относительно глобальных фазовых преобразований

$$\phi
ightarrow {
m e}^{\imath lpha B_{\phi}} \phi, \quad q
ightarrow {
m e}^{\imath lpha B_{\phi}} q, \quad \psi
ightarrow \psi,$$

Соответствующее сохраняющееся квантовое число и было бы барионным числом, при этом плотность барионного числа была бы равна

$$n_{\scriptscriptstyle B} = iB_{\phi}(\partial_t \phi^* \cdot \phi - \phi^* \cdot \partial_t \phi) + n_{\scriptscriptstyle B,q}, \qquad (11.143)$$

где $n_{B,q} = \frac{1}{3}(n_q - n_{\bar{q}})$ — плотность барионного числа кварков. Если константа λ' в (11.141) мала, но конечна, барионное число сохраняется лишь приближенно. Задача 26. Получить выражение (11.143), используя теорему Нётер.

Ситуация, подобная изложенной выше, естественным образом возникает в суперсимметричном расширении Стандартной модели, см. раздел 9.6. В качестве поля ϕ в нем может выступать комбинация полей скварков, слептонов и хиггсовских бозонов, а полем ψ может служить комбинация калибрино — суперпартнеров калибровочных бозонов. Взаимодействие типа (11.143) действительно имеет место, причем с точностью до численного множителя константа h совпадает с калибровочной константой g_s группы $SU(3)_c$. Взаимодействие типа $\lambda'(\phi^4 + h. c.)$ запрещено для скварка калибровочной инвариантностью по отношению к $SU(3)_c$, однако возможны взаимодействия более высокого порядка (например, типа $\lambda'\phi^6$), нарушающие барионное

²²⁾ Третий член в (11.141) можно было бы выбрать в виде $\frac{1}{4}(\lambda'\phi^4 + h.c.)$ с комплексной λ' . Однако переопределением поля ϕ его можно свести к виду, фигурирующему в (11.141). Знаки в (11.141) выбраны из соображения удобства дальнейшего изложения.

число и (B - L). Последнее обстоятельство особенно важно, поскольку для образования барионной асимметрии необходима и достаточна генерация (B - L), если речь идет о температурах выше 100 ГэВ.

Особенностью суперсимметричных обобщений Стандартной модели является наличие в них *плоских направлений* — таких направлений в пространстве всех скалярных полей, вдоль которых скалярный потенциал мал вплоть до очень больших значений полей. В терминах потенциала (11.141), в котором ϕ понимается как поле, параметризующее плоское направление, этс означает, что масса *m* мала (по сравнению, например, с массой Планка), а константы λ и λ' также чрезвычайно малы. В качестве достаточно реалистичного примера можно привести значения

$$m \sim 1 \text{ T}_{3}\text{B}, \quad \lambda, \lambda' \sim \frac{m^2}{M_{Pl}^2} \sim 10^{-32}.$$
 (11.144)

В этом случае члены четвертого порядка в потенциале (11.141) начинают преобладать над массовым членом только при $\phi \sim M_{Pl}$.

11.6.2. Генерация асимметрии

Опишем механизм Аффлека—Дайна на примере модели, изложенной в разделе 11.6.1. Предположим, что поле ϕ в начальный момент времени (в инфляционной теории — сразу после окончания инфляции) было пространственно однородным и принимало некоторое комплексное значение $\phi_i = r_i e^{i\theta_i}$. Будем считать, что

$$m^2 |\phi_i|^2 \ll \lambda |\phi_i|^4.$$

Из раздела 4.8.1 мы знаем, что в течение некоторого времени значение поля остается практически неизменным, если выполнены условия медленного скатывания. В тот момент, когда эти условия нарушаются, поле, оставаясь однородным, начинает эволюционировать к минимуму потенциала $\phi = 0$ и быстро, в течение нескольких хаббловских времен, скатывается к окрестности этого минимума. Вблизи минимума действительная и мнимая части эволюционируют независимо (потенциал квадратичен), и каждая из них ведет себя в соответствии с формулой (4.58), т.е.

$$\operatorname{Re} \phi \equiv \phi_{R} = \frac{C_{R}}{\sigma^{3/2}(t)} \cos(mt + \beta_{R}),$$

$$\operatorname{Im} \phi \equiv \phi_{I} = \frac{C_{I}}{\sigma^{3/2}(t)} \cos(mt + \beta_{I}).$$
(11.145)

Отметим, что если бы масштабный фактор *a* был постоянным, то «траектория» (11.145) представляла бы собой эллипс на комплексной плоскости (при $\beta_I \neq \beta_R$). В действительности a(t) растет со временем, поэтому эллипс превращается в эллиптическую спираль, см. рис. 11.17. Наличие слагаемого в (11.141), нарушающего барионное число (т. е. слагаемого с λ'), весьма существенно: если бы его не было, фаза поля ϕ при эволюции не менялась бы (см. ниже), и в результате эллипс выродился бы в отрезок.

Рис. 11.17. Траектория $\phi(t)$ на комплексной плоскости

Поле $\phi(t)$ вида (11.145) несет барионное число, плотность которого дается формулой

$$n_{\scriptscriptstyle B} = iB_{\phi}(\partial_t \phi^* \phi - \phi^* \partial_t \phi) = 2B_{\phi}(\phi_R \partial_t \phi_I - \phi_I \partial_t \phi_R)$$
(11.146)

и равна

$$2B_{\phi}\frac{mC_{I}C_{R}}{a^{3}(t)}\sin\left(\beta_{R}-\beta_{I}\right). \qquad (11.147)$$

Как обычно, $n_B \propto a^{-3}$, так что барионное число в сопутствующем объеме сохраняется (несохранение барионного числа, связанное с последним членом в (11.141), мало при малых ϕ). За счет взаимодействий с кварками типа (11.142) это барионное число в конечном итоге перерабатывается в барионное число кварков, и во Вселенной остается барионная асимметрия.

Как мы отмечали в разделе 4.8.1, на квантовом языке полю (11.145) соответствует когерентное состояние покоящихся ϕ -бозонов и их античастиц, причем ϕ -бозон несет барионное число B_{ϕ} , а его античастица — барионное число ($-B_{\phi}$). В этом смысле отличие от нуля барионного числа (11.147) означает, что числа ϕ -бозонов и их античастиц в этом состоянии различны. Распад поля ϕ на кварки и фермионы ψ можно, хотя и с оговорками, воспринимать как распады ϕ -частиц и их античастиц. На этом языке образование в конечном итоге асимметрии между кварками и антикварками вполне очевидно.

Перейдем к оценке генерируемой таким образом барионной асимметрии. Удобно записать действие (11.140) в переменных r и θ , таких что

$$\phi = rac{r}{\sqrt{2}} \mathrm{e}^{i heta}.$$

В расширяющейся Вселенной действие для пространственно-однородного поля имеет вид

$$S_{
ho, heta}=\int dt \ a^3(t)igg(rac{1}{2}\dot{r}^2+rac{1}{2}r^2\dot{ heta}^2-V(r, heta)igg),$$

где

$$V(r,\theta) = \frac{m^2}{2}r^2 + \frac{\lambda}{8}r^4 - \frac{\lambda'}{8}r^4 \cos 4\theta. \qquad (11.148)$$

Отсюда имеем уравнение для θ

$$\frac{1}{a^3}\frac{\partial}{\partial t}(a^3r^2\dot{\theta}) = -\frac{\partial V}{\partial \theta}.$$
(11.149)

Выражение для плотности барионного числа (11.146) в переменных r и θ имеет вид

$$n_{\scriptscriptstyle B} = B_{\phi} r^2 \dot{\theta}$$

Поэтому уравнение (11.149) можно записать в виде

$$rac{1}{a^3}rac{\partial}{\partial t}(a^3n_{\scriptscriptstyle B})=-B_{\phi}rac{\partial V}{\partial heta}.$$

Если бы V не зависел от θ , то это был бы закон сохранения барионного числа (в сопутствующем объеме), а для зависящего от θ потенциала это — уравнение для генерации барионного числа.

Будем считать начальную фазу θ_i не равной нулю. Это предположение означает, что начальное состояние *CP*-асимметрично; именно в этом месте выполняется соответствующее условие генерации асимметрии. Данное предположение действительно существенно, поскольку при $\theta_i = 0$ эволюция происходит вдоль оси Im $\phi = 0$ (при действительной λ'), и плотность барионного числа (11.146) в конечном итоге равна нулю. При отличном от нуля θ_i имеем для плотности барионного числа в поздний момент времени t

$$a^{3}(t)n_{B}(t) = -B_{\phi}\int_{t_{1}}^{t}\frac{\partial V}{\partial \theta}a^{3}(t') dt'. \qquad (11.150)$$

Интеграл в (11.150) набирается в течение нескольких хаббловских времен сразу после нарушения условий медленного скатывания, когда поле скатывается в окрестность точки $\phi = 0$: до этого $\partial V/\partial \theta$ постоянно, но $a^3(t)$ мало; после этого $\partial V/\partial \theta \propto r^4$ и мало (пропорционально a^{-6} , см. (11.145)). Отсюда сразу получаем оценку

$$n_{\scriptscriptstyle B}(t) \sim rac{a^3(t_r)}{a^3(t)} \cdot rac{\partial V}{\partial heta}(t_r) \cdot rac{1}{H(t_r)},$$

где t_r соответствует моменту нарушения режима медленного скатывания. Учитывая, что $a(t) \propto T^{-1}$, получаем оценку для асимметрии

$$\Delta_B \equiv \frac{n_B}{s} \sim \frac{1}{g_* T_r^3 H(T_r)} \cdot \frac{\partial V}{\partial \theta}(t_r).$$
(11.151)

Отметим, что мы сделали неявное, но существенное предположение о том, что нетривиальная эволюция поля ϕ происходит на горячей стадии. В дальнейшем мы будем работать в этом предположении, а также в предположении о том, что плотность энергии поля ϕ никогда не доминирует во Вселенной. Мы обсудим ниже те условия, при которых эти предположения выполняются.

Для потенциала (11.149) выражение (11.151) приобретает вид

$$\Delta_B(t) \sim \frac{\lambda'}{g_*} \frac{r_i^4}{H_r (M_{Pl}^* H_r)^{3/2}} \sin 4\theta_i, \qquad (11.152)$$

где индекс r по-прежнему относится к моменту нарушения условий медленного скатывания и мы учли стандартное соотношение $H^2 = T^2/M_{Pl}^*$. Мы учли также, что до начала медленного скатывания поле практически не изменялось и к моменту $t = t_r$ совпадало с начальным.

Для дальнейшего анализа вспомним, что условия медленного скатывания нарушаются при

$$rac{V(\phi_i)}{\phi_i^2} \sim H_r^2,$$

т. е.

$$\lambda r_i^2 \sim H_r^2 = rac{T_r^4}{M_{Pl}^{*2}}$$
 (11.153)

(где мы по-прежнему считаем, что $m^2 \ll \lambda r_r^2$ и $\lambda' \ll \lambda$). Используя это соотношение, оценку (11.152) можно переписать в виде

$$\Delta_{\scriptscriptstyle B} \sim \frac{\lambda'}{\lambda} \frac{1}{g_* \lambda^{1/4}} \left(\frac{r_i}{M_{Pl}^*}\right)^{3/2} \sin 4\theta_i. \tag{11.154}$$

Видно, что результат сильно зависит как от параметров модели (констант λ и λ'), так и от начальных амплитуды r_i и фазы θ_i скалярного поля ϕ . В общем случае то или иное значение Δ_B выглядит как результат случайного выбора начальных условий.

Чтобы понять, при каких условиях асимметрия (11.154) равна наблюдаемой, $\Delta_B \sim 10^{-10}$, необходимо сделать то или иное предположение о начальных значениях r_i и θ_i . Одно из возможных предположений (хотя и далеко не единственное) состоит в том, что начальная фаза не мала, sin $4\theta_i \sim 1$, а начальная амплитуда — порядка планковской, $r_i \sim M_{Pl}$. Из (11.154) видно, что наблюдаемая асимметрия получается, только если нарушение барионного числа чрезвычайно мало, $\lambda'/\lambda \leq 10^{-8}$. В противном случае асимметрия слишком велика. Этот результат иллюстрирует довольно характерное свойство механизма Аффлека—Дайна: генерируемая с его помощью барионная асимметрия часто (хотя и не всегда) оказывается слишком большой.

При $r_i \sim M_{Pl}$ предположение о том, что режим медленного скатывания заканчивается, когда Вселенная уже находится на горячей стадии, выполняется лишь при очень малых значениях λ . Пусть T_R — максимальная температура Вселенной на горячей стадии. Тогда требование, чтобы соотношение (11.153) выполнялось при $T_i < T_R$, дает

$$\lambda < rac{T_R^4}{M_{Pl}^{*2}r_i^2}$$

Для $T_R \sim 10^{12}$ ГэВ (вполне возможное значение для инфляционных теорий) и $r_i \sim M_{Pl}$ имеем численно

$$\lambda < 10^{-26}.$$
 (11.155)

Кроме того, исходное предположение о том, что $m^2 |\phi|^2 \ll \lambda |\phi|^4$, требует малости массы m; для $r_i \sim M_{Pl}$ имеем $m^2 \ll \lambda M_{Pl}^2$, т.е. с учетом (11.155) $m < 10^6$ ГэВ. Эти результаты служат иллюстрацией еще одной особенности механизма Аффлека—Дайна: для его реализации требуется, чтобы поле ϕ обладало «плоским» потенциалом $V(\phi)$. Как мы уже говорили, плоские потенциалы естественным образом появляются в суперсимметричных теориях (см. (11.144)).

Отметим, что ряд инфляционных моделей приводит к еще более низким температурам разогрева²³⁾, скажем, $T_R \sim 10^9$ ГэВ. В этом случае максимальное значение параметра Хаббла $H_R = T_R^2/M_{Pl}^*$ имеет порядок $H_R \sim 1$ ГэВ. Для массы ϕ -поля, большей 1 ГэВ (а это — наиболее реалистичная возможность), это означает, что условия медленного скатывания никогда не выполняются на горячей стадии: из (4.52) следует, что одно из этих условий выглядит как $m^2 \ll H^2$. В этом случае механизм Аффлека—Дайна может тем не менее работать, но на стадии постинфляционного разогрева.

Обсудим еще одну особенность механизма Аффлека—Дайна, по-прежнему считая $r_i \sim M_{Pl}$. Когерентные осцилляции (11.145) поля ϕ обладают плотностью энергии ρ_{ϕ} , которая падает как $a^{-3}(t)$, см. (4.64). Эти осцилляции дополнительно затухают из-за рождения фермионов, описываемого лагранжианом (11.142). Обратное время этого затухания грубо оценивается величиной

$$\Gamma \lesssim \frac{m}{8\pi}.\tag{11.156}$$

Действительно, осциллирующее поле (11.145) представляет собой совокулность покоящихся ϕ - и $\overline{\phi}$ -бозонов, а Γ — ширина их распада на фермионы; в теориях со слабой связью всегда имеет место неравенство (11.156). Таким образом, осцилляции сохраняются до того момента времени t_{dec} , когда

 $H(t_{dec}) \sim \Gamma$,

а затем исчезают за время порядка хаббловского. Поскольку ρ_{ϕ} падает как a^{-3} , а плотность энергии горячей плазмы падает как a^{-4} , к моменту t_{dec} осцилляции скалярного поля могут давать доминирующий вклад в плотность энергии. Этого не происходит, если

$$\frac{\rho_{\phi}(t_{dec})}{g_{*}T_{dec}^{4}} \ll 1, \qquad (11.157)$$

²³⁾ Столь низкие температуры разогрева предпочтительны и для решения «проблемы гравитино» в суперсимметричных теориях: при более высоких температурах слишком активно идет тепловое рождение гравитино, которые доживают до стадии нуклеосинтеза и нарушают его течение, см. раздел 9.6.3.

где

$$T_{dec} \equiv T(t_{dec}) \sim (\Gamma M_{Pl}^*)^{1/2}$$
 (11.158)

— температура, при которой распадается конденсат ϕ -частиц. Для оценки $\rho_{\phi}(t_{dec})$ заметим, что за несколько хаббловских времен, в течение которых поле скатывается от начального значения ϕ_i в окрестность минимума потенциала, ни плотность энергии, ни масштабный фактор не успевают сильно измениться. Поэтому в качестве грубой оценки имеем

$$\rho_{\phi}(t) = \frac{a^{3}(t_{r})}{a^{3}(t)} \cdot \lambda r_{i}^{4}, \qquad (11.159)$$

где, по-прежнему, индекс r относится к окончанию режима медленного скатывания; в (11.159) мы учли, что в этот момент плотность энергии поля оценивается величиной λr_i^4 . Из (11.159) следует, что

$$ho_{\phi}(t_{dec}) \sim rac{T_{
m dec}^3}{T_r^3} \cdot \lambda r_i^4 \sim rac{\lambda^{1/4} T_{
m dec}^3 r_s^{5/2}}{M_{Pl}^{*3/2}},$$

где мы воспользовались (11.153). Условие (11.157) вместе с (11.158) дают

$$rac{\lambda^{1/4}r_i^{5/2}}{g_*M_{Pl}^{*2}\Gamma^{1/2}}\ll 1,$$

т. е.

$$rac{\lambda^{1/4}}{g_*} \left(rac{r_i}{m}
ight)^{1/2} \left(rac{r_i}{M_{Pl}^*}
ight)^2 \ll 1.$$

Для $r_i \sim M_{Pl}$ и $m \sim 1$ ТэВ имеем отсюда ограничение (с невысокой точностью, поскольку мы опускали численные коэффициенты)

$$\lambda < 10^{-24}.$$

Таким образом, обратным влиянием осцилляций поля ϕ на темп расширения Вселенной можно пренебречь, опять-таки только если константа λ чрезвычайно мала. В противном случае эти осцилляции вносят доминирующий вклад в плотность энергии на относительно поздней стадии эволюции; Вселенная на этой стадии расширяется так, как если бы она была заполнена нерелятивистским веществом. Появление промежуточной «пылевидной» стадии — еще одна характерная, хотя и не обязательная особенность механизма Аффлека—Дайна.

Задача 27. В ситуации с промежуточной пылевидной стадией оценка (11.154) перестает быть справедливой. Оценить Δ_B для этого случая, считая по-прежнему, что нарушение условий медленного скатывания происходит на радиационно-доминированной стадии.

Обсудим вкратце вариант механизма Аффлека—Дайна, в котором начальное значение r_i определяется динамически, а требования к плоскостности скалярного потенциала слабее, чем в изложенном выше сценарии. Предположим, что помимо слагаемых, выписанных в (11.140), в действии имеется еще одно слагаемое

$$S_{R\phi} = -\int d^4x \, \sqrt{-g} c R \, |\phi|^2 \,,$$
 (11.160)

где c — положительная постоянная, которую мы выберем несколько большей единицы. Для однородной изотропной Вселенной $R = -12H^2$, поэтому добавление этого слагаемого эффективно изменяет массовый член в потенциале

$$m^2 |\phi|^2 \to (m^2 - 12cH^2) |\phi|^2.$$
 (11.161)

На ранних временах, когда $H \gg m$, потенциал имеет *максимум* при $\phi = 0$, и в пределе $\lambda' \to 0$ долину минимумов на окружности в комплексной плоскости

$$|\phi|^2 \equiv \frac{r^2}{2} = \frac{12cH^2}{\lambda}.$$
 (11.162)

Условия медленного скатывания при этом *не* выполняются (для этого нам и нужно c > 1) для движения вдоль радиального направления, поэтому r(t) приближенно определяется равенством (11.162). При малых, но конечных λ' долина (11.162) слегка наклонена (потенциал зависит от фазы θ), но фаза является почти плоским направлением, для которого возможно выпонение условий медленного скатывания.

Задача 28. Показать, что условия медленного скатывания выполняются (на этапе $H \gg m$) для эволюции фазы θ при $\lambda' \ll \lambda$.

Таким образом, при $\lambda' \ll \lambda$ значение фазы $\theta = \theta_i$ держится постоянным вплоть до момента, когда

$$H_i \sim m. \tag{11.163}$$

Примерно в этот момент времени эффективный массовый член (11.161) меняет знак (считаем, что c не слишком сильно превышает единицу), и поле скатывается в направлении к $\phi = 0$, начиная со значения

$$r_i \sim \frac{m}{\sqrt{\lambda}}, \quad \theta = \theta_i.$$
 (11.164)

Дальнейший анализ, приводящий к (11.152), остается неизменным, и с учетом (11.163) и (11.164) получаем для асимметрии

$$\Delta_{\scriptscriptstyle B} \sim rac{\lambda'}{g_* \lambda^2} \left(rac{m}{M_{Pl}^*}
ight)^{3/2} \sin 4 heta_i.$$

Требуемое значение асимметрии получается, например, если положить $\lambda \sim 10^{-11}$, $\lambda'/\lambda \sim 0.1$, sin $4\theta_i \sim 1$ и $m \sim 10^6$ ГэВ. Отметим, однако, что описанный вариант работает на горячей стадии, только если температура разогрева весьма высока: требование $H_i < H_R = T_R^2/M_{Pl}^*$, вместе с (11.163) дает

$$T_R > (mM_{Pl}^*)^{1/2},$$

что для приведенных выше численных значений означает $T_R > 10^{12}$ ГэВ.

Итак, механизм Аффлека—Дайна при достаточно жестких ограничениях на параметры теории может работать на горячей стадии расширения Вселенной. При этом скалярный потенциал должен быть достаточно плоским, а максимальная температура во Вселенной — достаточно высокой. Интересная возможность, связанная с этим механизмом, состоит в том, что на некотором этапе когерентные осцилляции скалярного поля дают доминирующий вклад в плотность энергии, и во Вселенной имеется промежуточная пылевидная стадия.

Если максимальная температура Вселенной не слишком велика, $T_R \leq 10^{10}$ ГэВ, а масса поля ϕ — порядка 1 ТэВ или выше, то поле ϕ скатывается в сторону минимума потенциала до наступления горячей стадии. Это — вполне реалистическая возможность. В таком случае механизм Аффлека—Дайна может работать на стадии разогрева Вселенной после инфляции. Соответствующие оценки отличаются от сделанных выще, но общий вывод о возможности генерации наблюдаемой барионной асимметрии остается справедливым.

Задача 29. Рассмотреть описанный только что механизм при $c \gg 1$, где c — параметр в действии (11.160). Может ли этот механизм работать на горячей стадии и приводить к наблюдаемой барионной асимметрии при $T_R \lesssim 10^9$ ГэВ?

11.7. Заключительные замечания

Рассмотренные в этой Главе механизмы генерации барионной асимметрии Вселенной далеко не исчерпывают обсуждаемые в литературе возможности. Кроме всего прочего, генерация барионной асимметрии могла происходить на стадии постинфляционного разогрева, а не на горячей стадии, как мы предполагали в этой Главе. К сожалению, многие механизмы (например, рассмотренные в разделах 11.3 и 11.4) основываются на гипотетических физических явлениях, которые могут иметь место лишь при сверхвысоких энергиях, недоступных для ускорителей в обозримом будущем. Поэтому прямых экспериментальных или наблюдательных доказательств того или иного механизма генерации барионной асимметрии получить будет крайне трудно, если вообще возможно. Исключение составляет электрослабый механизм, который будет доказан или опровергнут коллайдерными экспериментами недалекого будущего. Что касается механизма Аффлека-Дайна, то сильным аргументом в его пользу послужило бы обнаружение так называемых барионных возмущений постоянной кривизны в спектре возмущений плотности энергии вещества в ранней Вселенной²⁴⁾. Поиски этой моды возмущений космической плазмы идут и будут продолжены путем детальных измерений анизотропии и поляризации реликтового излучения. Этот круг вопросов мы рассмотрим во второй части книги.

²⁴⁾ Генерация заметной амплитуды этой моды возмущений — возможное, но совсем не обязательное следствие механизма Аффлека—Дайна, поэтому отвергнуть его на основании наблюдательных данных будет нельзя.
ТОПОЛОГИЧЕСКИЕ ДЕФЕКТЫ И СОЛИТОНЫ ВО ВСЕЛЕННОЙ

В этой Главе мы рассмотрим особенности космологии теоретико-полевых моделей, допускающих существование солитонных или солитоноподобных решений. Эти решения представляют собой специфические (иногда — макроскопические) конфигурации поля, чья стабильность обусловлена нетривиальной топологией пространства вакуумов теории (топологические дефекты) или существованием сохраняющихся глобальных зарядов (нетопологические солитоны, в т. ч. Q-шары). Интерес представляют как частицеподобные объекты (монополи, Q-шары), так и протяженные — космические струны и доменные стенки. Подобные конфигурации возникают в различных обобщениях Стандартной модели физики частиц и подробно рассмотрены в соответствующей литературе. Вообще говоря, могут представлять интерес также нестабильные солитоноподобные решения, если их время жизни соизмеримо со временем жизни Вселенной. В дальнейшем мы не будем рассматривать такие решения, поскольку часто они приводят к тем же следствиям для космологии, что и аналогичные стабильные солитоны.

В этой книге мы обсудим образование солитонных конфигураций в ранней Вселенной, их последующую эволюцию и возможное влияние на процессы, происходящие в расширяющейся Вселенной. До сих пор неоспоримых данных о существовании солитоноподобных объектов во Вселенной нет. Тем не менее, их теоретическое изучение представляет несомненный интерес. Как мы увидим, в моделях с солитонами возможны изменение темпа расширения Вселенной, появление новых механизмов образования структур, линзирование далеких источников, искажение картины анизотропии реликтового излучения, новые процессы, приводящие к генерации барионной асимметрии, и многое другое. Характерные энергетические масштабы процессов, приводящих к образованию топологических дефектов, заметно превышают электрослабый масштаб. Экспериментальное обнаружение топологических дефектов могло бы свидетельствовать о том, что в ранней Вселенной температуры действительно достигали соответствующих величин¹⁾. Кроме того, обнаружение

¹⁾ Вообще говоря, существуют механизмы рождения топологических дефектов, не требующие столь высоких температур во Вселенной. Однако в любом случае плотности энергии в ранней Вселенной должны быть достаточно высоки.

солитонов дало бы неоспоримое свидетельство в пользу существования новой физики за рамками Стандартной модели физики частиц. Исследование свойств топологических дефектов позволило бы изучать масштабы энергий, намного превышающие возможности современных ускорителей.

Причиной, лежащей в основе существования топологических дефектов в рамках некоторых моделей физики частиц, является нетривиальная структура вакуумов этих теорий. Математически «нетривиальность структуры» означает, что некоторая гомотопическая группа π_N многообразия \mathcal{M} вакуумов теории нетривиальна,

$$\pi_N(\mathcal{M}) \neq 0, \tag{12.1}$$

т. е. существуют нетривиальные отображения N-мерной сферы S^N в многообразие вакуумов \mathcal{M} . В большинстве случаев это означает, что солитонная конфигурация задает нетривиальное отображение пространственных асимптотик (сферы S^N в обшем случае) в многообразие вакуумов (поскольку на пространственной бесконечности полевые конфигурации должны переходить в вакуумные, чтобы не нести бесконечно большой полной энергии). В пространстве-времени размерности d + 1 условие (12.1) указывает на существование солитонов (стабильных нетривиальных полевых конфигураций) пространственно-временной размерности d - N. Стабильность солитонов обусловлена требованием конечности энергии, поскольку их разрушение требует перестройки вакуума на пространственной бесконечности. С каждой нетривиальной конфигурацией связан сохраняющийся заряд — топологический инвариант. Для четырехмерного пространства-времени возможны топологические дефекты трех типов: пространственно-временных размерностей 2 + 1 (стенки), 1 + 1 (струны) и 0 + 1(частицеподобные дефекты, например монополи), а также возможны гибридные варианты, включающие комбинации дефектов различных размерностей.

12.1. Образование топологических дефектов в ранней Вселенной

Достаточно общим свойством теоретико-полевых моделей с топологическими дефектами является то, что эти дефекты существуют лишь в фазе со спонтанно нарушенной симметрией, в которой имеются отличные от нуля средние скалярных полей. В симметричной фазе решения, описывающие топологические дефекты, отсутствуют в таких моделях. Именно с этой ситуацией мы столкнемся в разделах 12.2–12.5. Как мы обсуждали в Главе 10, при достаточно высоких температурах реализуется фаза с ненарушенной симметрией²⁾, а фаза с нарушенной симметрией возникает во Вселенной при понижении температуры в результате фазового перехода. Таким образом, существование топологических дефектов возможно во Вселенной лишь после соответствующего фазового перехода, т. е. при $T < T_c$, где T_c — температура фазового перехода³⁾.

²⁾ В некоторых моделях теории поля имеются исключения из этой общей картины, но мы не будем на них останавливаться.

³⁾ Образование топологических дефектов возможно как при тепловом фазовом переходе, происходящем в результате понижения температуры первичной плазмы, так и при нетепловых фазовых переходах, возможных на стадии постинфляционного разогрева.

Одним из механизмов образования топологических дефектов является тепловой механизм: после фазового перехода возможно образование дефектов в результате взаимодействия частиц среды. В отсутствие других механизмов оно стремится привести концентрацию топологических дефектов к равновесной. Тепловой механизм часто малоэффективен: например, если речь идет о частицеподобных солитонах (скажем, о магнитных монополях, которые мы рассмотрим в разделе 12.2), то их масса M_{TD} , как правило, велика по сравнению с критической температурой, и равновесная концентрация подавлена больцмановским множителем

$$n_{TD}^{(eq)} \propto e^{-M_{TD}/T_c}.$$
 (12.2)

Для струн и доменных стенок подавление еще сильнее.

Имеется, однако, и другой механизм, который называют механизмом Киббла. Мы подробно рассмотрим этот механизм в разделе 12.2 на примере магнитных монополей, но в действительности, как мы увидим, он имеет общий характер. Если в результате фазового перехода пространство вакуумов оказалось в широком смысле несвязным, то могли образоваться топологические дефекты соответствующей размерности. В причинно-связанной на момент фазового перехода области полевые конфигурации скоррелированы, а значит, в такой области образуется связная компонента нового вакуума. В то же время, на достаточно больших расстояниях вакуумы не скоррелированы, поэтому топология полей на масштабах, превышающих размер причинно связанной области, может совпадать с топологией соответствующего дефекта. При дальнейшей релаксации эта топология не изменяется, и во Вселенной возникает топологический дефект. В этом и состоит механизм Киббла. Это далеко не единственный механизм образования дефектов, однако он является наиболее универсальным, т. е. обеспечивает образование дефектов различных типов и достаточно слабо зависит от M_{TD}/T_c . После фазового перехода в ранней Вселенной в каждом причинно-связанном объеме образуется в среднем порядка одного топологического дефекта.

Чтобы оценить плотность топологических дефектов сегодня, требуется вычислить их плотность $n_{TD}(t_c)$ на момент образования t_c и знать их последующую эволюцию в расширяющейся Вселенной. В случае теплового рождения концентрация частицеподобных дефектов после фазового перехода оценивается величиной

$$n_{TD}(T_c) \lesssim n_{TD}^{(eq)}(T_c),$$

причем равновесная плотность $n_{TD}^{(eq)}$, как правило, экспоненциально мала, см. (12.2). Для топологических дефектов, образовавшихся по механизму Киббла, $n_{TD}(t_c)$ определяется корреляционной длиной l_{cor} , которая заведомо не превосходит⁴⁾ линейного размера причинно-связанной области на момент

⁴⁾ Для фазового перехода первого рода l_{cor} определяется как средний размер пузырей на момент перколяции. Для фазового перехода второго рода l_{cor} определяется как линейный размер области, в которой энергия, необходимая для разматывания топологически нетривиальных кон-

фазового перехода, т. е. размера горизонта на тот момент времени. Для метрики Фридмана—Робертсона—Уокера (2.13) размер горизонта определяется формулой (3.23),

$$l_H(t_c)=a(t_c)\int\limits_0^{t_c}rac{dt'}{a(t')}$$

В частности, для радиационно-доминированной стадии расширения Вселенной с $a(t) \propto \sqrt{t}$ размер причинно-связанной области равен обратному параметру Хаббла на момент фазового перехода,

$$l_H(t_c)=2t_c=rac{1}{H(t_c)},$$

что в свою очередь, используя (3.29), удобно представить через температуру фазового перехода T_c и параметр M_{Pl}^* . Окончательно для плотности числа топологических дефектов в момент их образования имеем

$$n_{TD}(t_c) \gtrsim l_H(t_c)^{-3} = \frac{T_c^6}{M_{Pl}^{*3}}.$$
 (12.3)

Оценка (12.3) является с точностью до численного множителя (который в ряде случаев может заметно отличаться от единицы) более или менее общей для всех типов частицеподобных топологических дефектов. Для протяженных дефектов (струн, доменных стенок) их плотность в момент образования определяется средним расстоянием между дефектами $l_D(t_c)$. Из приведенных соображений следует, что сразу после фазового перехода это расстояние не превышает размера горизонта, $l_D(t_c) \leq l_H(t_c)$.

Что касается дальнейшей эволюции плотности топологических дефектов, то она различна для различных типов дефектов. Заметим, что эта эволюция, как правило, является существенно неравновесным процессом: плотность энергии топологических дефектов эволюционирует с масштабным фактором (а значит, и с температурой первичной плазмы) по степенному закону, в то время как равновесные плотности дефектов при $T \ll T_c$ экспоненциально подавлены. Эта эволюция будет рассмотрена в следующих разделах, где обсуждаются наиболее часто встречающиеся типы топологических дефектов. Здесь же отметим, что в первые моменты после образования топологические дефекты не влияют на темп расширения Вселенной, поскольку их плотность энергии подавлена степенью малого отношения T_c/M_{Pl} по сравнению с плотностью энергии релятивистского вещества. Показатель степени здесь зависит от типа дефекта и, как следует из оценки (12.3), равен 3 для частицеподобных дефектов. На более поздних этапах эволюции Вселенной плотность энергии, накопленная в топологических дефектах, может стать существенной и даже доминирующей.

фигураций (например, для перехода через потенциальный барьер между вакуумами) по порядку величины равна температуре.

Отметим, что группа симметрии теории G может быть локальной (калибровочной) или глобальной. Соответствующие дефекты также называются локальными или глобальными. В первом случае энергия дефекта локализована, а в случае глобальных дефектов плотность энергии (градиентная часть) падает с расстоянием от центра настолько слабо, что интеграл энергии расходится. Распределение плотности энергии глобального дефекта, вообще говоря, простирается за горизонт на момент формирования, $l_H(t_c)$. В физически интересном случае нескольких дефектов это означает, что нельзя пренебрегать взаимодействием между ними. С учетом энергии взаимодействия полная энергия поля оказывается конечной.

12.2. * Монополи т'Хоофта-Полякова

12.2.1. Монополи в калибровочных теориях

Классическим примером модели, где существуют решения вида монополей (и антимонополей), является модель Джорджи—Глэшоу: SU(2)-калибровочная теория с триплетом скалярных полей ϕ^a , a = 1, 2, 3 (они преобразуются по присоединенному представлению группы SU(2)). Лагранжиан модели имеет вид

$$\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu} + \frac{1}{2} \mathcal{D}_{\mu} \phi^{a} \mathcal{D}^{\mu} \phi^{a} - \frac{\lambda}{4} (\phi^{a} \phi^{a} - v^{2})^{2}, \qquad (12.4)$$

где

$$F^a_{\mu
u} = \partial_\mu A^a_
u - \partial_
u A^a_\mu + g \epsilon^{abc} A^b_\mu A^c_
u,
onumber \ \mathcal{D}_\mu \phi^a = \partial_\mu \phi^a + g \epsilon^{abc} A^b_\mu \phi^c.$$

Помимо калибровочных взаимодействий между векторными полями A^a_{μ} и скалярными полями, он включает самодействие скалярных полей. В модели имеет место спонтанное нарушение симметрии: вакуумное среднее скалярного поля, определяемое из условия минимума скалярного потенциала

$$\langle \phi^a \phi^a \rangle = v^2, \tag{12.5}$$

инвариантно лишь относительно подгруппы U(1) группы калибровочной симметрии SU(2). Выбрав основное состояние скалярного поля в виде

$$\langle \phi^a \rangle = \delta^a_3 v, \tag{12.6}$$

найдем, что поле A^3_{μ} остается безмассовым (калибровочное поле ненарушенной подгруппы U(1)), а поля

$$W^\pm_\mu = rac{1}{\sqrt{2}}ig(A^1_\mu \pm i A^2_\muig)$$
и $h=\phi^3-v$

приобретают массы

$$m_W = g v$$
 и $m_h = \sqrt{2 \lambda v}$

соответственно.

Задача 1. Написав в модели (12.4) квадратичное действие для малых возмущений над вакуумом (12.6), убедиться в справедливости сделанных утверждений относительно низкоэнергетического спектра теории.

Мы будем интересоваться статическими конфигурациями вида

$$A_0^a = 0, \quad A_i^a = A_i^a(\mathbf{x}), \quad \phi^a = \phi^a(\mathbf{x})$$

с граничными условиями, определяемыми требованием конечности энергии, которая задается выражением

$$E = \int d^{3}x \left[\frac{1}{4} F_{ij}^{a} F_{ij}^{a} + \frac{1}{2} \mathcal{D}_{i} \phi^{a} \mathcal{D}_{i} \phi^{a} + \frac{\lambda}{4} (\phi^{a} \phi^{a} - v^{2})^{2} \right].$$
(12.7)

На пространственной бесконечности ($r \to \infty$, где $r^2 \equiv x^2$) поля принимают вакуумные значения, т. е. $\phi^a \phi^a = v^2$, $A^a_\mu = 0$ (с точностью до калибровочных преобразований), причем их поведение там ограничено условиями

$$F_{ij}^{a}(r \to \infty) \propto r^{-1-\alpha}, \qquad \alpha > \frac{1}{2},$$
$$\mathcal{D}_{i}\phi^{a}(r \to \infty) \propto r^{-1-\beta}, \qquad \beta > \frac{1}{2},$$
$$\phi^{a}\phi^{a}(r \to \infty) - v^{2}] \propto r^{-1-\gamma}, \qquad \gamma > \frac{1}{2},$$
(12.8)

следующими из требования интегрируемости плотности энергии в (12.7). На пространственной бесконечности модуль вектора (ϕ^1 , ϕ^2 , ϕ^3) отличен от нуля, не зависит от направления и равен v. Тем самым этот вектор задает отображе-

ние сферы S_{∞}^2 пространственной бесконечности в сферу S_{vac}^2 внутреннего пространства (пространства всех вакуумов теории, т. е. векторов, удовлетворяющих (12.5)). Поскольку

$$\pi_2(S^2) = \mathbb{Z}
eq 0,$$

то это отображение может быть нетривиальным, а значит, данная конфигурация — топологически стабильной.

Простейшее нетривиальное отображение получается для асимптотической конфигурации скалярного поля, напоминающей ежа, см. рис. 12.1,

$$\phi^a(r o \infty) = v n^a, \quad n^a \equiv rac{x^a}{r}, \quad (12.9)$$

при этом векторное поле должно асимптотически совпадать с

$$A_{i}^{a}(\mathbf{x}) = \frac{1}{gr} \epsilon^{aij} n_{j}, \qquad (12.10)$$

Рис. 12.1. Асимптотика хиггсовского поля монополя. Хиггсовское поле (показано стрелками) направлено во внутреннем пространстве так же, как радиус-вектор в физи-

ческом пространстве

чтобы удовлетворить требованию конечности энергии (12.8). Таким образом, интересующая нас конфигурация может быть описана анзацем

$$\phi^{a} = vn^{a} \cdot (1 - f(r)),$$

$$A_{i}^{a} = \frac{1}{ar} \epsilon^{aij} n^{j} (1 - a(r)).$$
(12.11)

Этот анзац симметричен относительно пространственных вращений, дополненных вращениями во внутреннем пространстве — глобальными SU(2)-преобразованиями. Функции f(r) и a(r) должны удовлетворять требованиям отсутствия сингулярности в начале координат и конечности полной энергии конфигурации, что приводит к граничным условиям

$$egin{aligned} f(r o \infty) &= a(r o \infty) = 0, \ [1 - f(r o 0)] \propto r^{1 + \widetilde{lpha}}, & \widetilde{lpha} \geqslant 0, \ [1 - a(r o 0)] \propto r^{2 + \widetilde{eta}}, & \widetilde{eta} \geqslant 0. \end{aligned}$$

Задача 2. Показать, что анзац (12.11) проходит через уравнения поля модели Джорджи— Глэшоу (12.4). Убедиться, что при $g \sim \sqrt{\lambda}$ функции f(r) и a(r) экспоненциально убывают на пространственной бесконечности.

Построенная нами конфигурация является примером магнитного монополя. Действительно, для асимптотики (12.10) неабелево электрическое поле равно нулю, а неабелево магнитное поле имеет вид

$$B_i^a = -\frac{1}{2} \epsilon_{ijk} F_{jk}^a = \frac{1}{gr^2} n_i n_a.$$
(12.12)

Напомним, что в обычной электродинамике магнитное поле вида

$$B_i = rac{1}{g} rac{n_i}{r^2}$$

создавал бы монополь Дирака — магнитный заряд величины

$$g_m = rac{1}{g},$$

расположенный в начале координат. Поэтому полученную нами конфигурацию также называют монополем (точнее, монополем т'Хоофта—Полякова).

Отметим, что в случае малых отклонений полей от вакуумных значений и при выборе калибровки (12.6) магнитным полем, соответствующим ненарушенной подгруппе U(1), является поле B_i^3 . В произвольной калибровке такое магнитное поле параллельно во внутреннем пространстве вектору ϕ^a и по величине равно ($B_i^a \phi^a / v$). Используя (12.9), получим, что асимптотика (12.12) соответствует, как и следовало ожидать, магнитному монополю ненарушенной подгруппы U(1), причем последнее совпадает с полем монополя Дирака. Массивные хиггсовское и векторные поля экспоненциально убывают вдали от центра монополя. Если отождествить ненарушенную подгруппу U(1) с группой электромагнетизма, то монополи т'Хоофта—Полякова вдали от их центра выглядят как частицы, обладающие магнитным зарядом.

Для дальнейшего полезно заметить, что наряду с монополями всегда имеются решения типа антимонополей. Они отличаются поведением хиггсовского поля

$$\phi^a = -vn^a(1-f(r)),$$

в то время как поле A_i^a для них имеет такой же вид, как поле монополя. Магнитное поле $(B_i^a \phi^a / v)$ имеет противоположный знак по сравнению с полем монополя.

Для моделей с $m_W \sim m_h$ массу монополя можно найти из размерных соображений, сделав в интеграле (12.7) замену переменных

$$x=(gv)^{-1}\xi, \quad A^a_\mu=v\mathcal{A}^a_\mu, \quad \phi^a=varphi^a,$$

В результате энергия (12.7) примет вид

$$E=rac{m_W}{g^2}\int d^3 \xi ~igg[rac{1}{4}\mathcal{F}^a_{ij}\mathcal{F}^a_{ij}+rac{1}{2}\mathcal{D}_iarphi^a\mathcal{D}_iarphi^a+rac{m_h^2}{8m_W^2}(arphi^aarphi^a-1)^2igg].$$

Поскольку монопольная конфигурация минимизирует функционал энергии, а подынтегральное выражение при $m_W \sim m_h$ не содержит существенно отличающихся от единицы (больших или малых) параметров, то массу монополя можно оценить как

$$m_M\simeq rac{4\pi m_W}{g^2}=rac{4\pi v}{g},$$

где множитель 4π соответствует интегрированию по углам. Таким образом, масса монополя превышает энергетический масштаб v, характеризующий нарушение симметрии $SU(2) \rightarrow U(1)$.

Существование магнитных монополей является общим свойством теорий Большого объединения. В контексте теорий Большого объединения монополи имеют массы порядка $m_M \sim 10^{16}$ ГэВ и образуются при фазовом переходе Большого объединения, т. е. при температуре $T_c \sim 10^{16}$ ГэВ. Это верно, конечно, в предположении, что такие температуры достигались в ранней Вселенной.

Сформулируем необходимое условие существования монополей в калибровочных теориях общего вида. Пусть лагранжиан теории инвариантен относительно калибровочной группы G, а основное состояние инвариантно лишь относительно группы H, являющейся подгруппой G, $H \subset G$. Многообразие \mathcal{M} эквивалентных вакуумов в такой теории представляет собой фактор-пространство G/H (предполагается, хотя это и не необходимо, что группа G действует на многообразии \mathcal{M} транзитивно, т. е. все вакуумы связаны между собой преобразованием симметрии). Стабильные монопольные конфигурации — дефекты пространственно-временной размерности 0+1 — возможны, если многообразие \mathcal{M} вакуумов теории содержит нестягиваемые сферы, т. е. вторая гомотопическая группа этого многообразия нетривиальна,

$$\pi_2(G/H)\neq 0.$$

Если калибровочная группа G — простая или полупростая (калибровочные группы всегда компактны), а H включает в себя одну фактор-группу U(1), то

$$\pi_2(G/H) = \pi_1(H) = \mathbb{Z},$$

так что монополи в таких моделях всегда существуют. В Стандартной модели

$$G = SU(3) imes SU(2) imes U(1),$$
 $H = SU(3) imes U(1)$ и $\pi_2(G/H) = 0$

таким образом, в Стандартной модели монополей нет. Иная ситуация имеет место в теориях Большого объединения: там калибровочная группа, как правило, — простая (реже полупростая), а нарушается она при высоких энергиях до $SU(3)_c \times SU(2)_w \times U(1)_Y$, а в конечном итоге — до $H = SU(3)_c \times U(1)_{em}$ (примером служит теория SU(5), рассмотренная в разделе 11.2.2). Поэтому $\pi_2(G/H) = \mathbb{Z}$, откуда и следует сделанное выше утверждение о том, что монополи существуют во всех теориях Большого объединения.

12.2.2. Механизм Киббла

Обсудим на примере монополей т'Хоофта—Полякова в модели Джорджи—Глэшоу, как работает механизм Киббла. При высоких температурах среднее хиггсовского поля равно нулю, среда находится в фазе с ненарушенной симметрией, и монополей не существует. В результате фазового перехода хиггсовское поле становится отличным от нуля. На расстоянии больше корреляционной длины l_{cor} направления хиггсовского поля сразу после фазового перехода никак не скоррелированы. В результате во Вселенной имеются как области с хиггсовским полем, направленным так, как изображено на рис. 12.2 *a*, так и области с конфигурациями хиггсовского поля, изображенными на рис. 12.2 *b* и *c*. Конфигурация рис. 12.2 *a* топологически тривиальна, и в результате дальнейшей эволюции она релаксирует к состоянию без монополя. Конфигурация рис. 12.2 *b* имеет топологию ежа (ср. с рис. 12.1); в результате ее эволюции в системе образуется монополь. Из конфигурации рис. 12.2 *c* в конечном итоге образуется антимонополь. Вероятности реализации всех трех типов конфигураций примерно одинаковы (а для рис. 12.2 *b*

Рис. 12.2. Возможные конфигурации хиггсовского поля сразу после фазового перехода. Обведены области с линейными размерами порядка *l*_{cor}

и 12.2 с в точности равны), поэтому концентрации монополей и антимонополей сразу после фазового перехода можно оценить как

$$n_M=n_{\overline{M}}\sim \frac{1}{l_{cor}^3}.$$

Образование хигтсовского конденсата заведомо происходит независимым образом на расстояниях, превышающих размер космологического горизонта, откуда и следует упоминавшееся в разделе 12.1 ограничение

$$l_{cor} \leq H^{-1}(T_c).$$

Таким образом, концентрация монополей, образованных за счет механизма Киббла, действительно оценивается формулой (12.3).

12.2.3. Остаточная концентрация: проблема монополей

При температурах ниже температуры фазового перехода, сопровождаемого образованием монополей, последние являются (или быстро становятся) нерелятивистскими объектами и в расширяющейся Вселенной ведут себя как пыль: плотность монополей падает как

$$n_M(t) \propto a^{-3}(t).$$

(здесь мы пренебрегаем аннигиляцией монополей и антимонополей, см. ниже). Это означает, в частности, что отношение плотности монополей к плотности энтропии во Вселенной, которая изменяется с масштабным фактором по тому же закону (см. (5.36)) остается почти неизменным,

$$\frac{n_M(t)}{s(t)} = \text{const.}$$

Этим обстоятельством можно воспользоваться, чтобы оценить современный вклад монополей в плотность энергии во Вселенной. По-прежнему пренебрегая возможной аннигиляцией монополей и антимонополей, будем иметь

$$\rho_{M,0} = m_M n_{M,0} = m_M \frac{n_{M,T_c}}{s(T_c)} \cdot s_0 \sim \sqrt{g_*} \cdot m_M \frac{T_c^6}{M_{Pl}^3} \frac{g_0^* T_0^3}{T_c^3} \sim \sim 10^{12} \frac{m_M}{10^{16} \text{ F} \Rightarrow \text{B}} \left(\frac{T_c}{10^{16} \text{ F} \Rightarrow \text{B}}\right)^3 \sqrt{\frac{g_*}{10^2}} \text{ F} \Rightarrow \text{B} \cdot \text{cm}^{-3}, \qquad (12.13)$$

где мы учли выражение (5.31) для плотности энтропии в горячей Вселенной. Для типичных энергетических масштабов теорий Большого объединения, $T_c \sim m_M \sim 10^{16}$ ГэВ, получившаяся плотность энергии более чем на 17 порядков превосходит критическую плотность $\rho_c \sim 10^{-5}$ ГэВ см⁻³. В этом состоит проблема монополей: полученный результат означает, что либо по тем или иным причинам в ранней Вселенной не происходило рождение монополей (например, на горячей стадии температуры не достигали значений $T_c \sim 10^{16}$ ГэВ), либо топология пространства вакуумов фундаментальной теории не подразумевает существования монополей. Последняя возможность не совместима с идеей Большого объединения.

Учет возможной аннигиляции монополей и антимонополей не изменяет на качественном уровне вывода о том, что фазовые переходы с образованием монополей в горячей Вселенной должны быть запрешены. Убедимся в этом.

Нерелятивистский монополь, двигаясь в плазме заряженных релятивистских частиц, испытывает эффективную силу трения, вызванную электромагнитным взаимодействием с частицами плазмы. Величину этой силы можно оценить как

$$\boldsymbol{f} \sim \boldsymbol{n}(T) \cdot \boldsymbol{\sigma} \cdot \Delta \boldsymbol{p},$$

где n(T) — плотность взаимодействующих с монополем частиц плазмы, $\sigma \sim \alpha g_m^2/T^2$ — сечение взаимодействия, и $\Delta p \sim T v_M$ — импульс, отбираемый у монополя, движущегося со скоростью $v_M \ll 1$. Таким образом,

$$\boldsymbol{f}=-\kappa T^2\boldsymbol{v}_M,$$

где $\kappa \sim \alpha g_m^2 g_* \sim g_*$. Записав второй закон Ньютона для монополя (расширением Вселенной пока пренебрегаем),

$$m_M rac{dv_M}{dt} = -\kappa T^2 v_M,$$

найдем, что за время

$$t_M \sim \frac{m_M}{\kappa T^2}$$

монополь существенно меняет свою скорость за счет взаимодействий в плазме. Это время свободного пробега всегда много меньше хаббловского времени M_{Pl}^*/T^2 , поэтому монополи эффективно взаимодействуют с плазмой и, следовательно, движутся с «температурной» скоростью

$$v_M \sim v_T = \sqrt{rac{T}{m_M}}.$$

Длина свободного пробега монополя в плазме равна

$$l_M \sim v_T \cdot t_M = rac{1}{\kappa T} \sqrt{rac{m_M}{T}}.$$

Видно, что длина свободного пробега монополя мала при высоких температурах.

Эффективная аннигиляция монополей и антимонополей могла происходить на ранних этапах эволюции Вселенной, когда длина свободного пробега монополей в плазме была мала. Нерелятивистские монополь и антимонополь сближаются благодаря силе электромагнитного притяжения, а взаимодействие с плазмой позволяет уменьшить их относительную скорость и сформировать *монополоний* — связанное состояние, которое в дальнейшем аннигилирует в обычные частицы (аналог позитрония). Именно так, в две стадии, и происходит аннигиляция монополей в ранней Вселенной. Связанное состояние будет образовано, если монополь и антимонополь сблизятся настолько, что энергия их электромагнитного взаимодействия превысит по величине температуру, т. е. при $r \leq r_0 = g_m^2/T$. Отсюда получим для эффективного сечения образования монополония и, следовательно, аннигиляции монополей ⁵⁾

$$\sigma_{ann}\sim r_0^2\equiv rac{g_m^4}{T^2}.$$

Эта оценка справедлива при высоких температурах, когда длина свободного пробега l_M мала по сравнению с r_0 ; в противном случае монополоний не образуется, и аннигиляция идет медленно.

При высоких температурах концентрация монополей поддерживается такой, что время свободного пробега монополя по отношению к аннигиляции примерно равно хаббловскому времени, т. е.

$$\sigma_{ann} n_M v_M \sim rac{T^2}{M_{Pl}^*}.$$

-

Вспоминая, что монополи имеют тепловую скорость, получим отсюда

$$\frac{n_M}{s} \cdot g_* g_m^4 \frac{M_{Pl}^*}{\sqrt{m_M T}} \sim 1, \qquad (12.14)$$

где мы учли, что $s \sim g_*T^3$. Видно, что за счет аннигиляции отношение n_M/s падает с уменьшением температуры. Этот режим имеет место до тех пор, пока выполняется условие $l_M \ll r_0$, и при $l_M \sim r_0$ аннигиляция прекращается. Из последнего условия получаем температуру закалки

$$T_f \sim rac{m_M}{g_m^4 \kappa^2}$$

Концентрацию монополей в этот момент найдем из (12.14):

$$\frac{n_M}{s} \sim \frac{1}{\kappa g_m^6} \frac{m_M}{M_{Pl}^* g_*}.$$
 (12.15)

Это отношение сохраняется до нашего времени; подставляя $g_m^2 \sim \alpha^{-1} \sim 100$, $\kappa \sim g_* \sim 100$, имеем для современной плотности массы монополей

$$ho_{M,0}=m_M\cdot rac{n_M}{s}\cdot s_0\sim 10^7\cdot \left(rac{m_M}{10^{16}~{
m F}
m {
m B}{
m B}}
ight)^2$$
ГэВ \cdot см $^{-3}$

Эта величина значительно меньше, чем вклад монополей без учета аннигиляции (12.13), однако она все равно слишком велика в случае теорий Большого объединения, где для массы монополя имеется оценка $m_M \sim 10^{16}$ ГэВ.

⁵⁾ В большинстве моделей время аннигиляции монополония оказывается заметно меньше хаббловского времени, определяющего темп расширения Вселенной, поэтому момент образования монополония можно считать совпадающим с моментом аннигиляции монополя и антимонополя в частицы.

Исторически указанная проблема монополей была сильным аргументом против экстраполяции теории горячей Вселенной в область температур выше 10¹⁶ ГэВ. Этот аргумент был (и сейчас является) одним из доводов в пользу инфляционной теории.

Задача 3. Показать, что при $T \ll T_f$ изменение отношения (12.15) за счет аннигиляции монополей пренебрежимо мало́. Указание: считать, что эффектами среды на аннигиляцию монополей при таких температурах можно пренебречь. Учесть фактор кулоновского усиления сечения аннигиляции.

Задача 4. Найти температуру в воображаемой Вселенной, в которой при температуре $T \sim 10^{16}$ ГэВ образовались монополи с массой $m_M \sim 10^{16}$ ГэВ, а параметр Хаббла принимает значение, характерное для наблюдаемой Вселенной.

12.3. *Космические струны

12.3.1. Струнные конфигурации

Минимальная модель, в которой имеются топологические дефекты размерности один — космические струны, — это абелева модель Хиггса⁶⁾ с лагранжианом

$$\mathcal{L} = D^{\mu} \phi^* D_{\mu} \phi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \lambda \left(\phi^* \phi - \frac{v^2}{2} \right)^2,$$

$$D_{\mu} \phi = \partial_{\mu} \phi - i e A_{\mu} \phi, \quad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu},$$
(12.16)

где ϕ — комплексное скалярное поле, A_{μ} — калибровочное поле группы U(1). Лагранжиан (12.16) инвариантен относительно U(1) калибровочных преобразований

$$\phi
ightarrow \phi {
m e}^{ilpha(x)}, \quad \phi^*
ightarrow \phi^* {
m e}^{-ilpha(x)}, \quad A_\mu
ightarrow A_\mu + rac{1}{e} \partial_\mu lpha(x)$$

В теории (12.16) имеет место спонтанное нарушение симметрии: вакуумы теории, определяемые из условия минимума скалярного потенциала, описываются равенством

$$\left|\langle\phi\rangle\right|^2 = \frac{v^2}{2} \tag{12.17}$$

и нарушают симметрию G = U(1) полностью ($G \to H, H = I$). Многообразие эквивалентных вакуумов теории описывается уравнением (12.17) и представляет собой окружность S^1 (это соответствует соотношению G/H = U(1)),

$$\langle \phi
angle = rac{v}{\sqrt{2}} e^{i lpha}, \quad lpha \in [0, 2\pi).$$

Спектр теории найдем, как обычно, представив лагранжиан (12.16) в виде разложения в ряд Тейлора вокруг вакуумного значения полей $\phi^{vac} = \langle \phi \rangle$, $A^{vac}_{\mu} = 0$

⁶⁾ В моделях с глобальной абелевой группой симметрии возможно образование глобальных струн.

в калибровке Im $\phi = 0$, т.е. $\phi = v/\sqrt{2} + h$ с действительным h. Квадратичная по возмущениям часть лагранжиана имеет вид

$${\cal L}_2 = rac{1}{2} \partial^\mu h \partial_\mu h - rac{1}{4} F_{\mu
u} F^{\mu
u} - \lambda v^2 h^2 + rac{1}{2} e^2 v^2 A_\mu A^\mu.$$

Таким образом, в результате спонтанного нарушения симметрии все поля становятся массивными: в модели имеются вещественные векторное и скалярное поля с массами

$$M_A = ev$$
 и $M_\phi = \sqrt{2\lambda} v$

соответственно.

В горячей Вселенной при температурах $T \gg v$ как действительная, так и мнимая компоненты комплексного поля ϕ принимают разные значения в различных точках пространства: случайная фаза $\alpha(\mathbf{x})$, определенная в каждой точке формально как arctg [Re ϕ / Im ϕ], распределена равномерно. В момент фазового перехода при некоторой температуре T_c хиггсовское поле приобретает ненулевое среднее, и значения $\alpha(\mathbf{x})$ фиксируются. Они оказываются, вообще говоря, разными в различных точках, однако поскольку в полную энергию конфигурации дает вклад и градиентный член, то с последующим охлаждением плазмы конфигурация стремится стать более однородной. В конечном итоге фазы $\alpha(\mathbf{x})$ могут полностью сравняться во всем объеме горизонта, однако такого может и не произойти: при обходе по окружности фаза поля ϕ может измениться. Однозначность поля требует лишь, чтобы при полном обходе вдоль любого замкнутого контура C фаза поля ϕ изменялась бы на величину, кратную 2π ,

$$\Delta \alpha = \oint_{C} \frac{d\alpha}{d\theta} \, d\theta = 2\pi N, \qquad (12.18)$$

где θ — азимутальный угол в физическом пространстве. Конфигурации с $N \neq 0$ получили название струн, а описанный механизм их образования является не чем иным, как механизмом Киббла. Космическая струна вновь может быть проиллюстрирована рис. 12.1, однако теперь плоскость рисун-ка — это плоскость, перпендикулярная струне, а стрелки изображают векторы в двумерном внутреннем пространстве (Re ϕ , Im ϕ). С этим уточнением механизм Киббла вновь иллюстрируется рис. 12.2; он приводит к образованию порядка одного участка струны длины l_{cor} в объеме l_{cor}^{3} .

Непрерывность поля ϕ гарантирует, что струны должны быть либо замкнутыми, либо бесконечными — открытыми струнами с концами, уходящими за горизонт⁷⁾. Непрерывность поля ϕ гарантирует также зануление ϕ на некоторой линии, проходящей внутри контура C, по которому ведется интегрирование в (12.18). Это означает, что вдоль этой линии поле ϕ по-прежнему находится в ненарушенной фазе, $\langle \phi \rangle = 0$, а значит, локально вблизи этой

⁷⁾ По этой причине от космических струн, если они есть во Вселенной, довольно трудно «избавиться»

линии (сердцевины струны) рассмотренная нами конфигурация сохраняет большую плотность энергии, $\mathcal{E} \sim v^4$.

Итак, в абелевой модели Хиггса (12.16) образуются одномерные топологические дефекты — струны. Они представляют собой нетривиальные полевые конфигурации, удовлетворяющие на пространственной бесконечности условию минимума скалярного потенциала (12.17), но имеющие для ϕ и A_{μ} нетривиальную зависимость от угловых переменных. В частном случае бесконечной прямой струны, направленной вдоль оси z, полевая конфигурация не зависит от z и имеет нетривиальные асимптотики на пространственной бесконечности в плоскости (x, y) (здесь и далее мы опускаем произвольную постоянную фазу в значении вакуумного среднего поля ϕ , поскольку ее всегда можно обнулить переопределением полей),

$$\phi \to \frac{v}{\sqrt{2}} e^{iN\theta}, \quad A_{\mu} \to \frac{N}{e} \partial_{\mu}\theta,$$
 (12.19)

где θ — полярный угол цилиндрической системы координат, ориентированной вдоль оси z, а N — целое число, определяющее число намоток (оборотов) во внутреннем пространстве ($\mathcal{M} = G/H = S^1$) на каждый оборот в физическом пространстве (на плоскости (x, y)). Число намоток N является топологическим инвариантом. Выписанная в (12.19) асимптотика поля A_{μ} выбирается таким образом, что асимптотически, при $x^2 + y^2 \to \infty$, выполняется

$$D_{\mu}\phi \to 0, \quad F_{\mu\nu} \to 0,$$

так что физических полей вдали от струны нет, и энергия струны (на единицу длины) конечна.

Как мы уже отмечали, фаза поля ϕ изменяется на $2\pi N$ после полного оборота вокруг оси z,

$$\Delta lpha = \oint rac{d(N heta)}{d heta} d heta = 2\pi N.$$

Кроме того, из (12.19) следует, что в сердцевине струны имеется магнитное поле. Для потока магнитного поля $\mathbf{B} = \nabla \times \mathbf{A}$ вдоль струны (т. е. вдоль оси z) получим

$$\int \mathbf{B} \, \mathbf{ds} = \oint A_{ heta} \, d heta = rac{2\pi}{e} N.$$

Магнитный поток, протекающий вдоль струны, квантован.

В теории конденсированных сред такие струны называют вихрями Абрикосова — это трубки магнитного потока в сверхпроводниках. В физике частиц обсуждаемые решения называют струнами Абрикосова—Нильсена—Олесена, или просто космическими струнами.

Сформулируем необходимые условия существования струнных дефектов в калибровочных теориях общего вида. Пусть лагранжиан теории инвариантен относительно группы калибровочной симметрии G, а основное состояние инвариантно лишь относительно группы H, являющейся подгруппой G. Многообразие \mathcal{M} эквивалентных вакуумов в такой теории, как правило, совпадает с G/H. Существование (1 + 1)-мерных пространственно-временных полевых конфигураций — космических струн возможно, если многообразие вакуумов \mathcal{M} не является односвязным, т. е. содержит нестягиваемые петли — нетривиальные отображения одномерной сферы (окружности) в пространство вакуумов. Поэтому необходимым условием существования стабильных струн является нетривиальность первой гомотопической группы многообразия вакуумов теории,

$$\pi_1(G/H) \neq 0,$$
 (12.20)

т. е. многосвязность пространства вакуумов *M*.

Хотя в общем случае аналитического решения уравнений поля с асимптотикой (12.19) не существует, известны приближения, на качественном уровне хорошо согласующиеся с численными результатами. Для получения приближенного вида полевых конфигураций используют следующий анзац, согласующийся с асимптотическим поведением (12.19):

$$\phi = \frac{v}{\sqrt{2}} (1 - f(\rho)) e^{iN\theta}, \quad A_i = -\frac{N}{e\rho} \frac{\epsilon_{ij} x^j}{\rho} (1 - a(\rho)), \quad i, j = 1, 2, \quad (12.21)$$

где $\rho = \sqrt{(x^1)^2 + (x^2)^2}$ — радиальная координата на плоскости (x, y). Поскольку при больших ρ поля струнной конфигурации должны выходить на асимптотики (12.19), то для функций $f(\rho)$, $a(\rho)$ будем иметь

$$f(\rho \to \infty) \to 0$$
, $a(\rho \to \infty) \to 0$.

При малых ρ поля ϕ и A^{μ} постепенно уменьшаются и обращаются в нуль при $\rho = 0$. Отсюда для функций $f(\rho)$, $a(\rho)$ получим единичные асимптотики в нуле:

$$f(\rho \to 0) \to 1$$
, $a(\rho \to 0) \to 1$.

Такое поведение обеспечивает гладкость всей конфигурации при $\rho \to 0$. Зануление поля означает, что сердцевина струны образует область с ненарушенной U(1) симметрией.

Оценим энергию, приходящуюся на единицу длины струны (натяжение). Поступая так же, как в случае монополя, запишем

$$\mu = \frac{dE}{dz} = \int d^2x \left[D_i \phi^* D_i \phi + \frac{1}{4} F_{ij}^2 + \lambda \left(\phi^* \phi - \frac{v^2}{2} \right)^2 \right] =$$
$$= v^2 \int d^2\xi \left[D_i \varphi^* D_i \varphi + \frac{1}{4} \mathcal{F}_{ij}^2 + \frac{\lambda}{e^2} \left(\varphi^* \varphi - \frac{1}{2} \right)^2 \right], \qquad (12.22)$$

где сделана замена переменных $\phi = v\varphi$, $x = (ev)^{-1}\xi$, $A_i = v\mathcal{A}_i$ и введены обозначения

$$D_j \varphi = (\partial_j - i\mathcal{A}_j)\varphi, \qquad (12.23)$$

$$\mathcal{F}_{ij} = \partial_i \mathcal{A}_j - \partial_j \mathcal{A}_i. \tag{12.24}$$

Отсюда следует оценка для натяжения

$$\mu \sim \pi v^2, \tag{12.25}$$

если $N \sim 1$ и $\lambda \sim e^2$. Отсюда также следует, что толщина струны, т.е. размер области, где плотность энергии отлична от нуля, оценивается как $\xi \sim 1$, т.е. $\rho \sim (ev)^{-1}$. Для специального случая $M_{\phi} = M_A$ оказывается, что струнная конфигурация $A_{\mu}(x^1, x^2)$, $\phi(x^1, x^2)$ является решением уравнений первого порядка, которые можно получить, несколько преобразовав выражение для натяжения струны. При этом интегралы, входящие в (12.22), можно вычислить аналитически, получив в результате

$$\boldsymbol{\mu} = \boldsymbol{\pi} \boldsymbol{v}^2, \qquad (12.26)$$

что подтверждает оценку (12.25).

Задача 5. Выразить в кг/см плотность энергии струны μ при $v \sim 10^{16}$ ГэВ. Сравнить массу Земли с массой струны, опоясывающей Землю по экватору.

Стабильность асимптотик типа (12.19) обеспечивается топологией

$$\pi_1(S^1) = \mathbb{Z} \neq 0,$$

причем параметр $N \in \mathbb{Z}$ как раз определяет число намоток при отображении пространственной асимптотики в многообразие вакуумов теории, S^1 . В то же время асимптотики типа (12.19) не обеспечивают единственности решения с |N| > 1: эти асимптотики одинаковы для одного вихря с намоткой N и для Nвихрей с единичной намоткой. В зависимости от параметров модели те или иные конфигурации могут быть предпочтительнее. При $M_A < M_{\phi}$ струнам с |N| > 1 энергетически выгодно распадаться в струны с |N| = 1, а при $M_A > M_{\phi}$, наоборот, выгоден процесс слияния вихрей (в теории сверхпроводимости эти случаи соответствуют сверхпроводникам второго и первого рода). В то же время, в ранней Вселенной образование струн с |N| > 1 подавлено: в результате фазового перехода образуются в основном струны с |N| = 1.

Чтобы понять, какое влияние оказывают космические струны на геометрию пространства, найдем тензор энергии-импульса струны. В общем случае для лагранжиана (12.16) имеем:

$$T_{\mu
u} = -\mathcal{L}g_{\mu
u} + D_{\mu}\phi^{*}D_{
u}\phi - F_{\mu\lambda}F_{
u
ho}g^{\lambda
ho},$$

что для конфигурации (12.21) дает

$$T_{\mu\nu} = \text{diag} (1, 0, 0, -1) \cdot \mathcal{L}.$$
 (12.27)

Отметим, что как конфигурация (12.21), так и тензор энергии импульса (12.27) инвариантны относительно лоренцевых бустов вдоль струны. Ясно, что в такой ситуации перемещение всей конфигурации (как «единого объекта») вдоль направления струны нефизично.

В дальнейшем нас будут интересовать масштабы расстояний $l \gg (ev)^{-1}$, т. е. много большие толщины струны. При изучении таких масштабов тензор

энергии-импульса (12.27) можно положить равным

$$T_{\mu\nu} = \mu \cdot \text{diag} \ (1, 0, 0, -1) \ \delta(x) \delta(y), \tag{12.28}$$

где μ является натяжением и с точностью до численного множителя (зависящего от безразмерных параметров N и λ/e^2) определяется выражением (12.25). Приближение (12.28) называют приближением бесконечно тонкой струны, и для изучения основных гравитационных и космологических эффектов, свзанных со струнами, этого приближения нам будет вполне достаточно.

Задача 6. Получить с точностью до численного коэффициента тензор энергии-импульса бесконечной прямой струны (12.28), исходя из соображений размерности, цилиндрической симметрии, сохранения тензора-энергии импульса и требований лоренцинвариантности относительно бустов вдоль струны и локализованности энергии.

В тензоре энергии-импульса струны (12.28) лишь две компоненты отличны от нуля: плотность энергии T_{00} и давление вдоль струны T_{33} . Энергия и давление совпадают по величине, но оказываются разного знака. Этот факт указывает на то, что мы имеем дело с релятивистским объектом, для исследования гравитационных свойств которого нельзя ограничиваться лишь ньютоновским приближением. Тем не менее, можно думать, что вдали от струны метрика пространства-времени близка к плоской, и поэтому можно использовать уравнение для статического скалярного ньютонова потенциала Φ , определенного во внешней метрике Минковского соотношением $g_{00} = 1 + 2\Phi$. Это уравнение имеет вид (см. (A.116), (A.118))

$$\Delta \Phi = 8\pi G \left(T_{00} - \frac{1}{2} \eta^{\mu\nu} T_{\mu\nu} \right) = 4\pi G (T_{00} + T_{11} + T_{22} + T_{33}).$$
(12.29)

Для источника (12.28) ньютонов потенциал равен нулю, поскольку уравнение (12.29) принимает вид однородного уравнения Лапласа:

$$\Delta \Phi = 4\pi G \left(T_{00} + T_{11} + T_{22} + T_{33} \right) = 0. \tag{12.30}$$

Это означает, что вне сердцевины струны ньютоновское гравитационное поле отсутствует. Прямые покоящиеся струны гравитационно не отталкивают и не притягивают ни пыль, ни друг друга! Другими словами, с точки зрения гравитации, струны и нерелятивистская материя находятся в безразличном равновесии, т. е. такая конфигурация гравитационно стабильна. Мы подробно обсудим геометрию пространства в присутствии бесконечной прямой струны в разделе 12.3.3.

Мы обсуждаем здесь бесконечные прямые струны. Для искривленных струн, или струн с рябью, тензор энергии импульса на расстояниях, много больших характерных линейных размеров ряби, можно также считать локализованным вдоль одной линии, однако плотность энергии T_{00} и давление вдоль струны T_{33} у такого эффективного тензора уже не будут совпадать по величине, $|T_{00}| \neq |T_{33}|$. При этом плотность энергии T_{00} будет несколько больше плотности энергии прямой струны μ , поскольку с точки зрения удаленного наблюдателя на одной и той же единице длины «укладывается» больший отрезок струны с рябью, чем отрезок прямой струны. По той же причине натяжение струны с рябью T_{33} будет по величине меньше натяжения μ , причем между натяжениями и плотностями энергий этих струн будет выполняться соотношение $\mu^2 = T_{00} \cdot |T_{33}|$. Поскольку для искривленных струн $|T_{00}| \neq |T_{33}|$, правая часть в уравнении для ньтонова потенциала (12.30) будет отлична от нуля: струны с рябью создают статическое гравитационное поже.

В процессе эволюции струна заметает (1+1)-мерное многообразие в пространстве-времени — мировую поверхность. Действие для тонкой космической струны равно площади мировой поверхности струны (по аналогии с тем, как действие для частицы — точечного объекта — равно длине мировой линии):

$$S = -\mu \int \sqrt{-\gamma} \, d^2 \xi, \quad \xi^{\alpha} = (\tau, \sigma) \,, \qquad (12.31)$$

где τ — собственное время, σ — координата точки на струне, $X^{\mu} = X^{\mu}(\sigma, \tau)$ — уравнение мировой поверхности, а

$$\gamma \equiv \det{(\gamma_{lphaeta})}, \quad \gamma_{lphaeta} = \partial_lpha X^\mu \left(au, \sigma
ight) \partial_eta X^
u \left(au, \sigma
ight) g_{\mu
u}$$

— индуцированная метрика на струне. Это действие называется действием Намбу—Гото, и оно хорошо описывает динамику космических струн за исключением точек их пересечений, где становится существенной ненулевая толщина струны.

Действие Намбу— Гото можно получить как главное приближение к эффективному действию для движущейся искривленной космической струны в абелевой модели Хиггса (12.16). Чтобы вывести это действие, нужно найти (приближенио) вид струнной конфигурации, подставить его в действие (12.16) и произвести интегрирование по поперечным к струне координатам.

Введем ξ^0 и ξ^1 как, соответственно, времениподобную и пространственноподобную координаты на пространственно-временном многообразии $X^{\mu}(\xi)$ — мировой поверхности, — где хиггсовское поле ϕ принимает нулевое значение. Если кривизна струны мала по сравнению с ее толщиной, то вблизи каждой точки $X^{\mu}(\xi)$ хорошим приближением к струнному решению будет статическая струнная конфигурация вида (12.21), обобщенная на случай ненулевой поперечной скорости. В любой точке на мировой поверхности можно выбрать два пространственноподобных вектора (нормали к мировой поверхности) $e_{\mu}^{(\alpha)}$, $\alpha = 1, 2$, ортонормированных, $e_{\mu}^{(\alpha)}e_{\nu}^{(\beta)}g^{\mu\nu} = -\delta^{\alpha\beta}$, и ортогональных к тангенциальным к мировой поверхности векторам $\partial X^{\mu}/\partial \xi^{\beta}$, т.е. $e_{\mu}^{(\alpha)}\partial X^{\mu}/\partial \xi^{\beta} = 0$. Координату любой точки x^{μ} , близкой к мировой поверхности $X^{\mu}(\xi)$, можно теперь представить в виде

$$x^{\mu}\equiv x^{\mu}(\zeta)=X^{\mu}(\xi)+\sum_{lpha=1}^{2}e^{(lpha)\mu}(\xi)\eta^{lpha}, \quad \zeta=(\xi^{0},\xi^{1},\eta^{1},\eta^{2}),$$

где мы ввели две новые координаты η^{α} , $\alpha = 1, 2$; в случае прямой струны они параметризуют точки в перпендикулярной к струне плоскости. Новые координаты ζ^{μ}

будут однозначно определенными, если расстояние от точки x^{μ} до мировой поверхности струны меньше, чем ее радиус кривизны. Якобиан перехода от координат x^{μ} к координатам ζ^{μ} имеет вид

$$\sqrt{-g} \cdot \det\left(\frac{\partial x}{\partial \zeta}\right) = \sqrt{-\det\left(g_{\mu\nu}\frac{\partial x^{\mu}}{\partial \zeta^{\lambda}}\frac{\partial x^{\nu}}{\partial \zeta^{\rho}}\right)} \approx \sqrt{-\gamma} + \dots, \qquad (12.32)$$

причем в разложении мы учли только слагаемые, не подавленные обратным радиусом кривизны струны.

В новых координатах для струнной полевой конфигурации будем иметь:

$$\phi(x(\zeta)) = \phi^{(s)}(\eta^1,\eta^2) \quad A^{\mu}(x(\zeta)) = \sum_{lpha=1}^2 e^{(lpha)\mu} A^{(s)}_{lpha}(\eta^1,\eta^2),$$

где функции с индексами (s) — это функции двух пространственных координат, определяющие решение для прямой струны, ортогональной плоскости (x_1, x_2) (см анзац (12.21), при этом место переменных x_1, x_2 займут переменные η^1, η^2). В лидирующем порядке разложения по обратному радиусу кривизны струны получим также

$$D_{\mu}\phi^*D^{\mu}\phi \approx D_{\mu}\phi^{(s)*}D^{\mu}\phi^{(s)}, \quad F_{\mu\nu}^2 \approx F_{(s)\mu\nu}^2, \quad V(\phi) \approx V(\phi^{(s)}).$$
 (12.33)

Окончательно, подставляя в действие модели (12.16) якобиан (12.32) и выражения (12.33) и интегрируя по «поперечным» координатам η^{α} , получим действие Намбу—Гото (12.31).

Задача 7. Убедиться, что к действию Намбу—Гото (12.31) не появляется поправок, линейных по отношению толщины струны к ее кривизне.

12.3.2. Газ космических струн

Бесконечные струны, пересекаясь в ходе эволюции, приводят к появлению замкнутых струн конечной длины R. Такие струны стремятся уменьшить свою длину, что достигается: 1) в результате самопересечений, когда образуются струны меньшей длины; 2) вследствие излучения гравитационных волн. Вдали от замкнутой струны создаваемое ею гравитационное поле совпадает с полем точечной частицы массы $M_s = 2\pi R\mu$. Поэтому в пренебрежении диссипацией энергии струн космология газа замкнутых струн (с $R \ll l_H$) совпадает либо с космологией фотонного газа, если замкнутые струны движутся со скоростями, близкими к скорости света, либо с космологией темной материи, если струны движутся медленно. Более реалистичная ситуация, в которой диссипационные процессы важны, будет рассмотрена в конце этого раздела.

Иначе выглядит космология газа бесконечных струн. В дальнейшем мы воспользуемся приближением идеального газа: космические струны⁸⁾, удаленные друг от друга на расстояние, много большее их толщины, взаимодействуют посредством полей A_{μ} и ϕ экспоненциально слабо.

Задача 8. Доказать сделанное утверждение.

⁸⁾ Речь идет о струнах Абрикосова—Нильсена—Олесена. Для глобальных струн ситуация иная.

Гравитационное взаимодействие между удаленными струнами также можно считать несущественным⁹⁾. Чтобы найти уравнение состояния газа бесконечных струн, рассмотрим конфигурацию из N покоящихся струн, параллельных оси z и удаленных друг от друга в среднем на расстояние L, заметно превышающее толщину струны. Тензор энергии-импульса такой конфигурации имеет вид

$$T^{(0)}_{\mu\nu}(x,y) = \mu \cdot \text{diag} \ (1,0,0,-1) \cdot \sum_{i=1}^{N} \delta(x-x_i) \delta(y-y_i).$$

В пределе большого числа струн получим для усредненного тензора энергииимпульса

$$\langle T_{\mu\nu}^{(0)} \rangle = \frac{\int T_{\mu\nu}^{(0)}(x, y) \, dx \, dy}{\int dx \, dy} = \frac{\mu}{L^2} \cdot \text{diag } (1, 0, 0, -1) \,. \tag{12.34}$$

Это — тензор энергии-импульса для статической конфигурации. Пусть теперь струны движутся со скоростью u относительно покоящегося наблюдателя в положительном направлении вдоль оси x. Тензор энергии-импульса для такой конфигурации можно получить из (12.34) посредством соответствующего преобразования Лоренца¹⁰⁾ — буста вдоль оси x со скоростью u,

$$\langle T_{\mu
u}
angle^{(u_z)} = rac{\mu}{L^2} egin{pmatrix} \gamma^2 & \gamma^2 u & 0 & 0 \ \gamma^2 u & \gamma^2 u^2 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & -1 \end{pmatrix}, \quad \gamma = rac{1}{\sqrt{1-u^2}}.$$

Усредняя по направлениям буста, опустим линейные по скорости элементы в $\langle T_{\mu\nu} \rangle^{(u_z)}$. Рассматривая аналогично конфигурацию струн, движущихся вдоль оси y, и усредняя по обеим осям (напоминаем, что для рассмотренной нами конфигурации струн, параллельных оси z, движение вдоль оси z нефизично), получим

$$\langle T_{\mu\nu}\rangle^{(u_{xy})} = \frac{\mu}{L^2} \cdot \operatorname{diag}\left(\gamma^2, \frac{\gamma^2 u^2}{2}, \frac{\gamma^2 u^2}{2}, -1\right).$$

Наконец, повторяя всю процедуру для конфигураций струн, параллельных осям x и y, и усредняя по всем трем направлениям, получим окончательно тензор энергии-импульса для идеального газа бесконечных струн

$$T_{\mu\nu}^{gs} \equiv \langle T_{\mu\nu} \rangle^{(u)} = \frac{\mu}{L^2} \cdot \text{diag}\left(\gamma^2, \frac{u^2\gamma^2 - 1}{3}, \frac{u^2\gamma^2 - 1}{3}, \frac{u^2\gamma^2 - 1}{3}\right).$$
(12.35)

⁹⁾ Отметим, что для реалистичного случая газа из искривленных струн с некоторым количеством (само)пересечений используемое нами приближение также хорошо работает, если можно пренебречь диссипацией энергии струн, возникающей вследствие образования замкнутых струн и излучения гравитационных волн

¹⁰⁾ При этом учитывается не только изменение плотности энергии и импульса отдельных струн в результате буста, но и изменение расстояния между струнами из-за лоренцева сокращения длин

В пределе $u \to 1$ уравнение состояния газа струн, как можно было ожидать, переходит в уравнение состояния релятивистского газа, $p = \rho/3$. Вклад в расширение Вселенной на более поздних этапах ее развития, наоборот, дают медленные струны, $u \ll 1$, для которых уравнение состояния принимает вид

$$p = -\frac{1}{3}\rho.$$
 (12.36)

Поскольку тензор энергии-импульса $T^{gs}_{\mu\nu}$ обратно пропорционален квадрату среднего расстояния между струнами (см. (12.35)), то энергия и давление струнного газа эволюционируют во Вселенной как

$$\rho, p \propto a^{-2}(t). \tag{12.37}$$

Конечно, такой закон эволюции следует просто из размерных соображений: в пренебрежении искривлением и диссипацией энергии для бесконечной струны расширение приводит к росту ее энергии $E_s \propto a(t)$, однако плотность струн падает как $n_s \propto a^{-3}(t)$, что дает для плотности энергии

$$ho_s \propto E_s n_s \propto a^{-2}(t).$$

Отметим, что закон эволюции (12.37) согласуется с ковариантным сохранением энергии-импульса для уравнения состояния (12.36). Это следует из результатов раздела 3.2.4 в частном случае, когда параметр w принимает значение -1/3.

Задача 9. Пренебрегая столкновениями струн и диссипацией их энергии (что на самом деле неверно), оценить количество струн в видимой части Вселенной, если они были образованы в результате фазового перехода, происходившего при температуре $T_c \sim 100$ ГэВ. То же для $T_c \sim 10^{16}$ ГэВ. Указание: считать, что струны образуются за счет механизма Киббла, так что сразу после фазового перехода имеется порядка одного участка струны хаббловской длины на хаббловский объем.

Найденный нами закон (12.37) изменения плотности энергии газа длинных струн в расширяющейся Вселенной показывает, что их роль становится существеннее на более поздних этапах эволюции. Действительно, плотности энергии релятивистского газа или пыли падают с масштабным фактором быстрее, чем плотность энергии струнного газа, которая эволюционирует по тому же закону, что и вклад пространственной кривизны (см. (4.2)).

Задача 10. Предположив в рамках абелевой модели Хиггса с лагранжианом (12.16), что струны образовались в результате фазового перехода при температуре $T \sim v$, поставить ограничение на энергетический масштаб фазового перехода v, исходя из требования малости вклада струнного газа в современную плотность энергии Вселенной. Считать, что реализуются условия, описанные в задаче 9.

Во Вселенной, эволюция которой определяется газом космических струн, масштабный фактор растет со временем по линейному закону

$$a(t) \propto t$$
.

Отсюда следует, что предположение о доминировании струн в современной Вселенной противоречило бы наблюдениям: современная Вселенная расширяется с ускорением. Из анализа данных по анизотропии реликтового излучения и поведения яркости сверхновых типа Іа модель струнного газа как доминирующей сегодня компоненты плотности энергии Вселенной закрыта на уровне достоверности, превышающем 3σ (см. (4.46) и рис.4.7). Вклад струн в полную плотность энергии, если он существует, не был доминируюшим и в прошлом, поскольку этот вклад растет с уменьшением а медленнее, чем вклады нерелятивистского вещества ($\rho \propto a^{-3}$) и радиации ($\rho \propto a^{-4}$). Наиболее удачно наблюдаемое расширение описывает модель с ненулевой космологической постоянной (см. Главу 4), вклад которой в плотность энергии не изменяется с масштабным фактором. Это означает, что если струны и существуют в нашей Вселенной, их относительный вклад в плотность энергии современной Вселенной падает, а следовательно, на темп расширения нашей Вселенной космические струны никакого заметного вклада как не оказывали, так и не будут оказывать.

12.3.3. Дефицит угла

Теперь перейдем к рассмотрению других гравитационных эффектов, характерных для моделей с бесконечными струнами.

Найдем искажение пространственной геометрии в присутствии бесконечной прямой струны. Мы видели, что такие струны не взаимодействуют друг с другом гравитационно, тем не менее они оказывают влияние на геометрию, причем весьма нетривиальное. Проще всего в этом убедиться, рассматривая возмущение $h_{\mu\nu}$ над метрикой Минковского и работая в гармонической калибровке

$$\partial_{\mu}h^{\mu}_{\nu} - \frac{1}{2}\partial_{\nu}h^{\mu}_{\mu} = 0.$$
 (12.38)

В этой калибровке линеаризованные уравнения Эйнштейна принимают вид (см. раздел А.9)

$$\Box h_{\mu\nu} = -16\pi G \left(T_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} T_{\lambda}^{\lambda} \right), \qquad (12.39)$$

где $\Box = \partial_{\lambda}\partial^{\lambda}$ — даламбертиан в пространстве Минковского.

Для космической струны правая часть (12.39) определяется формулой (12.28) и имеет ненулевые компоненты с индексами 11 и 22, так что нетривиальными являются лишь компоненты h_{11} и h_{22} , каждая из которых удовлетворяет уравнению

$$\left(\partial_x^2+\partial_y^2
ight)h_{11(22)}=16\pi G\mu\delta(x)\delta(y).$$

Таким образом, для возмущения метрики получим в гармонической калибровке

$$h_{\mu\nu} = 4G\mu \ln\left(\frac{x^2 + y^2}{\rho_0^2}\right) \cdot \text{diag}(0, 1, 1, 0), \qquad (12.40)$$

где ρ_0 — произвольный обезразмеривающий параметр. Его появление связано с приближением бесконечно тонкой струны: для реалистичного случая струны конечной толщины, именно эта толщина определяет ρ_0 . С учетом поправки (12.40) метрика бесконечной тонкой струны имеет вид

$$ds^2 = dt^2 - dz^2 - \left[1 - 4G\mu \ln\left(\frac{
ho^2}{
ho_0^2}\right)\right] \cdot (d
ho^2 +
ho^2 d heta^2),$$

где ρ и θ — радиальная и угловая координаты на плоскости (x, y). Это выражение справедливо при $G\mu \ll 1$ и $\rho \gg \rho_0$, но $4G\mu \ln (\rho^2/\rho_0^2) \ll 1$; именно в этом случае возмущения (12.40) малы, а деталями внутренней структуры струны можно пренебречь. Удобно сделать координатное преобразование к новой радиальной координате $\tilde{\rho}$, такой что

$$d\tilde{\rho}^2 = \left[1 - 4G\mu \ln\left(\frac{\rho^2}{\rho_0^2}\right)\right] d\rho^2.$$
(12.41)

В первом порядке разложения по Gµ получим

$$\widetilde{
ho} =
ho \cdot \left(1 - 4G\mu \ln rac{
ho}{
ho_0} + 4G\mu
ight),$$

так что

$$\rho^2 \cdot \left[1 - 4G\mu \ln\left(\frac{\rho^2}{\rho_0^2}\right)\right] = \tilde{\rho}^2 \cdot \left(1 - 4G\mu\right)^2.$$
 (12.42)

Из соотношений (12.41) и (12.42) следует, что метрика покоящейся прямой струны, протянутой вдоль оси z, может быть представлена в виде (тильду над ρ опускаем)

$$ds^{2} = dt^{2} - dz^{2} - d\rho^{2} - (1 - 4G\mu)^{2} \rho^{2} d\theta^{2}. \qquad (12.43)$$

Задача 11. Найти метрику для асимптотически плоского пространства с бесконечной струной с рябью, $T_{\mu\nu} = \text{diag}(\mu', 0, 0, \mu'')\delta(x)\delta(y), \ \mu'\mu'' = \mu^2, \ \mu' > \mu''$, работая в первом порядке теории возмущений по $G\mu', \ G\mu''$. Убедиться, что в этом случае пространство вне струны искривлено.

Метрика (12.43) представляет собой пример метрики с конической сингулярностью. Окружности $\rho = \text{const}$ имеют длину менее $2\pi\rho$. Заменой координат

$$heta
ightarrow (1 - 4G\mu) \, heta$$

метрика (12.43) переводится в метрику Минковского с той лишь разницей, что полярный угол θ теперь принимает значения в более узком интервале,

$$0 \leq \theta < 2\pi \left(1 - 4G\mu\right)$$
.

В связи с этим говорят, что у данного пространства имеется дефицит угла,

$$\Delta \theta = 8\pi G \mu. \tag{12.44}$$

Таким образом, пространство-время остается локально плоским, но геометрия (x, y)-плоскости представляет собой геометрию конуса¹¹⁾.

Отметим, что мы получили результат (12.43), используя линеаризованные уравнения Эйнштейна. Однако утверждение о том, что метрика прямой струны вне ее сердцевины соответствует плоскому пространству-времени с дефицитом угла, является в действительности точным.

Наличие дефицита угла приводит к ряду интересных физических явлений. Одно из таких явлений — формирование двойного изображения объекта, расположенного за струной. Работая в системе координат, где метрика совпадает с метрикой Минковского, это явление легко проиллюстрировать на рисунке. Рассмотрим наблюдателя на расстоянии d от прямой бесконечной космической струны: на рис. 12.3 изображена плоскость, перпендикулярная струне S и проходящая через наблюдателя O. Полупрямые SA' и SA" на этом рисунке необходимо отождествить, а темную область — вырезать: именно в этом случае будет иметься дефицит угла $\Delta \theta$. Лучи света в этой плоскости, исходящие от наблюдателя под одинаковыми углами $\alpha' = \alpha''$ к направлению OS на струну, в конце концов оказываются в одной точке, поскольку точки A' и A" отождествлены (расстояния SA' и SA" одинаковы из-за симметрии). Если теперь в точке A' = A'' поместить источник света, то к наблюдателю Oсвет придет с двух различных направлений: ОА' и ОА". В результате наблюдатель будет видеть два одинаковых источника в двух различных направлениях, причем угол между этими направлениями, $\Delta \alpha = \alpha' + \alpha''$, пропорционален дефициту угла; при малых $\Delta \theta$ справедливо

$$\Delta \theta = \frac{l+d}{l} \Delta \alpha, \qquad (12.45)$$

где l — расстояние от струны до источника, а d — расстояние от наблюдателя до струны. Если расстояние от наблюдателя до источника можно определить (например, измеряя красное смещение), то расстояние до струны d непосредственно измерить нельзя, поэтому в общем случае измерение углового расстояния между источниками (A' и A'') позволяет получить лишь нижнюю границу для дефицита угла,

$$\Delta\theta \geqslant \Delta\alpha.$$

Поскольку дефицит угла пропорционален натяжению струны (см. (12.44)), измерение $\Delta \alpha$ дает ограничение на масштаб энергий v, характеризующий спонтанное нарушение симметрии,

$$v \gtrsim rac{M_{Pl}}{2} \sqrt{rac{\Delta lpha}{2\pi}}.$$

Чтобы проиллюстрировать указанное явление линзирования в системе координат (12.43), потребовалось бы вырезать темную область на рис. 12.3

¹¹⁾ Метрика (12.43) получена в предположении $4G\mu \ln (\rho^2/\rho_0^2) \ll 1$. Однако ясно, что (12.43) является решением уравнений Эйнштейна и при больших ρ , таких что $4G\mu \ln (\rho^2/\rho_0^2) \gtrsim 1$: эта метрика является локально плоской, и для нее $R_{\mu\nu} = 0$.

Рис. 12.3. Распространение света до наблюдателя O от источника A' = A'', расположенного за струной S

и склеить границы SA' и SA''. В результате поверхность рисунка (ранее — плоский лист) станет конусом с вершиной в точке S расположения струны. Свет распространяется по геодезическим — кратчайшим траекториям между двумя точками. Между источником A' = A'' и наблюдателем O таких пути два — в обход вершины конуса слева и справа. Отсюда и два образа для наблюдателя O.

Задача 12. Используя уравнение геодезических в метрике (12.43), убедиться другим способом в линзировании источников космическими струнами.

В нашем рассмотрении мы пренебрегали расширением Вселенной. В общем случае коэффициент пропорциональности между $\Delta \theta$ и $\Delta \alpha$ зависит от космологической эволюции. Например, в плоской Вселенной с $\Omega_M = 1$ аналог соотношения (12.45) имеет вид

$$\Delta \alpha = \Delta \theta \cdot \left(1 - \frac{1 - (1 + z_s)^{-1/2}}{1 - (1 + z_a)^{-1/2}} \right), \tag{12.46}$$

где z_s и z_A — красные смещения струны и источника соответственно.

Задача 13. Проверить формулу (12.46). Получить аналогичную формулу для расширяющейся Вселенной, в плотности энергии которой доминирует вклад космологической постоянной. Обобщить полученную формулу, а также формулу (12.46) для струны, наклоненной к плоскости рис.12.3 под произвольным углом δ .

Для простоты мы рассматривали линзирование точечного источника. Экспериментальным подтверждением «тождественности» образов было бы совпадение их спектров. Для протяженых источников связь между образами, вообще говоря, более сложная, однако и в этом случае за струной имеется такая область, что для объекта, находящегося в ней, оба образа должны быть одинаковыми: одной интенсивности и без искажений.

Задача 14. Исследовать в общем случае вопрос о форме образов сферического объекта за струной.

Другое явление, обусловленное космическими струнами, состоит в специфическом искажении картины анизотропии реликтового излучения. Если 386

Рис. 12.4. Распространение света до наблюдателя O от источника A' = A'', расположенного за движущейся со скоростью u_{\perp} струной S

струна и наблюдатель покоятся относительно реликтового излучения, то наблюдатель обнаружит вдоль струны повторения в распределении температурных пятен реликтового излучения, что объясняется обсуждавшимся выше струнным линзированием. В данном случае источник — элемент сферы последнего рассеяния реликтовых фотонов — расположен от струны на более далеком расстоянии, чем наблюдатель, поэтому угловое расстояние между одинаковыми температурными пятнами совпадает с дефицитом угла (см. формулу (12.45) в пределе $l \gg d$), $\Delta \theta = \Delta \alpha$.

Если же струна движется в поперечном к лучу зрения направлении, то появляется дополнительный эффект — систематический сдвиг частот (температуры) реликтовых фотонов, «обходящих» струну с разных сторон. Это явление проиллюстрировано на рис. 12.4, где мы опять работаем в координатах, в которых метрика совпадает с метрикой Минковского, и все обозначения совпадают с обозначениями рис. 12.3. Рассмотрим снова два образа A' и A'' одного и того же источника. Поскольку струна S движется со скоростью u_{\perp} в поперечном к линии наблюдения направлении, то с той же скоростью движутся и все точки угла A'SA''. В момент испускания сигнала источник A' имел скорость u_{\perp} , проекция которой на ось наблюдения OA' сонаправлена импульсу испущенного фотона. Для источника A'' соответствующая компонента будет противонаправлена импульсу фотона. В результате продольного эффекта Допплера получим изменение частоты фотона,

 $OA': \Delta \omega = u_{\perp} \frac{\Delta \theta}{2} \gamma$, $OA'': \Delta \omega = -u_{\perp} \frac{\Delta \theta}{2} \gamma$, где $\gamma = 1/\sqrt{1-u_{\perp}^2}$ и мы положили $\Delta \alpha \approx \Delta \theta$, имея в виду фотоны реликтового излучения. Мы видим, что фотоны, пролетающие перед струной, краснеют, а фотоны, пролетающие за струной, синеют. Вообще говоря, это приводит к искажению спектра реликтового излучения, однако для малых $\Delta \theta$ и реалистичных u_{\perp} искажение мало: эффективное изменение температуры реликтовых фотонов составляет

$$rac{\delta T}{T} = \gamma u_{\perp} \Delta heta = 1, 7 \cdot 10^{-6} \gamma rac{u_{\perp}}{10^{-1}} rac{\mu}{\left(10^{16} \text{ F} extsf{F} B
ight)^2},$$

что для типичного масштаба Большого объединения $\mu \simeq 10^{16}$ ГэВ и типичных значений средней скорости струны, получаемых в численных расчетах, $u_{\perp} \sim 0,1$, меньше вклада в анизотропию реликтового излучения флуктуаций плотности материи и находится за рамками чувствительности выполненных экспериментов.

Обычно рассмотрение спектра анизотропии реликтового излучения проводится в предположении гауссовости флуктуаций температуры (см. формулу (1.9) и обсуждение в разделе 1.2.5). При такой обработке существующие экспериментальные данные по анизотропии реликтового излучения позволяют исключить струнные конфигурации (сети) с $\mu \gtrsim (0,6 \cdot 10^{16} \text{ ГэВ})^2$. Это ограничение [46] следует из анализа суммы двух вкладов в анизотропию реликтового излучения — вклада обычных первичных флуктуаций материи и вклада флуктуаций, вызванных движением струн в пространстве, заполненном нерелятивистским веществом.

В то же время, поскольку движушаяся струна приводит к (небольшому) скачку температуры вдоль линии — проекции струны на небесную сферу, — то это привело бы к *негауссовости* в угловом распределении температуры реликтового излучения. Поскольку такой негауссовости не наблюдают, то отсюда можно получить ограничение на параметр μ [47]. Оно оказывается того же порядка, что и остальные существующие ограничения, и составляет $\mu \leq (0,7 \cdot 10^{16} \text{ ГэВ})^2$ для бесконечной прямой струны, движушейся со скоростью $u_{\perp} = 1/\sqrt{2}$.

Наконец, еще одно явление, обусловленное движением космической струны, на этот раз в пылевидной среде, — формирование в кильватере (за струной) областей повышенной плотности материи. Этот процесс проиллюстрирован на рис. 12.5, где мы вновь используем систему координат, в которой метрика совпадает с метрикой Минковского. Струна S перпендикулярна плоскости рисунка. В плоскости рисунка рассмотрим два объекта (две пылинки) A_1 и A_2 , покоящихся на расстоянии r/2 от прямолинейной траектории струны OS, движущейся со скоростью u. После прохождения струны между объектами они начнут постепенно приближаться друг к другу, пока не встретятся в одной точке (на рис. 12.5 это совпадающие точки $A'_1 = A'_2$)! Действительно, в системе покоя струны частицы A_1 и A_2 движутся на нее со скоростью u, и в конце концов попадут в точки A'_1 и A'_2 соответственно.

Рис. 12.5. Распространение струны S в облаке пыли

Найдем скорость, которую приобретают нерелятивистские частицы в направлении к кильватеру. Для частицы A_1 это направление перпендикулярно линии SA'_1 (эта линия и есть кильватер, как и линия SA'_2), а в системе покоя струны эта частица движется со скоростью u по прямой $A_1A'_1$. Поэтому ее скорость в точке A'_1 в направлении к кильватеру равна

$$v_y = u \cdot \sin \frac{\Delta \theta}{2} = 4\pi G \mu u, \qquad (12.47)$$

где мы считаем $G\mu \ll 1$. В случае релятивистского движения струны формула (12.47) обобщается следующим образом:

$$v_y = 4\pi G \mu \frac{u}{\sqrt{1-u^2}}.$$
 (12.48)

Полагая для оценки $u \sim 0,1$, получим численно

$$|\Delta v_y|=0.8\cdot 10^{-6}\cdot rac{\mu}{\left(10^{16} ext{ F}
it{B}
ight)^2}$$

12.3.4. Струны во Вселенной

Появление ненулевой скорости в направлении к кильватеру приводит к формированию вдоль кильватера области с повышенной концентрацией нерелятивистских частиц. Эти неоднородности в распределении плотности нерелятивистских частиц, эволюционируя в расширяющейся Вселенной, могут в свою очередь приводить к формированию гравитационно-связанных конфигураций. Для этого необходимо, чтобы в соответствующих пространственных областях плотность энергии, накопленной в неоднородностях $\delta \rho \equiv \rho(\mathbf{x}, t) - \rho(t)$, становилась порядка или даже превышала среднюю плотность энергии $\rho(t)$. Именно такие конфигурации служат основой для формирования галактик. В данном случае галактики будут образовываться вдоль кильватеров движущихся струн, формируя тем самым двумерные структуры. Отметим, что современные наблюдения указывают, что на небольших масштабах в распределении галактик действительно имеются двумерные (стенки) и одномерные (филаменты) структуры. Вычисления показывают, однако, что лишь небольшая часть материи попадает в кильватеры, что не объясняет существования пустот (voids) — больших областей Вселенной, обедненных структурами.

Другой механизм формирования структур в моделях с космическими струнами основан на аккреции нерелятивистской материи на струнные петли. Получающийся спектр возмущений плотности материи оказывается почти масштабно инвариантным, что согласуется с наблюдениями. Кроме того, с наблюдениями согласуются и предсказываемые корреляционные длины галактик и скоплений галактик. Однако струнный механизм формирования структур предсказывает противоречащую эксперименту картину анизотропии реликтового излучения (см. рис. 12.6), поэтому он сегодня является исключенным. Наиболее реалистичным механизмом формирования структур служит

Рис. 12.6. Спектры анизотропии реликтового излучения, типичные для модели ACDM (сплошная линия) и для модели, где основным источником флуктуаций материи являются космические струны (пунктирная линия) [48] Отсутствие особенностей во втором спектре обусловлено тем, что одинаковые длины волн в спектре возмушении материи создаются не одновременно, как в инфляционных моделях, а на протяжении довольно длительного времени. Единственный пик в спектре обусловлен влиянием ньютоновского потенциала, созданного струнами с рябью

рост первичных возмущений, образовавшихся на инфляционной стадии эволюции Вселенной в результате усиления квантовых вакуумных флуктуаций. Формирование одномерных и двумерных структур в распределении галактик происходит и в этом случае, что подтверждается численными расчетами и является результатом нетривиальной динамики гравитирующих систем.

Некоторый вклад струн в формирование структур возможен, однако он заведомо не является единственным. Отметим, что в некоторых инфляционных моделях (например, в подклассе моделей гибридной инфляции) наряду со вкладом первичных квантовых флуктуаций предсказывается также вклад в спектр возмущений плотности, обусловленный динамикой струн. Современные ограничения сверху на вклад струн в анизотропию реликтового излучения находятся на уровне 10 % от обычного вклада в моделях Λ CDM, что в свою очередъ примерно на таком же уровне ограничивает влияние струн на процессы формирования структур во Вселенной — галактик и их скоплений.

Отметим, что многие подробности, относящиеся к динамике космических струн, на количественном уровне не удается получить с использованием лишь аналитических методов. Поэтому для анализа эволюции газа космических струн активно используют численные методы. Так, численное исследование процесса формирования струн показало, что сразу после фазового перехода массовая доля первичных бесконечных струн примерно в четыре раза превосходит массовую долю струн замкнутых, а их скорости малы. В дальнейшем скорость бесконечных струн во Вселенной повышается, так что средняя по струнному ансамблю скорость достаточно велика, $u \approx 0,15$. Плотность замкнутых струн в широком интервале радиусов R определяется лишь величиной радиуса,

$$n_R dR \sim R^{-4} dR.$$

Численные расчеты показали, что в процессе эволюции струны активно теряют энергию, так что их вклад в плотность энергии Вселенной никогда не доминирует. Поэтому, в отличие от монополей и доменных стенок, космические струны в реалистических теориях, обобщающих Стандартную модель физики частиц, все еще разрешены из космологических соображений.

На эволюцию струн существенную роль оказывают два процесса. Вопервых, это пересечения и самопересечения струн, в результате чего длинные струны образуют петли. Во-вторых, небольшие петли активно испускают гравитационные волны и быстро исчезают. Действительно, мощность излучения P_{gw} определяется третьей производной по времени квадрупольного момента системы (см., например, [20]), в данном случае — квадрупольного момента струнной петли Q,

$$P_{gw}\sim rac{1}{M_{Pl}^2}igg(rac{d^3Q}{dt^3}igg)^2.$$

Для оценки квадрупольного момента петли радиуса R можно положить

$$Q \sim \mu R^3$$
.

Уравнение движения петли, следующее из вариации действия (12.31), показывает, что петли активно вращаются и осциллируют со скоростями порядка единицы, $dR/dt \sim 1$. С учетом этого получим:

$$P_{gw}=C_{gw}rac{\mu^2}{M_{Pl}^2},$$

где константа C_{gw} получается из акккуратного вычисления и довольно велика, $C_{aw} \simeq 10^2$. Таким образом, за время

$$t_{gw} \sim \frac{\mu R}{P_{gw}} = \frac{M_{Pl}^2 R}{C_{gw} \mu} \tag{12.49}$$

основная часть энергии петли перейдет в энергию гравитационных волн. В результате размер петли уменьшится настолько, что ее радиус станет порядка толщины струны, $R \sim v^{-1}$, и петля распадется на энергичные частицы¹².

Обратимся теперь к пересечению струн. Численные расчеты показывают, что пересечение почти в 100 % случаев приводит к перезамыканию, т. е. самопересечения неизбежно приводят к распаду струн на более короткие петли. Изучение динамики струн в расширяющейся Вселенной дало несколько неожиданный результат: закон эволюции плотности энергии струнных конфигураций быстро начинает совпадать с законом эволюции полной плотности энергии Вселенной, $\rho \propto t^{-2}$. При этом в любой момент времени в видимой части Вселенной (под горизонтом) находится около десятка открытых длинных струн размером с горизонт, множество замкнутых струн и особенно много небольших петель. Такое несколько неожиданное поведение — результат активного образования петель и последующего перехода энергии, накопленной в них, в излучаемые гравитационные волны.

Чтобы понять на качественном уровне физику этого процесса, оценим плотность энергии небольших замкнутых струн — петель — на радиационнодоминированной стадии эволюции Вселенной. Плотность числа петель небольшого фиксированного радиуса R из-за расширения Вселенной убывает со временем как

$$n_l(R,t) \propto a(t)^{-3} \sim t^{-3/2}.$$

В масштабно-инвариантном режиме из размерных соображений получим

$$n_l(R,t)\sim rac{1}{(Rt)^{3/2}}\sim \left(rac{\mu}{Et}
ight)^{3/2},$$

где $E \sim R\mu$ — масса петли. Для плотности энергии петель будем иметь

$$\rho_l(t) \sim \int_{E_{\min}}^{E_{\max}} E \, dE \, \frac{dn_l(R,t)}{dE} = \left(\frac{\mu}{t}\right)^{3/2} \int_{E_{\min}}^{E_{\max}} \frac{dE}{E^{3/2}}.$$
 (12.50)

Этот интеграл набирается на нижнем пределе, поэтому

$$\rho_l(t) \sim \left(\frac{\mu}{t}\right)^{3/2} \frac{1}{\sqrt{E_{\min}}},\tag{12.51}$$

где E_{\min} — минимально возможная энергия петель. Мы видим, что основной вклад в плотность энергии дают самые легкие (но весьма многочисленные) петли.

¹²⁾ Отметим, что это — один из возможных механизмов генерации во Вселенной космических лучей сверхвысоких энергий. При $\mu = (10^{16} \text{ ГэB})^2$ для этого механизма требуются замкнутые струны размера $R \sim 1$ Мпк: из (12.49) следует, что время жизни именно таких струн имеет порядок возраста современной Вселенной.

В справедливости закона $n_l(R,t) \propto (Et)^{-3/2}$ можно убедиться из следующего рассмотрения. Пусть $n_l(R,t)$ — плотность числа петель в момент времени t с фиксированным радиусом R. Петли с характерными радиусами между R и R + dR несут плотность энергии

$$\rho_l(R,t) dR = \mu R n_l(R,t) dR,$$

где мы оценили массу петли радиуса R как μR . Плотность энергии петель падает из-за расширения Вселенной, в то же время постоянно появляются новые петли благодяря (само)пересечениям длинных струн. Масштабно-инвариантное поведение системы струн означает, что образование петель также определяется масштабно-инвариантной функцией, которую мы обозначим как $f(R/l_H)$, где l_H — размер горизонта, определяющий характерный для Вселенной пространственный масштаб. Потеря энергии длинными струнами в объеме горизонта на рождение петель с радиусами между R и R + dR параметризуется тогда следующим образом:

$$\mu \frac{dR}{l_H} \cdot f\left(\frac{R}{l_H}\right).$$

Окончательно, уравнение баланса энергии петель в расширяющейся Вселенной принимает вид

$$\frac{d\rho_l(R,t)}{dt} + 3H(t)\rho_l(R,t) = \frac{\mu}{l_H^4}f\left(\frac{R}{l_H}\right)$$

причем H(t) = 1/(2t) и $l_H = 2t$. Решение этого уравнения,

4

$$\rho_l(R,t) = \frac{1}{16} \frac{\mu}{(Rt)^{3/2}} \int_{R/t}^{\infty} \sqrt{\xi} f\left(\frac{\xi}{2}\right) d\xi,$$

на поздних временах, $R/t \rightarrow 0$, дает закон эволюции плотности энергии петель (12.50).

Напомним, что петли нестабильны: осциллируя, они теряют энергию на излучение гравитационных волн и за время (12.49) полностью исчезают. Именно соотношение (12.49), фиксирующее время жизни небольших петель, определяет закон изменения минимального радиуса петель, а значит, и минимальной энергии,

$$R_{\min}(t) \sim C_{gw} rac{\mu}{M_{Pl}^2} t, \quad E_{\min}(t) \sim C_{gw} rac{\mu^2}{M_{Pl}^2} t.$$

Окончательно для плотности энергии петель получаем

$$ho_l(t)\simeq rac{\sqrt{\mu}M_{Pl}}{\sqrt{C_{gw}}}rac{1}{t^2},$$

т. е. плотность энергии петель изменяется со временем на радиационно-доминированной стадии эволюции Вселенной так же, как и плотность энергии радиации, $\rho \sim M_{Pl}^2/t^2$. При этом относительная доля энергии петель определяется величиной $\sqrt{G\mu}$, что заведомо больше вклада энергии бесконечных струн, определяемого величиной $G\mu$. Численные расчеты показывают, что именно петли могли бы оказывать некоторое влияние на процессы формирования структур за счет аккреции на них нерелятивистской материи. Вообще говоря, изложенное выше объяснение закона $\rho_l(t) \propto t^{-2}$ справедливо, если типичный размер образующихся петель существенно больше минимального. Как показывают численные расчеты [49], образующиеся петли действительно имеют размер, сопоставимый с размером горизонта: их типичный размер R(t) масштабируется линейно со временем и как на радиационно-доминированной, так и на пылевидной стадиях оказывается равным $R(t) = \alpha t$, $\alpha \simeq 0, 1$.

Отметим, что более ранние численные расчеты, проводившиеся с худшим разрешением, не позволяли определить величину α , но показывали, что она мала, $\alpha \ll 1$. Интерпретация этого результата состояла в том, что размер типичной образовавшийся петли должен определяться не размером горизонта, а характерным размером ряби на струне, оставшейся с ранних времен. Такие петли распадались бы за хаббловское время. В этом случае, наоборот, петли не оказывали бы заметного влияния на процессы формирования структур: возмущения плотности материи появлялись бы, в основном, за счет движения десятка бесконечных струн.

Наконец, оценим энергию, переходящую в гравитационные волны. С учетом потери энергии гравитационных воли на красное смещение плотность энергии гравитационных воли ρ_{aw} определяется уравнением

$$\dot{
ho}_{gw}+4H
ho_{gw}=-rac{d
ho_l}{dt}\simeq 2rac{\sqrt{\mu}M_{Pl}}{\sqrt{C_{gw}}}rac{1}{t^3}.$$

Решением этого уравнения служит

$$ho_{gw}=rac{1}{t^2}\int\limits_{t_1}^t \left(-rac{d
ho_l}{dt'}
ight)t'^2\,dt'\simeq 2rac{\sqrt{\mu}M_{Pl}}{\sqrt{C_{gw}}}rac{1}{t^2}\lnrac{t}{t_1},$$

где t_1 обозначает время испускания первых гравитационных волн — начало распада струн. На радиационно-домированной стадии плотность энергии Вселенной равна (см. раздел 3.2)

$$\rho=\frac{3M_{Pl}^2}{32\pi t^2},$$

что дает для доли излученных струнами гравитационных волн в общей плотности энергии

$$rac{
ho_{gw}}{
ho}\simeq rac{64\pi}{3M_{Pl}}rac{\sqrt{\mu}}{\sqrt{C_{gw}}}\lnrac{t}{t_1}.$$

Как мы видим, относительная доля энергии рожденных струнами гравитационных волн изменяется со временем медленно, логарифмически, однако по величине эта доля довольно велика и может составлять десятые доли процента. Таким образом, распадающиеся струны являются мощным источником реликтовых гравитационных волн. На сегодняшний день нет никаких экспериментальных данных, указывающих на возможное существование таких гравитационных волн, однако точность измерений недостаточна для того, чтобы на их основе сделать вывод об отсутствии процессов интенсивного распада струн в ранней Вселенной. Наиболее сильные ограничения на модели со струнами следуют из отсутствия эффектов, связанных с гравитационными волнами от распада струн. В частности, из измерения временной зависимости сигналов от пульсаров следует ограничение [50] $\mu \leq (2 \cdot 10^{15} \text{ FyB})^2$.

Отметим, что дополнительным источником интенсивного излучения гравитационных волн служат негладкие особенности на струнах — изломы (kinks) и клювы (cusps). Такие особенности формируются как в процессе эволюции замкнутых струн, так и при (само)пересечении струн (см., например, [51]). Скорость этих особых точек достигает скорости света, в результате чего из них испускаются мощные импульсы гравитационных волн, которые могут оказывать влияние на движение частиц вблизи струны. Такие особые точки могут также служить источниками частиц больших масс и/или сверхвысоких энергий, что представляет интерес с точки зрения физики космических лучей.

Возможность возникновения космических струн (т. е. струн с длинами, сопоставимыми с размером космологического горизонта) рассматривается не только в рамках моделей Большого объединения, где процессы перестройки вакуума в остывающей Вселенной могут сопровождаться образованием струн. Такая возможность изучается и в теории суперструн — наиболее известного кандидата на роль теории, объединяющей сильные и электрослабые взаимодействия Стандартной модели с гравитацией. В теории суперструн также существуют фундаментальные струны и другие объекты, выглядящие с точки зрения обычного наблюдателя как космические струны. В простых случаях существование таких струн во Вселенной запрещено экспериментально: натяжение струн оказывается порядка $\mu \sim M_{Pl}^2$, что привело бы в конечном итоге к слишком большой анизотропии реликтового излучения. Кроме того, как мы уже неоднократно отмечали, на горячей стадии развития Вселенной температуры, вероятнее всего, были значительно ниже планковских, поэтому струны с натяжением $\mu \sim M_{Pl}^2$ если и образовывались во Вселенной, то лишь на инфляционной стадии ее развития. После завершения инфляции плотность струн (как и плотность любых топологических дефектов или частиц) падает до столь малого значения, что в современной Вселенной их, вообще говоря, не должно быть вообще (см. подробности во второй части книги). В довершение, в простых струнных теориях струны оказываются нестабильными на космологических временах.

Тем не менее, возможны струнные теории, в которых струны имеют интересные и феноменологически приемлемые свойства. Помимо фундаментальных струн (*F*-струн), в последнее время активно изучается другой тип объектов, получивший название *D*-струн. Это частный случай так называемых Dp-бран (где p — пространственная размерность объекта).

Перечисленные выше типы струн имеют особенности, которые отличают их от обычных космических струн. В первую очередь это относится к эволюции струнных конфигураций. Существуют отличные от механизма Киббла способы возникновения F- и особенно D-струн. По-иному устроено и взаимодействие таких струн. Как мы уже упоминали, пересечения космических струн приводят с вероятностью, близкой к единице, к перезамыканию струн. В случае F- и D-струн вероятность перезамыкания заметно меньше. При пересечении F- и D-струн возможно образование гибрилных FD-струн, соединяющих F- и D-струны. При этом образование петель (а значит, потери энергии) оказывается сильно подавленным. В ряде струнных теорий подобные конфигурации образуют стабильные сети космологических масштабов. Натяжения струн не обязаны быть планковского масштаба, а потому подобные конфигурации могут быть феноменологически приемлемыми. Возможные следствия для космологии в моделях с подобными типами струн интенсивно изучаются в последние годы.

12.4. * Доменные стенки

Рассмотрим простейшую теоретико-полевую модель, в которой есть решения типа доменных стенок, — теорию вещественного скалярного поля ϕ с самодействием:

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{\lambda}{4} (\phi^2 - v^2)^2.$$
 (12.52)

Лагранжиан (12.52) инвариантен относительно изменения знака скалярного поля $\phi \to -\phi$ (группа симметрии \mathbb{Z}_2). В результате спонтанного нарушения симметрии поле ϕ приобретает ненулевое вакуумное среднее

$$\langle \phi
angle = + v$$
 или $\langle \phi
angle = - v,$

т. е. пространство вакуумов оказывается несвязным и состоит из двух точек. В результате фазового перехода во Вселенной образуются домены двух типов: в одних среднее значение поля положительно¹³⁾, $\langle \phi \rangle = +v$, а в других $\langle \phi \rangle = -v$. Нетривиальные полевые конфигурации, интерполирующие в пространстве между различными вакуумами $\phi = \pm v$, получили название доменных стенок — это границы между областями с различными вакуумами.

Сформулируем в общем виде необходимые условия стабильности доменных стенок. Пусть лагранжиан теории инвариантен относительно группы внутренней симметрии G, а основное состояние инвариантно лишь относительно группы H, являющейся подгруппой G. Многообразие \mathcal{M} эквивалентных вакуумов в такой теории имеет структуру G/H. В теории возможны стабильные решения в виде доменных стенок топологических дефектов пространственно-временной размерности 2+1, — если фундаментальная гомотопическая группа многообразия вакуумов теории нетривиальна,

$$\pi_0(G/H)\neq 0.$$

Это условие означает, что многообразие вакуумов $\mathcal M$ состоит из нескольких несвязных компонент.

В простейшем случае статической бесконечной доменной стенки, лежащей в плоскости z = 0, искомая конфигурация зависит лишь от координаты zи является решением уравнения

$$\frac{d^2\phi}{dz^2} - \lambda(\phi^2 - v^2)\phi = 0$$
 (12.53)

с граничными условиями

$$\phi(z o \pm \infty) = \pm v$$
 (кинк)

¹³⁾ Температурное среднее поля ϕ сразу после фазового перехода не совпадает, вообще говоря, с вакуумным значением v, однако здесь это для нас не существенно.
или

$$\phi(z \to \pm \infty) = \mp v$$
 (антикинк).

Эти конфигурации имеют следующий вид:

кинк:
$$\phi(z) = v \operatorname{th} \frac{z}{\Delta}, \quad \Delta^2 = \frac{2}{\lambda v^2};$$
 (12.54)

антикинк:
$$\phi(z) = -v \operatorname{th} \frac{z}{\Delta}$$
. (12.55)

Задача 15. Убедиться, что кинк действительно является решением уравнения (12.53). ◄

В причинно-связанных областях¹⁴⁾ значения поля ϕ различаются слабо, поэтому в результате фазового перехода с образованием ненулевого среднего поля $\langle \phi \rangle$ это среднее будет одним и тем же в пределах одной причинно-связанной области. В то же время, в разных таких областях знаки $\langle \phi \rangle$ нескоррелированы. Вселенная оказывается разбитой на области, имевшие в момент фазового перехода t_c размер горизонта $l_H(t_c)$, в которых средние поля $\langle \phi \rangle$ имеют случайные значения знака: в одних областях $\langle \phi \rangle = v$, а в других $\langle \phi \rangle = -v$. Найденные нами решения типа кинка интерполируют между пространственными областями с разными вакуумами и образуют топологический дефект — доменную стенку. Это — макроскопическая конфигурация, формально простирающаяся до бесконечности (вдоль плоскости z = 0) и имеющая толщину (вдоль оси z) порядка Δ . Чтобы убедиться в этой интерпретации, найдем тензор энергии-импульса для решения типа кинка, полагая пространство-время плоским. Подставляя кинк (12.54) в общее выражение для тензора энергии-импульса скалярного поля,

$$T_{\mu
u}=\partial_{\mu}\phi\partial_{
u}\phi-\mathcal{L}\eta_{\mu
u},$$

получим для доменной стенки

$$T^{DW}_{\mu\nu} = \frac{\lambda v^4}{2 \operatorname{ch}^4 \frac{z}{4\Delta}} \operatorname{diag} (1, -1, -1, 0).$$
 (12.56)

Мы видим, что тензор энергии-импульса не зависит от координат x, y и отличен от нуля лишь в области $-\Delta \leq z \leq \Delta$. Последнее оправдывает интерпретацию Δ как толщины доменной стенки. Отметим, что во Вселенной образовавшаяся доменная стенка, вообще говоря, не является плоской. Тем не менее, для несильно искривленных стенок приближение кинка позволяет получить достаточно точные оценки, заведомо подходящие для изучения возможного влияния доменных стенок на развитие Вселенной.

Интегралы

$$\eta\equiv\int T_{00}^{\scriptscriptstyle DW}\,dz=rac{2\sqrt{2\lambda}}{3}v^3$$
и $\int T_{11}^{\scriptscriptstyle DW}\,dz=\int T_{22}^{\scriptscriptstyle DW}\,dz=-\eta$

¹⁴⁾ В общем случае — в областях размера порядка корреляционной длины.

определяют поверхностную плотность энергии и давление вдоль доменной стенки, которые в точности совпадают друг с другом по величине ¹⁵⁾, однако имеют разные знаки. Отметим тривиальность компоненты T_{33}^{DW} в тензоре энергии-импульса, что означает отсутствие натяжения стенки в перпендикулярном к ней направлении (вдоль оси z). Совпадение по величине давления и плотности энергии указывает на то, что плоская доменная стенка является релятивистским объектом. Поскольку в общей теории относительности (ОТО) пространственные компоненты тензора энергии-импульса участвуют в формировании гравитационного поля наряду с временными, то для доменных стенок можно ожидать нетривиальных (с точки зрения ньютоновской гравитации) следствий.

Действительно, уравнения Эйнштейна для скалярного ньютоновского потенциала Ф дают (ср. (12.29))

$$\Delta \Phi = 8\pi G \left(T_{00} - \frac{1}{2} \eta^{\mu\nu} T_{\mu\nu} \right).$$
 (12.57)

Поэтому для конфигурации поля, описывающей доменную стенку, чей тензор энергии-импульса имеет вид (12.56), получим

$$\Delta \Phi = -4\pi G T_{00}^{DW}.$$

Это приводит к гравитационному потенциалу противоположного знака по сравнению с гравитационным потенциалом покоящегося массивного точечного объекта, для которого справедливо

$$\Delta \Phi = 4\pi G\rho, \quad T_{00} = \rho(\mathbf{x}).$$

В результате доменные стенки, если бы они покоились, были бы источниками «антигравитации»: нерелятивистские частицы отталкивались бы от них!

В действительности представление о статической доменной стенке и линейное приближение для уравнений Эйнштейна в рассмотренной ситуации неприменимы (а именно в этих приближениях выполняется уравнение (12.57)). Поэтому изложенная здесь картина является упрощенной. Она приведена здесь лишь для иллюстрации того, что гравитирующие доменные стенки обладают весьма нетривиальными свойствами.

В ранней Вселенной могут возникать конфигурации поля, содержащие несколько доменных стенок. Такие конфигурации существенны спустя некоторое время после фазового перехода, когда под горизонт зайдут области, ранее причинно-несвязанные, а значит, вообще говоря, имеющие разные вакуумы $\langle \phi \rangle$. Эти области отделены друг от друга доменными стенками. В общем случае причинно-связанная в некоторый момент времени часть Вселенной состоит из разделенных доменными стенками областей разных вакуумов, в которые погружены замкнутые области противоположного вакуума, где также есть

¹⁵⁾ Совпадение не является полным для искривленных доменных стенок.

замкнутые области противоположного вакуума и т. д. Доменные стенки при этом образуют непересекающиеся открытые или замкнутые поверхности¹⁶).

Для подавляющего большинства моделей физики частиц существование хотя бы одной «бесконечной» стенки (с размерами порядка размера горизонта) в видимой части современной Вселенной противоречило бы наблюдательным данным. Это видно хотя бы из того, что энергия доменной стенки с размерами порядка современного размера горизонта оценивается величиной $M_{DW} \sim \eta H_0^{-2}$, в то время как полная энергия в видимой части Вселенной составляет величину порядка $\rho_c H_0^{-3}$. Потребовав, чтобы энергия стенки была меньше полной энергии.

$$\eta H_0^{-2} \lesssim
ho_c H_0^{-3}$$

получим ограничение на поверхностную плотность энергии стенки,

$$\eta \leq \rho_c H_0^{-1} \sim (10 \text{ M} \Rightarrow \text{B})^3$$
. (12.58)

Таким образом, если не вводить в рассмотрение чрезвычайно малые константы связи, то масштаб энергий, характеризующий доменную стенку, должен быть заведомо меньше 10 МэВ, что является очень малой величиной с точки зрения расширений Стандартной модели физики частиц. Иными словами, модели физики частиц, обладающие дискретными симметриями и допускающие доменные стенки, сталкиваются, вообще говоря, с «проблемой доменных стенок»: в них должен существовать механизм, запрещающий образование доменных стенок в ранней Вселенной или обеспечивающий их исчезновение в процессе космологической эволюции. Это требование является, конечно, далеко не тривиальным.

Задача 16. Найти уравнение состяния для газа невзаимодействующих доменных стенок, движущихся с нерелятивистскими скоростями. *Указание*: использовать соображения, аналогичные приведенным в разделе 12.3.2.

В заключение отметим, что помимо возможного влияния на темп расширения Вселенной доменные стенки могли бы приводить и к другим наблюдаемым эффектам. В частности, поскольку доменная стенка является источником гравитационного потенциала, то реликтовые фотоны, распространяющиеся по Вселенной с доменной стенкой массы $M_{DW} = \eta H_0^{-2}$, испытывали бы дополнительный сдвиг частоты

$$rac{\delta\omega}{\omega}\sim rac{M_{DW}}{H_0^{-1}}rac{1}{M_{Pl}^2}=rac{\eta}{M_{Pl}^2H_0}.$$

Это явление привело бы к искажению спектра реликтового излучения

$$rac{\delta T}{T} \propto rac{\delta \omega}{\omega},$$

¹⁶⁾ Мы рассматриваем модель (12.52), в которой множество вакуумов состоит лишь из двух точек. Для более сложных ситуаций (например, в моделях с симметрией \mathbb{Z}_n , n > 2) будет больше различных типов доменов, а значит, и интерполирующих между ними стенок, которые в общем случае уже смогут пересекаться.

что не наблюдается. Отсюда следуют ограничения на параметры моделей с доменными стенками.

Задача 17. В простейшей модели (12.52) вычислить изменение за время порядка H_0^{-1} частоты фотона, траектория которого: 1) пересекает, 2) не пересекает доменную стенку. Исходя из утверждения, что наблюдаемый спектр реликтового излучения $\delta T/T$ соответствует теоретическим предсказаниям с точностью примерно 1 %, получить ограничение на константу самодействия скалярного поля, полагая v = 100 ГэВ. Сравнить с ограничением, следующим из требования малости вклада доменной стенки в полную плотность энергии Вселенной (12.58).

12.5. * Текстуры

С точки зрения космологии интерес представляют и нестабильные топологически нетривиальные конфигурации полей — текстуры. Они также возникают в ранней Вселенной в результате фазовых переходов, сопровождающихся спонтанным нарушением симметрии. Роль топологии здесь состоит в том, что для текстур, как и для других топологических дефектов, работает механизм Киббла. С другой стороны, в силу своей нестабильности текстуры не доживают до современной эпохи, и их появление в ранней Вселенной можно обнаружить лишь косвенно. Одна из возможностей здесь состоит в том, что текстуры вносят вклад в образование первичных возмущений плотности вещества, из которых в конечном итоге образуются структуры — галактики, скопления галактик и т. д. Следует сразу сказать, что до сих пор каких-либо эффектов, связанных с текстурами, экспериментально не обнаружено.

Как и в случаях со стабильными топологическими дефектами, которым посвящены предыдущие разделы этой Главы, текстуры могут появляться в моделях со спонтанным нарушением глобальных или локальных (калибровочных) симметрий. В качестве примера первого типа рассмотрим модель со спонтанным нарушением глобальной симметрии $O(4) \rightarrow O(3)$ и одним скалярным вещественным четырехплетом φ^a , $a = 1, \ldots, 4$,

$$\mathcal{L} = \int \sqrt{-g} \, d^4 x \left[\frac{1}{2} \partial^\mu \varphi^a \partial_\mu \varphi^a - \frac{\lambda}{4} (\varphi^a \varphi^a - v^2)^2 \right]. \tag{12.59}$$

При нулевой температуре симметрия нарушена, и вакуум можно выбрать в виде

$$\langle \varphi^a \rangle = v \delta_4^a. \tag{12.60}$$

Поля φ^1 , φ^2 , φ^3 при этом остаются безмассовыми — это голдстоуновские бозоны ¹⁷⁾, соответствующие нарушению глобальной симметрии $O(4) \rightarrow O(3)$. Поле h, определяемое как $h = \varphi^4 - v$, приобретает массу m_h , которую мы будем считать достаточно большой.

¹⁷⁾ Присутствие в теории безмассовых частиц — голдстоуновских бозонов — неизбежно в моделях со спонтанным нарушением глобальных симметрий и может привести к ряду феноменологических трудностей, которые мы здесь оставляем без обсуждения.

Задача 18. Построив квадратичное действие для возмущений над вакуумом (12.60), проверить сделанное утверждение о спектре частиц в модели (12.59).

Скалярный потенциал модели (12.59) равен нулю, если

$$\varphi^a \varphi^a = v^2. \tag{12.61}$$

Это условие определяет многообразие вакуумов; в данном случае оно представляет собой трехмерную сферу S_{vac}^3 . Конфигурации поля $\varphi^a(\mathbf{x})$ с размерами, значительно превышающими m_h^{-1} , имеют небольшую плотность энергии, если условие (12.61) выполняется в каждой точке пространства. Такие конфигурации имеют конечную полную энергию, если градиент φ^a стремится к нулю при $r \to \infty$, т.е. $\varphi^a(\mathbf{x})$ стремится к постоянному значению, не зависящему ни от углов, ни от r. Без ограничения общности можно считать, что

$$\varphi^a(r o \infty) = v \delta_4^a.$$

С точки зрения топологии это означает, что наше трехмерное пространство эффективно имеет топологию трехмерной сферы S^3_{space} , поскольку при описании полевых конфигураций все точки на пространственной бесконечности отображаются в одну и ту же точку многообразия вакуумов S^3_{vac} . Описанные только что конфигурации поля $\varphi^a(\mathbf{x})$ задают, таким образом, отображения 3-сферы S^3_{space} в 3-сферу S^3_{vac} , которые могут иметь нетривиальную топологию. Топологическое число при этом является числом накрытий сферы S^3_{vac} при отображении $S^3_{space} \to S^3_{vac}$; это число является целым.

Простейшая топологически-нетривиальная конфигурация имеет вид

$$\varphi = v \begin{pmatrix} \cos \phi \sin \theta \sin \chi \\ \sin \phi \sin \theta \sin \chi \\ \cos \theta \sin \chi \\ \cos \chi \end{pmatrix}, \qquad (12.62)$$

где ϕ и θ — сферические углы в нашем трехмерном пространстве, а функция $\chi(r)$ удовлетворяет условиям

$$\chi(r=0)=0, \quad \chi(r o\infty)=\pi.$$

Такая конфигурация имеет единичное топологическое число. Это и есть текстура (узел) с минимальным топологическим числом.

Задача 19. Убедиться, что для конфигурации (12.62) топологическое число, в данном случае являющееся степенью отображения $S^3 \to S^3$, равно 1.

Конфигурация (12.62) не является стабильной. Энергия этой статической конфигурации полностью определяется градиентным членом

$$E = \frac{1}{2} \int d^3x \, \nabla \varphi^a \cdot \nabla \varphi^a. \tag{12.63}$$

Поскольку в результате перемасштабирования координат $x \to x' = \alpha x$ энергия (12.63) также изменяется пропорционально масштабу α , т. е. $E \to E' = \alpha E$,

то данная полевая конфигурация нестабильна относительно сжатий ¹⁸⁾. Образовавшись, текстура начнет сжиматься.

Для сжавшегося до размера порядка m_h^{-1} узла условие (12.61) уже может не выполняться, и узел исчезнет в результате либо классической эволюции, либо квантового туннельного процесса. Накопленная в узле энергия перейдет в энергию безмассовых частиц — голдстоуновских бозонов.

Отметим, что в случае статического трехмерного пространства, представляющего собой сферу S^3 не только топологически, но и геометрически, конфигурации типа текстуры могут не коллапсировать из-за ненулевой пространственной кривизны. Соответствующее решение имеет вид (12.62), но теперь χ совпадает с координатой на S_{space}^3 , так что метрика пространства имеет вид

$$dl^{2} = a^{2} [d\chi^{2} + \sin^{2} \chi \cdot (d\theta^{2} + \sin^{2} \theta \, d\phi^{2})]. \qquad (12.64)$$

При этом решение (12.62) нетривиально на всей 3-сфере S_{space}^3 , причем вектор (12.62) можно рассматривать как нормаль к сфере S_{space}^3 , погруженной в фиктивное четырехмерное евклидово пространство.

Задача 20. Показать, что конфигурация (12.62) является решением в пространстве с метрикой (12.64).

Приведем эвристический аргумент в пользу стабильности решения (12.62) в пространстве с метрикой (12.64). Рассмотрим полевую конфигурацию вида

для $0 < \chi \leqslant \pi \alpha$, для $\pi \alpha < \chi \leqslant \pi$,

которая имеет число намоток 1 и интерполирует между нетривиальной и тривиальной конфигурациями (12.62) и (12.60), когда α изменяется от 1 до 0. Энергия конфигурации (12.65) равна

$$E = 4\pi \cdot \mathbf{a} \cdot \mathbf{v}^{2} \cdot \int_{0}^{\pi\alpha} \left(\frac{1}{\alpha^{2}} + 2 \frac{\sin^{2}(\chi/\alpha)}{\sin^{2}\chi} \right) \sin^{2}\chi \, d\chi =$$
$$= 2\pi^{2} \cdot \mathbf{a} \cdot \mathbf{v}^{2} \left(\frac{1}{2\alpha} + \alpha - \frac{\sin(2\pi\alpha)}{4\pi\alpha^{2}} \right). \tag{12.66}$$

¹⁸⁾ Данное свойство иллюстрирует тот факт, что топология дает необходимое, но не достаточное условие существования нетривиальных стабильных конфигураций.

Поскольку и $\alpha = 0$, и $\alpha = 1$ представляют собой минимумы энергии, то обе предельные конфигурации (т. е. конфигурация с $\alpha = 0$ и конфигурация с $\alpha = 1$) являются классически стабильными и отделены энергетическим барьером друг от друга.

Рассмотрим космологическую эволюцию скалярного поля с действием (12.59), для которого текстуры не являются стабильными. При высокой температуре глобальная SO(4)-симметрия восстановлена, однако с понижением температуры происходит спонтанное нарушение симметрии, приводящее к тому, что скалярное поле приобретает ненулевое вакуумное среднее, различное, вообще говоря, в разных пространственных областях. Это приводит к образованию текстур во Вселенной (механизм Киббла). В процессе дальнейшего остывания Вселенной узлы сжимаются и в конце концов пропадают, излучая голдстоуновские бозоны. В результате плотность энергии, накопленной в узлах, падает с уменьшением температуры, а области пространства, в которых значения скалярного поля оказываются скоррелированными, растут, пока не заполняют всю причинно-связанную на тот момент часть Вселенной, т. е. пока их линейный размер не становится порядка размера горизонта H^{-1} на тот момент времени. Это достаточно быстрый процесс по сравнению с темпом расширения Вселенной H^{-1} , поэтому, как и в случае образования других дефектов, можно считать, что характерный размер текстур сразу после фазового перехода составляет $H^{-1}(T_c)$, где T_c — температура фазового перехода. При этом во Вселенной имеется порядка одной текстуры в объеме $H^{-3}(T_c)$.

В дальнейшем корреляционная длина растет со временем, оставаясь порядка размера горизонта. Так же растет характерный размер текстур. Поскольку плотность энергии узла определяется в основном градиентным членом, для нее имеем оценку

$$\delta
ho\sim (
abla arphi)^2\sim v^2 H^2(t)\sim v^2 t^{-2}.$$

Плотность энергии фона — обычного вещества — как на радиационно-доминированной стадии, так и на стадии доминирования материи падает со временем по тому же закону $\rho \sim t^{-2}$, поэтому текстуры приводят к относительным флуктуациям плотности энергии постоянной величины, не зависящей от пространственного размера флуктуаций,

$$\frac{\delta
ho}{
ho} = ext{const} \frac{v^2}{M_{Pl}^2}.$$

Важно, что флуктуации такой амплитуды имеются в широком диапазоне пространственных размеров, поскольку в ходе эволюции Вселенной в ней существовали текстуры всех размеров, начиная с $H^{-1}(T_c)$. Таким образом, в самом первом приближении спектр флуктуаций плотности энергии будет масштабно-инвариантным, что согласуется с наблюдениями.

Для спектра флуктуаций важно, что динамика поля φ отличается от обычной динамики безмассового поля, для которого флуктуации различных длин волн не взаимодействуют друг с другом. В частности, корреляционная длина не остается неизменной в сопутствующей системе координат, и нелинейная динамика обеспечивает «отделение» узлов от гладких полевых конфигураций, что в конечном итоге действительно приводит к формированию спектра флуктуаций, близкого к масштабно-инвариантному. Однако предположение о том, что именно текстуры ответственны за формирование первичных возмущений плотности, приводит к неправильному предсказанию свойств анизотропии реликтового излучения: спектр анизотропии качественно совпадает со спектром, получаемым в модели с космическими струнами, см. рис. 12.6. Поэтому текстуры как основной источник первичных возмущений плотности исключены из наблюдений [48].

Задача 21. Оценить плотность фона голдстоуновских бозонов в модели (12.62). Для каких значений v этот фон мог бы привести к искажению предсказаний стандартного первичного нуклеосинтеза? Для $v = 10^{16}$ ГэВ оценить долю голдстоуновских бозонов в плотности энергии релятивистской компоненты вещества в современной Вселенной.

12.6. * Гибридные топологические дефекты

Помимо топологических дефектов одного типа, в ряде моделей возможно также образование структур, состоящих из топологических дефектов разной размерности. Такое случается, если спонтанное нарушение симметрии происходит в два (или несколько) этапов. На каждом из этапов имеет место перестройка вакуума, и для образования структуры из дефектов разного типа необходимо, чтобы каждое из вакуумных многообразий, образующихся в результате этих перестроек, допускало существование стабильных топологических дефектов. С точки зрения топологии это означает, что на горячей стадии развития Вселенной с понижением температуры происходит цепочка фазовых переходов

$$G \xrightarrow{T_1} H_1 \xrightarrow{T_2} H_2 \rightarrow \ldots, \quad T_1 > T_2 > \ldots,$$

причем для образующихся вакуумных многообразий существуют нетривиальные гомотопические группы

$$\pi_{N_1}(G/H_1) \neq 0, \quad \pi_{N_2}(G/H_2) \neq 0, \quad \dots$$

Примерами возможных структур являются: «ворс» — конфигурации струн с концами, расположенными на доменных стенках (и, вообще говоря, перемещающимися вдоль стенок), «ожерелья» — струны с нанизанными на них монополями и др. Так, ожерелья образуются в моделях с двумя последовательными фазовыми переходами:

I этап:
$$G \to G' \times U(1)$$
;
II этап: $G' \times U(1) \to H \times \mathbb{Z}_N$.

На первом этапе происходит образование монополей, а на втором между монополями натягиваются струны, причем ожерелья отвечают случаю N = 2, когда каждый монополь оказывается связанным лишь с двумя другими монополями. Эволюция гибридных конфигураций, вообще говоря, отличается от эволюций составляющих топологических дефектов. Мы не будем здесь обсуждать это подробно; отметим лишь, что с точки зрения космологических проявлений наиболее интересными представляются именно ожерелья.

12.7. *Нетопологические солитоны: Q-шары

Помимо рассмотренных в предыдущих разделах солитонных решений существуют и другие типы локализованных конфигураций полей, чья стабильность на космологических временах обусловлена причинами, непосредственно не связанными с топологией. В физике частиц популярным примером солитонов такого типа являются *Q*-шары, которые являются стабильными благодаря существованию сохраняющегося глобального заряда и отсутствию безмассовых заряженных частиц.

12.7.1. Модель с двумя полями

Простая модель, в которой имеются нетопологические солитоны типа Q-шаров, содержит действительное скалярное поле χ и комплексное скалярное поле ϕ . Лагранжиан модели имеет вид

$$\mathcal{L} = \partial_{\mu}\phi^{*} \partial^{\mu}\phi + \frac{1}{2}\partial_{\mu}\chi \partial^{\mu}\chi - V(\chi) - h^{2}\chi^{2}|\phi|^{2}, \qquad (12.67)$$

причем потенциал $V(\chi)$ имеет абсолютный минимум при

$$\chi = v \neq 0, \tag{12.68}$$

так что

$$V(\chi = v) = 0, \quad V(\chi = 0) = V_0 > 0.$$

В вакууме (12.68) поле ф имеет массу

 $m_{\phi} = hv$,

поле $\delta \chi \equiv \chi - v$ также будем считать массивным.

Лагранжиан (12.67) инвариантен относительно глобальных фазовых преобразований (группа симметрии U(1))

$$\phi \to e^{i\alpha}\phi, \quad \phi^* \to e^{-i\alpha}\phi^*,$$
 (12.69)

причем вакуум (12.68) с $\phi = 0$ инвариантен относительно этих преобразований. В соответствии с этим свойством в модели имеется сохраняющийся заряд

$$Q = i \int d^3 \mathbf{x} \left(\phi \dot{\phi}^* - \phi^* \dot{\phi} \right). \tag{12.70}$$

Зададимся вопросом о состоянии с минимальной энергией при фиксированном заряде Q. Одно из состояний с зарядом Q — это набор покоящихся ϕ -частиц (в количестве Q штук) в вакууме (12.68). Энергия этого состояния

Рис. 12.7. Конфигурация Q-шара: профиль поля $\chi(r)$ и волновая функция ϕ -частицы $\phi_0(r)$

равна $Q \cdot m_{\phi}$. Структура конкурирующего с ним состояния Q-шара — следующая. В области размера r_0 , который нам предстоит найти, поле χ принимает нулевое значение, а вне этой области реализуется вакуум (12.68); вблизи границы этой области $\chi(r)$ гладко меняется от нуля до v (см. рис. 12.7).

Все Q частиц ϕ находятся внутри этой области на нижнем уровне энергии, так что их энергия равна по порядку величины Q/r_0 : внутри Q-шара частицы ϕ — безмассовые, а минимальный импульс каждой из них имеет порядок $1/r_0$, такой же порядок имеет и энергия частиц ϕ , т. е. $E_{\phi} = b/r_0$, где b константа порядка единицы. Полная энергия Q-шара равна, таким образом,

$$E = \frac{4}{3}\pi r_0^3 \cdot V_0 + 4\pi r_0^2 \cdot \sigma + b\frac{Q}{r_0}, \qquad (12.71)$$

где первое слагаемое — энергия поля χ внутри Q-шара (напомним, что $V_0 \approx V(\chi = 0)$), а второе — энергия, связанная с переходной областью на границе Q-шара, поверхностная плотность которой (поверхностное натяжение) равна σ . Мы увидим ниже (см. (12.73)), что для достаточно больших Qразмер Q-шара велик, так что поверхностным вкладом можно пренебречь, и энергия Q-шара равна

$$E(r_0) = \frac{4}{3}\pi r_0^3 \cdot V_0 + b\frac{Q}{r_0}.$$
 (12.72)

Минимизация этого выражения по r_0 определяет радиус Q-шара при заданном Q,

$$r_0(Q) = \left(rac{bQ}{4\pi V_0}
ight)^{1/4},$$
 (12.73)

при этом его энергия (масса) равна

$$E(r_0(Q)) \equiv M_Q = \text{const} \cdot V_0^{1/4} Q^{3/4},$$
 (12.74)

с константой порядка единицы. Видно, что энергия Q-шара растет с Q медленнее, чем энергия $m_{\phi}Q$ свободных частиц ϕ в вакууме (12.68), так что при достаточно больших Q наинизшим по энергии состоянием действительно является Q-шар. Он стабилен относительно распада на частицы ϕ при

$$M_Q < m_\phi Q, \tag{12.75}$$

т. е. при $Q > Q_c$, где критическое значение заряда по порядку величины равно

$$Q_c \sim \frac{V_0}{m_\phi^4}.\tag{12.76}$$

Отметим, что для потенциала вида $V(\chi) = \lambda \cdot (\chi^2 - v^2)^2$ оценка (12.76) принимает вид

$$Q_c \sim rac{\lambda}{h^4},$$

так что критическое значение заряда велико при $\lambda \sim h^2 \ll 1$, т.е. в теории со слабой связью и без специальной подстройки параметров. Если же оценка (12.76) формально приводит к $Q_c \leq 1$ (например, при $\lambda \leq h^4$), то приведенное выше рассмотрение неприменимо для критических Q-шаров, и для получения реального значения Q_c необходимо более аккуратное исследование. Отметим еще, что для приведенного вывода существенны два обстоятельства. Во-первых, частицы ϕ предполагались легчайшими частицами, заряженными относительно глобальной группы симметрии U(1); в противном случае в оценке (12.76) вместо m_{ϕ} фигурировала бы масса легчайшей из частиц, заряженных по U(1). Во-вторых, существенно, что частицы ϕ являются бозонами, и внутри Q-шара они могут находиться на одном энергетическом уровне.

Задача 22. Пусть заряженные относительно U(1) частицы ϕ — это фермионы. Являются ли стабильными Q-шары, аналогичные рассмотренным выше, в теориях со слабой связью и с $m_{\phi} \sim m_{\chi}$, где m_{χ} — масса частицы χ в вакууме (12.68)? Указание: считать для определенности, что $V(\chi) = \lambda \cdot (\chi^2 - v^2)^2$, $\lambda \ll 1$.

Для дальнейшего полезно заметить, что описание Q-шаров возможно целиком в рамках классической теории поля. Такое описание в действительности адекватно при больших значениях заряда Q. В рамках классической теории поля вместо рассмотренных частиц ϕ внутри Q-шара следует рассмотреть классическую конфигурацию скалярных полей ϕ и χ . Для статического поля χ и зависящего от времени поля ϕ энергия конфигурации равна

$$E=\int d^3 \mathbf{x}\left(\dot{\phi}^*\cdot\dot{\phi}+oldsymbol{
abla}\phi^*\cdotoldsymbol{
abla}\phi+h^2\chi^2|\phi|^2+rac{1}{2}oldsymbol{
abla}\chi\cdotoldsymbol{
abla}\chi+V(\chi)
ight).$$

Для построения Q-шара требуется найти минимум этого функционала при заданном значении заряда (12.70). В качестве анзаца для $\chi(r)$ выберем по-прежнему конфигурацию рис. 12.7, а для $\phi(\mathbf{x}, t)$ запишем

$$\phi(\mathbf{x},t) = A e^{i\omega t} f(\mathbf{x}), \qquad (12.77)$$

где A — неизвестная пока амплитуда, а $f(\mathbf{x})$ нормирована условием

$$\int |f(\mathbf{x})|^2 d^3 \mathbf{x} = 1.$$
 (12.78)

С учетом этого условия энергия и заряд конфигурации равны

$$E = \omega^2 A^2 + A^2 \cdot \mathcal{E}_f + \frac{4}{3} \pi r_0^3 V_0, \qquad (12.79)$$

$$Q = 2\omega A^2, \tag{12.80}$$

где мы вновь пренебрегли поверхностным вкладом в энергию поля χ и обозначили

$$\mathcal{E}_f = \int d^3\mathbf{x} \left(|\boldsymbol{\nabla} f|^2 + h^2 \chi^2(r) |f|^2
ight).$$

Функцию $f(\mathbf{x})$ выберем так, чтобы она минимизировала \mathcal{E}_f при условии нормировки (12.78), т.е.

$$-\Delta f + h^2 \chi^2(r) f = \lambda^2 f, \qquad (12.81)$$

где λ — множитель Лагранжа. Уравнение (12.81) совпадает со стационарным уравнением Шредингера в потенциале $h^2\chi^2(r)$; наименьшее собственное значение λ и определяет \mathcal{E}_f :

$$\mathcal{E}_f = \lambda^2$$
.

Таким образом, $f(\mathbf{x})$ совпадает с волновой функцией основного состояния частицы ϕ в Q-шаре ($f_0(r)$ на рис. 12.7), при этом

$$\lambda = E_{\phi} = rac{b}{r_0},$$

где b — тот же коэффициент, что и в (12.71).

Итак, функционал энергии (12.79) имест вид

$$E = \omega^2 A^2 + A^2 \cdot \frac{b^2}{r_0^2} + \frac{4}{3} \pi r_0^3 V_0. \qquad (12.82)$$

Нам осталось найти минимум этого функционала по остающимся переменным ω , A и r_0 при фиксированном значении заряда (12.80). Из (12.80) получим $\omega = Q/(2A^2)$, после чего минимизация (12.82) по A дает

$$A^2=\frac{Qr_0}{2b},$$

при этом $\omega = b/r_0$, как и следовало ожидать, а энергия как функция единственного оставшегося параметра r_0 имеет вид (12.72). Дальнейший анализ совпадает с приведенным выше, так что подход в рамках классической теории поля эквивалентен квантовомеханическому подходу. Обсудим простой механизм, приводящий к космологической генерации Q-шаров рассматриваемого типа в количестве, необходимом для объяснения ими темной материи. Пусть при высоких температурах среднее значение поля χ равно нулю, а при понижении температуры до критического значения T_c происходит фазовый переход первого рода, в результате которого поле χ приобретает среднее значение χ_c . Предположим, что в новой фазе массы частиц ϕ велики по сравнению с температурой ¹⁹:

$$m_{\phi}(T_c) = h\chi_c \gg T_c. \tag{12.83}$$

Предположим, наконец, что во Вселенной к моменту фазового перехода имелась *Q*-асимметрия, т.е. была отлична от нуля величина

$$\eta_{\phi} = \frac{n_{\phi} - n_{\bar{\phi}}}{n_{\phi} + n_{\bar{\phi}}} \sim \frac{n_{\phi} - n_{\bar{\phi}}}{n_{\gamma}}.$$
(12.84)

(считаем ϕ легчайшей частицей, несущей глобальный U(1) заряд).

Как мы обсуждали в разделе 10.1, фазовый переход первого рода происходит путем образования единичных пузырей новой фазы в хаббловском объеме, которые затем расширяются и сливаются. В результате остаются островки фазы с $\chi = 0$. Именно из этих островков и образуются Q-шары: в силу (12.83) частицы ϕ не могут проникать из областей с $\chi = 0$ в области с $\chi = \chi_c$, т. е. Q-асимметрия (12.84) оказывается в основном сосредоточенной в островках старой фазы, несущих, таким образом, большой заряд Q. Для грубой оценки будем считать, что остается порядка одного островка старой фазы с $\chi = 0$ в хаббловском объеме ²⁰, т. е. плотность числа образовавшихся Q-шаров при температуре T_c оценивается величиной

$$n_Q(T_c) \sim H^3(T_c) = rac{T_c^6}{M_{Pl}^{*\,3}}$$

В один такой Q-шар собирается заряд из хаббловского объема, опять-таки при температуре T_c , так что для типичного Q-заряда образовавшихся шаров имеем оценку

$$Q \sim \left(\eta_{\phi} \cdot n_{\gamma} \cdot \frac{1}{H^3}\right)_{T=T_c} \sim \eta_{\phi} \cdot \left(\frac{M_{Pl}^*}{T_c}\right)^3.$$
(12.85)

Массы таких Q-шаров даются формулой (12.74). Учитывая сохранение отношения плотности числа Q-шаров к плотности энтропии, получим оценку для современной плотности числа Q-шаров:

$$n_{Q,0} = rac{n_Q(T_c)}{s(T_c)} \cdot s_0 \sim rac{n_Q(T_c)}{g_*(T_c)T_c^3} \cdot s_0,$$

¹⁹⁾ Это в действительности является довольно нетривиальным предположением. В соответствии с (10.34), (10.29) требуется, в частности, чтобы константа самодействия поля ϕ была мала, $\lambda \ll h^4$.

²⁰⁾ Это не совсем так, например из-за того, что скорость стенок пузырей в среде заметно меньше скорости света.

т. е.

$$n_{Q,0} \sim \sqrt{g_*} \frac{T_c^3}{M_{Pl}^3} \cdot s_0.$$
 (12.86)

Воспользовавшись (12.74) и (12.85), оценим плотность энергии (массы) *Q*-шаров в современной Вселенной:

$$\rho_{Q,0} = M_Q \cdot n_{Q,0} \sim V_0^{1/4} \eta_{\phi}^{3/4} g_*^{-5/4} \left(\frac{T_c}{M_{Pl}}\right)^{3/4} \cdot s_0.$$
(12.87)

Для окончательной оценки (весьма грубой) положим $V_0^{1/4}$ и T_c равными энергетическому масштабу v, имеющемуся в модели, вспомним, что $s_0 \sim 10^3$ см⁻³, и положим $g_* \sim 100$. В итоге получим

$$ho_{Q,0}\sim 3\cdot 10^{-9}\cdot\eta_{\phi}^{3/4}igg(rac{v}{1\ ext{T}
iggB}igg)^{7/4}rac{ ext{F}
iggB}{ ext{cm}^3}.$$

Видно, что для объяснения темной материи требуется достаточно большой энергетический масштаб v: даже при $\eta_{\phi} \sim 1$ необходимое значение

$$ho_{Q,0}\sim 0.2
ho_c\sim 10^{-6}~rac{\Gamma
ightarrow B}{
m cm^3}$$

получается при *v* порядка нескольких десятков ТэВ. При таких параметрах плотность числа *Q*-шаров (12.86) составляет

$$n_{Q,0} \simeq rac{1}{\left(2 \cdot 10^{13} ~{
m cm}
ight)^3},$$

т. е. среднее расстояние между Q-шарами оказывается порядка размера земной орбиты. Массы Q-шаров при этом равны

$$M_Q = rac{
ho_{Q,0}}{n_{Q,0}} \sim 10^4$$
 тонн.

В соответствии с (12.85) и (12.73) заряд и размер такого *Q*-шара оцениваются как

$$Q \sim 10^{40}, \quad r_0 \sim 0,05$$
нм.

Для бо́льших значений энергетического масштаба v (и, соответственно, T_c) Q-шары образуются раньше, их современная концентрация больше, а необходимая для обеспечения темной материи масса каждого отдельного Q-шара — меньше.

Задача 23. При каком значении v средняя плотность образованных в результате обсуждаемого механизма Q-шаров составит $n_{Q,0} = (10^8 \text{ см})^{-3}$, так что для обеспечения темной материи масса каждого из них должна быть равна $M_Q = \rho_{CDM}/n_{Q,0} \sim 10^{-6}$ г? Оценить, какое требуется при этом значение зарядовой асимметрии η_{ϕ} .

12.7.2. Модели с плоскими направлениями

Несколько иной класс Q-шаров имеется в моделях с достаточно плоским скалярным потенциалом. Простейшая из них — это модель комплексного скалярного поля с лагранжианом

$$\mathcal{L} = \partial^{\mu} \phi^* \partial_{\mu} \phi - V \left(\phi^* \phi \right), \qquad (12.88)$$

где потенциал $V(\phi^*\phi)$ имеет абсолютный минимум в нуле и обладает определенными свойствами, о которых пойдет речь ниже. Лагранжиан (12.88) инвариантен относительно глобальных фазовых преобразований (12.69), причем вакуум $\phi = 0$ также инвариантен относительно этих преобразований.

Уравнения движения для скалярного поля с лагранжианом (12.88) имеют вид

$$\partial^{\mu}\partial_{\mu}\phi + rac{\partial V}{\partial\phi^{*}} = 0$$
 (12.89)

(и аналогичное комплексно сопряженное уравнение), а полная энергия определяется интегралом

$$E = \int \left[|\partial_0 \phi|^2 + |\partial_i \phi|^2 + V(\phi^* \phi) \right] d^3 x.$$
 (12.90)

При выключении самодействия уравнение (12.89) переходит в уравнение Клейна—Гордона

$$\partial^\mu\partial_\mu\phi+m^2\phi=0,$$

описывающее свободные заряженные скалярные частицы с массой

$$m \equiv \sqrt{\frac{\partial^2 V}{\partial \phi \; \partial \phi^*}(0)}.$$
 (12.91)

По аналогии с (12.77), мы будем интересоваться другим решением уравнения (12.89) — осциллирующей (во внутреннем пространстве) сферически симметричной конфигурацией вида

$$\phi = e^{i\omega t} f(r), \quad \phi^* = e^{-i\omega t} f(r), \quad (12.92)$$

где *r* — радиальная координата. Подставляя этот анзац в уравнение (12.89), получим

$$\frac{d^2f}{dr^2} = -\frac{2}{r}\frac{df}{dr} - \frac{d}{df}\left(\frac{1}{2}\omega^2 f^2 - \frac{1}{2}V(f)\right).$$
 (12.93)

Это уравнение формально совпадает со вторым законом Ньютона для материальной точки с координатой f, движущейся с трением в потенциале

$$V_{eff}(f) = rac{1}{2}\omega^2 f^2 - rac{1}{2}V(f),$$

причем радиальная координата играет роль времени. Асимптотику функции f(r) при больших r определим из требования конечности энергии (12.88), которая на конфигурации (12.92) принимает вид

$$E = 4\pi \int \left[\omega^2 f^2 + (\partial_r f)^2 + V(f)\right] r^2 dr.$$
 (12.94)

Положив значение потенциала $V(\phi)$ в минимуме $\phi = 0$ равным нулю, т.е.

$$V(0) = 0, \quad V(f \neq 0) \ge 0,$$

получим из требования конечности интеграла (12.94), что

$$f(r \to \infty) \to 0. \tag{12.95}$$

Это означает, что искомое решение описывает локализованный объект — солитон. Он и является *Q*-шаром.

Противоположная асимптотика при нулевом r определяется из требования конечности «силы трения» в уравнении (12.93), что дает

$$\left[\frac{df}{dr}(r\to 0)\right] \propto r^{1+\epsilon}, \quad \epsilon \ge 0.$$
(12.96)

Профиль Q-шара f(r) описывается решением уравнения второго закона Ньютона (12.93) для «частицы», начинающей движение с нулевой скоростью в «момент времени» r = 0 из некоторой точки

$$f_0 = f(r = 0) \tag{12.97}$$

и скатывающейся по потенциалу $V_{eff}(f)$ к нулевому значению $f(r \to \infty) \to 0$.

Ясно, что для существования такого решения, во-первых, эффективный потенциал $V_{eff}(f)$ должен иметь минимум при f = 0, а во-вторых, в начале своего движения точка должна обладать некоторой положительной потенциальной энергией, поскольку в конце движения ее энергия равна нулю, а в процессе движения часть энергии расходуется на работу против силы трения. Поэтому начальное значение поля обязано удовлетворять неравенству

$$\frac{V(f_0)}{f_0^2} \equiv \omega_0^2 \leqslant \omega^2. \tag{12.98}$$

Область пространства $r \leq r_0$, где функция f(r) существенно отлична от нуля, $0 < f(r) \leq f_0$, естественно назвать внутренней областью этого сгустка поля, а область $r \geq r_0$, где $f(r) \simeq 0$, — внешней областью. Величину r_0 естественно назвать радиусом сгустка.

Получившуюся макроскопическую конфигурацию называют Q-шаром потому, что в ней содержится ненулевой (и обычно довольно большой) заряд (12.70) относительно глобальной группы U(1),

$$Q = 8\pi\omega \int_{0}^{\infty} f^{2}(r)r^{2} dr, \qquad (12.99)$$

$$Q = \frac{8\pi}{3}\omega f_0^2 r_0^3, \qquad (12.100)$$

где при получении равенства (12.100) мы положили

$$f(r) = f_0 \cdot heta(r_0 - r).$$

Это является хорошим приближением, если оправдано тонкостенное приближение для описания сгустка, т. е. если область Δr , где существенно меняется f(r), мала по сравнению с линейным размером сгустка, $\Delta r \ll r_0$. Отметим, что равенство (12.100) можно считать формальным определением величины r_0 — расстояния, на котором набирается интеграл (12.99).

Энергия (12.94) для Q-шара может быть приближенно оценена как

$$E \approx \frac{4\pi}{3} r_0^3 \big[\omega^2 f_0^2 + V(f_0) \big], \qquad (12.101)$$

где мы пренебрегли вкладом градиентного члена $(\nabla f)^2$, который набирается на стенке шара, а поэтому заведомо мал для достаточно больших *Q*-шаров. Размер *Q*-шара можно определить, потребовав минимума энергии (12.101) как функции размера шара при фиксированном заряде (12.100). Для этого из (12.100) выразим частоту ω через *Q* и r_0 и подставим результат в (12.101):

$$Epprox rac{4\pi}{3}r_0^3V(f_0)+rac{3Q^2}{16\pi r_0^3f_0^2}$$

Приравнивая нулю производную этой функции по r_0 , получим

$$\frac{4\pi}{3}r_0^3 = \frac{Q}{2f_0}\frac{1}{\sqrt{V(f_0)}}$$

Окончательно, экстремальное по r_0 значение энергии при большом заряде Q равно

$$E=rac{Q}{f_0}\sqrt{V(f_0)},$$

а частота ω стремится к критическому значению ω_0 (см. (12.98)). Наконец, энергия стабильного стационарного решения должна быть минимальна как функция оставшегося параметра f_0 — значения поля в центре Q-шара. Это возможно, если функция $V(f)/f^2$ достигает нетривиального минимума при конечном $f = f_0 \neq 0$,

$$\min_{f} \left[\frac{V(f)}{f^{2}} \right] = \frac{V(f_{0})}{f_{0}^{2}} \neq 0, \quad f_{0} \neq 0, \quad f_{0} \neq \infty.$$
(12.102)

Именно это значение поля реализуется в центре солитона.

Условие существования нетривиального минимума функции $V(f)/f^2$, вместе с глобальным минимумом потенциала V(f) при f = 0, является весьма нетривиальным, особенно если учесть, что V(f) в действительности является функцией $f^2 = \phi^* \phi$ (последнее необходимо для инвариантности относительно глобальной группы U(1)). Например, обычно используемый перенормируемый потенциал

$$V(\phi)=m^2\phi^*\phi+\lambda\left(\phi^*\phi
ight)^2$$

этому условию не удовлетворяет. Для существования Q-шаров необходимы более экзотические скалярные потенциалы, являющиеся достаточно плоскими, по крайней мере в некоторой области изменения поля. Мы коротко обсудим в дальнейшем, в каких моделях возникают потенциалы интересующего нас типа, а сейчас продолжим обсуждение Q-шаров, предполагая, что скалярный потенциал обладает необходимыми свойствами.

Поскольку внутри Q-шара $f \simeq f_0 \neq 0$, то глобальная U(1)-симметрия там нарушена. Формально в этой области степенями свободы являются голдстоуновские бозоны. Вне Q-шара f = 0, U(1)-симметрия не нарушена и степенями свободы являются скалярные частицы с массой (12.91). Условие стабильности Q-шара по-прежнему имеет вид (12.75), что дает

$$\frac{Q}{f_0}\sqrt{V(f_0)} < Q \cdot m. \tag{12.103}$$

С учетом (12.91) это условие накладывает еще одно нетривиальное ограничение на скалярный потенциал модели:

$$\frac{2V(f_0)}{f_0^2} < \frac{d^2V(0)}{df^2}.$$

Задача 24. Построить приближенное решение для Q-шара (полагая заряд Q большим) в модели с калибровочной группой U(1) Оценить заряд Q и энергию E для этого решения. Показать, что отношение E/Q растет с увеличением Q из-за вклада электростатической энергии в E. Это означает, что в случае локальной U(1)-симметрии изза дополнительной силы отталкивания, вызванной калибровочным взаимодействием, при больших зарядах Q-шары становятся нестабильными. Они стремятся увеличить энергию связи путем испускания скалярных частиц с поверхности Отметим, что при достаточно малых калибровочных константах связи Q-шары с не слишком большим зарядом являются стабильными и в моделях с локальной U(1) симметрией.

Соотношения между параметрами потенциала и параметрами Q-шара, полученные выше, справедливы для случая относительно больших Q-шаров, когда можно пренебречь вкладами градиентных членов в энергию. В ряде моделей аккуратный учет всех вкладов показывает, что стабильными могут быть и небольшие Q-шары, «состоящие» из небольшого числа заряженных частиц.

Теперь рассмотрим случай, когда функция $V(f)/f^2$ не имеет минимума при конечных и отличных от нуля f. Если V(f) растет с увеличением f слабее, чем f^2 , то минимум функции $V(f)/f^2$ достигается при $f \to \infty$ и равен нулю,

$$\min_{f} \left[\frac{V(f)}{f^2} \right] = \left[\frac{V(f)}{f^2} \right]_{f \to \infty} = 0.$$
 (12.104)

Такое возможно в моделях с очень плоскими потенциалами, что действительно реализуется в ряде суперсимметричных обобщений Стандартной модели. В случае (12.104) использованный нами подход для оценки параметров *Q*-шара неприменим. Зато в пределе достаточно плоского потенциала,

$$f \to \infty$$
: $V(f) \propto f^{\alpha}$, $\alpha < 2$,

в уравнении движения (12.93) можно пренебречь скалярным потенциалом, и существует приближенное решение с асимптотиками, удовлетворяющими всем обсуждавшимся выше необходимым условиям (12.95)–(12.97),

$$f(r) = f_0 \frac{\sin \omega r}{\omega r} \cdot \theta (r_0 - r) . \qquad (12.105)$$

Требование самосогласованности решения вблизи границы Q-шара, т. е. непрерывности f(r) при $r = r_0$, приводит к тому, что, в отличие от рассмотренного выше случая (12.102), размер солитона оказывается связанным с частотой осцилляций во внутреннем пространстве:

$$r_0 \simeq \frac{\pi}{\omega}.\tag{12.106}$$

Из вида решения (12.105) ясно, что приближение тонкой стенки в данном случае не работает: изменение f(r) происходит во всем интервале $r < r_0$. Подставляя решение (12.105) в интеграл (12.99), определяющий заряд солитона, и выражая частоту ω через размер солитона (12.106), получим

$$Q = 4f_0^2 r_0^2. (12.107)$$

Для энергии такого *Q*-шара будем иметь из (12.94)

$$E = 4\pi f_0^2 r_0 + \frac{4\pi}{3} r_0^3 b V(f_0), \qquad (12.108)$$

где константа b — порядка единицы и определяется формой потенциала $V(\phi)$. Нам осталось найти минимум энергии (12.108) по f_0 и r_0 при условии, что заряд (12.107) фиксирован. Выразив r_0 через f_0 с помощью (12.107) получим для энергии как функции f_0

$$E(f_0) = 2\pi f_0 Q^{1/2} + \frac{\pi}{6} b \frac{Q^{3/2}}{f_0^3} V(f_0). \qquad (12.109)$$

В точке минимума имеем

$$\frac{b}{12}\frac{d}{df_0}\left(\frac{V(f_0)}{f_0^3}\right) = \frac{1}{Q}.$$
(12.110)

Для рассматриваемых потенциалов левая часть убывает с ростом f_0 , т.е. решение уравнения (12.110) $f_0(Q)$ растет с ростом Q. В частности, для $V(f) \sim f^{\alpha}$ имеем из (12.110)

$$f_0\left(Q
ight) \propto Q^{1/(4-lpha)}$$
 ,

так что энергия (12.109) ведет себя как

$$E\left(Q
ight) \propto Q^{(6-lpha)/(2(4-lpha))}.$$

При $\alpha < 2$ показатель степени здесь меньше единицы, поэтому при достаточно больших Q энергия солитона меньше массы Q штук ϕ -частиц, E < mQ, и Q-шар стабилен. Отметим, что в пределе $\alpha \to 0$ (совсем плоский потенциал при достаточно больших значениях поля) энергия ведет себя как

$$E \propto Q^{3/4}, \tag{12.111}$$

т. е. аналогично (12.74).

Решения типа Q-шаров существуют и в реалистических теориях, например в суперсимметричных обобщениях Стандартной модели физики частиц. Соответствующие скалярные поля тем или иным способом взаимодействуют с полями Стандартной модели. Константы взаимодействия при этом не слишком большие, так что все построение решений типа Q-шара происходит так же, как и для простейшей модели (12.88). Все, за исключением одного важного обстоятельства: ограничение (12.103), связанное со стабильностью относительно распада на свободные заряженные по группе U(1) частицы, видоизменяется. В результате взаимодействия скалярные частицы ϕ могут стать нестабильными и распадаться в другие частицы меньшей массы²¹⁾. Именно масса легчайших заряженных по этой группе частиц будет входить в правую часть модифицированного ограничения (12.103).

В реалистических моделях роль заряда Q могут играть, например, барионный, лептонный заряды или их линейные комбинации. Плоскостность потенциала естественным образом реализуется в ряде суперсимметричных теорий, где для низкоэнергетического скалярного потенциала характерно наличие плоских направлений, вдоль которых значение потенциала почти не изменяется. В результате квантовых поправок эти плоские направления «поднимаются», однако зависимость потенциала от величины поля остается слабой, поскольку поправки ведут себя как логарифм величины поля, $V \propto \ln |\phi|$.

В суперсимметричных моделях несущее барионный заряд поле ϕ может состоять из полей скварков (суперпартнеров кварков) и хиггсовских бозонов, при этом в обобщении формулы (12.103) место параметра m займет масса протона — легчайшего стабильного бариона. В случае лептонного заряда поле ϕ может состоять из слептонов (суперпартнеров лептонов), а место параметра m в обобщении формулы (12.103) займет масса соответствующего нейтрино. В моделях с потенциалами вида (12.104) такие решения являются стабильными на космологических масштабах только для достаточно больших величин заряда.

Задача 25. В моделях с потенциалами вида (12.104) оценить заряды стабильного B-шара (солитона, несущего барионное число) и стабильного L-шара (солитона, несущего лептонное число). Для численной оценки считать, что при достаточно больших f по-

²¹⁾ Отметим, что если глобальная симметрия оказывается спонтанно нарушенной, то возникает возможность распада скаляра в безмассовые частицы, в частности, в фотоны. В этом случае *Q*-шары будут нестабильными.

тенциал имеет вид

$$V(f) \simeq (1 \text{ T} \Im \text{B})^4 \cdot \left(\frac{f}{(1 \text{ T} \Im \text{B})}\right)^a$$

и рассмотреть случаи $\alpha = 1$ и $\alpha \rightarrow 0$.

Задача 26. Рассмотрим модель, в которой существуют солитоны типа Q-шара, однако скалярные частицы не являются стабильными, а распадаются в безмассовые фермионы. В такой теории Q-шары не являются стабильными, однако могут иметь большое время жизни, поскольку из-за фермиевского подавления распад происходит в результате испарения фермионов с поверхности Q-шара, а не из всего объема. Полагая, что скорость испарения с единицы плошади определяется только частотой ω , найти наименьшее значение заряда, начиная с которого время жизни Q-шаров будет превышать современный возраст Вселенной. Для численной оценки взять те же потенциалы V(f), что в предыдущей задаче.

Для больших Q-шаров важны гравитационные эффекты. При очень больших Q в решении появляется гравитационная нестабильность, связанная с коллапсом в черную дыру.

Задача 27. Оценить критические значения зарядов, при которых происходит образование черных дыр из *Q*-шаров в моделях (12.102) и (12.104). Для численной оценки все параметры потенциала размерности массы считать равными 1 ТэВ. Сравнить с результатами двух предыдущих задач.

В эволюционирующей Вселенной в уравнении движения для скалярного поля (12.89) появляются дополнительные вклады, зависящие от времени, однако для небольших по сравнению с размером горизонта Q-шаров, плотность энергии внутри которых существенно превышает среднюю плотность энергии в расширяющейся Вселенной, эти вклады несущественны, и анзац (12.92) по-прежнему является решением.

Отметим, что если эффективный потенциал V(f, T) допускает существование стабильных Q-шаров при температуре ниже некоторой критической, то процессы, протекающие в Q-симметричной плазме при последующей эволюции Вселенной не разрушают этих солитонных объектов²²⁾. Если же Q-шары формируются во Вселенной в результате неравновесных процессов при температурах, не допускающих существования стабильных Q-шаров, то столкновения с частицами плазмы приводят к «подогреву» Q-шаров, что может привести к их полному разрушению еще на ранних этапах эволюции Вселенной.

Основной механизм образования больших Q-шаров связан с распадом плоских направлений скалярного потенциала — полей модулей. В пределе $r_0 \rightarrow \infty$ найденные нами решения — Q-шары — это однородный скалярный конденсат, заполняющий все пространство. Его образование в ранней Вселенной происходит в определенной степени аналогично образованию заряженного по барионному числу скалярного конденсата, рассмотренному нами

4

²²⁾ В Q-асимметричной плазме размер Q-шаров изменяется за счет поглощения частиц и античастиц плазмы.

в разделе 11.6, посвященном механизму Аффлека--Дайна генерации барионной асимметрии Вселенной. Для почти плоских направлений скалярного потенциала конденсат начинает эволюционировать после окончания инфляционной стадии развития Вселенной. Если этот конденсат заряжен по группе глобальной симметрии U(1), то развивающиеся в расширяющейся и остывающей Вселенной неоднородные нестабильности могут приводить к распаду этого однородного конденсата на области с существенно различными плотностями заряда. Области с большим зарядом оказываются локализованными --отделенными друг от друга областью с малой плотностью заряда, быстро начинающей доминировать в большей части Вселенной. В моделях, допускающих существование стабильных Q-шаров, энергетически наиболее выгодным состоянием при большом фиксированном заряде являются Q-шары. Таким образом, области с большой плотностью заряда трансформируются в Q-шары, а в областях с малой плотностью заряда этот заряд переходит в свободные частицы. Анализ эволюции возмущений скалярного конденсата показывает, что в моделях, допускающих существование стабильных Q-шаров, распад плоских направлений действительно приводит к эффективному рождению Q-шаров, причем заметная доля заряда, накопленная полем модуля, оказывается в конце концов локализованной в Q-шарах.

Рассмотрим указанный механизм более подробно. В разделе 11.6 мы видели, что процесс образования асимметрии (в данном случае речь идет об асимметрии по отношению к глобальному U(1)-заряду Q) происходит в узком временном интервале вблизи того момента, когда нарушаются условия медленного скатывания скалярного поля²³⁾

$$\frac{V'\left(\phi_{i}\right)}{\phi_{i}} \sim H^{2}\left(t_{c}\right), \qquad (12.112)$$

где ϕ_i — начальное значение поля, а индекс *c* относится к окончанию периода медленного скатывания (в разделе 11.6 мы использовали вместо этого индекс *r*). Пусть в результате небольшого явного нарушения U(1)-симметрии во Вселенной образовалась *Q*-асимметрия

$$\eta_Q = rac{n_Q}{s},$$

где n_Q — плотность U(1)-заряда. В отличие от предыдущего раздела, ненулевая плотность Q-заряда связана с самим полем ϕ , которое эволюционирует так, как изображено на рис. 11.17.

Убедимся прежде всего, что однородный скалярный конденсат, несущий Q-заряд, неустойчив по отношению к образованию неоднородностей. Для этого пренебрежем расширением Вселенной (это упрощение мы обоснуем позже) и запишем скалярное поле в виде

$$\phi(x) = f(x) \cdot e^{i\alpha(x)}.$$

ξ.

²³⁾ Здесь мы используем общее соотношение (4.52), а не соотношение (4.53), справедливое для степенных потенциалов.

При этом скалярный потенциал будет только функцией f. Уравнения поля для f и α имеют вид

$$\ddot{\boldsymbol{\alpha}} - \Delta \boldsymbol{\alpha} + \frac{2}{f} \dot{\boldsymbol{\alpha}} \dot{\boldsymbol{f}} - \frac{2}{f} \boldsymbol{\nabla} \boldsymbol{\alpha} \cdot \boldsymbol{\nabla} \boldsymbol{f} = 0, \qquad (12.113)$$

$$\ddot{\boldsymbol{f}} - \Delta \boldsymbol{f} - \boldsymbol{f} \dot{\alpha}^2 + \boldsymbol{f} \Delta \alpha + \boldsymbol{V}'(\boldsymbol{f}) = 0.$$
(12.114)

Рассмотрим для начала случай, когда однородный скалярный конденсат движется по окружности во внутреннем пространстве,

$$f = \text{const}, \quad \alpha = \omega t, \quad \omega = \text{const},$$
 (12.115)

причем из (12.114) сразу следует, что

$$\omega^2 = \frac{V'}{f}.$$
 (12.116)

Заметим, что при $t > t_c$, когда нарушены условия медленного скатывания, выполняется $\omega > H$. Это в конечном итоге и оправдывает сделанное выше приближение, в котором мы пренебрегли расширением Вселенной.

Рассмотрим линейные возмущения над однородным конденсатом (12.115), причем с учетом трансляционной инвариантности сразу запишем

$$\delta f(x) = \delta f \cdot e^{i\lambda t + ipx}, \quad \delta \alpha(x) = \delta \alpha \cdot e^{i\lambda t + ipx}.$$
 (12.117)

Из уравнений (12.113) и (12.114) получим

$$(2i\lambda f\omega)\cdot\delta f+f^2\cdot(\lambda^2-\mathbf{p}^2)\cdot\deltalpha=0,\ ig(\lambda^2-\mathbf{p}^2-V''(f)+\omega^2ig)\delta f-(2i\lambda f\omega)\cdot\deltalpha=0.$$

Отсюда для каждого p^2 найдем уравнение на собственные значения

$$\lambda^{4} - \lambda^{2} \cdot (2\mathbf{p}^{2} + V'' + 3\omega^{2}) + \mathbf{p}^{2} \cdot (\mathbf{p}^{2} + V'' - \omega^{2}) = 0.$$
(12.118)

Нетрудно убедиться, что все решения λ^2 этого уравнения действительны. В случае

$$\mathbf{p}^2 + V'' - \omega^2 < 0, \tag{12.119}$$

один из корней этого уравнения отрицателен, $\lambda^2 < 0$, что соответствует чисто мнимым $\lambda = \pm i \sqrt{|\lambda^2|}$. Это и означает неустойчивость однородного конденсата: некоторые моды (12.117) экспоненциально растут со временем. Существенно, что эти моды не однородны в пространстве: при **p** = 0 все значения λ действительны, поскольку $\lambda^2 \ge 0$.

С учетом (12.113) условие (12.119) может выполняться тогда, когда потенциал достаточно плоский,

$$V'' < \frac{V'}{f}.$$
 (12.120)

Для степенного потенциала $V \propto f^{\alpha}$ это условие выполняется при $\alpha < 2$, т.е. как раз тогда, когда в модели имеются Q-шары. Наиболее сильная неустойчивость (наибольшее по модулю отрицательное λ^2) имеется при

$$|\mathbf{p}| \sim \omega, \tag{12.121}$$

при этом $|\lambda| \sim \omega$. Это окончательно убеждает в несущественности расширения Вселенной для данного анализа.

Дальнейшее развитие неустойчивости в нелинейном режиме аналитически изучить трудно, однако сам факт того, что условие существования неустойчивости (12.120) совпадает с условием существования Q-шаров, указывает на то, что процесс заканчивается образованием Q-шаров. Численные исследования подтверждают этот вывод. Оценка (12.121) показывает, что U(1)-заряд собирается в Q-шар с объема порядка

$$|\mathbf{p}|^{-3} \sim \omega^{-3}.$$

В расширяющейся Вселенной как эволюция конденсата, так и развитие неустойчивости происходят сразу после нарушения условий медленного скатывания, так что грубая оценка имеет вид

$$|\mathbf{p}| \sim |\lambda| \sim \omega \sim H(t_c),$$

где мы воспользовались (12.116) и (12.112). Таким образом, во Вселенной образуется порядка одного Q-шара на хаббловский объем, взятый в момент t_c .

Дальнейшие оценки можно провести почти так же, как мы сделали это в конце раздела 12.7.1. Рассмотрим для определенности случай почти плоского потенциала

$$V(f) = v^4 \left(rac{f}{v}
ight)^lpha, \quad lpha \ll 1,$$

где v — параметр размерности массы. В этом случае справедлива оценка (12.111), т. е. масса Q-шара по порядку величины равна

$$M_Q \sim v Q^{3/4}$$
.

Результаты раздела 12.7.1 прямо переносятся на рассматриваемую модель, и мы получаем (см. (12.87))

$$ho_{Q,0} = v \eta_Q^{3/4} g_*^{-5/4} igg(rac{T_c}{M_{Pl}} igg)^{3/4} s_0$$

Отличие, впрочем, состоит в том, что температура T_c определяется условием (12.112), так что в пределе малых α

$$T_c \sim v \sqrt{\frac{M_{Pl}}{f_i}}.$$

Это вносит дополнительную неопределенность в оценку современной плотности энергии Q-шаров, связанную с начальным значением поля ϕ . Если

положить $f_i \sim M_{Pl}$, как мы это делали в разделе 11.6, то будут буквально справедливы результаты конца раздела 12.7.1. При надлежащем подборе параметров Q-шары рассматриваемого типа могут выступать в роли темной материи

Как мы отмечали, в качестве заряда Q могут выступать барионный, лептонный заряды или их линейная комбинация. Q-шары могут оказывать влияние на генерацию барионной асимметрии Вселенной. B-шары, например, при превышающих электрослабый масштаб температурах, когда процессы с аномальным нарушением барионного и лептонных чисел находятся в термодинамическом равновесии, предотвращают вымывание барионной асимметрии нарушающими барионное и лептонные числа взаимодействиями.

Особенный интерес при этом представляют нестабильные (на поздних стадиях эволюции Вселенной) Q-шары. Накопленный в Q-шарах барионный заряд в результате распада в частицы переходит в барионную асимметрию Вселенной. Это, по-существу, один из вариантов механизма Аффлека-Дайна Он позволяет избежать вымывание асимметрии сфалеронными переходами, если распад В-шаров происходит уже после электрослабого перехода. Наиболее интригующей выглядит ситуация, когда Q-шары нестабильны и распадаются на барионы и новые стабильные тяжелые частицы, способные играть роль темной материи. В таких моделях возможно естественное объяснение совпадения (по порядку величины) плотностей энергии барионов и темной материи в современной Вселенной. Например, в суперсимметричных моделях со стабильным легчайшим суперпартнером (LSP, обычно — нейтралино) при распаде когерентного состояния скварков рождается три частицы LSP на каждый барион. В результате, если основная доля барионного заряда содержалась в Q-шарах, получаем простое соотношение между плотностями энергии барионов и частиц темной материи (LSP):

$$\frac{\rho_B}{\rho_{CDM}} \sim \frac{m_p}{3m_{LSP}}.$$
(12.122)

В теоретически привлекательных суперсимметричных обобщениях Стандартной модели оценка для феноменологически приемлемых масс нейтралино имеет вид $m_{LSP} \sim 10-100$ ГэВ. Для таких масс соотношение (12.122) дает всего на один-два порядка меньшую величину ρ_B/ρ_{CDM} по сравнению с результатами наблюдений. В приведенной оценке (12.122) мы не учли, однако, возможной аннигиляции LSP вблизи поверхности Q-шара, что ведет к уменьшению остаточной концентрации LSP.

В завершение раздела отметим, что класс нетопологических солитонов не ограничивается одними Q-шарами. К этому классу следуег отнести также кварковые самородки (quark nuggets), нейтринные шары (cosmic neutrino balls), солитонные звезды (soliton stars) и другие.

ЭЛЕМЕНТЫ ОБЩЕЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

А.1. Тензоры в искривленном пространстве-времени

В этом Приложении мы введем основные понятия, используемые в общей теории относительности (ОТО). Наше изложение не претендует на математическую строгость и полноту; его основная задача состоит в том, чтобы установить обозначения, используемые в тексте, и собрать в одном месте ряд полезных соотношений и формул. Для более глубокого ознакомления с основами общей теории относительности мы рекомендуем обратиться к учебникам [20,57]. Читателю, заинтересованному в более математически строгом изложении дифференциальной геометрии, можно порекомендовать книгу [58] Используемые в этой книге соглашения и обозначения собраны в разделе А.11.

Основным объектом изучения ОТО является искривленное четырехмерное пространство (многообразие) \mathcal{M} , описывающее наблюдаемое нами пространство-время. Для лучшего понимания абстрактных математических объектов, введенных ниже, иногда бывает полезным представлять это пространство вложенным в плоское объемлющее пространство большей размерности. Подчеркнем, однако, что наше пространство-время в действительности никуда не вложено¹⁾, и мы нигде не будем опираться на возможность какоголибо вложения. Стоит отметить, что все определения и факты, приведенные в настоящем Приложении, без труда переносятся на (псевдо)римановы пространства произвольной размерности.

Интервал (квадрат инвариантного расстояния) ds^2 между двумя близкими точками пространства-времени представляется в следующем виде²:

$$ds^{2} = g_{\mu\nu}(x) \, dx^{\mu} \, dx^{\nu}, \qquad (A.1)$$

где индексы μ , ν принимают значения 0, 1, 2, 3, а метрику $g_{\mu\nu}(x)$ можно рассматривать как симметричную матрицу размера 4×4. Таким образом, метрика определяется десятью независимыми функциями координат $g_{\mu\nu}(x)$, $\mu \leq \nu$. В дальнейшем мы будем считать, что метрика имеет сигнатуру (+, -, -, -),

¹⁾ Мы здесь не обсуждаем модели с дополнительными размерностями пространства

²⁾ В дальнейшем, если не оговорено противное, подразумевается суммирование по повторяющимся индексам

т. е. что у матрицы $g_{\mu\nu}(x)$ в каждой точке имеется одно положительное и три отрицательных собственных значения. Векторы dx^{μ} с положительными значениями ds^2 соответствуют времениподобным направлениям, векторы с нулевыми значениями ds^2 соответствуют светоподобным направлениям, а векторы с отрицательными ds^2 — пространственноподобным.

Основным принципом ОТО является то, что все выборы локальной системы координат равноправны между собой. Поэтому естественно рассматривать функции (поля) на многообразии \mathcal{M} , определенным образом преобразующиеся при замене системы координат

$$x^{\mu} \to x^{\prime \mu}(x^{\mu}). \tag{A.2}$$

Простейшим примером такой величины является скалярное поле $\phi(x)$, определяемое тем, что при замене системы координат оно преобразуется как³⁾

$$\phi'(x') = \phi(x).$$

Это соотношение показывает, что значение поля в данной точке многообразия не изменяется при преобразовании координат. Следующим важным примером величины, «хорошо» преобразующейся при заменах координат, служит контравариантный вектор — набор из четырех функций $A^{\mu}(x)$, преобразующихся так же, как и малые приращения координат dx^{μ} , т. е.

$$A^{\prime\nu}(x') = \frac{\partial x^{\prime\nu}}{\partial x^{\mu}} A^{\mu}(x). \tag{A.3}$$

Ковариантным вектором называется набор $A_{\mu}(x)$ из четырех величин, преобразующихся так же, как производные $\partial/\partial x^{\mu}$, т.е.

$$A'_{
u}(x')=rac{\partial x^{\mu}}{\partial x'^{
u}}A_{\mu}(x).$$
 (A.4)

Пользуясь законами преобразования (А.3) и (А.4), нетрудно получить закон преобразования свертки $A^{\mu}B_{\mu}$ контравариантного и ковариантного векторов,

$$egin{aligned} A^{\prime\mu}(x^\prime)B^\prime_\mu(x^\prime)&=rac{\partial x^{\prime\mu}}{\partial x^
u}A^
u(x)rac{\partial x^\lambda}{\partial x^{\prime\mu}}B_\lambda(x)=\ &=rac{\partial x^\lambda}{\partial x^
u}A^
u(x)B_\lambda(x)=A^
u(x)B_
u(x). \end{aligned}$$

Мы видим, что такая свертка преобразуется как скаляр при замене системы координат, т. е. ее значение в каждой точке не зависит от выбора локальных координат.

Геометрически контравариантный вектор $A^{\mu}(x)$ можно представлять себе как касательный вектор к поверхности \mathcal{M} , если последняя вложена в некоторое объемлющее пространство. К примеру, производная скалярной функции

³⁾ В дальнейшем все величины со штрихом относятся к новой системе координат, а величины без штриха — к исходной

 $\phi(x)$ вдоль направления, определяемого касательным вектором $A^{\mu}(x)$, имеет вид

$$\partial_A \phi(x) = A^{\mu}(x) \partial_{\mu} \phi(x). \tag{A.6}$$

Инвариантность свертки (А.5) относительно замен координат показывает, что ковариантные векторы $B_{\mu}(x)$ можно воспринимать как линейные функционалы, отображающие касательное пространство к \mathcal{M} в числа (с помощью свертки).

Аналогичным образом можно определить тензор с произвольным количеством верхних и нижних индексов. Такой объект преобразуется так же, как и произведение соответствующего числа ковариантных и контравариантных векторов. Например, тензор $B^{\mu}_{\nu\lambda}$ преобразуется при координатных преобразованиях следующим образом:

$$B^{\prime\mu}_{
u\lambda}(x^\prime) = rac{\partial x^{\prime\mu}}{\partial x^\sigma} rac{\partial x^ au}{\partial x^{\prime
u}} rac{\partial x^
ho}{\partial x^{\prime\lambda}} B^\sigma_{ au
ho}(x).$$

Непосредственно обобщая приведенные выше рассуждения для случая свертки ковариантного и контравариантного векторов, нетрудно доказать, что производя свертку верхнего и нижнего индексов в тензоре произвольного ранга мы снова получаем тензор.

Из того факта, что интервал ds^2 определяет инвариантное расстояние между двумя точками, т. е. не зависит от выбора системы координат, следует, что метрика $g_{\mu\nu}(x)$ является ковариантным тензором второго ранга, т. е. преобразуется как

$$g'_{\mu\nu}(x') = \frac{\partial x^{\lambda}}{\partial x'^{\mu}} \frac{\partial x^{\rho}}{\partial x'^{\nu}} g_{\lambda\rho}(x). \tag{A.7}$$

Задача 1. Докажите закон преобразования (А.7).

Другим важным примером тензора второго ранга является δ -символ Кронекера δ^{ν}_{μ} , определенный в произвольной системе координат как единичная диагональная матрица,

$$\delta^{\nu}_{\mu} = \text{diag}(1, 1, 1, 1).$$

Проверим, что такое определение δ^{ν}_{μ} совместно с тензорным законом преобразования при замене координат. Если некоторый тензор равен δ^{ν}_{μ} в исходной системе координат, то в новой системе координат он будет равен

$$rac{\partial x'^{\mu}}{\partial x^{\lambda}}rac{\partial x^{
ho}}{\partial x'^{
u}}\delta^{\lambda}_{
ho}=rac{\partial x'^{\mu}}{\partial x^{\lambda}}rac{\partial x^{\lambda}}{\partial x'^{
u}}.$$

Правая часть здесь вновь равна символу Кронекера δ^{μ}_{ν} , так что δ^{μ}_{ν} — действительно тензор. С помощью метрического тензора $g_{\mu\nu}$ и тензора Кронекера δ^{ν}_{μ} можно определить новый контравариантный симметричный тензор второго ранга $g^{\mu\nu}$ с помощью равенства

$$g^{\mu\nu}g_{\nu\lambda} = \delta^{\mu}_{\lambda}. \tag{A.8}$$

Другими словами, тензор $g^{\mu\nu}$ определяется матрицей, обратной к матрице $g_{\mu\nu}$.

Задача 2. Докажите, что $g^{\mu\nu}$ действительно является тензором.

Образуя свертки с тензорами $g_{\mu\nu}$ и $g^{\mu\nu}$, мы можем определить операцию поднятия и опускания индексов. К примеру,

$$A^
u = g^{
u\mu}A_\mu, \quad B_{\mu
u} = g_{\mu\lambda}g_{
u
ho}B^{\lambda
ho},$$

причем если A_{μ} и $B^{\lambda\rho}$ — тензоры, то A^{ν} и $B_{\mu\nu}$ — тоже тензоры.

Еще одним важным объектом, необходимым для построения функционала действия в ОТО, является определитель метрического тензора

$$g \equiv \det g_{\mu\nu}$$
.

Для того чтобы установить, как преобразуется g при заменах координат, запишем закон преобразования (А.7) в матричной форме:

$$\widehat{g}'(x') = \widehat{J}\widehat{g}(x)\widehat{J}^T.$$
 (A.9)

Крышечки указывают на то, что все величины, входящие в равенство (А.9), представляют собой матрицы размера 4×4 . Символом \widehat{J} обозначена матрица Якоби, соответствующая замене координат (А.2),

$$J^{\mu}_{
u}=rac{\partial x^{\mu}}{\partial x^{\prime
u}},$$

а \hat{J}^T — транспонированная матрица. Из равенства (А.9) вытекает следующий закон преобразования для величины g:

$$g'(x') = J^2 g(x),$$
 (A.10)

где J — якобиан замены координат (А.2),

$$J \equiv \det rac{\partial x^{\mu}}{\partial x'^{
u}}$$

Из закона преобразования (А.10) следует, что произведение

$$\sqrt{-g} d^4 x$$

определяет инвариантный элемент 4-объема⁴⁾.

В пространстве Минковского помимо символа Кронекера имеется еще один тензор, инвариантный относительно преобразований Лоренца — символ Леви—Чивиты $\epsilon^{\mu\nu\lambda\rho}$. Напомним, что $\epsilon^{\mu\nu\lambda\rho}$ полностью антисимметричен по своим индексам и, следовательно, однозначно определяется условием

$$\epsilon^{0123} = 1.$$

◀

⁴⁾ Заметим, что поскольку матрица $g_{\mu\nu}$ имеет три отрицательных собственных значения и одно положительное, ее определитель *g* меньше нуля. Поэтому мы используем действительную величину $\sqrt{-g}$ для определения инвариантного элемента объема.

Однако символ Леви—Чивиты не является инвариантным тензором при произвольных заменах координат. Действительно, если некоторый тензор равен $\epsilon^{\mu\nu\lambda\rho}$ в одной системе координат, то в другой системе он равен

$$\epsilon^{\prime\mu\nu\lambda\rho} = \frac{\partial x^{\prime\mu}}{\partial x^{\alpha}} \frac{\partial x^{\prime\nu}}{\partial x^{\beta}} \frac{\partial x^{\prime\lambda}}{\partial x^{\gamma}} \frac{\partial x^{\prime\rho}}{\partial x^{\delta}} \epsilon^{\alpha\beta\gamma\delta} = J^{-1} \epsilon^{\mu\nu\lambda\rho}. \tag{A.11}$$

Из закона преобразования (А.11) видно, что естественным обобщением символа Леви—Чивиты на случай произвольных криволинейных координат (и искривленного пространства) является тензор⁵⁾ Леви—Чивиты

$$E^{\mu
u\lambda
ho}=rac{1}{\sqrt{-g}}\epsilon^{\mu
u\lambda
ho}.$$

Этот тензор полностью антисимметричен по всем своим индексам и переходит в $\epsilon^{\mu\nu\lambda\rho}$, когда метрика $g_{\mu\nu}$ совпадает с метрикой пространства Минковского, $\eta_{\mu\nu} = \text{diag}(1, -1, -1, -1)$.

А.2. Ковариантная производная

Для того чтобы построить действие и выписать уравнения движения, инвариантные относительно произвольных замен координат, необходимо определить ковариантную операцию дифференцирования ∇_{μ} , которая переводила бы тензоры снова в тензоры. Для скалярного поля естественно потребовать, чтобы эта операция совпадала с обычным дифференцированием,

$$abla_{\mu}\phi(x) \equiv \partial_{\mu}\phi(x).$$
 (A.12)

Как следует из определения (А.4), так определенная производная $\nabla_{\mu} \phi$ является ковариантным вектором.

Определить, что такое ковариантная производная векторного поля $A^{\mu}(x)$, таким простым образом не удается. Действительно, для того чтобы продифференцировать векторное поле, нужно научиться вычитать касательные векторы, относящиеся к разным точкам пространства \mathcal{M} . Следовательно, необходимо определить правила параллельного переноса векторов из одной точки пространства в другую.

Рассмотрим параллельный перенос касательного вектора A^{μ} из точки с координатами x^{μ} в точку с координатами

$$\widetilde{x}^{\mu}=x^{\mu}+dx^{\mu}$$

(см. рис. А.1).

Наложив на операцию параллельного переноса естественное требование линейности (образ суммы двух векторов при параллельном переносе равен

⁵⁾ Более аккуратно было бы называть $E^{\mu\nu\lambda\rho}$ псевдотензором, поскольку он преобразуется с неправильным знаком относительно преобразований координат, меняющих ориентацию (с J < 0).

Рис. А.1. Параллельный перенос вектора

сумме образов), получаем, что в первом нетривиальном порядке по приращению координат dx^{μ} образ \widetilde{A}^{μ} вектора A^{μ} имеет следующий общий вид:

$$\widetilde{A}^{\mu}(\widetilde{x}) = A^{\mu}(x) - \Gamma^{\mu}_{\nu\lambda}(x)A^{\nu}(x) dx^{\lambda}.$$
 (A.13)

Величины $\Gamma^{\mu}_{\nu\lambda}$, входящие в правило параллельного переноса (А.13), носят название символов Кристоффеля или коэффициентов связности⁶⁾. Для того чтобы определить закон преобразования коэффициентов связности при произвольных заменах локальных координат, произведем замену координат в обеих частях равенства (А.13) и воспользуемся тем, что величины \tilde{A}^{μ} , A^{μ} и dx^{μ} преобразуются по закону (А.3). Левая часть равенства (А.13) перейдет в

$$\widetilde{A'}^{\mu}(\widetilde{x}') = \frac{\partial x'^{\mu}(\widetilde{x})}{\partial x^{\nu}} \widetilde{A}^{\nu}(\widetilde{x}) = \left(\frac{\partial x'^{\mu}(x)}{\partial x^{\nu}} + \frac{\partial^{2} x'^{\mu}(x)}{\partial x^{\nu} \partial x^{\lambda}} dx^{\lambda}\right) \widetilde{A}^{\nu}(\widetilde{x}) = \\ = \frac{\partial x'^{\mu}(x)}{\partial x^{\nu}} \widetilde{A}^{\nu}(\widetilde{x}) + \frac{\partial^{2} x'^{\mu}(x)}{\partial x^{\nu} \partial x^{\lambda}} dx^{\lambda} A^{\nu}(x), \tag{A.14}$$

где во втором равенстве мы разложили производную в ряд вокруг точки x^{μ} , а в третьем равенстве воспользовались тем, что векторы $\widetilde{A}^{\nu}(\widetilde{x})$ и $A^{\nu}(x)$ отличаются на величину первого порядка малости по приращениям координат dx^{μ} .

Правая часть равенства (А.13) после замены координат примет следующий вид:

$$A^{\prime\mu}(x^{\prime}) - \Gamma^{\prime\mu}_{\nu\lambda}(x^{\prime})A^{\prime\nu}(x^{\prime})\,dx^{\prime\lambda} = \frac{\partial x^{\prime\mu}}{\partial x^{\nu}}A^{\nu}(x) - \Gamma^{\prime\mu}_{\nu\lambda}(x^{\prime})\frac{\partial x^{\prime\nu}}{\partial x^{\rho}}A^{\rho}(x)\frac{\partial x^{\prime\lambda}}{\partial x^{\sigma}}\,dx^{\sigma}.$$
 (A.15)

Приравняв результаты преобразований (А.14) и (А.15) друг другу, умножив обе части получившегося равенства на матрицу $\partial x^{\mu}/\partial x^{\nu}$, обратную к матрице $\partial x'^{\mu}/\partial x^{\nu}$, и сравнив результат с исходным правилом параллельного переноса (А.13), получаем следующий закон преобразования для символов Кристоф-феля:

$$\Gamma_{\nu\lambda}^{\prime\mu}(x^{\prime}) = \frac{\partial x^{\rho}}{\partial x^{\prime\nu}} \frac{\partial x^{\sigma}}{\partial x^{\prime\lambda}} \frac{\partial x^{\prime\mu}}{\partial x^{\xi}} \Gamma_{\rho\sigma}^{\xi} + \frac{\partial x^{\prime\mu}}{\partial x^{\rho}} \frac{\partial^{2} x^{\rho}}{\partial x^{\prime\nu} \partial x^{\prime\lambda}}.$$
 (A.16)

12.

⁶⁾ Вообще говоря, символами Кристоффеля и коэффициентами связности называют разные объекты. В римановой геометрии это одно и то же.

Видно, что второй член в правой части равенства (А.16) приводит к тому, что символы Кристоффеля не преобразуются как компоненты тензора относительно нелинейных замен координат.

Для определения ковариантной производной векторного поля перенесем вектор $A^{\mu}(x)$ в точку $\tilde{x} = x + dx$, вычтем получившийся вектор из значения векторного поля в точке \tilde{x} и запишем

$$A^{\mu}(\widetilde{x}) - \widetilde{A}^{\mu}(\widetilde{x}) =
abla_{
u}A^{\mu} \cdot dx^{
u}.$$

Пользуясь правилом параллельного переноса (А.13), приходим к следующему определению ковариантной производной векторного поля $A^{\mu}(x)$:

$$\nabla_{\nu}A^{\mu}(x) = \partial_{\nu}A^{\mu}(x) + \Gamma^{\mu}_{\lambda\nu}A^{\lambda}(x). \tag{A.17}$$

Из закона преобразования символов Кристоффеля (А.16) следует, что $\nabla_{\nu} A^{\mu}$ является тензором второго ранга с одним ковариантным и с одним контравариантным индексом.

Правило параллельного переноса ковариантного вектора B_{μ} вытекает из того факта, что свертка $A^{\mu}B_{\mu}$ является скаляром, т. е. переносится тривиальным образом:

$$(\widetilde{A}^{\mu}\widetilde{B}_{\mu})(\widetilde{x}) = (A^{\mu}B_{\mu})(x). \tag{A.18}$$

Из соотношения (А.18) и правила параллельного переноса контравариантного вектора (А.13) вытекает следующий закон параллельного переноса ковариантного вектора B_{μ} :

$$\widetilde{B}_{\mu}(\widetilde{x}) = B_{\mu}(x) + \Gamma^{
u}_{\mu\lambda} B_{
u}(x) \, dx^{\lambda}.$$
 (A.19)

Следовательно, ковариантная производная $\nabla_{\nu}B_{\mu}$ ковариантного векторного поля имеет вид

$$\nabla_{\nu}B_{\mu}(x) = \partial_{\nu}B_{\mu}(x) - \Gamma^{\lambda}_{\mu\nu}B_{\lambda}(x). \tag{A.20}$$

Теперь, когда мы определили ковариантную производную скаляра и векторов обоих типов, не представляет труда обобщить эти определения на случай тензоров произвольного ранга с помощью правила Лейбница:

$$abla_{\mu}(AB) = (
abla_{\mu}A)B + A
abla_{\mu}B,$$

где A и B — два произвольных тензора (индексы при них не выписаны явно). К примеру, ковариантная производная тензора третьего ранга с одним верхним и двумя нижними индексами равна

$$abla_{\mu}B^{
u}_{\lambda au}=\partial_{\mu}B^{
u}_{\lambda au}+\Gamma^{
u}_{
ho\mu}B^{
ho}_{\lambda au}-\Gamma^{
ho}_{\lambda\mu}B^{
u}_{
ho au}-\Gamma^{
ho}_{ au\mu}B^{
u}_{\lambda
ho}.$$

В принципе, можно рассматривать многообразия с произвольным набором символов Кристоффеля, преобразующихся по закону (А.16). Однако в ОТО, которая основана на (псевдо)римановой геометрии⁷⁾, накладывают дополнительные условия на компоненты связности $\Gamma^{\mu}_{\nu\lambda}$. Первое из этих условий

⁷⁾ Псевдориманова геометрия отличается от римановой сигнатурой метрики, которая для римановой геометрии евклидова. Мы будем часто не обращать внимания на эту терминологическую тонкость.

заключается в том, что операция параллельного переноса (или, что эквивалентно, операция ковариантного дифференцирования) коммутирует с операцией поднятия и опускания индексов. В частности, требуется выполнение равенства

where
$$g_{\mu
u}
abla_\lambda A^
u =
abla_\lambda (g_{\mu
u}A^
u)$$
 is the

для произвольного вектора A^{ν} . Из правила Лейбница следует, что такое возможно, только если метрический тензор $g_{\mu\nu}$ ковариантно постоянен,

$$\nabla_{\mu}g_{\nu\lambda} = 0. \tag{A.21}$$

Более явно это условие выглядит следующим образом:

$$\partial_{\mu}g_{\nu\lambda}=\Gamma^{
ho}_{\nu\mu}g_{
ho\lambda}+\Gamma^{
ho}_{\lambda\mu}g_{
u
ho}.$$

Связности, для которых выполнено условие (А.21), называются связностями, совместными с метрикой (метрическими связностями). Вторым условием, накладываемым на символы Кристоффеля, является требование обращения в нуль антисимметричной по нижним индексам комбинации компонент связности

$$C^{\lambda}_{\mu\nu} \equiv \Gamma^{\lambda}_{\mu\nu} - \Gamma^{\lambda}_{\nu\mu} = 0.$$
 (A.22)

Из закона преобразования связности (А.16) следует, что $C^{\lambda}_{\mu\nu}$ является тензором («тензором кручения»), следовательно, справедливость соотношения (А.22) не зависит от выбора системы координат.

Задача 3. Найдите число независимых компонент метрической связности без кручения для пространства размерности D=2,3,4.

Задача 4. Рассмотрим двумерную поверхность Σ , вложенную в трехмерное евклидово пространство R^3 . Из пространства R^3 на Σ индуцируется метрика: если y^i (i = 1, 2) – координаты на поверхности Σ , то квадрат расстояния между близкими точками, принадлежащими Σ , можно записать в виде

$$ds^2 = g_{ij} \, dy^i \, dy^j,$$

где метрика $g_{ij}(y)$ однозначно определяется требованием, чтобы ds^2 было квадратом расстояния в R^3 . Для каждой точки поверхности Σ можно определить касательную плоскость; контравариантные векторы, о которых шла речь выше — это векторы, принадлежащие касательной плоскости. Их компоненты $A^i(y)$ в выбранной системе координат на Σ можно, например, определить соотношением

$$\partial_A \phi(y) = A^i(y) rac{\partial \phi}{\partial y^i},$$

где $\phi(y)$ — функция на поверхности y, а $\partial_A \phi$ — ее производная в направлении, задаваемом вектором \vec{A} . Параллельный перенос касательного вектора вдоль поверхности Σ осуществляется следующим образом (см. рис. А.2): сначала переносим вектор \vec{A} из точки y в точку \tilde{y} как вектор в R^3 (получая вектор \vec{A}_{\parallel} на рис. А.2), а затем берем его проекцию на касательную плоскость в точке \tilde{y} . Пусть поверхность Σ (локально) задана уравнениями

$$x^{\alpha} = f^{\alpha}(y^{1}, y^{2}), \quad \alpha = 1, 2, 3,$$

где x^{α} — координаты в R^3 .

Рис. А.2. Параллельный перенос касательного вектора

- 1) Вычислить компоненты метрики $g_{ij}(y)$.
- 2) Вычислить символы Кристоффеля $\Gamma_{ij}^{k}(y)$ на поверхности Σ , соответствующие определенной выше операции параллельного переноса вектора.
- Показать, что выполняются свойства (А.21) и (А.22), т. е. геометрия на поверхности Σ является римановой.
- 4) Предложить обобщение операции параллельного переноса вектора, такое что тензор кручения (А.22) отличен от нуля. Продемонстрировать этой свойство явным вычислением компонент связности. Выполняется ли в этом случае соотношение (А.21)? ◀

Уравнения (А.21) и (А.22) позволяют однозначно выразить символы Кристоффеля через компоненты метрического тензора,

$$\Gamma^{\mu}_{\nu\lambda} = \frac{1}{2} g^{\mu\rho} (\partial_{\nu} g_{\rho\lambda} + \partial_{\lambda} g_{\rho\nu} - \partial_{\rho} g_{\nu\lambda}). \tag{A.23}$$

В дальнейшем мы всегда будем предполагать справедливость равенства (А.23).

Задача 5. Выведите формулу (А.23) из соотношений (А.21) и (А.22).

Задача 6. Докажите следующие часто используемые свойства символов Кристоффеля и ковариантной производной:

$$\Gamma^{\mu}_{\nu\mu} = \partial_{\nu} \ln \sqrt{-g}, \qquad (A.24)$$

$$g^{\mu\nu}\Gamma^{\lambda}_{\mu\nu} = -\frac{1}{\sqrt{-g}}\partial_{\mu}(\sqrt{-g} g^{\lambda\mu}), \qquad (A.25)$$

$$\nabla_{\mu}A^{\mu} = \frac{1}{\sqrt{-g}}\partial_{\mu}(\sqrt{-g} A^{\mu}), \qquad (A.26)$$

для антисимметричного тензора $A^{\mu\nu}$:

$$\nabla_{\mu}A^{\mu\nu} = \frac{1}{\sqrt{-g}}\partial_{\mu}(\sqrt{-g} A^{\mu\nu}), \qquad (A.27)$$

$$\nabla_{\mu}\nabla^{\mu}\phi = \frac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}\ g^{\mu\nu}\partial_{\nu}\phi\right),\tag{A.28}$$

$$\nabla^{\mu}\phi \equiv g^{\mu\nu}\nabla_{\nu}\phi.$$

Из свойства (А.26) следует обобщение формулы Гаусса для интегралов от выражений, имеющих вид полной ковариантной дивергенции:

$$\int (\nabla_{\nu} A^{\nu}) \sqrt{-g} d^4 x = \int \partial_{\nu} \left(\sqrt{-g} A^{\nu} \right) d^4 x = \int \sqrt{-g} A^{\nu} d\Sigma_{\nu},$$

где $d\Sigma_{\nu}$ — элемент поверхности, ограничивающей область интегрирования. Совместно с правилом Лейбница для ковариантных производных эта формула позволяет производить интегрирование по частям в инвариантных интегралах. К примеру,

$$\int A_{\mu}
abla_{
u} B^{\mu
u} \sqrt{-g} \, d^4x = -\int (
abla_{
u} A_{\mu}) B^{\mu
u} \sqrt{-g} \, d^4x \, + \,$$
поверхностные члены.

В заключение этого раздела отметим следующий факт. Выбрав подходящую систему координат, можно локально, в заданной точке, обнулить все символы Кристоффеля; это полностью соответствует принципу эквивалентности, поскольку позволяет локально исключить гравитационное поле⁸⁾. В этой системе координат все ковариантные производные совпадают с обычными, а все первые производные метрического тензора обращаются в нуль (в силу (А.21)).

Переход в такую систему для заданной точки, которую мы поместим в начало координат, осуществляет преобразование:

$$x^{\mu} \to x'^{\mu} = x^{\mu} + \frac{1}{2} \Gamma^{\mu}_{\nu\lambda}(0) x^{\nu} x^{\lambda},$$
 (A.29)

где $\Gamma^{\mu}_{\nu\lambda}(0)$ — значения символов Кристоффеля в нуле в координатах x. Воспользовавшись соотношением (A.16), несложно убедиться, что в новой системе все символы Кристоффеля действительно обнуляются в начале координат. Отметим, что ключевую роль здесь играет симметричность символа Кристоффеля по нижним индексам, формула (A.22).

Поскольку само преобразование (А.29) в начале координат является тождественным, то дополнительно к обращению в нуль символов Кристоффеля можно производить преобразования и с самим метрическим тензором. Этим обстоятельством можно воспользоваться, чтобы свести метрический тензор в начале координат к тензору Минковского. Для этого достаточно выбрать

$$x^{\mu}=J^{\mu}_{\nu}x^{\prime\nu},$$

где J^{μ}_{ν} не зависит от координат. В матричных обозначениях будем иметь соотношение (А.9). Ортогональным преобразованием матрицу $g_{\mu\nu}$ можно привести к диагональному виду, а затем свести к тензору Минковского растяжением координат. Получившаяся в результате система координат, где

$$g_{\mu
u}(0)=\eta_{\mu
u},\quad \Gamma^{\mu}_{
u\lambda}(0)=0,$$

носит название локально лоренцевой системы.

⁸⁾ Вообще говоря, справедливо и более сильное утверждение: можно занулить все символы Кристоффеля вдоль любой наперед заданной мировой линии.

А.З. Тензор кривизны

Ċ

Как видно из формулы (А.23), символы Кристоффеля отличны от нуля, если метрика нетривиальным образом зависит от координат x^{μ} . Следует понимать, что отличие $\Gamma^{\lambda}_{\mu\nu}$ от нуля еще не говорит об отличие пространства от плоского. Поскольку величины $\Gamma^{\lambda}_{\mu\nu}$ не образуют тензора, они могут быть тождественно равны нулю в одной системе координат и отличаться от нуля в другой системе координат.

Задача 7. Найдите символы Кристоффеля в полярной системе координат на двумерной плоскости и в сферических координатах в трехмерном евклидовом пространстве.

Величиной, которая действительно характеризует геометрию пространства, а не выбор системы координат, является тензор кривизны (тензор Римана) $R^{\mu}_{\nu\lambda\rho}$. Тензор кривизны определяет то, как коммутатор ковариантных производных действует на тензоры. Например, для произвольного контравариантного вектора A^{λ} имеем

$$\nabla_{\mu}\nabla_{\nu}A^{\lambda} - \nabla_{\nu}\nabla_{\mu}A^{\lambda} = A^{\sigma}R^{\lambda}_{\ \sigma\mu\nu}.$$
 (A.30)

Задача 8. Проверьте, что равенство (А.30) действительно определяет тензор $R^{\mu}_{\nu\lambda\rho}$. В частности, проверьте, что все члены с производными A^{λ} , которые могли бы возникнуть в левой части равенства, действительно сокращаются.

Явное выражение для тензора кривизны имеет следующий вид:

$$R^{\mu}_{\ \nu\lambda\rho} = \partial_{\lambda}\Gamma^{\mu}_{\nu\rho} - \partial_{\rho}\Gamma^{\mu}_{\nu\lambda} + \Gamma^{\mu}_{\sigma\lambda}\Gamma^{\sigma}_{\nu\rho} - \Gamma^{\mu}_{\sigma\rho}\Gamma^{\sigma}_{\nu\lambda}. \tag{A.31}$$

Для того чтобы лучше понять геометрический смысл тензора Римана, рассмотрим параллельный перенос вектора A^{λ} из точки x с координатами x^{μ} в точку \tilde{x} с координатами

 $\widetilde{x}^{\mu} = x^{\mu} + dy^{\mu} + dz^{\mu},$

где направления векторов dy^{μ} и dz^{μ} не совпадают (см. рис. А.3).

Рис. А.З. Параллельный перенос вектора вдоль различных путей (12) и (34)
Этот параллельный перенос можно произвести различными способами. Например, можно сначала перенести вектор A^{λ} вдоль пути 1 в точку y с координатами

$$x^{\mu}_{(y)}=x^{\mu}+dy^{\mu},$$

а потом вдоль пути 2 в точку \tilde{x} . Можно сделать наоборот, а именно, осуществить сначала параллельный перенос вектора A^{λ} вдоль пути 3 в точку z с координатами

$$x^{\mu}_{(z)}=x^{\mu}+dz^{\mu},$$

а потом вдоль пути 4 в точку \tilde{x} . Конечно, в плоском пространстве результат параллельного переноса не будет зависеть от выбора пути. В случае искривленного пространства это уже, вообще говоря, неверно. Пользуясь правилом параллельного переноса (А.13), можно непосредственно убедиться, что результат переноса не зависит от пути в линейном порядке по приращениям координат. Однако в квадратичном порядке мы получим

$$\widetilde{A}^{\lambda}(12) - \widetilde{A}^{\lambda}(34) = A^{\sigma} R^{\lambda}_{\ \sigma\mu\nu} \, dz^{\mu} \, dy^{\nu}, \qquad (A.32)$$

где $\widetilde{A}^{\lambda}(12)$ и $\widetilde{A}^{\lambda}(34)$ — образы вектора A^{λ} при параллельных переносах вдоль путей (12) и (34) соответственно.

Задача 9. Получите равенство (А.32). В частности, убедитесь, что члены второго порядка малости по dx^{μ} , опушенные в правиле параллельного переноса (А.13), не дают вклада в разность $(\tilde{A}^{\lambda}(12) - \tilde{A}^{\lambda}(34))$ в квадратичном порядке малости.

Таким образом, тензор $R^{\mu}_{\ \nu\lambda\rho}$ определяет зависимость параллельного переноса от пути, вдоль которого он производится. Следовательно, тензор Римана действительно является нетривиальной характеристикой кривизны пространства.

Задача 10. Пользуясь символами Кристоффеля, найденными в задаче 7, проверьте явным вычислением, что все компоненты тензора Римана равны нулю в полярной системе координат на плоскости и в сферических координатах в трехмерном евклидовом пространстве.

Все рассуждения, приведенные выше, можно с минимальными изменениями перенести на случай ковариантного вектора A_{μ} . Аналог формулы (A.30) имеет в этом случае следующий вид:

$$\nabla_{\mu}\nabla_{\nu}A_{\lambda} - \nabla_{\nu}\nabla_{\mu}A_{\lambda} = -A_{\sigma}R^{\sigma}_{\ \lambda\mu\nu}.$$
(A.33)

Действие коммутатора ковариантных производных

$$[
abla_{\mu},
abla_{
u}]\equiv
abla_{\mu}
abla_{
u}-
abla_{
u}
abla_{\mu}$$

на тензор произвольного ранга вытекает из того факта, что для оператора $[\nabla_{\mu}, \nabla_{\nu}]$ выполнено тождество Лейбница (поскольку оно выполнено для отдельных ковариантных производных ∇_{μ} и ∇_{ν}). К примеру,

$$[\nabla_{\mu}, \nabla_{\nu}]A^{\rho}_{\lambda} = R^{\rho}_{\ \sigma\mu\nu}A^{\sigma}_{\lambda} - R^{\sigma}_{\ \lambda\mu\nu}A^{\rho}_{\sigma}. \tag{A.34}$$

Перечислим ряд важных свойств тензора Римана

1) Тензор

$$R_{\mu\nu\lambda\rho} \equiv g_{\mu\sigma} R^{\sigma}_{\nu\lambda\rho}$$

антисимметричен по первой и по второй паре индексов.

- 2) Тензор $R_{\mu\nu\lambda\rho}$ симметричен относительно перестановки пар индексов $(\mu\nu) \leftrightarrow (\lambda\rho)$.
- 3) Для любых трех индексов сумма трех компонент тензора $R_{\mu\nu\lambda\rho}$, соответствующих циклической перестановке этих индексов, равна нулю. Например,

$$R_{\mu\nu\lambda\rho} + R_{\lambda\mu\nu\rho} + R_{\nu\lambda\mu\rho} = 0. \tag{A.35}$$

4) Справедливо тождество Бьянки:

$$\nabla_{\rho}R^{\lambda}_{\ \sigma\mu\nu} + \nabla_{\nu}R^{\lambda}_{\ \sigma\rho\mu} + \nabla_{\mu}R^{\lambda}_{\ \sigma\nu\rho} = 0. \tag{A.36}$$

Задача 11. Пользуясь явным выражением (А.31) для компонент тензора Римана, докажите свойства (1), (2).

Задача 12. Пользуясь свойствами (1), (2), (3), определите число независимых компонент тензора Римана в каждой точке для размерности пространства D = 2, 3, 4.

Доказательства свойства (3) и свойства (4) (тождества Бьянки), использующие явный вид (А.31) тензора Римана, были бы слишком громоздкими. Вместо этого удобно непосредственно использовать определение (А.30). А именно, воспользуемся следующим равенством (тождеством Якоби), справедливым для произвольных операторов,

$$[A, [B, C]] + [C, [A, B]] + [B, [C, A]] = 0.$$

Задача 13. Докажите тождество Якоби.

Возьмем в качестве операторов A, B, C ковариантные производные и подействуем тождеством Якоби сначала на произвольный скаляр ϕ ,

$$\left[\nabla_{\rho}, \left[\nabla_{\mu}, \nabla_{\nu}\right]\right]\phi + \left[\nabla_{\mu}, \left[\nabla_{\nu}, \nabla_{\rho}\right]\right]\phi + \left[\nabla_{\nu}, \left[\nabla_{\rho}, \nabla_{\mu}\right]\right]\phi = 0.$$
(A.37)

Раскроем коммутаторы и запишем для первого слагаемого

$$egin{aligned} & [
abla_
ho, [
abla_\mu,
abla_
u]] \phi =
abla_
ho [
abla_\mu,
abla_
u] \phi - [
abla_\mu,
abla_
u]
abla_
ho \phi \ & = -[
abla_\mu,
abla_
u]
abla_
ho \phi \ & = \partial_\sigma \phi R^\sigma_{
houv}, \end{aligned}$$

и аналогично для других слагаемых. Здесь мы сначала воспользовались тем, что

$$[\nabla_{\mu}, \nabla_{\nu}]\phi = \partial_{\mu}\partial_{\nu}\phi - \Gamma^{\lambda}_{\mu\nu}\partial_{\lambda}\phi$$

симметрично по индексам μ , ν , а затем использовали (А.33). Таким образом, из тождества (А.37) получаем

$$\left(R^{\sigma}_{\ \rho\mu\nu}+R^{\sigma}_{\ \mu\nu\rho}+R^{\sigma}_{\ \nu\rho\mu}\right)\partial_{\sigma}\phi=0,$$

откуда и следует (А.35) в силу произвольности $\partial_{\sigma} \phi$.

Подействуем теперь тождеством Якоби на произвольный вектор A^{λ} и получим

$$\left[\nabla_{\rho}, \left[\nabla_{\mu}, \nabla_{\nu}\right]\right] A^{\lambda} + \left[\nabla_{\mu}, \left[\nabla_{\nu}, \nabla_{\rho}\right]\right] A^{\lambda} + \left[\nabla_{\nu}, \left[\nabla_{\rho}, \nabla_{\mu}\right]\right] A^{\lambda} = 0.$$
(A.38)

Далее, раскрывая один из коммутаторов и пользуясь определением (А.30), имеем

$$\left[\nabla_{\rho}, \left[\nabla_{\mu}, \nabla_{\nu}\right]\right] A^{\lambda} = \nabla_{\rho} (R^{\lambda}_{\ \sigma \mu \nu} A^{\sigma}) - \left[\nabla_{\mu}, \nabla_{\nu}\right] (\nabla_{\rho} A^{\lambda}). \tag{A.39}$$

Раскрывая правую часть в (А.39) с помощью тождества Лейбница, запишем

$$\begin{bmatrix} \nabla_{\rho}, [\nabla_{\mu}, \nabla_{\nu}] \end{bmatrix} A^{\lambda} = \nabla_{\rho} R^{\lambda}_{\ \sigma\mu\nu} A^{\sigma} + R^{\lambda}_{\ \sigma\mu\nu} \nabla_{\rho} A^{\sigma} - R^{\lambda}_{\ \sigma\mu\nu} \nabla_{\rho} A^{\sigma} + R^{\sigma}_{\ \rho\mu\nu} \nabla_{\sigma} A^{\lambda} = = \nabla_{\rho} R^{\lambda}_{\ \sigma\mu\nu} A^{\sigma} + R^{\sigma}_{\ \rho\mu\nu} \nabla_{\sigma} A^{\lambda}.$$
(A.40)

При подстановке выражения (А.40) и аналогичных выражений для двух других двойных коммутаторов в тождество Якоби (А.38) получаем, пользуясь свойством (3) тензора Римана, что

$$ig(
abla_
ho R^\lambda_{\ \sigma\mu
u}+
abla_
u R^\lambda_{\ \sigma
ho\mu}+
abla_\mu R^\lambda_{\ \sigma
u
ho}ig)A^\sigma=0$$

для произвольного вектора A^{σ} . Следовательно, тождество Бьянки действительно выполняется.

Сворачивая индексы тензора Римана $R_{\mu\nu\lambda\rho}$ друг с другом, можно построить новый тензор с меньшим числом индексов, характеризующий кривизну пространства. Из свойств симметрии тензора Римана относительно перестановки индексов следует, что при свертке любых двух его индексов получается либо нуль, либо следующий симметричный тензор второго ранга

$$R_{\mu
u}\equiv R^{\lambda}_{\ \mu\lambda
u},$$

называемый тензором Риччи. В дальнейшем нам часто будет нужен явный вид этого тензора:

$$R_{\mu\nu} = \partial_{\lambda}\Gamma^{\lambda}_{\mu\nu} - \partial_{\mu}\Gamma^{\lambda}_{\lambda\nu} + \Gamma^{\lambda}_{\rho\lambda}\Gamma^{\rho}_{\mu\nu} - \Gamma^{\lambda}_{\rho\mu}\Gamma^{\rho}_{\nu\lambda}. \tag{A.41}$$

Производя свертку тензора Риччи по его двум индексам, мы получаем скаляр кривизны

$$R\equiv g^{\mu\nu}R_{\mu\nu}.$$

Задача 14. Найдите компоненты метрики, символы Кристоффеля, компоненты тензоров Римана и Риччи и скаляр кривизны на двумерной сфере S^2 .

Задача 15. Покажите, что на произвольной двумерной поверхности величина \sqrt{gR} является полной производной и, следовательно, интеграл скаляра кривизны по инвариантному объему

$$\frac{1}{4\pi} \int d^2 x \,\sqrt{g}R \tag{A.42}$$

не зависит от выбора метрики на поверхности (теорема Гаусса—Бонне). Таким образом, в случае двумерного пространства данный интеграл является характеристикой топологии. Скаляр кривизны совпадает с удвоенной гауссовой кривизной. Интеграл (А.42) дает степень гауссова отображения и совпадает с эйлеровой характеристикой двумерной поверхности. Найдите значение этого интеграла на сфере и на торе.

А.4. Уравнения гравитационного поля

Теперь в нашем распоряжении имеются все объекты, необходимые для построения действия ОТО. В ОТО метрический тензор является динамическим полем («гравитационным полем»), а уравнения ОТО возникают как условия экстремума для функционала действия. Как мы уже упоминали, один из основных принципов ОТО состоит в том, что все выборы системы локальных координат равноправны. Это означает, что вид уравнений на гравитационное поле $g_{\mu\nu}$, записанных через ковариантные величины, не зависит от выбора локальных координат. Для выполнения этого условия необходимо, чтобы действие для гравитационного поля S_{gr} было скаляром, т. е. записывалось в виде интеграла от скалярной плотности Лагранжа \mathcal{L}_{gr} по инвариантному 4-объему:

$$S_{gr} = \int d^4x \, \sqrt{-g} \mathcal{L}_{gr}.$$

Простейшая возможность заключается в том, чтобы взять в качестве плотности Лагранжа постоянную величину $(-\Lambda)$, не зависящую от метрики:

$$S_{\Lambda} = -\Lambda \int d^4x \, \sqrt{-g}. \tag{A.43}$$

Такой член действительно может входить в действие для гравитационного поля и играть важную роль в космологии. Из безразмерности действия следует, что величина Λ имеет размерность (масса)⁴. Эта величина носит название космологической постоянной или, по причинам, которые объяснены в Главе 3, плотности энергии вакуума. Однако действие (А.43) не может быть полным действием для гравитационного поля. Действительно, S_{Λ} не содержит производных метрики $g_{\mu\nu}$, а следовательно, при его вариации получились бы чисто алгебраические уравнения, что не позволяло бы интерпретировать $g_{\mu\nu}$ как настоящее динамическое поле.

Еще одна скалярная величина, имеющаяся в нашем распоряжении, это скаляр кривизны R, а точнее, произвольная функция f(R). Чтобы понять, какой выбор функции f(R) в качестве плотности Лагранжа наиболее естественен, вспомним, что обычно используются уравнения поля, имеющие первый или второй порядок по производным. Чтобы уравнения поля имели порядок по производным не выше второго, обычно требуют, чтобы плотность Лагранжа не содержала производных выше первого порядка. Действительно, рассмотрим теорию поля с действием вида

$$S = \int d^4x \, \mathcal{L}(\phi, \partial \phi, \partial^2 \phi, \ldots). \tag{A.44}$$

Здесь символ ϕ обозначает все поля теории, и мы опустили возможные тензорные индексы. Вариация действия (А.44), соответствующая малым изменениям полей ϕ ,

$$\phi \rightarrow \phi + \delta \phi$$

имеет вид

$$\delta S = \int d^4x \left(rac{\partial \mathcal{L}}{\partial \phi} \delta \phi + rac{\partial \mathcal{L}}{\partial \left(\partial \phi
ight)} \partial \delta \phi + rac{\partial \mathcal{L}}{\partial \left(\partial^2 \phi
ight)} \partial^2 \delta \phi + \dots
ight).$$

Предполагая, что вариации полей $\delta \phi$ обращаются в нуль на бесконечности, и интегрируя по частям, мы приходим к уравнениям движения следующего вида:

$$\frac{\partial \mathcal{L}}{\partial \phi} - \partial \frac{\partial \mathcal{L}}{\partial (\partial \phi)} + \partial^2 \frac{\partial \mathcal{L}}{\partial (\partial^2 \phi)} + \ldots = 0, \qquad (A.45)$$

которые, вообще говоря, содержат производные полей выше второго порядка.

Тензор Римана (А.31), а следовательно, и скаляр кривизны R содержат первые производные от символов Кристоффеля $\Gamma^{\lambda}_{\mu\nu}$. Последние, в свою очередь, содержат первые производные от метрического тензора $g_{\mu\nu}$. Следовательно, если плотность Лагранжа \mathcal{L}_{gr} нетривиальным образом зависит от скаляра кривизны, то действие обязательно содержит производные второго порядка. Исходя из рассуждения, приведенного выше, можно было бы прийти к выводу, что невозможно написать ковариантное действие для гравитационного поля, приводящее к уравнениям второго порядка по производным. Заметим, однако, что если в уравнении (А.45) плотность Лагранжа \mathcal{L} зависит от вторых производных полей только через члены вида

 $f(\phi)\partial^2\phi$

и не содержит более старших производных, то уравнения движения не содержат старших производных. На самом деле это означает, что проинтегрировав действие по частям и отбросив поверхностные члены, можно прийти к плотности Лагранжа, зависящей только от первых производных полей.

Нетрудно убедиться, что действие

$$S_{EH} = -\frac{1}{16\pi g} \int d^4x \, \sqrt{-g}R$$
 (A.46)

зависит от вторых производных именно таким образом.

Задача 16. С помощью интегрирования по частям найдите действие, эквивалентное действию (А.46) и не содержащее вторых производных. Является ли плотность Лагранжа для этого действия скаляром? А само действие?

Это действие носит название действия Эйнштейна—Гильберта. Как мы убедимся в дальнейшем, константа G, имеющая размерность (масса)⁻², равна ньютоновской гравитационной постоянной. Масса, соответствующая G, — это масса Планка

$$M_{Pl} = \frac{1}{\sqrt{G}} \approx 1.2 \cdot 10^{19} \text{ F3B.}$$
 (A.47)

Полное действие для гравитационного поля имеет вид суммы членов (А.43) и (А.46),

$$S_{gr} = S_{\Lambda} + S_{EH}. \tag{A.48}$$

436

Для того чтобы получить уравнения гравитационного поля, необходимо вычислить вариацию действия δS_{gr} при малом изменении метрики

$$g_{\mu
u}
ightarrow g_{\mu
u} + \delta g_{\mu
u}.$$

Начнем с первого, более простого члена S_{Λ} . Чтобы проварьировать S_{Λ} , воспользуемся следующей хорошо известной формулой из линейной алгебры:

$$\det (M + \delta M) = \det (M) (1 + \operatorname{Tr} (M^{-1} \delta M) + o(\delta M)), \qquad (A.49)$$

где М — произвольная невырожденная матрица.

Задача 17. Докажите формулу (А.49).

Применяя соотношение (А.49) для определителя метрического тензора, получаем

$$\delta g = g g^{\mu\nu} \delta g_{\mu\nu}. \tag{A.50}$$

Пользуясь этим результатом, приходим к следующему выражению для вариации S_{Λ} :

$$\delta S_{\Lambda} = -\Lambda \int d^4x \, \delta(\sqrt{-g}) = -\frac{\Lambda}{2} \int d^4x \, \sqrt{-g} \, g^{\mu\nu} \delta g_{\mu\nu}. \tag{A.51}$$

Перейдем теперь к вычислению вариации действия Эйнштейна—Гильберта S_{EH} . Вариация S_{EH} может быть записана в виде следующих трех членов:

$$\delta S_{EH} = \delta S_1 + \delta S_2 + \delta S_3,$$

где

$$\delta S_1 = -rac{1}{16\pi G}\int d^4x\,R\delta\sqrt{-g}, \ \delta S_2 = -rac{1}{16\pi G}\int d^4x\,\sqrt{-g}\,\delta g^{\mu
u}R_{\mu
u}$$

И

÷...

$$\delta S_3 = -\frac{1}{16\pi G} \int d^4 x \, \sqrt{-g} \, g^{\mu\nu} \delta R_{\mu\nu}. \tag{A.52}$$

Пользуясь соотношением (A.51), мы сразу же получаем явное выражение для δS_1 :

$$\delta S_1 = -\frac{1}{32\pi G} \int d^4 x \, \sqrt{-g} \, R g^{\mu\nu} \delta g_{\mu\nu}. \tag{A.53}$$

Для того чтобы вычислить δS_2 , заметим, что варьируя уравнение (А.8), являющееся определением $g^{\mu\nu}$, мы получаем

$$g_{
ho\lambda}\delta g^{\mu
ho}=-g^{\mu
ho}\delta g_{
ho\lambda}.$$

Свернув обе части этого равенства с матрицей $g^{\lambda\nu}$, получим

υ

$$\delta g^{\mu\nu} = -g^{\mu\rho} \delta g_{\rho\lambda} g^{\lambda\nu}. \tag{A.54}$$

Следовательно,

$$\delta S_2 = \frac{1}{16\pi G} \int d^4 x \, \sqrt{-g} \, R^{\mu\nu} \delta g_{\mu\nu}. \tag{A.55}$$

Остается найти вариацию δS_3 , которая на первый взгляд выглядит наиболее сложным образом. Для того чтобы вычислить δS_3 , заметим, что из правила преобразования символов Кристоффеля (А.16) следует, что вариация $\delta \Gamma^{\mu}_{\nu\lambda}$ является тензором. Далее, пользуясь формулой (А.31), получаем следующее выражение для вариации тензора Римана:

$$\delta R^{\mu}_{\nu\lambda\rho} = \partial_{\lambda}\delta\Gamma^{\mu}_{\nu\rho} - \partial_{\rho}\delta\Gamma^{\mu}_{\nu\lambda} + \delta\Gamma^{\mu}_{\sigma\lambda}\Gamma^{\sigma}_{\nu\rho} + \Gamma^{\mu}_{\sigma\lambda}\delta\Gamma^{\sigma}_{\nu\rho} - \delta\Gamma^{\mu}_{\sigma\rho}\Gamma^{\sigma}_{\nu\lambda} - \Gamma^{\mu}_{\sigma\rho}\delta\Gamma^{\sigma}_{\nu\lambda}.$$

Непосредственным вычислением можно убедиться, что справедлива формула

$$\delta R^{\mu}_{\nu\lambda\rho} = \nabla_{\lambda} \left(\delta \Gamma^{\mu}_{\nu\rho} \right) - \nabla_{\rho} \left(\delta \Gamma^{\mu}_{\nu\lambda} \right), \tag{A.56}$$

где ковариантные производные берутся относительно невозмущенной метрики. Из равенства (А.56) получаем следующее выражение для вариации тензора Риччи:

$$\delta R_{\mu\nu} = \nabla_{\lambda} \left(\delta \Gamma^{\lambda}_{\mu\nu} \right) - \nabla_{\nu} \left(\delta \Gamma^{\lambda}_{\mu\lambda} \right). \tag{A.57}$$

Подставляя выражение (А.57) в (А.52), получаем

$$\delta S_{3} = -\frac{1}{16\pi G} \int d^{4}x \, \sqrt{-g} \, g^{\mu\nu} \left[\nabla_{\lambda} \left(\delta \Gamma^{\lambda}_{\mu\nu} \right) - \nabla_{\nu} \left(\delta \Gamma^{\lambda}_{\mu\lambda} \right) \right] = \\ = -\frac{1}{16\pi G} \int d^{4}x \, \sqrt{-g} \, \nabla_{\lambda} \left(g^{\mu\nu} \delta \Gamma^{\lambda}_{\mu\nu} - g^{\mu\lambda} \delta \Gamma^{\sigma}_{\mu\sigma} \right), \tag{A.58}$$

где во втором равенстве мы внесли тензор $g^{\mu\nu}$ под знак ковариантной производной и переименовали индексы суммирования ν и λ во втором члене. Наконец, пользуясь свойством (А.26), мы можем переписать δS_3 в виде интеграла от полной дивергенции

$$\delta S_3 = -rac{1}{16\pi G}\int d^4x\,\partial_\lambda ig(g^{\mu
u}\delta\Gamma^\lambda_{\mu
u} - g^{\mu\lambda}\delta\Gamma^\sigma_{\mu\sigma}ig).$$

Следовательно, δS_3 не дает вклада в уравнения поля. Собирая вместе вариации (А.53) и (А.55), получаем для вариации действия Эйнштейна—Гильберта

$$\delta S_{EH} = \frac{1}{16\pi G} \int d^4x \, \sqrt{-g} \left(R^{\mu\nu} - \frac{1}{2} g^{\mu\nu} R \right) \delta g_{\mu\nu}. \tag{A.59}$$

Отсюда и из (А.51) вытекают следующие уравнения для гравитационного поля (уравнения Эйнштейна):

$$R^{\mu\nu} - \frac{1}{2}g^{\mu\nu}R = 8\pi G\Lambda g^{\mu\nu}.$$
 (A.60)

Видно, что уравнения Эйнштейна действительно квадратичны по производным.

Уравнения Эйнштейна иногда записывают в форме

$$G_{\mu\nu}=8\pi G\Lambda g_{\mu\nu},$$

438

где

$$G_{\mu
u}\equiv R_{\mu
u}-rac{1}{2}g_{\mu
u}R$$

- тензор Эйнштейна.

А.5. Конформно-связанные метрики

Для некоторых приложений полезно иметь соотношения между тензорами Риччи и скалярами кривизны для метрик, конформно связанных между собой. Пусть имеются две метрики $g_{\mu\nu}$ и $\hat{g}_{\mu\nu}$, такие, что

$$\widehat{g}_{\mu\nu}(x) = e^{2\varphi(x)}g_{\mu\nu}(x), \qquad (A.61)$$

где $\varphi(x)$ — некоторая функция координат — скаляр относительно общековариантных преобразований. Задача состоит в том, чтобы выразить $\widehat{R}_{\mu\nu}$ и \widehat{R} тензор Риччи и скаляр кривизны, построенные по метрике $\widehat{g}_{\mu\nu}$, — через $R_{\mu\nu}$ и R, построенные по метрике $g_{\mu\nu}$. Для ее решения найдем сначала связь между символами Кристоффеля. Прямая подстановка (А.61) в (А.23) дает

$$\widehat{\Gamma}^{\mu}_{
u\lambda}=\Gamma^{\mu}_{
u\lambda}+\delta^{\mu}_{\lambda}\partial_{
u}arphi+\delta^{\mu}_{
u}\partial_{\lambda}arphi-g_{
u\lambda}g^{\mu
ho}\partial_{
ho}arphi.$$

В результате подстановки этого выражения в (А.41) и прямолинейного (хотя и довольно длинного) вычисления получим

$$\widehat{R}_{\mu\nu} = R_{\mu\nu} - 2\nabla_{\mu}\nabla_{\nu}\varphi - g_{\mu\nu}g^{\lambda\rho}\nabla_{\lambda}\nabla_{\rho}\varphi + 2\partial_{\mu}\varphi\partial_{\nu}\varphi - 2g_{\mu\nu}g^{\lambda\rho}\partial_{\lambda}\varphi\partial_{\rho}\varphi, \quad (A.62)$$

где ковариантная производная берется в метрике $g_{\mu\nu}$. Отсюда для скаляра кривизны $\widehat{R} = \widehat{g}^{\mu\nu}\widehat{R}_{\mu\nu}$ будем иметь

$$\widehat{R} = e^{-2\varphi} \left(R - 6g^{\mu\nu} \nabla_{\mu} \nabla_{\nu} \varphi - 6g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi \right), \tag{A.63}$$

а тензор Эйнштейна получим в виде

$$\widehat{G}_{\mu\nu} \equiv \widehat{R}_{\mu\nu} - \frac{1}{2}\widehat{g}_{\mu\nu}\widehat{R} = G_{\mu\nu} - 2\nabla_{\mu}\nabla_{\nu}\varphi + 2\partial_{\mu}\varphi\partial_{\nu}\varphi + g_{\mu\nu}\left(2\nabla_{\lambda}\nabla^{\lambda}\varphi + \partial_{\lambda}\varphi\partial^{\lambda}\varphi\right),$$
(A.64)

причем в правой части подъем и опускание индексов ведется с метрикой $g_{\mu\nu}$. Наконец, для интеграла, входящего в действие гравитационного поля, связь имеет вид

$$\int \widehat{R} \sqrt{-\widehat{g}} \, d^4x = \int \mathrm{e}^{2 arphi} R \sqrt{-g} \, d^4x + 6 \cdot \int \mathrm{e}^{2 arphi} g^{\mu
u} \partial_\mu arphi \partial_
u arphi \sqrt{-g} \, d^4x.$$

Последнее соотношение получается с использованием (А.63) путем интегрирования по частям.

В качестве примера применения полученных формул приведем доказательство того, что «нелинейные гравитационные теории» с действиями вида

$$S = \int d^4x \sqrt{-g} f(R), \qquad (A.65)$$

где f(R) — произвольная функция скаляра кривизны R, динамически эквивалентны обычной гравитации (т. е. общей теории относительности, описываемой лагранжианом Эйнштейна—Гильберта) с самодействующим скалярным полем⁹⁾.

Чтобы убедиться в этом, вначале найдем уравнения поля, обращающие в нуль вариацию действия (А.65). Запишем эту вариацию снова в виде суммы трех слагаемых

$$\delta S = \delta S_1 + \delta S_2 + \delta S_3,$$

 $\delta S_1 = \int d^4 x f(R) \delta \sqrt{-g},$
 $\delta S_2 = \int d^4 x \sqrt{-g} \, \delta g^{\mu
u} f'(R) R_{\mu
u},$
 $\delta S_3 = \int d^4 x \sqrt{-g} \, g^{\mu
u} f'(R) \delta R_{\mu
u},$

где

$$f'(R) \equiv \frac{\partial f(R)}{\partial R}.$$

Вариации δS_1 и δS_2 являются простыми обобщениями аналогичных выражений для лагранжиана Эйнштейна—Гильберта (см. (А.53) и (А.55)):

$$\delta S_2 = -\int d^4x \,\sqrt{-g} \,f'(R) R^{\mu\nu} \delta g_{\mu\nu}. \tag{A.67}$$

Для вычисления δS_3 воспользуемся выражением (А.57), в которое подставим вариацию символа Кристоффеля

$$\delta\Gamma^{\lambda}_{\mu
u} = rac{1}{2}g^{\lambda
ho} ig(
abla_{\mu}\delta g_{
u
ho} +
abla_{
u}\delta g_{\mu
ho} -
abla_{
ho}\delta g_{\mu
u} ig).$$

В результате этой подстановки получим из (А.57):

$$\delta R_{\mu\nu} = \frac{1}{2} \Big(-\nabla_{\lambda} \nabla^{\lambda} \delta g_{\mu\nu} + \nabla^{\lambda} \nabla_{\mu} \delta g_{\lambda\nu} + \nabla^{\lambda} \nabla_{\nu} \delta g_{\lambda\mu} - \nabla_{\nu} \nabla_{\mu} \delta g_{\lambda}^{\lambda} \Big).$$
(A.68)

Тогда для вариации δS_3 имеем:

$$\delta S_3 = \int d^4x \, \sqrt{-g} \, \delta g_{\mu\nu} \big(\nabla^{\mu} \nabla^{\nu} - g^{\mu\nu} \nabla_{\lambda} \nabla^{\lambda} \big) f'(R), \qquad (A.69)$$

где мы дважды проинтегрировали по частям. В случае лагранжиана Эйнштейна—Гильберта выполняется f' = 1, поэтому выражение (А.69) зануляется и не дает вклада в уравнения движения.

⁹⁾ Из соображений удобства при записи действия (А.65) и до конца этого раздела мы будем работать в системе единиц $16\pi G = 1$.

Окончательно, приравнивая нулю вариацию δS , получаем уравнения движения для теории с действием (A.65):

$$\frac{1}{2}f(R)g_{\mu\nu} - f'(R)R_{\mu\nu} + \left(\nabla_{\mu}\nabla_{\nu} - g_{\mu\nu}\nabla^{\lambda}\nabla_{\lambda}\right)f'(R) = 0. \tag{A.70}$$

Отметим, что полученные уравнения являются уравнениями четвертого порядка.

Удобно ввести новые переменные $\tilde{g}_{\mu\nu}$, сделав конформное преобразование

$$g_{\mu\nu} = \psi^{-1} \widetilde{g}_{\mu\nu}, \quad \psi = f'(R).$$
 (A.71)

Мы будем полагать, что $\psi > 0$, тогда новая метрика $\tilde{g}_{\mu\nu}$ будет иметь ту же сигнатуру, что и метрика $g_{\mu\nu}$. Связь между тензорами Риччи и скалярами кривизны для этих двух метрик дается формулами (А.62) и (А.63) с $\varphi = -\frac{1}{2} \ln \psi$. Имеем, таким образом,

$$R_{\mu\nu} = \widetilde{R}_{\mu\nu} + \psi^{-1}\widetilde{\nabla}_{\mu}\widetilde{\nabla}_{\nu}\psi + \frac{1}{2\psi}\widetilde{g}_{\mu\nu}\widetilde{\nabla}_{\lambda}\widetilde{\nabla}^{\lambda}\psi - \frac{1}{2\psi^{2}}(\widetilde{\nabla}_{\nu}\psi\widetilde{\nabla}_{\mu}\psi + 2\widetilde{g}_{\mu\nu}\widetilde{\nabla}_{\lambda}\psi\widetilde{\nabla}^{\lambda}\psi), \qquad (A.72)$$

$$R = \psi \widetilde{R} + 3 \widetilde{\nabla}_{\mu} \widetilde{\nabla}^{\mu} \psi - \frac{9}{2} \psi^{-1} \widetilde{\nabla}_{\lambda} \psi \widetilde{\nabla}^{\lambda} \psi, \qquad (A.73)$$

где все символы с тильдой относятся к соответствующим величинам, вычисленным для метрики $\tilde{g}_{\mu\nu}$.

Пусть $R_0(\psi)$ — решение уравнения

$$f'(R_0(\psi))-\psi=0$$

(дальнейшее рассмотрение обобщается и на случай нескольких решений), т. е. $R_0 - \phi$ ункция, обратная к f'. Выберем ψ так, чтобы

$$R = R_0(\psi). \tag{A.74}$$

4*e

В новых переменных уравнение (А.70) примет вид

$$\widetilde{R}_{\mu\nu} - \frac{1}{2}\widetilde{R}\widetilde{g}_{\mu\nu} =$$

$$= \psi^{-2} \bigg[\frac{1}{2} \big(f(R_0(\psi)) - \psi R_0(\psi) \big) \widetilde{g}_{\mu\nu} + \frac{3}{2} \widetilde{\nabla}_{\mu} \psi \widetilde{\nabla}_{\nu} \psi - \frac{3}{4} \widetilde{g}_{\mu\nu} \widetilde{\nabla}_{\lambda} \psi \widetilde{\nabla}^{\lambda} \psi \bigg]. \quad (A.75)$$

Необходимо еще учесть уравнение (А.74). Левая часть этого уравнения дается формулой (А.73), а \tilde{R} найдем, свернув (А.75) с $\tilde{g}^{\mu\nu}$. Таким образом, получим уравнение

$$\psi \widetilde{\nabla}_{\lambda} \widetilde{\nabla}^{\lambda} \psi - \widetilde{\nabla}_{\lambda} \psi \widetilde{\nabla}^{\lambda} \psi + \frac{1}{3} \big(\psi R_0(\psi) - 2f(R_0(\psi)) \big) = 0.$$
 (A.76)

Итак, вместо системы уравнений четвертого порядка (А.70) в новых переменных $\tilde{g}_{\mu\nu}$ и ψ получаем расширенную систему уравнений второго порядка 442

(A.75), (A.76). Эта система совпадает с уравнениями обычной гравитации, взаимодействующей со скалярным полем ψ .

Можно построить действие, варьирование которого по $\tilde{g}_{\mu\nu}$ и по ψ приводит к уравнениям (А.75) и (А.76) соответственно:

$$S = \int d^4x \sqrt{-\tilde{g}} \,\widetilde{R} - \int d^4x \sqrt{-\tilde{g}} \left(\frac{3}{2} \frac{\tilde{g}^{\mu\nu} \widetilde{\nabla}_{\mu} \psi \widetilde{\nabla}_{\nu} \psi}{\psi^2} + \frac{R_0(\psi)}{\psi} - \frac{f(R_0(\psi))}{\psi^2} \right). \tag{A.77}$$

Задача 18. Получить уравнения (А.75) и (А.76) варьированием действия (А.77).

В действии (А.77) кинетический член скалярного поля можно привести к каноническому виду заменой $\psi = e^{\sqrt{2/3}\phi}$. Окончательно получаем действие

$$S = \int d^4x \,\sqrt{-\tilde{g}} \left\{ \widetilde{R} - \widetilde{g}^{\mu\nu} \widetilde{\nabla}_{\mu} \phi \widetilde{\nabla}_{\nu} \phi - \mathrm{e}^{-\sqrt{2/3}\phi} R_0 \left(\mathrm{e}^{\sqrt{2/3}\phi} \right) + \mathrm{e}^{-2\sqrt{2/3}\phi} f \left[R_0 \left(\mathrm{e}^{\sqrt{2/3}\phi} \right) \right] \right\}, \tag{A.78}$$

описывающее самодействующее скалярное поле ϕ в рамках обычной гравитации Эйнштейна—Гильберта. Выполненные преобразования показали, что эта теория динамически эквивалентна теории «нелинейной» гравитации с действием (А.65).

Задача 19. При каких условия на функции $\omega(\varphi)$ и $V(\varphi)$ скалярно-тензорная теория гравитации, описываемая действием

$$S=\int d^4x\,\sqrt{-g}igg(R+rac{1}{2}\omega(arphi)\partial_\muarphi\partial^
uarphi-V(arphi)igg)$$

(здесь φ — скалярное поле), эквивалентна f(R)-гравитации?

Отметим, что в результате конформного преобразования поля материи начинают взаимодействовать с полем дилатона ϕ . В результате, например, для однородного решения $\phi = \phi(t)$ «космологические часы» (время, входящее в метрику Фридмана) отличаются от «атомных часов» (времени, определяющего эволюцию и взаимодействие полей материи). В этом смысле в присутствии полей материи f(R)-гравитация не эквивалентна ОТО со скалярным полем.

А.6. Взаимодействие материи с гравитационным полем. Тензор энергии-импульса

Уравнения (А.60) описывают динамику гравитационного поля без полей материи. Однако в первую очередь представляет интерес изучение гравитации в присутствии полей материи, служащих источниками гравитационного поля.

Для того чтобы описать такую более общую ситуацию, необходимо добавить к действию (А.48) новое слагаемое

$$S_m = \int d^4x \, \sqrt{-g} \, \mathcal{L}_m, \qquad (A.79)$$

описывающее материю и ее взаимодействие с гравитационным полем. Здесь плотность лагранжиана \mathcal{L}_m является скалярной функцией гравитационного поля $g_{\mu\nu}$ и полей материи, которые мы не конкретизируем и условно обозначим символом ψ :

$$\mathcal{L}_m = \mathcal{L}_m(\psi, g_{\mu
u}).$$

При добавлении члена (А.79) в действие теории уравнения Эйнштейна (А.60) модифицируются следующим образом:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G(\Lambda g_{\mu\nu} + T_{\mu\nu}), \qquad (A.80)$$

где мы перешли к тензорам с нижними индексами. Здесь симметричный тензор $T_{\mu\nu}$ определяется следующим равенством:

$$\delta S_m = \frac{1}{2} \int d^4x \, \sqrt{-g} \, T_{\mu\nu} \delta g^{\mu\nu}. \tag{A.81}$$

Последнее равенство можно переписать с учетом (А.54):

$$\delta S_m = -rac{1}{2}\int d^4x\,\sqrt{-g}\,T^{\mu
u}\delta g_{\mu
u}.$$

Уравнение (А.80) (с верхними индексами) получается теперь с использованием (А.59).

Чтобы понять физический смысл тензора $T_{\mu\nu}$, вычислим его для двух простых теорий — теории скалярного поля и теории электромагнитного поля. Ковариантное действие, описывающее действительное скалярное поле, взаимодействующее с гравитацией, имеет следующий вид:

$$S_{sc} = \int d^4x \, \sqrt{-g} \left(\frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) \right), \tag{A.82}$$

где скалярный потенциал $V(\phi)$ может быть произвольной функцией поля ϕ . Вообще говоря, к действию (A.82) можно добавить следующий член, обращающийся в нуль в плоском пространстве:

$$S_{\xi} = \xi \int d^4x \sqrt{-g} RU(\phi), \qquad (A.83)$$

где $U(\phi)$ — произвольная функция. Мы ограничимся случаем $\xi = 0$. В этом случае взаимодействие скалярного поля с гравитацией называется минимальным.

Используя определение (A.81), получаем следующее выражение для тензора $T_{\mu\nu}$ скалярного поля:

$$T^{sc}_{\mu\nu} = \partial_{\mu}\phi\partial_{\nu}\phi - g_{\mu\nu}\mathcal{L}_{sc}, \qquad (A.84)$$

где \mathcal{L}_{sc} — лагранжиан скалярного поля.

Задача 20. Найти тензор $T_{\mu\nu}$ для свободного безмассового скалярного поля, неминимальным образом взаимодействующего с гравитацией, $\xi \neq 0$, выбрав

$$U(\phi) = \phi^2$$

причем $V(\phi) = 0$. При каком значении параметра ξ след $g^{\mu\nu}T_{\mu\nu}$ этого тензора равен нулю на уравнениях движения?

Найдем теперь явный вид тензора $T_{\mu\nu}$ для электромагнитного поля. Действие для векторного поля A_{μ} , взаимодействующего с гравитацией, имеет вид

$$S_{em} = -\frac{1}{4} \int d^4x \, \sqrt{-g} \, F_{\mu\nu} F_{\lambda\rho} g^{\mu\lambda} g^{\nu\rho}, \qquad (A.85)$$

где $F_{\mu\nu}$ — обычный тензор напряженности,

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}. \tag{A.86}$$

На первый взгляд, в искривленном пространстве необходимо заменить обычные производные в определении (А.86) ковариантными производными, чтобы $F_{\mu\nu}$ был тензором. Однако легко проверить, что для симметричной связности члены с символами Кристоффеля сокращаются при антисимметризации по μ и ν , поэтому

$$\nabla_{\mu}A_{\nu}-\nabla_{\nu}A_{\mu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}.$$

Пользуясь действием (А.85), получаем следующее выражение для тензора $T_{\mu\nu}$ электромагнитного поля:

$$T^{em}_{\mu\nu} = -F_{\mu\lambda}F_{\nu\rho}g^{\lambda\rho} + \frac{1}{4}g_{\mu\nu}F_{\lambda\rho}F^{\lambda\rho}.$$
 (A.87)

Заметим теперь, что в случае пространства Минковского,

$$g_{\mu
u}=\eta_{\mu
u},$$

и для скалярного, и для электромагнитного полей тензор $T_{\mu\nu}$ совпадает с тензором энергиии-импульса. Для скалярного поля $T^{sc}_{\mu\nu}$ в точности равен нётеровскому тензору энергии-импульса, а для электромагнитного поля $T^{em}_{\mu\nu}$ отличается на уравнениях движения от нётеровского на полную дивергенцию от антисимметричного тензора.

Задача 21. Проверьте эти утверждения.

В частности, в пространстве Минковского (00)-компоненты этих тензоров

$$T_{00}^{sc}=rac{1}{2}\left(\partial_{0}\phi
ight)^{2}+rac{1}{2}\left(\partial_{i}\phi
ight)^{2}+V(\phi)$$

И

$$T_{00}^{em} = rac{1}{2}F_{0i}^2 + rac{1}{4}F_{ij}^2 \equiv rac{1}{2}(ec{E}^2 + ec{H}^2)$$

представляют собой плотности энергии скалярного и электромагнитного полей.

Вообще, тензор $T_{\mu\nu}$, определенный равенством (А.81), называется метрическим тензором энергии-импульса. Подчеркнем, что он всегда симметричен. Ниже мы докажем, что в пространстве Минковского он всегда на уравнениях движения равен нётеровскому тензору энергии-импульса с точностью до полной дивергенции от антисимметричного тензора.

В плоском мире тензор энергии-импульса сохраняется,

$$\partial_{\mu}T^{\mu\nu} = 0, \qquad (A.88)$$

что приводит к законам сохранения энергии и импульса. Естественно предположить, что обобщением закона сохранения (А.88) на случай искривленного пространства является ковариантный закон сохранения

$$\nabla_{\mu}T^{\mu\nu} = 0. \tag{A.89}$$

Для того чтобы вывести уравнение (А.89), возьмем дивергенцию от обеих частей уравнений Эйнштейна (А.80),

$$\nabla^{\mu}\left(R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R\right) = 8\pi G \nabla^{\mu}T_{\mu\nu}, \qquad (A.90)$$

где

Докажем, что левая часть уравнения (А.90) *тождественно* равна нулю. Для этого сначала свернем тождество Бьянки (А.36) по индексам λ и μ . В результате мы получим следующее тождество:

 $\nabla^{\mu} \equiv q^{\mu\nu} \nabla_{\nu}.$

$$abla_
ho R_{\sigma
u} -
abla_
u R_{\sigma
ho} +
abla_\lambda R_{\sigma
u
ho}^\lambda = 0.$$

Свернем теперь это равенство с помощью тензора $g^{\sigma\rho}$. Получим

$$0 = \nabla_{\rho} R^{\rho}_{\nu} - \nabla_{\nu} R + \nabla^{\lambda} R_{\lambda\nu} = 2 \nabla^{\mu} \left(R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R \right).$$

Таким образом, мы получили тождество

$$abla^{\mu}igg(R_{\mu
u}-rac{1}{2}g_{\mu
u}Rigg)=0,$$

из которого следует, что ковариантный закон сохранения тензора энергииимпульса (А.89) является необходимым условием совместности уравнений Эйнштейна.

С другой стороны, тензор энергии-импульса целиком определяется видом действия для полей материи. Следовательно, для проверки совместности

всей системы полевых уравнений необходимо получить ковариантный закон сохранения (А.89) как следствие уравнений поля для материи.

Мы сейчас убедимся, что закон сохранения (А.89) действительно следует из уравнений поля для материи и из инвариантности действия относительно замены локальных координат. Для этого найдем сначала вариацию метрики $g^{\mu\nu}$ при малом изменении системы координат

$$x'^{\mu} = x^{\mu} + \xi^{\mu}. \tag{A.91}$$

Подставляя выражение (А.91) в общее правило (А.7) для преобразования тензора $g^{\mu\nu}$, получаем

$$g^{\prime\mu\nu}(x^{\prime}) = \left(\delta^{\mu}_{\lambda} + \partial_{\lambda}\xi^{\mu}\right) \left(\delta^{\nu}_{\rho} + \partial_{\rho}\xi^{\nu}\right) g^{\lambda\rho}(x) = g^{\mu\nu}(x) + \partial^{\nu}\xi^{\mu} + \partial^{\mu}\xi^{\nu}, \quad (A.92)$$

где во втором равенстве мы отбросили члены второго порядка по вариациям координат ξ^{μ} . Разлагая левую часть равенства (А.92) в ряд,

$$g^{\prime\mu
u}(x^\prime)=g^{\prime\mu
u}(x)+\partial_\lambda g^{\prime\mu
u}(x)\xi^\lambda+o(\xi)=g^{\prime\mu
u}(x)+\partial_\lambda g^{\mu
u}(x)\xi^\lambda+o(\xi),$$

мы получаем следующую связь между значениями $g^{\mu\nu}(x)$ и $g'^{\mu\nu}(x)$ в точках с одними и теми же значениями координат в старой и новой системе:

$$g^{\mu\nu}(x) = g^{\mu\nu}(x) - \partial_{\lambda}g^{\mu\nu}(x)\xi^{\lambda} + \partial^{\mu}\xi^{\nu} + \partial^{\nu}\xi^{\mu}.$$
(A.93)

Задача 22. Проверьте явным вычислением, что соотношение (А.93) может быть записано в следующем ковариантном виде:

$$g^{\prime\mu\nu} = g^{\mu\nu} + \nabla^{\mu}\xi^{\nu} + \nabla^{\nu}\xi^{\mu}. \qquad (A 94)$$

Из инвариантности действия полей материи относительно замен координат следует, что вариация этого действия равна нулю при изменении метрики $g^{\mu\nu}(x)$ согласно формуле (А.94) и одновременно с этим изменении полей материи $\delta\psi_{\xi}$, соответствующих замене координат (А.91). Например, для скалярного поля

$$\delta \phi_{\xi} = - \xi^{\mu} \partial_{\mu} \phi$$

Итак, в общем случае имеем

$$rac{1}{2}\int d^4x\,\sqrt{-g}\,T_{\mu
u}\,(
abla^\mu\xi^
u+
abla^
u\xi^\mu)+\int d^4x\,\sqrt{-g}\,rac{\delta\mathcal{L}_m}{\delta\psi}\delta\psi_\xi=0, \qquad (A.95)$$

где для простоты мы опустили всевозможные индексы у полей материи ψ . Равенство (А.95) справедливо вне зависимости от выполнения уравнений поля. Предположим теперь дополнительно, что удовлетворяются уравнения поля для материи. Это означает, что второй член в левой части равенства (А.95) обращается в нуль. Следовательно, мы доказали, что из уравнений поля для материи вытекает справедливость равенства

$$\int d^4x \sqrt{-g} T_{\mu\nu} \left(\nabla^{\mu} \xi^{\nu} + \nabla^{\nu} \xi^{\mu} \right) = 0.$$

Поскольку вектор ξ^{μ} может быть произвольным, а $T_{\mu\nu}$ симметричен, после интегрирования по частям мы приходим к ковариантному закону сохранения (А.89), что и требовалось.

Воспользуемся теперь равенством (А.95), для того чтобы доказать, что в плоском пространстве метрический тензор энергии-импульса $T_{\mu\nu}$ совпадает на уравнениях движения с нётеровским тензором $\tau_{\mu\nu}$ с точностью до полной производной. В плоском пространстве равенство (А.95) принимает вид

$$\int d^4x \, T_{\mu\nu} \partial^{\mu} \xi^{\nu} + \int d^4x \, \frac{\delta \mathcal{L}_m}{\delta \psi} \delta \psi_{\xi} = 0, \qquad (A.96)$$

где мы вновь воспользовались симметрией тензора $T_{\mu\nu}$. В пространстве Минковского действие инвариантно относительно вариаций полей материи $\delta\psi_{\xi}$, соответствующих сдвигам (А.91) с постоянными функциями ξ^{μ} . Следовательно, второй член в уравнении (А.96) может быть записан в виде

$$\int d^4x \, \frac{\delta \mathcal{L}_m}{\delta \psi} \delta \psi_{\xi} = - \int d^4x \, \tau_{\mu\nu} \partial^{\mu} \xi^{\nu}, \qquad (A.97)$$

где $\tau_{\mu\nu}$ на уравнениях движения совпадает с сохраняющимся нётеровским тензором энергии-импульса.

Задача 23. Модифицировав вывод теоремы Нётер, убедиться в справедливости соотношения (А.97), в котором $\tau_{\mu\nu}$ на уравнениях движения равен нётеровскому тензору энергии-импульса.

Интегрируя по частям соотношение (А.96), мы видим, что выполнено равенство

$$\partial^\mu (T_{\mu
u} - au_{\mu
u}) = 0$$

Это может быть, только если разность $(T_{\mu\nu} - \tau_{\mu\nu})$ является полной дивергенцией антисимметричного тензора,

$$T_{\mu
u} - au_{\mu
u} = \partial^{\lambda} A_{\mu
u\lambda},$$
 где $A_{\mu
u\lambda} = -A_{\lambda
u\mu},$ (A.98)

что мы и хотели доказать.

Задача 24. Рассмотрим тензор вида

$$\Theta_{\mu
u} = ig(\eta_{\mu
u}\partial^2 - \partial_\mu\partial_
uig)f,$$

где f — произвольная функция. Очевидно, что этот тензор тождественно сохраняется. Найдите его представление в виде $\Theta_{\mu\nu} = \partial^{\lambda} A_{\mu\nu\lambda}$, где $A_{\mu\nu\lambda} = -A_{\lambda\nu\mu}$.

Задача 25. Проверьте явно, что метрический тензор энергии-импульса для скалярного поля, неминимально взаимодействующего с гравитацией (см. выражения (A.82) и (A.83)), отличается в плоском мире от нётеровского тензора энергии-импульса на полную производную для произвольных $U(\phi)$ и ξ .

В заключение нашего обсуждения тензора энергии-импульса в ОТО стоит сделать следующее замечание. В плоском мире из дифференциального закона

сохранения (А.88) следует наличие в теории четырех сохраняющихся с течением времени величин — компонент 4-вектора энергии-импульса

$$P^{
u}\equiv\int d^{3}x\,T^{0
u}.$$

Однако в искривленном пространстве из равенства (А.89) вообще говоря не следует существования четырех интегралов движения, соответствующих энергии и импульсу системы. В связи с этим понятия энергии и импульса, вообще говоря, не определены в ОТО. Для локализованных в пространстве гравитирующих систем можно определить энергию и импульс по асимптотике гравитационного поля вдали от системы, но в общем случае такая конструкция невозможна. В частности, говорить о полной массе Вселенной не имеет смысла.

А.7. Движение частиц в гравитационном поле

Отвлечемся теперь на некоторое время от обсуждения свойств уравнений Эйнштейна и изучим движение точечных частиц во внешнем гравитационном поле. Действие для точечной частицы в ОТО имеет такой же вид, как и в специальной теории относительности:

$$S_p = -m \int ds. \tag{A.99}$$

Разница состоит в том, что теперь определение интервала *ds* вдоль мировой линии частицы включает в себя метрику пространства-времени:

$$ds=\sqrt{dx^{\mu}\,dx^{
u}g_{\mu
u}\left(x
ight)}=\sqrt{rac{dx^{\mu}}{d au}rac{dx^{
u}}{d au}g_{\mu
u}\left(x
ight)}\,d au,$$

где во втором равенстве мы ввели произвольный параметр τ вдоль мировой линии. С помощью этого параметра действие (А.99) можно записать в следующей форме:

$$S_p = -m \int \sqrt{\dot{x}^{\mu} \dot{x}^{\nu} g_{\mu\nu} (x)} d\tau, \qquad (A.100)$$

где точка обозначает дифференцирование по параметру τ . Уравнения движения, получающиеся при вариации действия (А.100), имеют следующий вид:

$$-\frac{d}{d\tau}\left(\frac{g_{\mu\nu}\dot{x}^{\nu}}{\sqrt{\dot{x}^{\alpha}\dot{x}_{\alpha}}}\right) + \frac{1}{2}\frac{\dot{x}^{\lambda}\dot{x}^{\nu}\partial_{\mu}g_{\nu\lambda}}{\sqrt{\dot{x}^{\alpha}\dot{x}_{\alpha}}} = 0.$$
(A.101)

Задача 26. Выведите уравнения (А.101).

Пользуясь произволом в выборе параметра τ , можно выбрать его таким образом, чтобы вектор 4-скорости

$$u^{\mu} = \frac{dx^{\mu}}{d\tau} \tag{A.102}$$

Рис. 1.1. Пространственное распределение галактик и квазаров по данным SDSS [1]. Зелеными точками отмечены все галактики (в данном телесном угле) с яркостью, превышающей некоторую. Красные точки указывают галактики наибольшей светимости из удаленных скоплений, образующие довольно однородную популяцию; в сопутствующей системе отсчета их спектр смещен в красную область по сравнению с обычными галактиками. Голубые и синие точки показывают расположение обычных квазаров. Параметр h примерно равен 0,7 (см. раздел 1.2.2)

Рис. 1.4. Измерения спектра реликтового излучения. Компиляция данных выполнена в [8]. Пунктирной кривой показан планковский спектр (спектр «черного тела»). Недавний анализ [9] дает значение температуры (1.7), а не T = 2,726 K, как на рисунке

Рис. 1.5. Данные WMAP [5]: угловая аңизотропия реликтового излучения, т. е. зависимость температуры фотонов от направления их прихода (показана цветом). Средняя температура фотонов и дипольная компонента (1.8) вычтены; изображенные вариации температуры находятся на уровне $\delta T \sim 100 \ \mu$ K, т. е. $\delta T/T_0 \sim 10^{-4} - 10^{-5}$

Рис. 1.6. Результаты измерений угловой а_{ңиз}отропии реликтового излучения различными экспериментами [5]. Теоретическая кривая получена в рамках модели Λ CDM, описанной в Главе 4. Подробное обсуждение см. во второй части книги

Рис. 1.7. Скопление CL0024 + 1654 [11]: синий цвет на верхнем рисунке иллюстрирует распределение темной материи; серповидные объекты голубого цвета на нижнем рисунке — множественное изображение галактики, расположенной далеко за скоплением

Рис. 9.2. Исключенные области в пространстве параметров (M_X, σ_{AX}) [34]. Области выше кривых исключены соответствующими экспериментами на 90 %-м уровне достоверности. Выделенные области в нижней части рисунка показывают области параметров, ожидаемых в суперсимметричных расширениях Станадартной модели, темная область соответствует модели mSUGRA (см. раздел 9.6)

Рис. 9.7. Феноменологически неприемлемые области и космологически предпочтительные области в пространстве $(M_{1/2}, m_0)$ для модели mSUGRA [32] с tg $\beta = 10$ и 50 (на масштабе $M_{GUT} \approx 10^{16}$ ГэВ, A = 0; массы кварков третьего поколения приняты равными $m_t = 175$ ГэВ, $m_b = 4,25$ ГэВ). Исключенные области для каждого рисунка: область левее толстой синей пунктирной линии исключена ограничением снизу на массу легкого чарджино $m_{\chi^{\pm}} > 104$ ГэВ, область в левом нижнем углу за синей штрих-пунктирной линией исключена ограничением снизу на массу легкого слептона $m_{\tilde{e}} > 99$ ГэВ, область левее красной штрих-пунктирной линии исключена из ограничения на массу легчайшего хиггсовского бозона, закрашенная зеленым область в левом нижнем углу исключена из измерения ширины инклюзивного распада $b \to s\gamma$, область в левом нижнем углу, окаймленная широкой розовой полосой, ограниченной толстыми сплошными линиями, исключена из измерения аномального магнитного момента мюона. Окрашенная коричневым область в правом нижнем углу каждого рисунка исключена из космологии, поскольку для таких параметров легчайшим суперпартнером (LSP) будет легчайшее массовое состояние заряженных слептонов (в основном суперпартнер τ_{R}). Для параметров из закрашенных голубым областей реликтовые нейтралино будут LSP, и их вклад в плотность энергии Вселенной будет составлять: для левых рисунков — $0,1 < \Omega_N h^2 < 0,3$ (консервативно), для правых рисунков — $0.094 < \Omega_N h^2 < 0.129$. В основной части экспериментально разрешенной области стабильное нейтралино космологически закрыто, поскольку реликтовые нейтралино давали бы слишком большой вклад в плотность энергии современной Вселенной

Рис. 9.8. Верхний рисунок: то же, что и на верхнем рис. 9.7, но с учетом возможности больших значений m_0 ; закрашенная розовым область в левом верхнем углу запрещена из условия существования спонтанного нарушения электрослабой симметрии. Нижний рисунок: космологически предпочтительные области (0,094 $< \Omega_N h^2 < 0,129$) для различных величин tg $\beta = 5, 10, \ldots, 55$; нижние полосы отвечают меньшим величинам tg β [32]

Рис. 9.11. Ограничения в пространстве параметров ($M_{1/2}$, m_0) модели mSUGRA (см. описание модели в разделе 9.6.1) [32]. Интересная область, где LSP является гравитино и время жизни NLSP превышает 10⁴ с, лежит правее черной сплошной линии. Закрашеная зеленым область запрещена из распада $b \rightarrow s\gamma$. Область правее сплошной красной линии разрешена из первичного нуклеосинтеза. Штрих-пунктирная синяя линия отделяет области параметров, для которых роль NLSP играют нейтралино (верхняя часть рисунка) и легчайший слептон (правая часть рисунка). Для параметров внутри светло-голубой области частицы NLSP, если бы были совсем стабильны, составляли бы темную материю во Вселенной (0,094 $\leq \Omega \hbar^2 \leq 0,129$). Пунктирная линия проходит через точки, для которых гравитино давало бы вклад в современную плотность энергии Вселенной, в точности равный вкладу темной материи. Только область ниже этой линии (на левом рисунке) и область между двумя такими линиями (на правом рисунке) разрешены космологически

Рис. С.6. Экспериментально разрешенные области пространства параметров для $\nu_e \leftrightarrow \tilde{\nu}$ осцилляций, следующие из экспериментов по солнечным нейтрино и из эксперимента KamLAND; линии с подписями Cl и Ga, KamLAND, SNO, Super-K показывают области, разрешенные на 90 %-м и 95 %-м уровнях достоверности соответственно [65]

имел единичную длину в каждой точке мировой линии,

$$g_{\mu\nu}u^{\mu}u^{\nu} = 1. \tag{A.103}$$

Такой выбор соответствует тому, что в качестве параметра вдоль мировой линии берется собственное время частицы, поскольку равенство (А.103) эквивалентно равенству

$$ds = d\tau$$
.

При таком выборе параметризации мировой линии уравнение движения (А.101) принимает вид

$$-\frac{d}{ds}(g_{\mu\nu}u^{\nu}) + \frac{1}{2}\partial_{\mu}g_{\nu\lambda}u^{\lambda}u^{\nu} = 0.$$
 (A.104)

Раскрывая первый член в уравнении (А.104) по правилу Лейбница и сворачивая получившееся равенство с тензором $g^{\mu\rho}$, получаем

$$-\frac{du^{\rho}}{ds} - g^{\mu\rho} \left(\frac{dg_{\mu\nu}}{ds} - \frac{1}{2}\partial_{\mu}g_{\nu\lambda}u^{\lambda}\right)u^{\nu} = 0.$$
 (A.105)

Из определения 4-скорости следует, что

$$rac{dg_{\mu
u}}{ds}=\partial_\lambda g_{\mu
u}u^\lambda.$$

Подставляя это выражение в уравнение (А.105) и пользуясь выражением (А.23) для символов Кристоффеля, окончательно приходим к следующей записи уравнения движения

$$\frac{du^{\nu}}{ds} + \Gamma^{\nu}_{\mu\lambda} u^{\mu} u^{\lambda} = 0. \tag{A.106}$$

Умножая это уравнение на малое приращение собственного времени ds и вспоминая, что вдоль мировой линии частицы выполнено равенство

$$dx^{\lambda} = u^{\lambda} ds,$$

можно переписать уравнение (А.106) в форме

$$du^{
u}+\Gamma^{
u}_{\mu\lambda}u^{\mu}\,dx^{\lambda}=0.$$

Вспоминая правило переноса контравариантных векторов (А.13), мы видим, что геометрический смысл уравнения (А.106) состоит в том, что при параллельном переносе вдоль мировой линии нормированные касательные векторы $u^{\mu}(x(\tau))$ переходят друг в друга. Кривые, для которых выполнено такое свойство, являются геодезическими (кратчайшими), а уравнение (А.106) — уравнением геодезической.

Действие (А.99) не имеет смысла для безмассовых частиц, m = 0. Для нахождения траекторий движения таких частиц в искривленном пространствевремени (например, лучей света) можно непосредственно воспользоваться уравнением геодезической

$$\frac{du^{\nu}}{d\tau} + \Gamma^{\nu}_{\mu\lambda} u^{\mu} u^{\lambda} = 0, \qquad (A.107)$$

где τ — теперь уже произвольный параметр вдоль траектории, который, вообще говоря, сам определяется из этих уравнений, а 4-скорость u^{μ} по-прежнему определяется соотношением (А.102). Условие безмассовости состоит в том, что геодезическая должна быть светоподобной, т. е. вдоль нее должно выполнятся условие

$$ds^2=0$$
,

или, в дифференциальной форме,

$$g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}\equiv g_{\mu\nu}u^{\mu}u^{\nu}=0.$$
 (A.108)

Задача 27. Показать, что уравнение (А.107) совместно с требованием (А.108).

Задача 28. Проверьте, что как уравнение движения массивной точечной частицы, так и уравнение светоподобной геодезической можно получить из следующего действия:

$$S_{\eta} = -\frac{1}{2} \int d\tau \left[\eta^{-1} \dot{x}^{\mu} \dot{x}^{\nu} g_{\mu\nu}(x) + \eta m^2 \right], \qquad (A.109)$$

где $\eta(\tau)$ — новая вспомогательная «динамическая» переменная, преобразующаяся при изменении параметризации траектории по закону

$$\eta'(au'(au)) = \eta(au) iggl[rac{\partial au'(au)}{\partial au} iggr].$$

Отметим, что $\eta^2(\tau)$ можно воспринимать как внутреннюю метрику мировой линии, тогда действие (А.109) выглядит как действие четырех полей $x^{\mu}(\tau)$ в одномерном пространстве с динамической метрикой.

А.8. Ньютоновский предел в общей теории относительности

Обсудим теперь, каким образом возникает в ОТО основной объект ньютоновской теории тяготения — гравитационный потенциал и как из ОТО следует закон всемирного тяготения. Для этого изучим движение частицы в слабом статическом гравитационном поле, т. е. в пространстве с метрикой

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}(\mathbf{x}),$$
 (A.110)

где $\eta_{\mu\nu}$ — метрика пространства Минковского, а все компоненты тензора $h_{\mu\nu}(\mathbf{x})$ малы,

$$h_{\mu\nu}(\mathbf{x}) \ll 1. \tag{A.111}$$

Кроме того, мы будем рассматривать частицы со скоростями u^i , много меньшими скорости света, так что

$$v^i\equiv {dx^i\over dt}\ll 1.$$

Выпишем явный вид различных компонент уравнения геодезической (А.106) в линейном порядке малости по компонентам скорости v^i и гравитационному полю $h_{\mu\nu}$. Для этого заметим прежде всего, что в линейном порядке

собственное время частицы ds связано с координатным временем dt по за-кону

$$ds = \left(1 + \frac{h_{00}}{2}\right) dt. \tag{A.112}$$

Задача 29. Найти в общем случае соотношение между координатным временем и собственным временем частицы, движущейся с координатной 3-скоростью $v^i = dx^i/dt$. Показать, что в линейном порядке это соотношение действительно переходит в (A.112).

Следовательно, компоненты 4-скорости u^{μ} связаны с метрикой и физической скоростью v^{i} следующим образом:

$$u^0\equiv rac{dt}{ds}pprox 1-rac{h_{00}}{2}, \quad u^i\equiv rac{dx^i}{ds}pprox v^i.$$

Теперь нетрудно проверить, что в линейном порядке нулевая компонента уравнения геодезической выполняется тождественно. Действительно, первый член d^2t/ds^2 зануляется вследствие соотношения (A.112) и статичности метрики. Во втором члене $\Gamma^{\mu}_{\nu\lambda}u^{\nu}u^{\lambda}$ изначально имеется малость, связанная с тем, что для невозмущенной метрики $\eta_{\mu\nu}$ все символы Кристоффеля обращаются в нуль. Дополнительная малость связана с тем, что для статической метрики компонента Γ^0_{00} символов Кристоффеля равна нулю, так что этот член обязательно должен содержать хотя бы одну компоненту скорости u^i .

Пространственные компоненты уравнения геодезической принимают в линейном приближении следующий вид:

$$\frac{dv^i}{dt}+\Gamma^i_{00}=0,$$

где мы снова учли, что во втором члене изначально имеется малость, связанная с присутствием символов Кристоффеля, так что вклады, зависящие от скоростей v^i , выпадают. Вспоминая явное выражение (A.23) для символов Кристоффеля, мы приходим к следующему уравнению, описывающему движение нерелятивистских частиц в слабом статическом гравитационном поле:

$$\frac{dv^i}{dt} = -\partial_i \Phi, \qquad (A.113)$$

где мы ввели новую функцию $\Phi(\mathbf{x})$, определенную с помощью равенства

$$g_{00}=1+2\Phi.$$

Уравнение (А.113) совпадает с уравнением ньютоновской механики, описывающим движение частицы во внешнем потенциале $\Phi(\mathbf{x})$, так что поле $\Phi(\mathbf{x})$ естественно отождествить с ньютоновским гравитационным потенциалом в случае слабого статического гравитационного поля. Отметим, что, как следует из приведенного анализа, для описания движения нерелятивистских частиц в таких полях необходимо знать только g_{00} компоненту метрики. Вклад всех остальных компонент метрического тензора подавлен. Для того чтобы окончательно убедиться в справедливости интерпретации поля $\Phi(\mathbf{x})$ как гравитационного потенциала, проверим, что из уравнений Эйнштейна действительно следует закон всемирного тяготения

$$\Delta \Phi = 4\pi G \rho \tag{A.114}$$

для малых статических плотностей ρ . Здесь $\Delta \equiv (\partial_i)^2$ — оператор Лапласа по пространственным координатам. Заодно мы проверим, что константа G, входящая в действие Эйнштейна—Гильберта, действительно равна ньютоновской постоянной.

Чтобы сделать это, найдем с помощью уравнений Эйнштейна (А.80) метрику, создаваемую статическим распределением нерелятивистской материи с плотностью $\rho(\mathbf{x})$. Для этого удобно переписать уравнения Эйнштейна в следующей эквивалентной форме. Взяв след от обеих частей уравнений Эйнштейна, получаем равенство

$$\mathbf{R} = -8\pi G(4\Lambda + T), \tag{A.115}$$

где

$$T \equiv g^{\mu\nu} T_{\mu\nu}$$

— след тензора энергии-импульса. Подставив полученное выражение для скалярной кривизны R обратно в уравнения Эйнштейна, мы приходим к следующим эквивалентым уравнениям:

$$R_{\mu\nu} = 8\pi G \bigg(T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} T - g_{\mu\nu} \Lambda \bigg).$$
 (A.116)

Такая форма записи уравнений Эйнштейна часто оказывается удобнее первоначальной для практических вычислений, поскольку, как правило, тензор кривизны $R_{\mu\nu}$ имеет намного более громоздкую структуру, чем тензор энергии-импульса $T_{\mu\nu}$.

Возвращаясь к задаче вычисления гравитационного поля, создаваемого нерелятивистской материей малой плотности, будем предполагать, что космологическая постоянная отсутствует, т. е. $\Lambda = 0$, и что как сама плотность $\rho(\mathbf{x})$, так и все ее пространственные производные малы, а гравитационное поле, создаваемое таким телом — слабое, т. е. метрика имеет вид (A.110). Единственной отличной от нуля компонентой тензора энергии-импульса для статического распределения нерелятивистской материи является

$$T_{00} = \rho(\mathbf{x}).$$
 (A.117)

Рассмотрим (00)-компоненту уравнения (А.116), полагая $\Lambda = 0$. Заметим, что для слабого гравитационного поля можно пренебречь квадратичными членами в выражении (А.41) для тензора Риччи. Кроме того, второй член в выражении для R_{00} обращается в нуль для статических метрик. Следовательно, левая часть (00)-компоненты уравнения (А.116) принимает вид

$$R_{00} = \partial_{\lambda} \Gamma_{00}^{\lambda} = \frac{1}{2} \Delta g_{00}, \qquad (A.118)$$

где последнее равенство также следует из слабости и статичности поля. Подставляя это выражение и явный вид (А.117) тензора энергии-импульса в уравнение (А.116) мы приходим при $\Lambda = 0$ к уравнению (А.114), как и должно быть, если Φ — гравитационный потенциал, а G — постоянная всемирного тяготения.

А.9. Линеаризованные уравнения Эйнштейна на фоне пространства Минковского

Обобщим уравнение (А.114) на случай произвольного слабого гравитационного поля на фоне пространства Минковского. В этом случае метрика имеет вид (ср. (А.110))

$$g_{\mu
u}(x)=\eta_{\mu
u}+h_{\mu
u}(x),$$

где $|h_{\mu\nu}(x)| \ll 1$, а возмущения $h_{\mu\nu}(x)$ могут зависеть как от пространственных координат, так и от времени. Воспользуемся уравнениями Эйнштейна в виде (A.116), причем положим $\Lambda = 0$ (так что пространство-время Минковского является их решением при $T_{\mu\nu} = 0$). Вычисление тензора Риччи в линейном порядке по $h_{\mu\nu}$ нами, по существу, уже было проведено: достаточно воспользоваться формулой (A.68), рассматривая ее как выражение для отклонения тензора Риччи от нулевого тензора Риччи пространства Минковского. Таким образом, в (A.68) сделаем замену $\delta g_{\mu\nu} \to h_{\mu\nu}$, ковариантные производные заменим на обычные, а подъем и опускание индексов будем осуществлять с помощью метрики Минковского. В результате получим линеаризованное уравнение (A.116)

$$\left(-\partial_{\lambda}\partial^{\lambda}h_{\mu\nu}+\partial^{\lambda}\partial_{\mu}h_{\lambda\nu}+\partial^{\lambda}\partial_{\nu}h_{\lambda\mu}-\partial_{\mu}\partial_{\nu}h_{\lambda}^{\lambda}\right)=16\pi G\left(T_{\mu\nu}-\frac{1}{2}\eta_{\mu\nu}T_{\lambda}^{\lambda}\right),\quad (A.119)$$

где $T_{\mu\nu}$ считается малой величиной.

Уравнение (А.119) инвариантно относительно калибровочных преобразований

$$h_{\mu\nu} \rightarrow h_{\mu\nu} + \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}, \quad T_{\mu\nu} \rightarrow T_{\mu\nu},$$
 (A.120)

где $\xi_{\mu}(x)$ — малые параметры преобразования. Преобразование (A.120) — это не что иное, как линеаризованное преобразование (A.93); тензор $T_{\mu\nu}$, будучи малой величиной, не изменяется в линейном порядке при малом преобразовании координат (A.91).

Часто бывает удобно воспользоваться этой калибровочной свободой и наложить гармоническую калибровку

$$\partial_\mu h^\mu_
u - rac{1}{2} \partial_
u h^\lambda_\lambda = 0.$$

В этой калибровке линеаризованные уравнения Эйнштейна принимают особенно простой вид

$$\Box h_{\mu
u} = -16\pi G igg(T_{\mu
u} - rac{1}{2} \eta_{\mu
u} T_{\lambda}^{\lambda} igg),$$

где $\Box \equiv \partial_{\lambda}\partial^{\lambda}$ — даламбертиан в пространстве Минковского.

А.10. Макроскопический тензор энергии-импульса

Чтобы искать решения уравнений Эйнштейна, описывающие расширяющуюся Вселенную, заполненную веществом (например, релятивистской плазмой или «пылью»), нам необходимо выражение для тензора энергии-импульса такого вещества. Для наших целей достаточным является описание *макроскопического* состояния вещества с помощью усредненного гидродинамического тензора энергии-импульса. Чтобы получить явное выражение для этой величины в искривленном пространстве-времени, рассмотрим сначала случай плоского пространства. Как известно, изотропное покоящееся как целое вещество без внутренних вращений имеет в плоском пространстве-времени тензор энергии-импульса вида

$$T^{\mu\nu} = \begin{pmatrix} \rho & 0 & 0 & 0\\ 0 & p & 0 & 0\\ 0 & 0 & p & 0\\ 0 & 0 & 0 & p \end{pmatrix}.$$
 (A.121)

Прежде всего, обобщим это выражение на случай, когда вещество не находится в состоянии покоя. В этом случае тензор энергии-импульса помимо зависимости от плотности энергии ρ и давления p должен также содержать зависимость от вектора 4-скорости u^{μ} . Чтобы найти эту зависимость, заметим, что в системе покоя вектор 4-скорости равен

$$u^{\mu} = (1, 0, 0, 0).$$

Следовательно, если мы определим тензорную величину выражением

$$(p+\rho)u^{\mu}u^{\nu}-p\eta^{\mu\nu},$$
 (A.122)

то, как легко проверить, она совпадет в системе покоя с тензором энергии-импульса (A.121). Поскольку обе величины преобразуются по тензорному закону, то они совпадают и во всех остальных системах отсчета. Простейший способ обобщить выражение (A.122) на случай искривленного пространства состоит в том, чтобы заменить метрику пространства Минковского $\eta^{\mu\nu}$ на произвольную метрику $g^{\mu\nu}$. Действительно, как мы обсуждали выше, для каждой выбранной точки пространства-времени существует локально-лоренцева система отсчета. В этой системе метрический тензор в данной точке совпадает с тензором Минковского, а тензор энергии-импульса вещества в не слишком сильном гравитационном поле имеет вид (А.122). Переходя в произвольную систему отсчета, мы приходим к следующему окончательному выражению для тензора энергии-импульса:

$$T^{\mu\nu} = (p+\rho)u^{\mu}u^{\nu} - pg^{\mu\nu}.$$
 (A.123)

Стоит отметить, что, вообще говоря, выражение (А.123) справедливо только в случае слабого гравитационного поля. В случае сильного поля в выражении для тензора энергии-импульса могут появиться дополнительные члены, зависящие от тензора кривизны. В общем случае плотность ρ , давление p и 4-скорость u^{μ} являются произвольными функции времени и пространственных координат, с теми ограничениями, что

$$u^{\mu}u_{\mu}=1 \tag{A.124}$$

И

$$\nabla_{\mu}T^{\mu\nu} = 0. \tag{A.125}$$

Равенство (А.124) — это непосредственное следствие определения 4-скорости,

$$u^{\mu}\equiv rac{dx^{\mu}}{ds},$$

а равенство (А.125) — ковариантный закон сохранения тензора энергии-импульса.

Задача 30. Выпишите различные компоненты закона сохранения (А.125) в явном виде в случае плоского пространства и убедитесь, что в нерелятивистском пределе (т. е. при $|\mathbf{v}| \ll 1, p \ll \rho$) получившиеся уравнения совпадают с гидродинамическим уравнением непрерывности и уравнением Эйлера.

В заключение этого раздела отметим, что в линеаризованной теории с $\Lambda = 0$ из (A.116) и (A.118) следует, что в общем случае статического источника уравнение для ньютонова потенциала имеет вид

$$\Delta \Phi = 4\pi G (T_{00} + T_{ii}) \tag{A.126}$$

(суммирование по *i* подразумевается). Для тензора энергии-импульса вида (A.121) имеем

$$\Delta \Phi = 4\pi G(\rho + 3p). \tag{A.127}$$

В этом смысле источником гравитационного поля в общей теории относительности служит не энергия, а комбинация ($\rho + 3p$). В частности, объект, состоящий из гипотетической материи с $\rho + 3p < 0$, будет отталкивать, а не притягивать нерелятивистские частицы (антигравитировать). При выполнении этого же условия однородная изотропная Вселенная будет испытывать ускоренное расширение, см. раздел 3.2.4.

А.11. Обозначения и соглашения

Индексы $\mu, \nu, ...$ — пространственно-временные и принимают значения 0, 1, 2, 3. По повторяющимся индексам подразумевается суммирование.

Индексы i, j, ... — пространственные, i, j = 1, 2, 3. Пространственные вектора обозначаются жирным шрифтом. По повторяющимся нижним пространственным индексам подразумевается суммирование, например, $a_i b_i = ab$, $a_i a_i = a^2$.

Сигнатура метрики (+, -, -, -).

Тензор Римана определен так, что

$$[
abla_{\mu},
abla_{
u}]A^{\lambda} = A^{\sigma}R^{\lambda}_{\ \sigma\mu
u},$$

явное выражение для него приведено в (А.31). Тензор Риччи равен

$$R_{\mu
u} = \partial_{\lambda}\Gamma^{\lambda}_{\mu
u} - \partial_{\mu}\Gamma^{\lambda}_{\lambda
u} + \Gamma^{\lambda}_{
ho\lambda}\Gamma^{
ho}_{\mu
u} - \Gamma^{\lambda}_{
ho\mu}\Gamma^{
ho}_{
u\lambda}.$$

Метрика пространства Минковского обозначается как

$$\eta_{\mu\nu} = \text{diag}(1, -1, -1, -1)$$

Метрика с малыми возмущениями над пространственно-плоским решением Фридмана—Робертсона—Уокера записывается как

$$ds^2 = a^2(\eta)(\eta_{\mu
u} + h_{\mu
u}) \ dx^\mu \ dx^
u,$$

где $x^0 = \eta$ — конформное время. Иначе говоря

$$g_{\mu
u}=a^2(\eta)(\eta_{\mu
u}+h_{\mu
u}).$$

a star i

Индексы у $h_{\mu\nu}$ поднимаются и опускаются с помощью метрики Минковского $\eta_{\mu\nu}$.

Соглашение о частотностях таково, что

$$e^{-\iota\omega t}, \quad \omega > 0$$

является отрицательно-частотной функцией.

.

СТАНДАРТНАЯ МОДЕЛЬ ФИЗИКИ ЧАСТИЦ

В этом Приложении мы изложим основные элементы Стандартной модели физики элементарных частиц. Разумеется, наше изложение не может быть исчерпывающим, особенно в той части, которая касается многочисленных явлений в физике микромира, обусловленных взаимодействиями элементарных частиц. Наша задача — кратко описать те аспекты, которые используются в основном тексте.

В.1. Описание Стандартной модели

Стандартная модель — минимальная релятивистская квантовая теория, чьи предсказания хорошо согласуются со всеми известными на сегодняшний день экспериментальными данными (за исключением осцилляций нейтрино, см. Приложение С), полученными как в физике низких энергий и прецизионных измерениях, так и в физике высоких энергий [4]. В основе Стандартной модели лежит математический аппарат квантовой теории поля; подробно с методами квантовой теории поля можно ознакомиться по литературе [59–61].

Стандартная модель включает в себя следующие частицы, считающиеся на сегодняшний день элементарными:

- а) калибровочные бозоны фотон, глюон, W^{\pm} -, Z-бозоны;
- б) кварки *u*, *d*, *s*, *c*, *b* и *t*;
- в) лептоны электрически заряженные (электрон e, мюон μ и τ -лептон) и нейтральные (нейтрино: электронное ν_e , мюонное ν_{μ} и τ -нейтрино ν_{τ});
- г) нейтральный хиггсовский бозон h.

Частицы типов «а» и «г» являются бозонами, частицы типов «б» и «в» — фермионами. Поля, описывающие частицы типа «а», являются калибровочными полями. Они — векторы относительно группы Лоренца и служат переносчиками калибровочных взаимодействий. Поля, описывающие частицы типов «б» и «в», в физике частиц часто называют полями материи; мы будем по-возможности избегать этой терминологии. Они — спиноры по группе Лоренца и участвуют в калибровочных и юкавских взаимодействиях ¹). По-

¹⁾ Неабелевы калибровочные поля также несут заряд по калибровочной группе и участвуют в калибровочных взаимодействиях

ле, описывающее хиггсовский бозон, — скалярное и является переносчиком юкавских взаимодействий. Кроме того, хиггсовское поле играет специальную роль — ненулевое вакуумное среднее этого поля обеспечивает массы всем массивным частицам Стандартной модели.

Стандартная модель имеет калибровочную группу

$$SU(3)_c \times SU(2)_w \times U(1)_Y$$

и описывает сильные взаимодействия (цветовая группа $SU(3)_c$ с калибровочной константой связи g_s) и электрослабые взаимодействия ($SU(2)_w \times U(1)_r$ с калибровочными константами связи g и g' соответственно). Электрослабая калибровочная группа находится в хиггсовской фазе, а ненарушенной остается абелева группа электромагнетизма $U(1)_{em}$. В соответствии с этим W^{\pm} - и Z-бозоны являются массивными, а фотон остается безмассовым. Поля Стандартной модели формируют полные мультиплеты относительно этих калибровочных групп, т.е. преобразуются по определенным представлениям этих групп.

Калибровочные поля образуют присоединенные представления соответствующих групп: имеется восемь глюонных полей G^a_{μ} , (a = 1, ..., 8, по числу генераторов группы $SU(3)_c)$, три калибровочных поля V^i_{μ} группы $SU(2)_w$ (i = 1, 2, 3, по числу генераторов $SU(2)_w)$ и одно поле B_{μ} группы $U(1)_r$. В результате механизма Хиггса массивными становятся три комбинации полей V^i_{μ} и B_{μ} , которые описывают W^{\pm} и Z-бозоны:

$$W^{\pm}_{\mu} = \frac{1}{\sqrt{2}} \left(V^{1}_{\mu} \mp i V^{2}_{\mu} \right), \tag{B.1}$$

$$Z_{\mu} = \frac{1}{\sqrt{g^2 + {g'}^2}} \left(g V_{\mu}^3 - g' B_{\mu} \right). \tag{B.2}$$

Четвертая комбинация,

$$A_{\mu} = \frac{1}{\sqrt{g^2 + g'^2}} \left(g' V_{\mu}^3 + g B_{\mu} \right), \tag{B.3}$$

остается безмассовой и описывает фотон. Связь между полями Z_{μ} и A_{μ} и исходными калибровочными полями записывают еще в виде

$$Z_{\mu} = \cos \theta_{w} \cdot V_{\mu}^{3} - \sin \theta_{w} \cdot B_{\mu},$$

$$A_{\mu} = \cos \theta_{w} \cdot B_{\mu} + \sin \theta_{w} \cdot V_{\mu}^{3},$$

где θ_w — слабый угол смешивания,

$$\operatorname{tg} \theta_w = \frac{g'}{g}$$

Экспериментально измеренное значение $\sin \theta_w$ составляет²⁾

$$\sin\theta_w=0,481.$$

²⁾ Здесь и в дальнейшем, если не оговорено особо, мы опускаем тонкости, связанные с радиационными поправками.

Таблица В.1

Размерности представлений и заряды калибровочных (G_{μ} , V_{μ} , B_{μ}) и хиггсовских (H) полей; символ 0^{*} означает, что поля B_{μ} и A_{μ} являются калибровочными полями групп $U(1)_{Y}$ и $U(1)_{em}$ соответственно

поля группа	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	$U(1)_{em}$
G_{μ}	8	1	0	0
V_{μ}	1	3	0	
B_{μ}	1	1	0*	
W^{\pm}_{μ}	1			±1
Z_{μ}	1			0
A_{μ}	1			0*
Н	1	2	1	

В табл. В.1 приведены размерности представлений векторных полей и их заряды по абелевым группам. Отметим, что в этой таблице, как и в ряде последующих формул, используются матричные обозначения

$$G_{\mu}\equiv\sum_{a=1}^{8}G_{\mu}^{a}rac{\lambda^{a}}{2},\quad V_{\mu}\equiv\sum_{i=1}^{3}V_{\mu}^{i}rac{ au^{i}}{2},$$

где λ^a — матрицы Гелл-Манна, а τ^i — матрицы Паули ($\lambda^a/2$ и $\tau^i/2$ — наборы генераторов $SU(3)_c$ и $SU(2)_w$ соответственно).

Поля материи «б» и «в» образуют три поколения кварков и лептонов:

I:
$$u, d, \nu_e, e;$$

II: $c, s, \nu_{\mu}, \mu;$
III: $t, b, \nu_{\tau}, \tau;$

при этом частицы внутри одного поколения различаются калибровочными взаимодействиями (имеют разные калибровочные квантовые числа), а тройки частиц из разных поколений (например, u-, c- и t-кварки или электрон, мюон и τ -лептон) имеют одинаковые калибровочные квантовые числа, но разные массы и юкавские константы взаимодействия с хиггсовским бозоном.

В (3 + 1)-мерном пространстве Минковского³⁾ для описания фермионных полей можно ввести левый двухкомпонентный (вейлевский) спинор χ_L

³⁾ Мы оставляем без обсуждения вопросы, связанные с описанием фермионных полей в искривленном пространстве-времени.
и правый двухкомпонентный спинор χ_R . Эти спиноры преобразуются независимо относительно собственной группы Лоренца⁴⁾.

Из двухкомпонентных спиноров можно составить лоренцевы скаляры, векторы и тензоры. В частности, можно показать, что билинейные комбинации

$$\chi_L^T i \sigma_2 \chi_L, \quad \chi_R^T i \sigma_2 \chi_R$$

являются скалярами, а

$$\chi^T_R \overline{\sigma}^\mu \chi_L, \quad \chi^T_L \sigma^\mu \chi_R$$

являются векторами. Здесь

$$\sigma^{\mu}_{lphaeta}=(1,oldsymbol{\sigma}),\quadar{\sigma}^{\mu}_{lphaeta}=(1,-oldsymbol{\sigma}),$$

причем σ — обычные матрицы Паули, действующие на лоренцевы индексы.

Задача 1. Убедиться в справедливости сделанных утверждений. Указание: воспользоваться эквивалентностью фундаментального и антифундаментального представлений спиновой группы SU(2); найти закон преобразований спиноров χ_L и χ_R при лоренцевых бустах и трехмерных вращениях.

Полная группа Лоренца кроме собственных преобразований (бустов и вращений) содержит еще отражение пространства P и инверсию времени T. При пространственном отражении двухкомпонентный спинор χ_L (или χ_R) не переходит сам в себя. Представление полной группы Лоренца можно реализовать на 4-компонентных дираковских спинорах ψ . Дираковский спинор включает в себя два двухкомпонентных вейлевских спинора, χ_L и χ_R ,

$$\psi = \begin{pmatrix} \chi_L \\ \chi_R \end{pmatrix}.$$

Дираковские свободные поля являются решениями уравнения Дирака

$$i\gamma^{\mu}\partial_{\mu}\psi=m\psi,$$

где m — масса фермиона, а γ^{μ} — набор из четырех 4 × 4 матриц Дирака, удовлетворяющих антикоммутационным соотношениям

$$\{\gamma^{\mu},\gamma^{
u}\}=2\eta^{\mu
u}.$$

В киральном (вейлевском) представлении матрицы Дирака имеют вид

$$\gamma^{\mu} = egin{pmatrix} 0 & \sigma^{\mu} \ ar{\sigma}^{\mu} & 0 \end{pmatrix}.$$

В этом представлении уравнение Дирака записывается в матричном виде

$$egin{pmatrix} 0 & i\sigma^\mu\partial_\mu\ iar\sigma^\mu\partial_\mu & 0 \end{pmatrix} egin{pmatrix} \chi_L\ \chi_R\end{pmatrix} = m egin{pmatrix} \chi_L\ \chi_R\end{pmatrix},$$

⁴⁾ Точнее, они преобразуются по фундаментальному (χ_L) и антифундаментальному (χ_R^T) представлениям группы $SL(2, \mathbb{C})$, являющейся двулистной накрывающей группой для собственной группы Лоренца SO(3, 1). С двулистностью, в частности, связан тот факт, что не сами фермионные поля, но лишь их билинейные комбинации могут быть физическими наблюдаемыми.

Отметим, что для безмассового случая, m = 0, уравнение Дирака расщепляется на два отдельных уравнения на каждую из компонент χ_L , χ_R , являющихся собственными функциями оператора спиральности $\mathbf{p} \cdot \sigma/2|\mathbf{p}|$ с собственными значениями -1/2 и +1/2 соответственно⁵⁾. Поэтому в безмассовом случае минимальная возможность состоит в том, чтобы вводить в рассмотрение только двухкомпонентный спинор χ_L , так что в теории будут только частицы левой спиральности и античастицы правой спиральности⁶⁾. Именно так описываются нейтрино в рамках Стандартной модели. Разумеется, в такой ситуации пространственная четность будет нарушена.

При описании взаимодействий частиц Стандартной модели в терминах дираковских 4-компонентных спиноров необходимо выделить компоненты χ_L и χ_R , что достигается с помощью проекторов

$$P_{\mp}=rac{1\mp\gamma^5}{2},\quad \gamma^5\equiv i\gamma^0\gamma^1\gamma^2\gamma^3,$$

причем в киральном представлении

$$\gamma^5 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

В дальнейшем мы будем использовать обозначения

$$\psi_L \equiv P_-\psi = \frac{1-\gamma_5}{2}\psi, \quad \psi_R \equiv P_+\psi = \frac{1+\gamma_5}{2}\psi,$$
 (B.4)

причем в киральном представлении для матриц Дирака

$$\psi_L = egin{pmatrix} \chi_L \ 0 \end{pmatrix}, \quad \psi_R = egin{pmatrix} 0 \ \chi_R \end{pmatrix}.$$

Отметим, что вне зависимости от выбора представления матриц Дирака левые и правые компоненты 4-компонентного фермиона, определенные соотношениями (В.4), преобразуются независимо при преобразованиях собственной группы Лоренца и образуют лоренцевы дублеты и антидублеты. Для некоторых приложений полезно отметить, что

$$\chi^c_R\equiv i\sigma_2\chi^*_R$$

представляет собой левый спинор.

Задача 2. Доказать сделанные в последних двух предложениях утверждения. Указание: Начните с того, что определите закон преобразования матриц Дирака под действием генераторов группы Лоренца.

⁵⁾ Как для безмассового, так и для массивного случая спиральность является проекцией спина на направление движения. Разница состоит в том, что эта величина лоренц-инвариантна лишь для безмассовых фермионов.

⁶⁾ Или наоборот.

В дальнейшем, если не оговорено особо, мы будем использовать 4-компонентные спиноры. Наиболее часто используемые билинейные по фермионным полям лоренцевы структуры имеют вид

$$\overline{\psi}\psi - \text{скаляр}, \quad \overline{\psi}\gamma^{\mu}\psi - \text{вектор},$$

 $\overline{\psi}\gamma^{5}\psi - \text{псевдоскаляр}, \quad \overline{\psi}\gamma^{5}\gamma^{\mu}\psi - \text{псевдовектор},$
(B.5)

где

$$ar{\psi}\equiv\psi^{\dagger}\gamma^{0}$$

— сопряженный дираковский спинор.

Задача 3. Убедиться в справедливости сделанных утверждений. Выразить эти структуры в терминах вейлевских фермионов.

В Стандартной модели нейтрино имеют только левые компоненты, в отличие от кварков и заряженных лептонов. По отношению к сильным взаимодействиям как левые, так и правые компоненты кварков образуют фундаментальные (триплетные) представления, так что с точки зрения сильных взаимодействий разделение кварков на левые и правые не обязательно. С другой стороны, правые кварки и правые заряженные лептоны являются синглетами по отношению к группе $SU(2)_w$, а левые фермионы образуют дублеты

$$Q_{1} = \begin{pmatrix} u \\ d \end{pmatrix}_{L}, \qquad Q_{2} = \begin{pmatrix} c \\ s \end{pmatrix}_{L}, \qquad Q_{3} = \begin{pmatrix} t \\ b \end{pmatrix}_{L},$$

$$L_{1} = \begin{pmatrix} \nu_{e} \\ e \end{pmatrix}_{L}, \qquad L_{2} = \begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{L}, \qquad L_{3} = \begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{L},$$
(B.6)

Таблица В.2

Размерности представлений и заряды для фермионов первого поколения; фермионы второго и третьего поколения имеют такие же квантовые числа

поля группа	$SU(3)_c$	$SU(2)_W$	$U(1)_{Y}$	$U(1)_{em}$
$L \equiv \begin{pmatrix} u_e \\ e \end{pmatrix}_L$	1	2	-1	$\begin{pmatrix} 0\\ -1 \end{pmatrix}$
$E\equiv e_R$	1	1	-2	-1
$Q \equiv \begin{pmatrix} u \\ d \end{pmatrix}_L$	3	2	+1/3	$\begin{pmatrix} +2/3\\ -1/3 \end{pmatrix}$
$U \equiv u_R$	3	1	+4/3	+2/3
$D\equiv d_R$	3	1	-2/3	-1/3

Аналогично введенным сейчас обозначениям, правые фермионы трех поколений обозначают следующим образом:

$$U_{n} = u_{R}, c_{R}, t_{R};$$

$$D_{n} = d_{R}, s_{R}, b_{R}; \quad n = 1, 2, 3.$$

$$E_{n} = e_{R}, \mu_{R}, \tau_{R};$$

(B.7)

Размерности представлений фермионов и их заряды по отношению к абелевым группам приведены в табл. В.2.

Скалярное поле Хиггса H является синглетом относительно группы сильных взаимодействий $SU(3)_c$, дублетом относительно $SU(2)_w$ и имеет заряд +1 по отношению к $U(1)_r$. Эти свойства отражены в табл. В.1.

В терминах полей, явно ковариантных относительно калибровочной группы $SU(3)_c \times SU(2)_w \times U(1)_r$, лагранжиан Стандартной модели имеет вид:

$$\mathcal{L}_{SM} = -\frac{1}{2} \operatorname{Tr} G_{\mu\nu} G^{\mu\nu} - \frac{1}{2} \operatorname{Tr} V_{\mu\nu} V^{\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + i \overline{L}_n \mathcal{D}^{\mu} \gamma_{\mu} L_n + i \overline{E}_n \mathcal{D}^{\mu} \gamma_{\mu} E_n + i \overline{Q}_n \mathcal{D}^{\mu} \gamma_{\mu} Q_n + i \overline{U}_n \mathcal{D}^{\mu} \gamma_{\mu} U_n + i \overline{D}_n \mathcal{D}^{\mu} \gamma_{\mu} D_n - (Y_{mn}^l \overline{L}_m H E_n + Y_{mn}^d \overline{Q}_m H D_n + Y_{mn}^u \overline{Q}_m \widetilde{H} U_n + h. c.) + \mathcal{D}_{\mu} H^{\dagger} \mathcal{D}^{\mu} H - \lambda \left(H^{\dagger} H - \frac{v^2}{2} \right)^2.$$
(B.8)

Здесь первая строка включает только калибровочные поля, напряженности которых определены следующим образом:

$$egin{aligned} B_{\mu
u} &\equiv \partial_{\mu}B_{
u} - \partial_{
u}B_{\mu}, \ V_{\mu
u} &\equiv \partial_{\mu}V_{
u} - \partial_{
u}V_{\mu} - ig[V_{\mu},V_{
u}], \ G_{\mu
u} &\equiv \partial_{\mu}G_{
u} - \partial_{
u}G_{\mu} - ig_s[G_{\mu},G_{
u}], \end{aligned}$$

причем квадратными скобками обозначен коммутатор: например

$$[V_{\mu}, V_{\nu}] \equiv V_{\mu}V_{\nu} - V_{\nu}V_{\mu};$$

поле B_{μ} — действительное, а поля V_{μ} , G_{μ} — эрмитовы. В терминах действительных полей G^a_{μ} и V^i_{μ}

Tr
$$G_{\mu\nu}G^{\mu\nu} = \frac{1}{2}G^a_{\mu\nu}G^{a\ \mu\nu}$$
, Tr $V_{\mu\nu}V^{\mu\nu} = \frac{1}{2}V^i_{\mu\nu}V^{i\ \mu\nu}$,

где

$$G^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\mu + g_s f^{abc} G^b_\mu G^c_\nu, \tag{B.9}$$

$$V^i_{\mu\nu} = \partial_\mu V^i_\nu - \partial_\nu V^i_\mu + g \epsilon^{ijk} V^j_\mu V^k_\nu, \qquad (B.10)$$

причем f^{abc} и ϵ^{ijk} — структурные константы групп SU(3) и SU(2) соответственно (ϵ^{ijk} — полностью антисимметричный символ, i, j, k = 1, 2, 3). Из-за наличия последних слагаемых в (B.9), (B.10) в Стандартной модели имеются взаимодействия глюонов между собой, а также взаимодействия между W^{\pm} -, Z-бозонами и фотонами.

Вторая строка в (В.8) включает свободные лагранжианы фермионов и взаимодействия фермионов с калибровочными полями. Входящие в нее ковариантные производные однозначно определяются представлениями калибровочных групп, по которым преобразуются фермионные поля, а также зарядами относительно $U(1)_Y$: для фермиона f

$$\mathcal{D}_{\mu}f\equiv\left(\partial_{\mu}-ig_{s}T^{a}_{s}G^{a}_{\mu}-igT^{i}_{w}V^{i}_{\mu}-ig'rac{Y_{f}}{2}B_{\mu}
ight)f.$$

где T_s^a и T_w^i — генераторы $SU(3)_c$ и $SU(2)_w$ в представлениях, по которым преобразуется f, а Y_f — заряд этого фермиона относительно группы $U(1)_r$. Для кварков $T_s^a = \lambda^a/2$, а для лептонов $T_s^a = 0$ (т. е. слагаемое, включающее глюонное поле, для лептонов отсутствует — лептоны непосредственно не участвуют в сильных взаимодействиях). Для левых дублетов (В.6) имеем $T_w^i = \tau^i/2$, а для правых синглетов (В.7) нужно подставить $T_w^i = 0$.

Отметим, что по повторяющимся индексам m, n, нумерующим поколения, подразумевается суммирование. В терминах полей, используемых в (B.8), калибровочные взаимодействия диагональны по поколениям⁷⁾.

Третья строка в (B.8) описывает юкавские взаимодействия фермионов с хиггсовским полем H; h.c. в ней обозначает эрмитово сопряжение. В этой строке фигурируют матрицы юкавских констант Y_{mn}^l , Y_{mn}^d и Y_{mn}^u , которые комплексны и не диагональны по поколениям. Ниже мы кратко обсудим, к чему приводит это отсутствие диагональности. Подчеркнем, что лагранжиан (B.8) не описывает осцилляции нейтрино: соответствующие юкавские слагаемые в нем отсутствуют. Мы рассмотрим в Приложении С, какие расширения Стандартной модели способны описать нейтринные осцилляции.

По поводу третьей строки в (В.8) сделаем еще одно замечание. Как и весь лагранжиан Стандартной модели, она инвариантна относительно калибровочной группы

$$SU(3)_c \times SU(2)_w \times U(1)_{\gamma}.$$

Для пояснения этого обстоятельства рассмотрим в качестве примера первое слагаемое в третьей строке. Левый лептон и хиггсовское поле являются дублетами относительно $SU(2)_w$, в то время как правый лептон — синглет. Рассматриваемое слагаемое имеет, таким образом, структуру $(L^{\dagger}H) E$ и является $SU(2)_w$ -синглетом. В соответствии с табл. В.2 суммарный $U(1)_r$ -заряд полей, входящих в это слагаемое, равен нулю, так что оно инвариантно и относительно группы $U(1)_r$. Аналогично обстоит дело со вторым юкавским слагаемым. В последнем слагаемом фигурирует

$$\widetilde{H}_{\alpha} \equiv i \tau_{\alpha\beta}^2 H^{*\beta} = \epsilon_{\alpha\beta} H^{*\beta}, \qquad (B.11)$$

4

⁷⁾ В действительности фермионные поля, фигурирующие в (В.8), совпадают с полями, введенными в (В.6) и (В.7), лишь с точностью до унитарных преобразований, см. ниже. Мы используем для этих двух наборов полей одни и те же обозначения.

۰.,

где $\alpha = 1, 2$ и $\epsilon_{\alpha\beta}$ — антисимметричный символ. По отношению к $SU(2)_w$ поле \tilde{H} преобразуется по фундаментальному представлению⁸. Поэтому третье юкавское слагаемое является $SU(2)_w$ -синглетом; оно инвариантно и по отношению к $U(1)_Y$ — именно для этого в нем приходится использовать \tilde{H} , а не само поле H.

Важно подчеркнуть, что третья строка в (В.8) является наиболее общим калибровочно-инвариантным перенормируемым лагранжианом, каждый член которого включает в себя как левый, так и правый фермионы⁹⁾. В частности, явные массовые члены фермионов, которые должны были бы иметь лоренцеву структуру $(f_L) \cdot f_R + h. c.$, запрещены инвариантностью относительно электрослабой калибровочной группы $SU(2)_W \times U(1)_Y$.

Последняя строка в (В.8) — это лагранжиан самого хигтсовского поля. В соответствии с табл. В.1 ковариантная производная хиггсовского поля равна

$${\cal D}_\mu H = \left(\partial_\mu - igrac{ au^j}{2}V^j_\mu - irac{g'}{2}B_\mu
ight) H.$$

Скалярный потенциал теории — последнее слагаемое в (В.8) — имеет минимум при ненулевом значении хиггсовского поля, таком что

$$H^{\dagger}H=rac{v^2}{2}.$$

Используя калибровочную инвариантность теории, хиггсовский вакуум и возмущения хиггсовского поля над этим вакуумом без потери общности можно представить в следующем виде (унитарная калибровка):

$$H(x) = \begin{pmatrix} 0\\ \frac{v}{\sqrt{2}} + \frac{h(x)}{\sqrt{2}} \end{pmatrix}.$$
 (B.12)

Таким образом, над хиггсовским вакуумом имеется всего одно физическое скалярное возбуждение — хиггсовский бозон, описываемый полем h.

Хиггсовский вакуум нарушает симметрию $SU(2)_w \times U(1)_r$ до $U(1)_{em}$. Переход от явно $SU(2)_w \times U(1)_r$ -инвариантных полей к физическим векторным полям в этом вакууме осуществляется заменой (В.1), (В.3). Действительно, после замены (В.1), (В.3) свободные градиентные члены для полей W^{\pm}_{μ} , Z_{μ} и A_{μ} сохраняют канонический вид:

$$-rac{1}{4}\left[\sum_{i=1}^{3}\left(\partial_{\mu}V_{
u}^{i}-\partial_{
u}V_{\mu}^{i}
ight)^{2}+\left(\partial_{\mu}B_{\mu}-\partial_{
u}B_{\mu}
ight)^{2}
ight]=$$

⁸⁾ Хотя H^* преобразуется по анти-фундаментальному представлению: соотношение (B.11) осуществляет изоморфизм между анти-фундаментальным и фундаментальным представлениями, который существует для группы SU(2) и отсутствует для групп SU(N) с N > 2.

⁹⁾ Если в теорию не вводить новые поля.

$$= -\frac{1}{2} \left(\partial_{\mu} W^{+}_{\nu} - \partial_{\nu} W^{+}_{\mu} \right) \left(\partial^{\mu} W^{-\nu} - \partial^{\mu} W^{-\nu} \right) - \frac{1}{4} Z_{\mu\nu} Z^{\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu},$$

где

 $F_{\mu\nu} \equiv \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}, \quad Z_{\mu\nu} \equiv \partial_{\mu}Z_{\nu} - \partial_{\nu}Z_{\mu}.$ (B.13)

При учете (В.12) в квадратичном лагранжиане над хиггсовским вакуумом возникают массовые члены

$${\cal D}_{\mu} H^{\dagger} {\cal D}^{\mu} H ~~
ightarrow~~rac{g^2 v^2}{4} W^+_{\mu} W^{\mu-} + rac{(g^2 + {g'}^2) v^2}{8} Z_{\mu} Z^{\mu}.$$

В этом и состоит механизм Хиггса. Замена (В.1), (В.3) подобрана именно так, чтобы эти массовые члены были диагональны. Таким образом, массы W^{\pm} -и Z-бозонов равны

$$M_W=rac{gv}{2}, \quad M_Z=rac{v\sqrt{g^2+{g'}^2}}{2}=rac{M_W}{\cos heta_W}$$

Юкавское взаимодействие приводит к тому, что бо́льшая часть фермионов также становится массивной. Массы фермионов *f* равны

$$m_f = rac{y_f}{\sqrt{2}}v,$$

где y_f — собственные значения матриц юкавских констант, фигурирующих в (В.8). Из всех фермионных полей (полей материи) безмассовыми остаются только нейтрино (последнее свойство — дефект Стандартной модели).

Лагранжиан Стандартной модели в терминах физических полей получается подстановкой (В.1), (В.3) и (В.12) в лагранжиан (В.8) и переходом от базиса фермионных полей, в котором калибровочные взаимодействия диагональны, к базису, в котором диагональны массовые матрицы фермионов (и юкавские взаимодействия). Последнее преобразование приводит к появлению в лагранжиане матрицы Каббибо—Кобаяши—Маскава V_{mn} , описывающей смешивание кварков. Подробнее этот переход описан в разделе В.3. Обратим внимание, что из соображений удобства мы будем часто использовать одни и те же обозначения для фермионов в обоих базисах (как мы уже это делали, ср. (В.8) и (В.6), (В.7)), хотя эти наборы не совпадают между собой, а связаны унитарным преобразованием.

Удобно представить полный лагранжиан Стандартной модели, записанный в терминах физических полей, в виде суммы нескольких слагаемых:

$$\mathcal{L}_{SM} = \mathcal{L}_{QCD} + \mathcal{L}_{lept}^{free} + \mathcal{L}_{f,em} + \mathcal{L}_{f,weak} + \mathcal{L}_{Y} + \mathcal{L}_{V} + \mathcal{L}_{H} + \mathcal{L}_{HV}^{int}.$$
 (B.14)

Здесь

$$\mathcal{L}_{QCD} = -rac{1}{4} G^a_{\mu
u} G^{a\ \mu
u} + \sum_{ ext{KBAPKH}} ar{q} igg(i \gamma^\mu \partial_\mu - m_q - i g_s rac{\lambda^a}{2} G^a_\mu igg) q$$

466

— лагранжиан, включающий кварки (суммирование идет по всем типам кварков), глюоны и их взаимодействия между собой. Это — лагранжиан теории сильных взаимодействий, квантовой хромодинамики. Второе слагаемое в (В.14) — свободный лагранжиан лептонов

$$\mathcal{L}_{lept}^{free} = \sum_n ar{l}_n ig(i \gamma^\mu \partial_\mu - m_{l_n} ig) l_n + \sum_n ar{
u}_n i \gamma^\mu \partial_\mu
u_n.$$

Здесь n — номер поколения, $l_n = e, \mu, \tau$. Третье и четвертое слагаемые описывают электромагнитные и слабые взаимодействия кварков и лептонов соответственно:

$${\cal L}_{f,\,em}=e\sum_f q_f \overline{f} \gamma^\mu A_\mu f,$$

где

$$e = g \sin \theta_w = \frac{gg'}{\sqrt{g^2 + {g'}^2}}$$
 (B.15)

— электрический заряд протона, так что eq_f — электрический заряд фермиона f;

$$\mathcal{L}_{f,weak} = \frac{g}{2\sqrt{2}} \sum_{n} \left(\bar{\nu}_{n} \gamma^{\mu} (1 - \gamma^{5}) W_{\mu}^{+} e_{n} + h. c. \right) + \\ + \frac{g}{2\sqrt{2}} \sum_{m,n} \left(\bar{u}_{m} \gamma^{\mu} (1 - \gamma^{5}) W_{\mu}^{+} V_{mn} d_{n} + h. c. \right) + \\ + \frac{g}{2\cos\theta_{W}} \sum_{f} \bar{f} \gamma^{\mu} \left(t_{3}^{f} (1 - \gamma^{5}) - 2q_{f} \sin^{2}\theta_{W} \right) f Z_{\mu}.$$
(B.16)

Здесь суммирование по f означает суммирование по всем кваркам и лептонам, t_3^f — слабый изоспин, равный +1/2 для верхних кварков (u, c, t) и нейтрино и равный -1/2 для нижних кварков (d, s, b) и заряженных лептонов. Первые два слагаемых в $\mathcal{L}_{f,weak}$ описывают взаимодействия лептонов и кварков с W-бозонами (заряженные токи), а третье — с Z-бозоном (нейтральные токи). Отметим, что испускание и поглощение W-бозона изменяют тип (аромат) фермиона (а для кварков — вообще говоря, и номер поколения, благодаря недиагональной матрице Каббибо—Кобаяши—Маскава V_{mn}), а взаимодействие с Z-бозоном аромат не меняет.

Задача 4. Убедиться, что для всех фермионов справедливо соотношение

$$q_f = \frac{Y_f}{2} + t_3^f.$$

Вклад \mathcal{L}_{Y} в лагранжиане (В.14) описывает юкавские взаимодействия фермионов с бозоном Хиггса,

$$\mathcal{L}_Y = -\sum_f rac{y_f}{\sqrt{2}} ar{f} fh = -\sum_f rac{m_f}{v} ar{f} fh,$$

где суммирование идет по всем типам фермионов, кроме нейтрино. Это взаимодействие также сохраняет аромат. Константы взаимодействия бозона Хиггса с фермионами пропорциональны их массам; это, разумеется, является отражением того факта, что все фермионы приобретают массы за счет взаимодействия с хиггсовским полем, которое имеет ненулевое вакуумное среднее.

Слагаемое \mathcal{L}_V в (В.14) включает свободный лагранжиан фотонов, W^{\pm} и Z-бозонов и их взаимодействие между собой,

$$\mathcal{L}_{V} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}Z_{\mu\nu}Z^{\mu\nu} + \frac{M_{Z}^{2}}{2}Z_{\mu}Z^{\mu} - \frac{1}{2}|W_{\mu\nu}^{-}|^{2} + M_{W}^{2}|W_{\mu}^{-}|^{2} + \frac{g^{2}}{4}(W_{\mu}^{-}W_{\nu}^{+} - W_{\mu}^{+}W_{\nu}^{-})^{2} - \frac{ig}{2}(F^{\mu\nu}\sin\theta_{W} + Z^{\mu\nu}\cos\theta_{W})(W_{\mu}^{-}W_{\nu}^{+} - W_{\mu}^{+}W_{\nu}^{-}), \qquad (B.17)$$

где $F_{\mu\nu}$ и $Z_{\mu\nu}$ определены в (В.13), и

$$W^{-}_{\mu\nu} \equiv \left(\partial_{\mu} + ieA_{\mu} + ig\cos\theta_{W}Z_{\mu}\right)W^{-}_{\nu} - (\mu \leftrightarrow \nu). \tag{B.18}$$

Связь между константой электромагнитного взаимодействия e и калибровочными константами g, g' по-прежнему имеет вид (B.15). Отметим, что лагранжиан (B.17), как и весь лагранжиан (B.14), инвариантен относительно ненарушенной калибровочной симметрии $U(1)_{em}$, и в соответствии с (B.18) W^{\pm} -бозоны несут электрический заряд $\pm e$.

Вклад \mathcal{L}_H описывает хиггсовский сектор Стандартной модели,

$$\mathcal{L}_{H}=rac{1}{2}\partial_{\mu}h\ \partial^{\mu}h-rac{1}{2}m_{h}^{2}h^{2}-\lambda vh^{3}-rac{\lambda}{4}h^{4},$$

где

$$m_h = \sqrt{2\lambda} v$$

— масса бозона Хиггса. Константа самодействия хиггсовского бозона λ — иначе говоря, масса бозона Хиггса m_h — единственный параметр Стандартной модели, не измеренный экспериментально¹⁰⁾. Имеется лишь ограничение снизу на эту массу, которое приведено ниже.

Наконец, вклад \mathcal{L}_{HV}^{int} описывает взаимодействие бозона Хигтса с массивными векторными бозонами,

$$\mathcal{L}_{HV}^{int} = rac{g^2}{2} v h |W_{\mu}^{-}|^2 + rac{g^2 + {g'}^2}{4} v h Z_{\mu} Z^{\mu} + rac{g^2}{4} h^2 |W_{\mu}^{-}|^2 + rac{g^2 + {g'}^2}{8} h^2 Z_{\mu} Z^{\mu}.$$

¹⁰⁾ Юкавские взаимодействия также еще не были измерены напрямую, хотя измерения масс частиц и калибровочных констант позволяют с хорошей точностью предсказать значения юкавских констант для всех массивных фермионов в рамках Стандартной модели. Подобного точного предсказания для массы или константы самодействия хиггсовского бозона не существует. Радиационные поправки, связанные с бозоном Хиггса, приводят к слабой логарифмической зависимости некоторых наблюдаемых от массы бозона Хиггса, что фактически позволяет установить лишь порядок величины массы хиггсовского бозона — от одной до двух сотен ГэВ.

На сегодняшний день все частицы Стандартной модели, за исключением бозона Хиггса, обнаружены экспериментально. Эксперименты по измерению параметров Стандартной модели¹¹⁾ дают [4]:

$$\begin{split} m_e &= 0{,}511 \text{ M} \ni \text{B}, \quad m_u = 1{,}5{-}3{,}0 \text{ M} \ni \text{B}, \quad m_d = 3{,}0{-}7{,}0 \text{ M} \ni \text{B}, \\ m_\mu &= 105{,}7 \text{ M} \ni \text{B}, \quad m_c = 1{,}15{-}1{,}35 \text{ F} \ni \text{B}, \quad m_s = 0{,}07{-}0{,}12 \text{ F} \Rightarrow \text{B}, \\ m_\tau &= 1{,}78 \text{ F} \ni \text{B}, \quad m_t = 169{,}3{-}173{,}5 \text{ F} \ni \text{B}, \quad m_b = 4{,}1{-}4{,}3 \text{ F} \Rightarrow \text{B}, \\ M_Z &= 91{,}2 \text{ F} \Rightarrow \text{B}, \quad M_W = 80{,}4 \text{ F} \Rightarrow \text{B}, \\ m_h > 114{,}4 \text{ F} \Rightarrow \text{B}, \end{split}$$

$$v = 247 \text{ Fig}, \quad \alpha \equiv \frac{e^2}{4\pi} = \frac{1}{137}, \quad \sin^2 \theta_w = 0,231.$$

Неопределенности в массах кварков (за исключением t-кварка) связаны с тем, что они не наблюдаются в свободном состоянии; для этих масс указан 95%-ый доверительный интервал¹²⁾.

В.2. Глобальные симметрии Стандартной модели

Помимо калибровочных симметрий в Стандартной модели имеются глобальные симметрии: лагранжиан (В.14) инвариантен относительно фазовых вращений всех кварков:

$$q \to e^{i\beta/3}q, \quad \bar{q} \to e^{-i\beta/3}\bar{q}$$
 (B.19)

и независимо от фазовых вращений лептонов каждого поколения,

$$(\nu_e, e) \to e^{i\beta_e}(\nu_e, e), \quad (\bar{\nu}_e, \bar{e}) \to e^{-i\beta_e}(\bar{\nu}_e, \bar{e}),$$
 (B.20)

$$(\nu_{\mu}, \ \mu) \rightarrow \mathrm{e}^{i\beta_{\mu}}(\nu_{\mu}, \mu), \quad (\overline{\nu}_{\mu}, \overline{\mu}) \rightarrow \mathrm{e}^{-i\beta_{\mu}}(\overline{\nu}_{\mu}, \overline{\mu}), \tag{B.21}$$

$$(\nu_{\tau}, \tau) \to e^{i\beta_{\tau}}(\nu_{\tau}, \tau), \quad (\overline{\nu}_{\tau}, \overline{\tau}) \to e^{-i\beta_{\tau}}(\overline{\nu}_{\tau}, \overline{\tau}).$$
 (B.22)

Здесь β , β_e , β_μ и β_τ — независимые параметры преобразований. Квантовое число, соответствующее симметрии (В.19), — это барионное число

$$B=\frac{1}{3}(N_q-N_{\bar{q}}),$$

где N_q и $N_{\bar{q}}$ — полное число кварков и антикварков всех типов соответственно. Барионный заряд кварков по определению равен 1/3, а заряд антикварков равен -1/3. При таком соглашении полный барионный заряд протона, в состав которого входят два *u*-кварка и один *d*-кварк, равен 1. В терминах чисел барионов и антибарионов имеем, таким образом,

$$B=\sum(N_B-N_{\overline{B}}),$$

¹¹⁾ Мы опускаем тонкости, связанные с зависимостью этих параметров от точки нормировки.

¹²⁾ Для *t*-кварка неопределенность имеет чисто экспериментальный характер.

где суммирование идет по всем типам барионов. Итак, в Стандартной модели барионное число сохраняется ¹³⁾. Ярким свидетельством того, что барионное число сохраняется в природе с высокой точностью, служит стабильность протона: протон — легчайшая из частиц, несущих барионное число, и он должен быть абсолютно стабильным в случае точного сохранения барионного числа. Распад протона действительно пока не обнаружен, а экспериментальное ограничение на его время жизни составляет

$$\tau_p > 10^{32} - 10^{33}$$
 лет,

в зависимости от моды распада.

Симметриям (В.20), (В.21), (В.22) соответствуют три сохраняющихся поотдельности лептонных числа (электронное, мюонное и тауонное)

$$L_e = (N_e + N_{\nu_e}) - (N_{e^+} + N_{\bar{\nu}_e}), \tag{B.23}$$

$$L_{\mu} = (N_{\mu} + N_{\nu_{\mu}}) - (N_{\mu^{+}} + N_{\bar{\nu}_{\mu}}), \qquad (B.24)$$

$$L_{\tau} = (N_{\tau} + N_{\nu_{\tau}}) - (N_{\tau^+} + N_{\bar{\nu}_{\tau}}), \qquad (B.25)$$

где N_e , N_{ν_e} , N_{e^+} , $N_{\overline{\nu}_e}$ — числа электронов, электронных нейтрино, позитронов и электронных антинейтрино, и аналогично для других поколений. Проявлением сохранения лептонных квантовых чисел является отсутствие процессов, нарушающих лептонные числа, а в остальном разрешенных. Примером такого процесса служит распад

$$\mu \rightarrow e\gamma$$
.

В нем нарушались бы электронное и мюонное числа. Экспериментальное ограничение на его относительную вероятность имеет вид

$$Br(\mu \to e\gamma) < 1.2 \cdot 10^{-11}.$$

Это — один из лучших результатов по проверке сохранения мюонного и электронного чисел. Отметим, что наблюдаемые осцилляции нейтрино свидетельствуют о том, что в природе лептонные числа на самом деле нарушаются, см. Приложение С.

Во многих моделях, обобщающих Стандартную модель физики частиц, барионное и/или лептонные числа нарушаются, что должно приводить к новым физическим процессам, например распаду протона. Поиск таких процессов является важной задачей, стояшей перед низкоэнергетическими экспериментами физики частиц. На сегодняшний день, помимо осцилляций нейтрино (см. Приложение С), никаких экспериментальных указаний на нарушение барионного или лептонных чисел не получено.

¹³⁾ Это утверждение справедливо в рамках теории возмушений. Непертурбативные эффекты нарушают барионное и лептонные числа, однако эти эффекты крайне малы в обычных условиях (но не в ранней Вселенной, см. Главу 11).

В.З. С-, Р-, Т-преобразования

Рассмотрим кратко дискретные преобразования: обращение времени —

T-преобразование: $(x^0, \mathbf{x}) \xrightarrow{T} (-x^0, \mathbf{x}),$

пространственное отражение ---

P-преобразование:
$$(x^0, \mathbf{x}) \xrightarrow{\mathbf{P}} (x^0, -\mathbf{x})$$

и зарядовое сопряжение —

C-преобразование: $f(x) \stackrel{C}{\rightarrow} f^c(x).$

При этом *P*- и *T*-преобразования вместе с собственной группой Лоренца образуют полную группу Лоренца.

С точки зрения процессов рассеяния обращение времени означает замену начального состояния на конечное, а конечного состояния на начальное, инверсия пространственных осей подразумевает обращение импульсов всех частиц, а зарядовое сопряжение — замену частиц на античастицы. В квантовой теории поля справедлива CPT-теорема, которая утверждает, что физические процессы должны быть инвариантны относительно совместного действия всех трех преобразований: амплитуда рассеяния, например, в результате CPT-преобразования может получить лишь физически ненаблюдаемый фазовый множитель.

Лоренцевы скаляры, векторы и тензоры¹⁴⁾ могут быть четными и нечетными относительно *P*-преобразований. Во втором случае их называют псевдоскалярами, аксиальными векторами и псевдотензорами. Например, при *P*-преобразовании скаляр (четный) и псевдоскаляр преобразуются как

$$\phi(x^0,\mathbf{x}) \xrightarrow{\mathbf{P}} \phi'(x^0,\mathbf{x}) = \phi(x^0,-\mathbf{x})$$

И

$$\phi(x^0,\mathbf{x}) \xrightarrow{\mathbf{P}} \phi'(x^0,\mathbf{x}) = -\phi(x^0,-\mathbf{x})$$

соответственно. Р-преобразование вектора (четного) имеет вид

$$V_
u(x^0,\mathbf{x}) \stackrel{\mathrm{P}}{
ightarrow} V_
u'(x^0,\mathbf{x}) = \delta^0_
u V_0(x^0,-\mathbf{x}) - \delta^i_
u V_i(x^0,-\mathbf{x}),$$

а преобразование аксиального вектора — это

$$A_
u(x^0,\mathbf{x}) \stackrel{P}{
ightarrow} A_
u'(x^0,\mathbf{x}) = -\delta^0_
u A_0(x^0,-\mathbf{x}) + \delta^i_
u A_i(x^0,-\mathbf{x}),$$

Некоторые билинейные комбинации спиноров, обладающие определенной P-четностью, приведены в (B.5).

Из вида лагранжиана (В.14), (В.16) ясно, что слабые взаимодействия нарушают P-четность: слабые бозоны взаимодействуют не только с векторными токами $\bar{\psi}_m \gamma^\mu \psi_n$, но и с аксиальными токами $\bar{\psi}_m \gamma^\mu \gamma^5 \psi_n$. Кроме того, слабые взаимодействия нарушают CP-симметрию. Источником нарушения служит комплексный параметр матрицы Кабиббо—Кобаяши—Маскава.

¹⁴⁾ Мы здесь не останавливаемся на свойствах спиноров относительно P-преобразований.

В.4. Смешивание кварков

Чтобы понять, как появляется матрица Кабиббо—Кобаяши—Маскава, рассмотрим переход от калибровочного базиса фермионов к массовому, т. е. переход от базиса, в котором калибровочные взаимодействия диагональны по поколениям и не перемешивают поля фермионов разных поколений, к базису, в котором диагональна массовая матрица и юкавские взаимодействия. Лагранжиан (В.8) выписан в терминах полей, разложенных по калибровочному базису, — все калибровочные взаимодействия имеют диагональный вид. В результате спонтанного нарушения электрослабой симметрии после перехода в унитарную калибровку (В.12) юкавские члены в лагранжиане (В.8) приводят к массовым членам для фермионов

$$\mathcal{L}_{m} = -\frac{v}{\sqrt{2}} Y_{mn}^{l} \bar{e}_{L_{m}} e_{R_{n}} - \frac{v}{\sqrt{2}} Y_{mn}^{d} \bar{d}_{L_{m}} d_{R_{n}} - \frac{v}{\sqrt{2}} Y_{mn}^{u} \bar{u}_{L_{m}} u_{R_{n}} + h. c., \qquad (B.26)$$

и юкавским взаимодействиям с полем хиггсовского бозона

$$\mathcal{L}_{Y} = -\frac{h}{\sqrt{2}} Y_{mn}^{l} \bar{e}_{L_{m}} e_{R_{n}} - \frac{h}{\sqrt{2}} Y_{mn}^{d} \bar{d}_{L_{m}} d_{R_{n}} - \frac{h}{\sqrt{2}} Y_{mn}^{u} \bar{u}_{L_{m}} u_{R_{n}} + h. c.$$
(B.27)

При этом калибровочные взаимодействия с глюонами, фотонами и Z-бозонами остаются диагональными по фермионным ароматам, а взаимодействия с W^{\pm} -бозонами диагональны по поколениям:

$${\cal L}_W=rac{g}{\sqrt{2}}ar{
u}_n\gamma^\mu W^+_\mu e_{L_n}+rac{g}{\sqrt{2}}ar{u}_{L_n}\gamma^\mu W^+_\mu d_{L_n}+h.~c.$$

Юкавские константы можно представить в виде

$$egin{aligned} Y^l_{mn} &= U^{e_L}_{mp} Y^l_p (U^{e_R})^{-1}_{pn}, \ Y^d_{mn} &= U^{d_L}_{mp} Y^d_p (U^{d_R})^{-1}_{pn}, \ Y^u_{mn} &= U^{u_L}_{mp} Y^u_p (U^{u_R})^{-1}_{pn}, \end{aligned}$$

где константы Y_p^l , Y_p^d и Y_p^u действительны, а U^{e_L}, \ldots, U^{u_R} — унитарные матрицы; по повторяющемуся индексу p подразумевается суммирование. Именно эти матрицы осуществляют переход к массовому базису в пространстве полей:

$$egin{aligned} e_{R_m} &= U_{mn}^{e_R} \widetilde{e}_{R_n}, \quad d_{R_m} &= U_{mn}^{d_R} \widetilde{d}_{R_n}, \quad u_{R_m} &= U_{mn}^{u_R} \widetilde{u}_{R_n}, \ e_{L_m} &= U_{mn}^{e_L} \widetilde{e}_{L_n}, \quad d_{L_m} &= U_{mn}^{d_L} \widetilde{d}_{L_n}, \quad u_{L_m} &= U_{mn}^{u_L} \widetilde{u}_{L_n}. \end{aligned}$$

Действительно, в терминах полей с тильдой вклады (В.26) и (В.27) в лагранжиан Стандартной модели будут диагональны, например,

$$rac{v}{\sqrt{2}}Y_{mn}^{l}ar{e}_{L_{m}}e_{R_{n}}=\sum_{p}rac{v}{\sqrt{2}}Y_{p}^{l}ar{ar{e}}_{L_{p}}\widetilde{e}_{R_{p}}.$$

*

При таком преобразовании кинетические члены полей материи, а также калибровочные взаимодействия с глюонами, фотонами и Z-бозоном по-прежнему останутся диагональными, а взаимодействие с W^{\pm} -бозонами будет содержать матрицы смешивания поколений.

В рамках Стандартной модели смешивание в лептонном секторе нефизическое — его можно избежать, переопределив поля нейтрино:

$$u_m o \widetilde{
u}_m : \quad \widetilde{
u}_m = (U^{e_L})_{mn}^{-1} \,
u_n$$

Поскольку все калибровочные взаимодействия нейтрино пропорциональны единичной матрице (в пространстве поколений), то такое переопределение не приведет к появлению смешивания в секторе нейтрино. Причина отсутствия смешивания в лептонном секторе Стандартной модели — безмассовость нейтрино.

В кварковом секторе ситуация иная, и переход к массовому базису приводит к появлению смешивания между кварками разных поколений в вершинах взаимодействия с W^{\pm} -бозонами:

$$\mathcal{L}_W = \frac{g}{\sqrt{2}} \bar{\tilde{u}}_{L_m} \gamma^{\mu} W^+_{\mu} V_{mn} \tilde{d}_{L_n} + h. c., \qquad (B.28)$$

где

* *

$$V_{ij} \equiv (U^{u_L})_{ik}^{-1} U_{kj}^{d_L}$$

— унитарная 3 × 3 матрица смешивания Кабиббо—Кобаяши—Маскава.

Унитарная матрица 3×3 общего вида задается девятью действительными параметрами (размерность группы унитарных матриц, U(3)). С точки зрения ортогональной подгруппы вращений SO(3), эти параметры можно разбить на три действительных параметра — углы вращения, и шесть мнимых фазы. Для матрицы смешивания кварков пять из шести фаз оказываются нефизическими. Их можно изгнать из (B.28) в результате переопределения фермионных полей $f_n \to f_n e^{i\beta_n}$. Такое преобразование полей фермионов не приводит к появлению комплексных коэффициентов в других частях лагранжиана (B.14), поскольку во все остальные его слагаемые, кроме (B.28), фермионные поля входят в комбинациях, явно инвариантных относительно фазовых вращений, типа $\overline{f}_n f_n$ и $\overline{f}_n \gamma_{\mu} f_n$. Оставшаяся единственная фаза в матрице Кабиббо—Кобаяши—Маскава является источником *CP*-нарушения в слабых взаимодействиях (об этом речь ниже).

Убедимся в существовании всего одной *СР*-нарушающей фазы. Для этого явно выделим в элементах матрицы смешивания комплексные множители:

$$V_{mn} = \begin{pmatrix} O_{11}e^{i\beta_{11}} & O_{12}e^{i\beta_{12}} & O_{13}e^{i\beta_{13}} \\ O_{21}e^{i\beta_{21}} & O_{22}e^{i\beta_{22}} & O_{23}e^{i\beta_{23}} \\ O_{31}e^{i\beta_{31}} & O_{32}e^{i\beta_{32}} & O_{33}e^{i\beta_{33}} \end{pmatrix};$$

здесь все величины O_{mn} и β_{mn} , m, n = 1, 2, 3, являются вещественными, и для определенности можно считать, что $O_{mn} \ge 0$ и $0 \le \beta_{mn} < 2\pi$. В нашей записи

фазовых множителей девять, однако они не независимы, поскольку условие унитарности матрицы налагает на них три дополнительных условия ¹⁵:

$$O_{11}O_{21}e^{i(\beta_{11}-\beta_{21})} + O_{12}O_{22}e^{i(\beta_{12}-\beta_{22})} + O_{13}O_{23}e^{i(\beta_{13}-\beta_{23})} = 0,$$

$$O_{11}O_{31}e^{i(\beta_{11}-\beta_{31})} + O_{12}O_{32}e^{i(\beta_{12}-\beta_{32})} + O_{13}O_{33}e^{i(\beta_{13}-\beta_{33})} = 0,$$

$$O_{21}O_{31}e^{i(\beta_{21}-\beta_{31})} + O_{22}O_{32}e^{i(\beta_{22}-\beta_{32})} + O_{23}O_{33}e^{i(\beta_{23}-\beta_{33})} = 0.$$

(B.29)

В результате вращений полей фермионов

$$\widetilde{d}_{L_n} = e^{-i\beta_{1n}} \widetilde{\widetilde{d}}_{L_n}, \quad n = 1, 2, 3,$$

$$\widetilde{u}_{L_m} = e^{-i(\beta_{m1} - \beta_{11})} \overline{\widetilde{\widetilde{u}}}_{L_m}, \quad m = 2, 3$$
(B.30)

пять из девяти фаз матрицы смешивания зануляются (общее фазовое вращение фермионных полей не изменяет лагранжиана). Оставшиеся четыре зависимы и выражаются через одну единственную фазу и элементы O_{mn} из условий (В.29), которые после преобразований (В.30) принимают вид

$$O_{11}O_{21} + O_{12}O_{22}e^{-i\beta_{22}} + O_{13}O_{23}e^{-i\beta_{23}} = 0,$$

$$O_{11}O_{31} + O_{12}O_{32}e^{-i\beta_{32}} + O_{13}O_{33}e^{-i\beta_{33}} = 0,$$

$$O_{21}O_{31} + O_{22}O_{32}e^{i(\beta_{22} - \beta_{32})} + O_{23}O_{33}e^{i(\beta_{23} - \beta_{33})} = 0.$$

Первое условие позволяет выразить β_{22} через β_{23} (и элементы O_{mn}), из второго можно найти связь между β_{32} и β_{33} . Наконец, в результате подстановки полученных выражений в третье условие β_{33} выражается через один оставшийся параметр β_{23} . В нашей записи он и определяет единственный комплексный множитель в элементах матрицы Кабиббо—Кобаяши—Маскава.

В стандартной параметризации [4] матрица V имеет вид

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix}, \quad (B.31)$$

где $c_{ij} = \cos \theta_{ij}$, $s_{ij} = \sin \theta_{ij}$, а θ_{ij} , i, j = 1, 2, 3, - углы смешивания, и $\delta_{13} - CP$ -нарушающая фаза. Величины этих параметров определяются с хорошей точностью из многочисленных экспериментов:

$$s_{12} = 0,2272, \quad s_{13} = 0,0040, \\ s_{23} = 0,04221, \quad \delta_{13} = 57^{\circ} \pm 10^{\circ}.$$

¹⁵⁾ Общее условие унитарности имеет вид $V_{mn}V_{pn}^* = \delta_{mp}$, m, p = 1, 2, 3. Три из этих уравнений (диагональные, m = p) не содержат фаз β_{mn} вообще, а уравнения с m > p не являются независимыми, поскольку они комплексно сопряжены уравнениям с m < p.

Абсолютные величины элементов матрицы смешивания кварков равны

$$|V| = \begin{pmatrix} 0.97383^{+0.00024}_{-0.00023} & 0.2272^{+0.0010}_{-0.0010} & (3.96^{+0.09}_{-0.09}) \cdot 10^{-3} \\ 0.2271^{+0.0010}_{-0.0010} & 0.97296^{+0.00024}_{-0.00024} & (42.21^{+0.10}_{-0.80}) \cdot 10^{-3} \\ (8.14^{+0.32}_{-0.64}) \cdot 10^{-3} & (41.61^{+0.12}_{-0.78}) \cdot 10^{-3} & 0.999100^{+0.000034}_{-0.000004} \end{pmatrix}, \quad (B.32)$$

где ошибки соответствуют одному стандартному отклонению (68%-й доверительный интервал). Отметим, что *СР*-нарушающая фаза матрицы Кабиббо— Кобаяши—Маскава велика, однако соответствующие *СР*-нарушающие эффекты в Стандартной модели сильно подавлены малостью углов смешивания, что наглядно видно при использовании стандартной параметризации (В.31).

Общий факт, что комплексность матрицы V_{mn} приводит к нарушению CP, вытекает из закона преобразования полей при CP-преобразовании:

$$\psi_L \xrightarrow{\mathrm{P}} \eta \gamma^0 \psi_L, \quad \overline{\psi}_L \xrightarrow{\mathrm{P}} \eta^{-1} \overline{\psi}_L \gamma_0,$$
 (B.33)

$$\psi_L \xrightarrow{\mathrm{C}} C \overline{\psi}_L^{\mathrm{r}}, \quad \overline{\psi}_L \xrightarrow{\mathrm{C}} \psi_L^{\mathrm{r}} (C^{-1})^{\mathrm{r}},$$
 (B.34)

где η — фазовый множитель ($\eta^2 = \pm 1$), а 4×4 матрица *C* преобразует компоненты дираковского спинора ψ при зарядовом сопряжении. Конкретный вид этой матрицы зависит от представления матриц Дирака, причем условия самосогласованности преобразований ψ и $\bar{\psi}$, требования инвариантности (четности) свободного лагранжиана дираковского фермиона и изменения знака (нечетности) электрического тока при зарядовом сопряжении, вообще говоря, фиксируют вид матрицы *C* с точностью до физически не наблюдаемого фазового множителя. Для билинейной комбинации спиноров, образующих заряженный ток, взаимодействующий с *W*-бозоном (см. (B.28)), вышеперечисленные условия приводят к простому закону преобразования (тильду над полями в массовом базисе не пишем)

$$ar{u}_{L_m}\gamma^0 V_{mn}d_{L_n} \stackrel{CP}{
ightarrow} -ar{d}_{R_n}\gamma^0 V_{mn}u_{R_m}, \ ar{u}_{L_m}\gamma^i V_{mn}d_{L_n} \stackrel{CP}{
ightarrow} ar{d}_{R_n}\gamma^i V_{mn}u_{R_m}.$$

С учетом закона преобразования полей W-бозонов при СР-сопряжении

$$W_0^{\pm} \stackrel{CP}{
ightarrow} - W_0^{\mp}, \quad W_i^{\pm} \stackrel{CP}{
ightarrow} W_i^{\mp},$$

окончательно находим, что при *CP*-преобразовании взаимодействие (B.28)) переходит в

$$\mathcal{L}_{W}^{CP} = \frac{g}{\sqrt{2}} \bar{d}_{R_{n}} \gamma^{\mu} W_{\mu}^{-} V_{mn} u_{R_{m}} + h. c. = \frac{g}{\sqrt{2}} \bar{u}_{R_{m}} \gamma^{\mu} W_{\mu}^{+} V_{mn}^{*} d_{R_{n}} + h. c. \quad (B.35)$$

Сравнение (В.35) с (В.28) показывает, что взаимодействие (В.28)) нарушает CP, если элементы матрицы смешивания V_{mn} — комплексные величины.

Рис. В.1. Древесная (a) и однопетлевая (b) диаграммы распада $t \to W^+ b$, дающие в рамках Стандартной модели основной вклад в разность парциальных ширин $t \to W^+ b$ и $\bar{t} \to W^- \bar{b}$. Явно показаны элементы матрицы Каббибо—Кобаяши—Маскава, которым пропорциональны соответствующие вершины

Этот результат отражает общее свойство теории поля: при *CP*-преобразовании исходный лагранжиан переходит в лагранжиан с комплексно-сопряженными константами связи. Если в наборе констант связи теории имеются неустранимые фазы, то в такой теории *CP*-инвариантность нарушена.

В качестве иллюстрации оценим разность парциальных ширин

$$t \to W^+ b$$
 и $\bar{t} \to W^- \bar{b}$,

которые были бы одинаковы, если бы *CP*-симметрия сохранялась в Стандартной модели (*CPT*-симметрия требует, чтобы *полные* ширины частиц и античастиц совпадали). На древесном уровне парциальные ширины одинаковы, и основной вклад в их разность дает интерференция древесного и однопетлевого вкладов. Для распада $t \to W^+ b$ эти вклады следуют из диаграмм, приведенных на рис. В.1 (аналогичные диаграммы дают вклад в распад $\bar{t} \to W^- \bar{b}$).

Если обозначить древесный вклад в амплитуду распада $t \to W^+ b$ как $V_{33}M_{tree}$, то однопетлевой вклад можно представить в виде

$$M_{tree} \cdot \frac{g^2}{16\pi^2} \sum_{n,l=1}^{3} V_{3n} V_{ln}^* V_{l3} (A_{nl} + i\pi B_{nl}),$$

где A_{nl} , B_{nl} — действительные функции, зависящие от масс W-бозона, tи b-кварков, а также от масс верхнего кварка l-го поколения и нижнего кварка n-го поколения. В дальнейшем нам понадобится только функция B_{nl} , которую удобно представить в виде

$$egin{aligned} B_{nl} &= \int\limits_{0}^{1} dx \int\limits_{0}^{1-x} C_{nl} \, dy, \ C_{nl} &= heta \Big[\left(x + rac{m_b^2}{m_t^2} y
ight) (1-x-y) - rac{m_{d_n}^2}{m_t^2} x - rac{m_{u_l}^2}{m_t^2} y - rac{M_W^2}{m_t^2} (1-x-xy) \Big] \end{aligned}$$

(здесь $\theta(z)$ — обычная функция скачка). Функция B_{nl} определяет мнимую добавку в амплитуду, причем эта мнимость связана с кинематикой виртуальных

процессов, а не с комплексностью констант взаимодействия: вклад возникает в результате интегрирования по таким виртуальным импульсам, что часть виртуальных частиц оказывается вблизи массовой поверхности. Поскольку это кинематический эффект, он дает в точности такой же вклад в амплитуду распада $\tilde{t} \to W^- \tilde{b}$, которая на однопетлевом уровне будет иметь вид

$$M_{tree}^* \cdot \frac{g^2}{16\pi^2} \sum_{n,l=1}^3 V_{3n}^* V_{ln} V_{l3}^* (A_{nl} + i\pi B_{nl}).$$

Ширины распадов определяются квадратами модулей соответствующих амплитуд (мы учли, что $|V_{33}|$ с хорошей точностью равен 1).

$$\begin{split} \left| M(t \to W^+ b) \right|^2 &= |M_{tree}|^2 \times \\ &\times \left\{ 1 + \frac{g^2}{16\pi^2} \left(V_{33}^* \sum_{l,n=1}^3 V_{3n} V_{ln}^* V_{l3} (A_{nl} + i\pi B_{nl}) + h. c. \right) + \mathcal{O}(g^4) \right\}, \quad (B.36) \\ &\left| M(\bar{t} \to W^- \bar{b}) \right|^2 = |M_{tree}|^2 \times \end{split}$$

$$\times \left\{ 1 + \frac{g^2}{16\pi^2} \left(V_{33} \sum_{l,n=1}^3 V_{3n}^* V_{ln} V_{l3}^* (A_{nl} + i\pi B_{nl}) + h. c. \right) + \mathcal{O}(g^4) \right\}.$$
(B.37)

Таким образом, окончательно получаем в главном порядке по g^2

$$\Delta_{CP} = \frac{\Gamma(t \to W^+ b) - \Gamma(\bar{t} \to W^- \bar{b})}{\Gamma(t \to W^+ b) + \Gamma(\bar{t} \to W^- \bar{b})} = -\frac{g^2}{8\pi} \sum_{l,n} \operatorname{Im} \left(V_{33}^* V_{3n} V_{ln}^* V_{l3} \right) B_{nl}.$$

Численно разность ширин очень мала,

$$\Delta_{CP} = -1,15 \cdot 10^{-13},$$

поэтому данный эффект вряд ли можно будет исследовать экспериментально в обозримом будущем¹⁶⁾. В то же время описанный механизм, обеспечивающий отличие парциальных ширин частиц и античастиц, является довольно общим. В различных теориях, обобщающих Стандартную модель, этот механизм используется для генерации барионной асимметрии (см. Главу 11).

В.5. Эффективная теория Ферми

Процессы при низких энергиях $E \ll M_W$ хорошо описываются эффективной теорией Ферми. Лагранжиан этой теории получается из (B.14) в результате «отынтегрирования» полей массивных векторных бозонов.

¹⁶⁾ Отметим, что *СР*-нарушающая фаза приводит ко многим другим эффектам, наблюдаемым в современных экспериментах, например в процессах с участием нейтральных каонов и нейтральных В-мезонов.

Рис. В.2. Точечное приближение для пропагаторов массивных векторных бозонов

Рис. В.З. Связь между диаграммами Стандартной модели и теории Ферми

В Стандартной модели взаимодействие массивных векторных бозонов с полями материи имеет вид

$$\mathcal{L}_{W-m} = rac{g}{2\cos heta_w} J^{NC}_{\mu} Z^{\mu} + rac{g}{2\sqrt{2}} (J^{CC}_{\mu} W^{\mu,+} + h. c.),$$

где слабые нейтральный J^{NC}_{μ} и заряженный J^{CC}_{μ} токи равны:

$$J^{NC}_{\mu} = \sum_{f} \overline{f} \gamma_{\mu} \left(t^{f}_{3} (1 - \gamma^{5}) - 2q_{f} \sin^{2} \theta_{W} \right) f, \qquad (B.38)$$

$$J_{\mu}^{CC} = \sum_{m} \bar{\nu}_{m} \gamma_{\mu} (1 - \gamma^{5}) e_{m} + \sum_{m,n} \bar{u}_{m} \gamma_{\mu} (1 - \gamma^{5}) V_{mn} d_{n}.$$
(B.39)

При $E \ll M_Z$ в начальных и конечных состояниях могут присутствовать только поля материи — лептоны и кварки (кроме тяжелого *t*-кварка). При таких энергиях основной вклад в слабые амплитуды дает однократный обмен виртуальными массивными векторными бозонами. В технике фейнмановских диаграмм «отынтегрирование» сводится к стягиванию пропагаторов *Z*и *W*-бозонов в точку (см. рис. В.2). В результате диаграммы Стандартной модели, типа приведенной на рис. В.3 *a*, переходят в диаграммы типа приведенной на рис. В.3 *b* и отвечающей теории Ферми — эффективному четырехфермионному взаимодействию. Таким образом, отынтегрирование *Z*-бозона приводит к появлению взаимодействия вида

$$\mathcal{L}_N = rac{G_F}{\sqrt{2}} J^{NC}_\mu J^{NC\ \mu},$$

а отынтегрирование W^{\pm} -бозонов дает

$${\cal L}_C = {G_F \over \sqrt{2}} J^{CC}_\mu J^{CC \ \dagger \ \mu}$$

Константа связи G_F эффективного взаимодействия имеет размерность обратного квадрата массы и определяет масштаб четырехфермионного взаимодействия. Она получила название константы Ферми. Эта константа связана с фундаментальными параметрами Стандартной модели соотношением (см. рис. В.2)

$$G_F\equiv rac{g^2}{4\sqrt{2}M_W^2},$$

и равна

$$G_F = 1,17 \cdot 10^{-5} \text{ F}_{3}\text{B}^{-2}.$$

В завершение раздела отметим, что аналогичная процедура отынтегрирования хиггсовского бозона также приводит к эффективному четырехфермионному взаимодействию вида $\overline{\psi}_m \psi_m \cdot \overline{\psi}_n \psi_n$. Эффективные константы связи при этом пропорциональны соответствующим юкавским константам фермионов, которые малы по сравнению со слабой калибровочной константой ¹⁷⁾. Поэтому влиянием этого эффективного взаимодействия на процессы при низких энергиях можно пренебречь.

В.6. Особенности сильных взаимодействий

Хотя переносчики сильных взаимодействий — глюоны — являются безмассовыми частицами, для описания сильных взаимодействий при низких энергиях (точнее — при малых передачах импульса) прибегают к эффективным теориям. В отличие от теории Ферми, которая достаточна, но не необходима для описания слабых взаимодействий при низких энергиях, эффективное описание сильных взаимодействий при низких энергиях, эффективное описание сильных взаимодействий при низких энергиях *необходимо*, поскольку квантовая калибровочная $SU(3)_c$ -теория находится в режиме сильной связи при энергиях порядка $\Lambda_{OCD} \sim 200$ МэВ и даже несколько выше.

Проявляется это, например, в том, что зависящая от энергии \sqrt{s} калибровочная константа сильного взаимодействия $\alpha_s(\sqrt{s}) \equiv g_s^2(\sqrt{s})/(4\pi)$ растет с уменьшением энергии и становится большой (на однопетлевом уровне — обращается в бесконечность) при $\sqrt{s} = \Lambda_{QCD}$. Таким образом, при попытке описать сильные процессы с характерными энергиями $\sqrt{s} \sim \Lambda_{QCD}$ не только «взрывается» ряд теории возмущений по калибровочной константе связи (т. е. основной метод вычислений в квантовой теории поля выходит за пределы своей применимости), но и теряет смысл само описание в терминах кварков и глюонов.

Эта особенность теории полностью согласуется с тем фактом, что кварки и глюоны не наблюдаются в свободном состоянии. Они «заключены» внутри бесцветных частиц — адронов (мезонов и барионов) и начинают играть самостоятельную роль только в процессах с характерными передачами

¹⁷⁾ Исключение составляет юкавская константа t-кварка, однако он не участвует в процессах при низких энергиях, которые мы здесь обсуждаем.

импульса, превышающими Λ_{QCD} . Это явление получило название конфайнмента — невылетания кварков и глюонов. Ясно, что характерный размер легких адронов — области «заключения» u-, d- и s-кварков и глюонов составляет как раз Λ_{QCD}^{-1} .

Взаимодействия легчайших адронов (протон, нейтрон, пионы, каоны и др.) между собой и с частицами Стандартной модели, не заряженными по калибровочной группе $SU(3)_c$, при низких энергиях $\sqrt{s} \leq \Lambda_{QCD}$ удовлетворительно описывается в рамках *киральной пертурбативной теории поля*. Для описания более тяжелых адронов, а также сильных процессов в промежуточной области $\sqrt{s} \geq \Lambda_{QCD}$ используют различные, как правило, полуфеноменологические подходы. Целый ряд величин, характеризующих КХД в области сильной связи, можно вычислить «из первых принципов», рассмотрев теорию на решетке и вычислив функциональные интегралы на компьютере. С точки зрения космологии интерес представляют, например, решеточные вычисления температуры фазового перехода КХД, которая составляет $T_{QCD} \simeq 170$ МэВ [62].

В.7. Эффективное число степеней свободы в Стандартной модели

Используя спектр Стандартной модели и учитывая особенности сильных взаимодействий, можно оценить для первичной плазмы эффективное число релятивистских степеней свободы g_* как функцию температуры. Результат грубой оценки, использующей приближение θ -функции (ступенька) для описания поведения $g_*(T)$ вблизи порогов частиц и температуры фазового перехода КХД, приведен на рис. В.4. Масса хиггсовского бозона положена равной $m_h = 120$ ГэВ.

При температуре $T \leq 100$ МэВ ультрарелятивистскими являются только фотоны, электроны и нейтрино, так что при 1 МэВ $\leq T \leq 100$ МэВ эффективное число релятивистских степеней свободы равно

$$g_*(T \leq 100 \text{ M} \Rightarrow \text{B}) = 2_{\gamma} + \frac{7}{8}(4_e + 3 \cdot 2_{\nu}) = \frac{43}{4} = 10,75.$$

Выше температуры фазового перехода КХД в плазме присутствуют легкие кварки (u, d, s) и глюоны, причем их взаимодействие не слишком сказывается на таких термодинамических величинах, как свободная энергия или давление (об этом свидетельствуют результаты решеточных вычислений). Поэтому при $T \sim T_{QCD}$ эффективное число релятивистских степеней свободы изменяется на

$$\Delta g_*^{(QCD)} = 8 \cdot 2 + \frac{7}{8} \cdot 3 \cdot 3 \cdot 4 = 47,5.$$

Первый вклад здесь связан с глюонами (безмассовые векторы в восьми цветовых состояниях), второй — с u-, d-, s-кварками и антикварками, каждый из которых может находиться в трех цветовых состояниях. Чуть раньше включается мюон — его масса становится малой по сравнению с температурой при

Рис. В.4. Эффективное число степеней свободы *g*_{*} в первичной плазме как функция температуры. Учитываются только частицы Стандартной модели. Масса хиггсовского бозона положена равной *m_h* = 120 ГэВ

 $T \gtrsim 100$ МэВ. Ступеньки при более высоких температурах соответствуют более тяжелым частицам, показанным на рис. В.4.

При T > 200 ГэВ эффективное число степеней свободы равно (в рамках Стандартной модели с одним хиггсовским дублетом):

$$g_*(T \gtrsim 200 \text{ F}) =$$

$$= 2_{\gamma} + 2 \cdot 3_w + 3_z + 1_h + 8^{(c)} \cdot 2_G + \frac{7}{8} (3 \cdot 4_e + 3 \cdot 2_{\nu} + 6 \cdot 3^{(c)} \cdot 4_q) = 106,75.$$
(B.40)

Здесь подстрочный индекс обозначает тип частиц, надстрочный индекс (c) относится к числу цветовых состояний, последние множители — числа спиновых состояний. Отметим, что в приведенном подсчете учитываются по 3 поляризации W- и Z-бозонов и одна степень свободы хиггсовского бозона, что верно для Стандартной модели в хиггсовской фазе. В фазе с ненарушенной электрослабой симметрией W- и Z-бозоны не обладают массами и имеют по 2 поляризации, зато хиггсовское поле — комплексный дублет — описывает 4 скалярные частицы. Число степеней свободы одно и то же в этих двух фазах, так что результат (B.40) верен в любом случае.

ОСЦИЛЛЯЦИИ НЕЙТРИНО

Осцилляции нейтрино — переходы нейтрино с изменением аромата единственное на сегодняшний день прямое свидетельство неполноты Стандартной модели физики частиц, полученное в лаборатории, а не из космологии или астрофизических наблюдений. Нейтринные осцилляции возможны, если нейтрино массивны, и при этом имеется смешивание между поколениями лептонов, аналогичное рассмотренному в разделе В.4 смешиванию между кварками. В Стандартной модели перенормируемые калибровочно-инвариантные члены в лагранжиане, которые приводили бы к массам нейтрино, написать невозможно. Именно поэтому для описания нейтринных осцилляций Стандартную модель требуется расширять.

Исторически первыми экспериментами, результаты которых указывали на нейтринные осцилляции, стали измерения потоков солнечных и атмосферных нейтрино. Впоследствии эти наблюдения были подтверждены экспериментами с нейтрино от ядерных реакторов и с нейтрино от ускорителей.

С.1. Смешивание нейтрино и осцилляции

В этом разделе мы рассмотрим в общих чертах механизм, приводящий к осцилляциям нейтрино. При этом мы пока опустим важные аспекты, связанные с тем, что нейтрино имеют спин 1/2. Эти аспекты будут обсуждаться в разделе С.4.

С.1.1. Вакуумные осцилляции

Как мы только что отмечали, осцилляции нейтрино — переходы нейтрино из одного типа в другой — запрещены в Стадартной модели физики частиц, поскольку в ней нейтрино имеют нулевые массы, и, как следствие (см. Приложение В), сохраняются электронное, мюонное и τ -лептонное числа. В обобщениях Стандартной модели, допускающих отличные от нуля массы нейтрино, такие осцилляции возможны. А именно, нейтрино рождаются в слабых процессах в полном соответствии со Стандартной моделью¹⁾. Однако в базисе полей Стандартной модели, где все массовые матрицы других

¹⁾ Нас в этом Приложении будут интересовать процессы при не слишком высоких энергиях, для которых это утверждение заведомо справедливо.

частиц диагональны, нейтрино осциллируют — гамильтониан, описывающий их дальнейшее свободное распространение, *недиагонален* в этом базисе. В дальнейшем мы будем называть этот базис *калибровочным*, поскольку в нем калибровочные взаимодействия лептонов диагональны по поколениям (как они определены в Стандартной модели).

Ситуация здесь во многом аналогична смешиванию кварков (раздел В.4). В базисе, где калибровочные взаимодействия кварков диагональны (калибровочный базис), массовая матрица кварков недиагональна, и наоборот, в базисе, где диагональна массовая матрица кварков (массовый базис), недиагональны их калибровочные взаимодействия. В случае кварков удобно работать исключительно в массовом базисе. При обсуждении нейтринных осцилляций полезно использовать как калибровочный, так и массовый базисы.

Будем считать, что в природе имеется три типа нейтрино; о возможности дополнительных типов мы упомянем позже. Электронным, мюонным и τ -нейтрино служат состояния, рождающиеся вместе с заряженными антилептонами (позитроном, μ^+ и τ^+ , соответственно) в двухчастичных распадах W^+ -бозонов (как реальных, так и виртуальных). Поскольку и рождение, и регистрация нейтрино осуществляются посредством слабых взаимодействий, экспериментально наблюдаемыми состояниями являются именно эти состояния $|\nu_e\rangle$, $|\nu_{\mu}\rangle$ и $|\nu_{\tau}\rangle$. Они и образуют реперные вектора калибровочного базиса²⁾. Переход от калибровочного базиса $|\nu_{\alpha}\rangle$, $\alpha = e, \mu, \tau$, к массовому базису $|\nu_i\rangle$, i = 1, 2, 3, осуществляет унитарное преобразование, которое традиционно записывают в виде

$$|\nu_i\rangle = U_{\alpha i}|\nu_{\alpha}\rangle$$
 (C.1)

(суммирование по повторяющимся индексам подразумевается). Здесь унитарная матрица $U_{\alpha i}$ — это матрица смешивания в секторе нейтрино. Обратное преобразование от массового к калибровочному базису имеет вид

$$|\nu_{\alpha}\rangle = (U^{\dagger})_{i\alpha}|\nu_{i}\rangle \equiv U^{*}_{\alpha i}|\nu_{i}\rangle \tag{C.2}$$

Состояния $|\nu_i\rangle$ являются собственными состояниями свободного гамильтониана, т. е. они имеют определенные массы m_i . Матрицу смешивания U называют матрицей Понтекорво—Маки—Накагава—Саката (PMNS).

Удобство определения (С.1) состоит в том, что массовая матрица нейтрино в калибровочном базисе имеет простой вид

$$M_{\alpha\beta} = \langle \nu_{\alpha} | M | \nu_{\beta} \rangle = (U M^{(m)} U^{\dagger})_{\alpha\beta}, \qquad (C.3)$$

где $M^{(m)}$ — диагональная массовая матрица в массовом базисе,

$$M_{ij} = m_i \delta_{ij}. \tag{C.4}$$

²⁾ В литературе вместо термина «калибровочный базис» нередко используют термин «флэйворный базис» ("flavor basis"), а состояния $|\nu_e\rangle$, $|\nu_{\mu}\rangle$ и $|\nu_{\tau}\rangle$ называют «флэйворными состояниями» ("flavor states").

Свободная эволюция нейтрино в системе покоя определется собственными значениями массовой матрицы:

$$|\nu_j(t)\rangle = \mathrm{e}^{-im_j t} |\nu_j(0)\rangle. \tag{C.5}$$

Если в момент t = 0 имелось чистое калибровочное состояние, — например, электронное нейтрино $|\nu_e\rangle$, то через время t другие компоненты вектора состояния в калибровочном базисе также становятся ненулевыми. Это означает, что существует ненулевая вероятность зарегистрировать мюонное или τ -нейтрино через время t.

Для практических приложений ставится задача о вычислении в лабораторной системе отсчета вероятности перехода $\nu_{\alpha} \rightarrow \nu_{\beta}$ на удалении L от места рождения нейтрино ν_{α} . При этом формула (C.5) для эволюции нейтрино в массовом базисе обобщается:

$$|\nu_i(t,L)\rangle = \mathrm{e}^{-i(E_jt-p_jL)}|\nu_i(0)\rangle,$$

где p_j и E_j — импульс и энергия нейтрино соответственно. Интерес представляет случай ультрарелятивистских нейтрино. Считая, что энергия нейтрино фиксирована³⁾, и учитывая, что в ультрарелятивистском случае

$$p_j=\sqrt{E^2-m_j^2}=E-rac{m_j^2}{2E},$$

получим, что эволюция состояний в массовом базисе в зависимости от пройденного расстояния описывается формулой (с точностью до общего для всех нейтрино фазового множителя)

$$|
u_j(L)
angle = \exp\left\{-irac{m_j^2}{2E}L
ight\}|
u_j(0)
angle.$$

Отметим, что эта эволюция соответствует эффективному гамильтониану

$$H_{eff} = \frac{M^2}{2E},\tag{C.6}$$

где M — массовая матрица нейтрино, выражения для которой в массовом и калибровочном базисах имеют вид (С.4) и (С.3) соответственно. Из (С.1) следует, что амплитуда перехода нейтрино ν_{α} в нейтрино ν_{β} равна

$$A(lpha o eta) = \sum_j \langle
u_eta |
u_j(L)
angle \langle
u_j(0) |
u_lpha
angle =$$

³⁾ В литературе можно найти обсуждение тонких вопросов типа «являются ли состояния рожденных нейтрино собственными состояниями оператора энергии \hat{P}_0 или оператора импульса \hat{P} ?» Ответы на подобные вопросы важны для правильного описания осцилляций не слишком релятивистских нейтрино, $|\mathbf{p}_{\nu}| \leq m_{\nu}$, а также для изучения пределов применимости осцилляционной картины (она заведомо неприменима на больших расстояниях от источника, куда нейтрино разных масс приходят за существенно разное время). Этих вопросов мы здесь не касаемся.

$$=\sum_{j} \langle \nu_{\beta} | \nu_{j} \rangle \exp\left\{-i\frac{m_{j}^{2}}{2E}L\right\} \langle \nu_{j} | \nu_{\alpha} \rangle = \sum_{j} U_{\beta j} \exp\left\{-i\frac{m_{j}^{2}}{2E}L\right\} U_{\alpha j}^{*}.$$
 (C.7)

Формула (С.7) позволяет вычислить вероятность перехода между двумя состояниями калибровочного базиса после преодоления расстояния L:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = |A(\alpha \rightarrow \beta)|^{2} =$$

$$= \delta_{\alpha\beta} - 4 \sum_{j>i} \operatorname{Re} \left[U_{\alpha j}^{*} U_{\beta j} U_{\alpha i} U_{\beta i}^{*} \right] \sin^{2} \left(\frac{\Delta m_{ji}^{2}}{4E} L \right) +$$

$$+ 2 \sum_{j>i} \operatorname{Im} \left[U_{\alpha j}^{*} U_{\beta j} U_{\alpha i} U_{\beta i}^{*} \right] \sin \left(\frac{\Delta m_{ji}^{2}}{2E} L \right), \quad (C.8)$$

где

$$\Delta m_{ji}^2 \equiv m_j^2 - m_i^2.$$

Полученная формула описывает осцилляции с амплитудой, определяемой нейтринной матрицей смешивания, и длинами осцилляций, определяемыми отношениями разностей квадратов масс нейтрино к энергии. Отметим, что в реальных ситуациях осцилляционная картина может замываться, если источник имеет большой пространственный размер и/или производится усреднение по некоторому интервалу энергий нейтрино.

Ясно, что наряду с осцилляциями нейтрино должны быть (и они наблюдаются экспериментально) и осцилляции антинейтрино, для описания которых применим такой же формализм. *СРТ*-теорема обеспечивает связь между вероятностями нейтринных и антинейтринных переходов:

$$P(\nu_{\alpha} \to \nu_{\beta}) = P(\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}). \tag{C.9}$$

Поскольку вероятность перехода $\nu_{\beta} \rightarrow \nu_{\alpha}$ совпадает с вероятностью перехода $\nu_{\alpha} \rightarrow \nu_{\beta}$, вычисленной с комплексно-сопряженной матрицей смешивания нейтрино (см. (С.8)), то связь (С.9) приводит к равенству

$$P(\overline{\nu}_{\alpha} \to \overline{\nu}_{\beta}; U) = P(\nu_{\alpha} \to \nu_{\beta}; U^*).$$

Это равенство показывает, что отличие вероятностей осцилляций нейтрино и антинейтрино возможно лишь для комплексной матрицы U (см. формулу (C.8)); оно означало бы нарушение CP-симметрии в лептонном секторе. Отметим, что нетривиальная CP-фаза возможна, только если число типов нейтрино больше двух: в случае двух типов нейтрино матрицу смешивания Uможно сделать действительной путем переопределения полей (см. ниже).

Важным примером является случай осцилляций между двумя типами нейтрино. В этом случае 2×2 унитарная матрица $U_{\alpha i}$, i, $\alpha = 1, 2$, определяется тремя действительными параметрами. Два из трех не являются физическими: от них можно избавиться посредством фазовых вращений полей нейтрино

и заряженных лептонов. После этого переход от калибровочного к массовому базису будет осуществлять матрица

$$U_{\alpha,i} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}, \qquad (C.10)$$

зависящая лишь от одного параметра — угла смешивания θ .

Задача 1. Доказать сделанное здесь утверждение.

В двухнейтринном случае формула (С.8) упрощается:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} + (-1)^{\delta_{\alpha\beta}} \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2}{4E}L\right).$$
(C.11)

Иначе говоря, вероятность перехода нейтрино ν_{α} в нейтрино другого типа ν_{β} равна

$$P(\nu_{\alpha} \rightarrow \nu_{\beta \neq \alpha}) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2}{4E}L\right),$$
 (C.12)

а вероятность выживания нейтрино типа ν_{α} равна

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - P(\nu_{\alpha} \to \nu_{\beta \neq \alpha}) = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2}{4E}L\right).$$
(C.13)

Угол смешивания определяет амплитуду осцилляции $A = \sin^2 2\theta$, а длина осцилляции равна

$$L_{osc} = \frac{4\pi E}{\Delta m^2} = (2,5 \text{ KM}) \cdot \frac{E}{\Gamma \ni B} \frac{\Im B^2}{\Delta m^2}.$$
 (C.14)

На таком расстоянии нейтрино ν_{α} возвращается в исходное состояние, максимальная же вероятность осцилляций имеется в точках, удаленных от места рождения нейтрино на расстояния $L_k = L_{osc}(1/2 + k), k = 0, 1, 2, ...$

С.1.2. Осцилляции трех типов нейтрино в частных случаях

Как мы будем обсуждать в дальнейшем, в природе имеется иерархия разностей квадратов масс нейтрино:

$$\left|\Delta m_{31}^2\right| \gg \Delta m_{21}^2. \tag{C.15}$$

Здесь мы придерживаемся следующего соглашения о нумерации массовых состояний: масса m_3 сильно отличается от масс m_1 и m_2 ; массы m_1 и m_2 близки между собой, причем

 $m_2 > m_1$.

Отметим, что выполняются также соотношения

$$\left| \Delta m^2_{32}
ight| = \left| \Delta m^2_{31} - \Delta m^2_{21}
ight| \simeq \left| \Delta m^2_{31}
ight| \gg \Delta m^2_{21}.$$

Свойство (С.15) подразумевает, что реализуется либо прямая, либо обратная иерархия масс, как это изображено на рис. С.1. Убедимся, что благодаря этому

◀

Рис. С.1. Прямая (a) и обратная (b) иерархии масс нейтрино

свойству формулы, описывающие осцилляции между тремя типами нейтрино, в двух частных случаях похожи на те, которые относятся к описанным в конце предыдущего раздела двухнейтринным осцилляциям. Эти случаи в действительности представляют большой интерес, поскольку первый из них нередко реализуется для ускорительных и реакторных нейтрино, а второй — для солнечных нейтрино.

Начнем со случая, когда энергия E и расстояние от места рождения нейтрино ν_{α} до места детектирования таковы, что

$$\frac{\Delta m_{21}^2}{2E} L \ll 1. \tag{C.16}$$

Тогда первое осциллирующее слагаемое, входящее в (С.8), выражается через

$$\sum_{j>i} U_{\alpha j}^* U_{\beta j} U_{\alpha i} U_{\beta i}^* \cdot \sin^2 \left(\frac{\Delta m_{ji}^2}{4E} L \right) = U_{\alpha 3}^* U_{\beta 3} \left(U_{\alpha 1} U_{\beta 1}^* + U_{\alpha 2} U_{\beta 2}^* \right) \cdot \sin^2 \left(\frac{\Delta m_{31}^2}{4E} L \right).$$
(C.17)

Учтем теперь условие унитарности

$$(UU^{\dagger})_{\alpha\beta} \equiv \sum_{i} U_{\alpha i} U^{*}_{\beta i} = \delta_{\alpha\beta}$$
 (C.18)

и запишем выражение (С.17) в виде

$$U_{\alpha3}^*U_{\beta3}\left(\delta_{\alpha\beta}-U_{\alpha3}U_{\beta3}^*\right)\cdot\sin^2\left(\frac{\Delta m_{31}^2}{4E}L\right). \tag{C.19}$$

Последнее выражение действительно для всех α и β и содержит только $|U_{\alpha3}|^2$ и $|U_{\beta3}|^2$. Аналогичная выкладка показывает, что последнее слагаемое в (С.8)

равно нулю. Эти результаты означают, в частности, что эффекты CP-нарушения сильно подавлены⁴⁾ в режиме (C.16) (равны нулю в пределе $\frac{\Delta m_{21}^2}{2E}L \rightarrow 0$). Из (C.8) и (C.19) следует формуда для вероятности выживания

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - \sin^2(2\theta_{eff}) \sin^2\left(\frac{\Delta m_{31}^2}{4E}L\right), \qquad (C.20)$$

где, по определению,

$$\sin^2\theta_{eff}=|U_{\alpha3}|^2.$$

Формула (С.20) вполне аналогична выражению (С.13), справедливому для двухнейтринных осцилляций. Вероятность появления нейтрино типа $\beta \neq \alpha$ равна

$$P(\nu_{\alpha} \to \nu_{\beta}) = \frac{|U_{\beta3}|^2}{\sum_{\beta' \neq \alpha} |U_{\beta'3}|^2} \sin^2(2\theta_{eff}) \sin^2\left(\frac{\Delta m_{31}^2}{4E}L\right).$$
(C.21)

Она отличается от (C.12) первым фактором, который учитывает соотношение между примесями двух состояний с $\beta \neq \alpha$ в массовом состоянии ν_3 .

Перейдем теперь ко второму частному случаю. Он относится к экспериментальной ситуации, в которой область, где рождаются нейтрино, достаточно велика и/или нейтрино имеют достаточно большой разброс энергий, так что факторы, осциллирующие с фазами, пропорциональными Δm_{31}^2 и Δm_{32}^2 , усредняются,

$$\left\langle \sin^2\left(\frac{\Delta m_{31}^2}{4E}L\right)\right\rangle = \frac{1}{2}, \quad \left\langle \sin\left(\frac{\Delta m_{31}^2}{2E}L\right)\right\rangle = 0.$$

Нас будет интересовать вероятность выживания $P(\nu_{\alpha} \rightarrow \nu_{\alpha})$. Вновь используя условие унитарности (C.18), ее можно представить в виде

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 2|U_{\alpha3}|^{2} \left(1 - |U_{\alpha3}|^{2}\right) - 4|U_{\alpha2}|^{2} \cdot |U_{\alpha1}|^{2} \sin^{2} \left(\frac{\Delta m_{21}^{2}}{4E}L\right).$$

Введем соответствующий рассматриваемому случаю угол смешивания θ'_{eff} соотношениями

$$\cos^2 \theta'_{eff} = \frac{|U_{\alpha 1}|^2}{|U_{\alpha 1}|^2 + |U_{\alpha 2}|^2} \equiv \frac{|U_{\alpha 1}|^2}{1 - |U_{\alpha 3}|^2}, \quad \sin^2 \theta'_{eff} = \frac{|U_{\alpha 2}|^2}{|U_{\alpha 1}|^2 + |U_{\alpha 2}|^2}.$$

В результате получим окончательно

$$P(\nu_{\alpha} \to \nu_{\alpha}) = |U_{\alpha3}|^4 + \left(1 - |U_{\alpha3}|^2\right)^2 \left[1 - \sin^2(2\theta'_{eff})\sin^2\left(\frac{\Delta m_{21}^2}{4E}L\right)\right].$$
 (C.22)

В случае малой примеси нейтрино ν_{α} в массовом состоянии ν_{3} , т. е. при $|U_{\alpha 3}|^{2} \ll 1$, последняя формула также переходит в (С.13).

⁴⁾ В экспериментах на Земле режим (С 16), как правило, действительно реализуется В связи с изложенным, а также из-за малости угла θ_{13} (см ниже) наблюдение *CP*-нарушения в осцилляциях нейтрино является чрезвычайно трудной экспериментальной задачей.

С.1.3. Эффект Михеева-Смирнова-Вольфенштейна

Все приведенные выше формулы относятся к так называемым вакуумным осцилляциям нейтрино, т. е. переходам, для которых несущественно влияние среды, в которой нейтрино распространяются. Однако в ряде ситуаций важную роль играют особенности, возникающие при распространении нейтрино в веществе. Соответствующее явление получило название эффекта Михеева— Смирнова—Вольфенштейна (MSW); оно возникает благодаря когерентному рассеянию нейтрино вперед на электронах среды.

Влияние этого процесса можно учесть, вводя эффективную добавку к гамильтониану, описывающему распространение нейтрино. Напомним, что при не слишком высоких энергиях лагранжиан лептонного сектора Стандартной модели содержит эффективное четырехфермионное слагаемое, обязанное обмену виртуальными *W*-бозонами (заряженные токи)

$$\mathcal{L}^{CC} = \frac{G_F}{\sqrt{2}} \bar{\nu}_e \gamma^{\mu} (1 - \gamma^5) e \cdot \bar{e} \gamma_{\mu} (1 - \gamma^5) \nu_e \qquad (C.23)$$

(см. раздел В.5). В среде с плотностью числа электронов n_e имеем

$$\langle \langle \bar{e}_k \gamma_{kl}^0 e_l \rangle \rangle = \langle \langle e^{\mathsf{T}} e \rangle \rangle = n_e, \qquad (C.24)$$

где двойными скобками обозначено усреднение по состоянию среды, и в начале формулы мы явно выписали спинорные индексы. Предполагая, что электрические токи в среде отсутствуют или малы (это заведомо справедливо для нерелятивистского вещества), имеем

$$\langle \langle \tilde{e}_k \gamma^i_{kl} e_l \rangle \rangle = 0. \tag{C.25}$$

С учетом того, что операторы \bar{e}_k и e_l антикоммутируют, получим из (С.24) и (С.25)

$$\langle\langle e_k ar e_l
angle
angle = -rac{1}{4} \gamma^0_{kl} \cdot n_e$$

(мы считаем матрицу γ^0 симметричной). Усредняя по среде лагранжиан (С.23), получим вклад в эффективный лагранжиан, описывающий распространение электронных нейтрино,

$$\mathcal{L}_{eff} = \sqrt{2} G_F \overline{\nu}_e \gamma^\mu \langle \langle e \overline{e} \rangle \rangle \gamma^\mu \nu_e =$$

= $-\sqrt{2} G_F n_e \frac{1}{4} \overline{\nu}_e \gamma^\mu \gamma^0 \gamma_\mu \nu_e =$
= $-\sqrt{2} G_F n_e \overline{\nu}_e \gamma^0 \nu_e.$

Отсюда мы заключаем, что в присутствии среды в операторе Дирака $i\gamma^{\mu}\partial_{\mu}$ нужно сделать замену

$$i\gamma^0\partial_0 o i\gamma^0\partial_0 - \sqrt{2}G_F n_e\gamma^0,$$

т. е. оператор $i\partial_0$ заменяется на

$$i\partial_0 - V$$
,

где

$$V = \sqrt{2} G_F n_e \tag{C.26}$$

— вклад среды в эффективный гамильтониан. Подчеркнем, что этот вклад имеется только для электронных нейтрино (постольку, поскольку в среде отсутствуют мюоны и τ -лептоны).

Последнее утверждение — не вполне точное. В эффективном четырехфермионном лагранжиане имеются слагаемые, связанные с обменом Zбозоном (нейтральные токи). Они имеют структуру типа (см. раздел В.5)

$$\sum_lpha ar e \gamma^\mu e \cdot ar
u_lpha \gamma_\mu
u_lpha,$$

где суммирование идет по всем типам нейтрино. В среде такие слагаемые приводят для нейтрино к эффективному гамильтониану вида, аналогичного (С.26), но одинаковому для всех типов нейтрино. Последнее означает, что в базисе $|\nu_{\alpha}\rangle$, как и в любом другом базисе, этот вклад в эффективный гамильтониан кратен единичному оператору, поэтому он не влияет на осцилляции нейтрино, приводя лишь к дополнительной зависящей от времени общей фазе вектора состояния. В дальнейшем учитывать этот вклад нет ни-какой необходимости.

Таким образом, эффективный гамильтониан, описывающий распространение нейтрино в вешестве, изменяется по сравнению с (С.6):

$$H_{eff}(L) = \frac{M^2}{2E} + \widehat{V}(L). \tag{C.27}$$

В калибровочном базисе оператор \widehat{V} имеет единственный ненулевой матричный элемент,

$$\widehat{V}(L)_{lphaeta} = V(L)\delta_{elpha}\delta_{eeta},$$

где

$$V(L) = \sqrt{2} G_F n_e(L)$$

- вклад вещества на расстоянии L от источника нейтрино.

Влияние вещества на распространение нейтрино приводит к ряду важных и интересных эффектов. Один из них мы обсудим в разделе C.2.1, а здесь сделаем одно простое замечание. Оно состоит в том, что даже в двухнейтринном случае вероятности осцилляций нейтрино и антинейтрино не равны между собой благодаря влиянию вещества. Физически это связано с тем, что в веществе присутствуют электроны и отсутствуют позитроны, так что наличие среды явным образом нарушает *CP*-инвариантность. Для обсуждения на более формальном уровне заметим, что при *CP*-преобразовании оператор плотности числа электронов \hat{n}_e переходит в $(-\hat{n}_e)$, поэтому вклад вещества в эффективном гамильтониане антинейтрино отличается знаком от (C.26). Указанное обстоятельство, в частности, представляет собой дополнительную трудность для поиска *CP*-нарушения в нейтринных осцилляциях: нейтринные пучки, получаемые с помощью ускорителей, будут проходить через вещество Земли

490

и только потом детектироваться, так что «истинное» CP-нарушение (возникающее за счет комплексности элементов матрицы PMNS) нужно будет суметь отличить от эффектов вещества.

С.2. Наблюдения нейтринных осцилляций

С.2.1. Солнечные нейтрино и KamLAND

На Земле большой вклад в поток нейтрино естественного происхождения дают термоядерные реакции в центре Солнца, которые служат источником солнечной энергии. Перечислим основные из реакций, протекающих в Солнце и сопровождающихся образованием нейтрино:

$$p + p \rightarrow {}^{2}\mathrm{H} + e^{+} + \nu_{e},$$
 (C.28)

$$p + e + p \rightarrow {}^{2}\mathrm{H} + \nu_{e},$$
 (C.29)

$${}^{3}\text{He} + p \to {}^{4}\text{He} + e^{+} + \nu_{e},$$
 (C.30)

$$^{7}\text{Be} + e^{-} \rightarrow ^{7}\text{Li} + \nu_{e}, \qquad (C.31)$$

$${}^{8}\mathrm{B} \rightarrow {}^{8}\mathrm{Be} + e^{+} + \nu_{e}, \qquad (C.32)$$

$$^{13}N \rightarrow ^{13}C + e^+ + \nu_e,$$

 $^{15}O \rightarrow ^{15}N + e^+ + \nu_e.$

В этих реакциях образуются только электронные нейтрино. Энергии этих нейтрино лежат в диапазоне от нуля до десятка МэВ; энергетический спектр солнечных нейтрино показан на рис. С.2. Поток нейтрино и их спектр рассчитываются в рамках Стандартной модели Солнца (ССМ, Стандартная солнечная модель), причем справедливость модели подтверждается как измерениями потока фотонов от Солнца, так и данными гелиосейсмологии.

Нейтрино низких энергий чрезвычайно слабо взаимодействуют с веществом, они проходят сквозь Солнце и Землю практически без поглощения. Несмотря на большой поток регистрация нейтрино представляет собой очень сложную экспериментальную задачу: опять-таки из-за слабости взаимодействия количество событий на единицу массы детектора мало́, поэтому приходится использовать детекторы большой массы (от десятков тонн до десятков килотонн, в зависимости от типа детектора), набирать статистику в течение многих лет, а для снижения фона применять радиоактивно-чистые материалы, помещать детекторы глубоко под землей (где значительно снижен поток заряженных частиц космических лучей) и т. д.

Исторически первым экспериментом, предназначенным для измерения потока солнечных нейтрино, был эксперимент в шахте Хоумстейк (США), длившийся почти 30 лет. В детекторе массой 615 тонн происходила реакция с участием солнечных электронных нейтрино,

$$^{37}\text{Cl} + \nu_e \to ^{37}\text{Ar} + e^-.$$
 (C.33)

Рис. С.2. Спектр солнечных нейтрино на Земле [63]: поток нейтрино в зависимости от энергии. Показаны вклады различных термоядерных реакций (с оценкой точности вычислений), а также пороги нейтринных детекторов

Единичные атомы ³⁷ Аг выделялись из материала мишени химическим путем, а затем их количество определялось путем подсчета распадов радиоактивных ядер ³⁷ Аг. Эксперименты такого типа называют радиохимическими. В них измеряется интегральный поток нейтрино, зависящий от энергетического поведения сечения используемой реакции, в данном случае реакции (С.33). Эксперимент в Хоумстейке чувствителен в основном к борным нейтрино, образующимся в Солнце в реакции (С.32), хотя довольно заметный вклад должна давать реакция (С.31) и другие реакции (но не (С.28)). Измеренный интегральный поток электронных нейтрино Φ^{Cl} оказался гораздо меньше потока Φ_{CCM}^{Cl} , предсказанного Стандартной моделью Солнца,

$$\frac{\Phi^{\rm Cl}}{\Phi^{\rm Cl}_{\rm CCM}} = 0.34 \pm 0.05.$$
(C.34)

Этот результат стал первым указанием на то, что по пути из центра Солнца к Земле электронные нейтрино превращаются в нейтрино других типов, которые в реакции (С.33) не регистрируются.

Поток борных нейтрино в высокоэнергетической части спектра ($E_{\nu_e} > 6,5 \text{ МэВ}$) был затем измерен детектором Kamiokande, а впоследствии — Super-K (шахта Камиока, Япония⁵⁾, энергии нейтрино $E_{\nu_e} > 5,5 \text{ МэВ}$ и $E_{\nu_e} > 5,0 \text{ МэВ}$ на разных этапах эксперимента). В этих детекторах (с массой мишени около 1 килотонны и 22,5 килотонн соответственно) в качестве рабочего вещества использовалась вода. Нейтрино испытывает реакцию упругого рассеяния

$$\nu + e^- \rightarrow \nu + e^-,$$
 (C.35)

в результате которой появляется релятивистский электрон, чье черенковское излучение и регистрировалось. Измеренный поток солнечных нейтрино вновь оказался ниже предсказанного Стандартной моделью Солнца (данные Super-K):

$$\frac{\Phi^{S-K}}{\Phi^{S-K}_{\rm CCM}} = 0.41 \pm 0.06.$$
(C.36)

Отметим, что ошибка здесь (и в несколько меньшей степени в (С.34)) в основном свзана с неопределенностями в Стандартной модели Солнца; сам поток Φ^{S-K} измерен с гораздо лучшей точностью.

Упругое рассеяние на электроне испытывают как электронные нейтрино, так и ν_{μ} , ν_{τ} (см. подробности в Приложении В, в частности, лагранжиан взаимодействия (В.16) и обсуждение в разделе В.5). В первом случае $\nu_e e^-$ -рассеяние происходит за счет обмена W-бозоном (заряженные токи, рис. С.3 *a*) и обмена Z-бозоном (нейтральные токи, рис. С.3 *b*), а в случае ν_{μ} и ν_{τ} имеется только обмен Z-бозоном (рис. С.3 *b*). Обмен Z-бозоном приводит к меньшему сечению, чем обмен W-бозоном, так что эффективный поток нейтрино, регистрируемый в реакции упругого рассеяния (С.35), про-

Рис. С.3. Диаграммы с обменом W-бозоном (a) и Z-бозоном (b), дающие основной вклад в сечение рассеяния нейтрино на электроне

⁵⁾ Здесь и далее указано географическое положение детектора. Сами эксперименты проводятся коллаборациями ученых разных стран, состав коллабораций можно узнать из оригинальной литературы.

порционален

$$\Phi_{eff}^{\nu e} \propto \Phi_{\nu_e} + 0.15(\Phi_{\nu_{\mu}} + \Phi_{\nu_{\tau}}). \tag{C.37}$$

Это обстоятельство существенно для интерпретации результатов, полученных с помощью детектора SNO, о которых пойдет речь ниже.

Следующими экспериментами по солнечным нейтрино стали радиохимические эксперименты, в которых используется реакция

$$^{71}\text{Ga} + \nu_e \rightarrow ^{71}\text{Ge} + e^-$$

с последующим химическим извлечением атомов ⁷¹Ge и подсчетом их радиоактивных распадов. Это — эксперимент SAGE (Россия, Баксанская нейтринная обсерватория ИЯИ РАН, 60 тонн галлия) и GALLEX/GNO (Италия, лаборатория Гран-Сассо, 30 тонн галлия). В отличие от других экспериментов, больший вклад в измеряемый интегральный поток дают нейтрино от реакции (С.28), хотя есть и вклады в нейтрино от реакций (С.31), (С.32) и др. Измеренный в галлиевых экспериментах интегральный поток (длительность измерений составляет более 10 лет) также значительно ниже предсказанного Стандартной моделью Солнца,

$$\frac{\Phi^{\text{Ga}}}{\Phi^{\text{Ga}}_{\text{CCM}}} = 0,54 \pm 0,06 \quad -\text{ SAGE},$$
$$\frac{\Phi^{\text{Ga}}}{\Phi^{\text{Ga}}_{\text{CCM}}} = 0,56 \pm 0,06 \quad -\text{ GALLEX/GNO}.$$

Эти согласующиеся друг с другом результаты исключили гипотетическую возможность того, что наблюдавшийся в описанных выше экспериментах дефицит борных нейтрино связан с какими-то неточностями в Стандартной модели Солнца, т. е. имеет астрофизическую природу: в отличие от реакции (С.32) реакция (С.28), к которой чувствительны галлиевые эксперименты, непосредственно определяет энерговыделение Солнца, поэтому величина потока p-p нейтрино может быть найдена по существу безмодельно, исходя из хорошо измеренной светимости Солнца (если не рассматривать экзотические возможности).

Наконец, серьезнейшим аргументом в пользу превращения ν_e в ν_{μ} и ν_{τ} по дороге из центра Солнца к Земле стали измерения на детекторе нейтринной обсерватории Садбери (SNO, Канада). В этом детекторе в качестве рабочего вещества использовалась тысяча тонн тяжелой воды. Нейтрино регистрировались как в реакции упругого рассеяния (С.35), так и в реакциях

$$\nu_e + {}^{2}\mathrm{H} \rightarrow p + p + e^{-} \quad (CC), \tag{C.38}$$

$$\nu + {}^{2}\mathrm{H} \rightarrow p + n + \nu \quad (NC).$$
 (C.39)

Как и детекторы Kamiokande и Super-K, детектор SNO чувствителен к борным нейтрино (с энергией $E_{\nu} > 5$ МэВ). В реакции (С.35) измеряется комбинация (С.37) потоков нейтрино всех типов; реакция (С.38) идет за счет обмена W-бозоном (заряженные токи, charged currents, см. раздел B.5), поэтому в ней измеряется поток электронных нейтрино Φ_{ν_e} ; с другой стороны, реакция (C.39) идет только за счет обмена Z-бозоном (нейтральные токи, neutral currents), и в ней измеряется полный поток нейтрино

$$\Phi_{NC} = \Phi_{\nu_e} + \Phi_{\nu_\mu} + \Phi_{\nu_\tau}. \tag{C.40}$$

Измеренные в реакциях (С.38), (С.39) потоки нейтрино по отношению к предсказанию Стандартной модели Солнца составляют

$$\frac{\Phi_{\nu_e}^{SNO}}{\Phi_{\nu_e,CCM}} = 0.30 \pm 0.05, \tag{C.41}$$

$$\frac{\Phi_{NC}^{SNO}}{\Phi_{NC,CCM}} = 0.87 \pm 0.19, \tag{C.42}$$

а результат SNO по реакции (С.37) находится в согласии с (С.36) (хотя имеет бо́льшую статистическую ошибку по сравнению с результатом Super-K). Результат (С.42) демонстрирует, что Стандартная модель Солнца правильно предсказывает излучаемый поток борных нейтрино, а из (С.41) прямо следует, что около 2/3 из них превращается из ν_e в ν_{μ} и ν_{τ} при движении от центра Солнца к Земле. Существенно и то, что результаты (С.41) и (С.42) согласуются с (С.36) при учете (С.37).

В действительности согласие экспериментальных данных между собой даже несколько лучше, чем может показаться из сопоставления (С.36), (С.41) и (С.42). Как уже отмечалось, большой вклад в погрешности в (С.36), (С.41), (С.42) дает неопределенность в значении нейтринного потока, вычисленного в рамках Стандартной модели Солнца. Сами по себе экспериментальные данные имеют погрешность не хуже 10%; это и есть та точность, с которой они согласуются между собой. Подчеркнем еще раз, что *три* измеренных комбинации потоков, Φ_{ν_e} , Φ^{NC} (см. (С.40)) и $\Phi_{eff}^{\nu_e}$ (см. (С.37)), описываются *деумя* параметрами Φ_{ν_e} и $\Phi_{\nu_{\mu}} + \Phi_{\nu_{\tau}}$.

Фундаментальный результат об осцилляциях электронных нейтрино был подтвержден экспериментом KamLAND (шахта Камиока, Япония). Детектор KamLAND содержит 1 тысячу тонн жидкого сцинтиллятора и регистрирует антинейтрино, образующиеся в ядерных реакциях на японских атомных электростанциях. Расстояния до них — от 70 до 250 км и более, так что эффективная база составляет около 180 км, в отличие от предыдущих реакторных экспериментов со значительно меньшей базой. Детектор KamLAND зарегистрировал недостаток электронных антинейтрино по сравнению со значением, вычисленным в предположении об отсутствии осцилляций,

$$\frac{\Phi^{KamLAND}}{\Phi_{noosc}} = 0,66 \pm 0,06.$$

Таким образом, электронные антинейтрино с энергией $E \simeq 3-6$ МэВ (осцилляции антинейтрино именно таких энергий изучаются в эксперименте
KamLAND) испытывают превращения в другие типы уже на расстоянии порядка 100 км.

Для описания осцилляций солнечных нейтрино и результатов эксперимента KamLAND при современном уровне экспериментальной точности достаточно использовать двухнейтринную картину, т. е. рассматривать осцилляции между электронным нейтрино ν_e и некоторой линейной комбинацией $\tilde{\nu}$ мюонного нейтрино и τ -нейтрино. При этом реализуется второй из случаев, рассмотренных в разделе C.1.2: разность квадратов масс $\Delta m_{sol}^2 \equiv \Delta m_{21}^2$, отвечающая за эти осцилляции, является наименьшей, а матрица PMNS в действительности такова, что $|U_{e3}|^2 \ll 1$, см. раздел C.2.3. Для успешного описания обсуждаемых экспериментов разность масс должна быть по порядку величины равна (более точно разрешенные значения будут представлены в разделе C.3)

$$\Delta m_{sol}^2 \simeq 10^{-4} \ \Im B^2, \tag{C.43}$$

а угол смешивания должен составлять

$$\theta_{sol} \simeq 35^{\circ}.$$
 (C.44)

При анализе измерений потока солнечных нейтрино важно учитывать эффект Михеева—Смирнова—Вольфенштейна в Солнце. В двухнейтринном случае эффективный гамильтониан в базисе ($\nu_e, \tilde{\nu}$) имеет вид (с точностью до слагаемых, кратных единичной матрице и не влияющих на осцилляции)

$$H(L) = \frac{\Delta m_{sol}^2}{4E} \begin{pmatrix} -\cos 2\theta_{sol} & \sin 2\theta_{sol} \\ \sin 2\theta_{sol} & \cos 2\theta_{sol} \end{pmatrix} + V(L) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad (C.45)$$

где $V(L) = \sqrt{2} G_F n_e(L)$ учитывает неоднородное распределение электронов в Солнце, а угол θ_{sol} — это угол вакуумного смешивания в системе ($\nu_e, \tilde{\nu}$):

$$\begin{aligned} |\nu_2\rangle &= |\nu_e\rangle \sin \theta_{sol} + |\widetilde{\nu}\rangle \cos \theta_{sol}, \\ |\nu_1\rangle &= |\nu_e\rangle \cos \theta_{sol} - |\widetilde{\nu}\rangle \sin \theta_{sol}. \end{aligned}$$

Напомним, что в вакууме по определению более тяжелым состоянием является состояние $|\nu_2\rangle$.

Плотность электронов составляет величину $n_e = 6 \cdot 10^{25}$ см⁻³ в центре Солнца и уменьшается при удалении от центра. Отсюда для максимального значения потенциала V имеем оценку

$$V_{\rm max} \simeq 8 \cdot 10^{-12} \ \mathrm{sB}.$$

Из нее следует, что соотношение

$$rac{\Delta m^2_{sol}}{4E} \sim V_{
m max}$$

выполняется при $E \sim 3$ МэВ. Для нейтрино заметно меньших энергий (например, для *pp*-нейтрино) влияние среды малосущественно, и можно использовать формулу (C.22) с $|U_{e3}|^2 \ll 1$. При $E \gtrsim 3$ МэВ влияние вещества Солнца, наоборот, важно.

В качестве примера рассмотрим нейтрино, рожденные в результате распада ядер ⁸В. Характерные энергии нейтрино составляют 4–10 МэВ. В этом случае можно считать, что в центре Солнца V(L) доминирует в гамильтониане нейтрино над вкладом массовой матрицы. Пусть $|\nu_i(L)\rangle$ — собственные вектора матрицы (C.45), разные на разных расстояниях L от места рождения нейтрино, причем состоянию $|\nu_2(L)\rangle$ соответствует бо́льшее собственное значение. Из сказанного выше следует, что в центре Солнца $|\nu_2\rangle$ совпадает с $|\nu_e\rangle$ (из (C.26) видно, что V > 0). Итак, в результате распада ⁸В рождается состояние $|\nu_2\rangle$.

Дальнейшую эволюцию этого состояния будем рассматривать в адиабатическом приближении. Напомним, что в этом приближении квантовая система в процессе эволюции все время остается на одном и том же энергетическом уровне. В нашем случае это означает, что нейтрино всегда находится в состоянии $|\nu_2(L)\rangle$, и на поверхности Солнца оно будет в состоянии, которое совпадает с состоянием $|\nu_2\rangle$ в вакууме. Это — чистое массовое состояние, поэтому при дальнейшем распространении в вакууме оно ни во что не переходит⁶⁾. Таким образом, для вероятности регистрации на Земле электронного нейтрино, появившегося в распаде бора-8, получаем:

$$P(\nu_e \to \nu_e) = |\langle \nu_e | \nu_2 \rangle|^2 = \sin^2 \theta_{sol}.$$
 (C.46)

Из (C.44) следует, что $P(\nu_e \rightarrow \nu_e) < 0.5$. Подчеркнем, что наблюдаемый факт того, что измеренный поток борных ν_e меньше половины предсказанного (см. (C.41)), — это прямое свидетельство о MSW-эффекте: в случае вакуумных осцилляций двух типов нейтрино усредненная по энергии вероятность выживания электронных нейтрино не может опускаться ниже 50%, см. формулу (C.11).

Отметим одну особенность, присутствующую в изложенном выше кратком анализе. Рассмотрим нереалистический случай малого смешивании в вакууме, $|\sin \theta_{sol}| \ll 1$. В этом случае вероятность (С.46) того, что электронное нейтрино сохранит свой аромат, мала. В случае вакуумных осцилляций все наоборот: из формулы (С.11) следует, что в вакууме $P_{\nu_e \to \nu_e} = 1 - \mathcal{O}(\sin^2 2\theta_{sol})$. Здесь мы имеем пример резонанса Михеева—Смирнова, приводящего к усилению эффекта взаимопревращений нейтрино в веществе. Он состоит в следующем. В отсутствие смешивания вектора $|\nu_e\rangle$ и $|\tilde{\nu}\rangle$ были бы собственными векторами оператора (С.45), причем в центре Солнца $|\nu_e\rangle$ соответствовал бы большему собственному значению, а в вакууме — меньшему (здесь существенно, что рассматривается случай, когда в вакууме более легкое нейтрино это в основном $|\nu_e\rangle$). Движение уровней в зависимости от L имело бы вид, изображенный на рис. С.4 a. Если включено малое смешивание, то уровни, как известно из квантовой механики, не пересекаются, и картина уровней становится такой, как изображено на рис. С.4 b. Более тяжелое нейтрино

⁶⁾ Отметим, что в адиабатическом режиме осцилляции между ν_e и $\tilde{\nu}$ как таковые отсутствуют: нейтрино все время находится в состоянии ν_2 , при этом соотношение между ν_e и $\tilde{\nu}$ в этом состоянии адиабатически меняется с расстоянием до центра Солнца.

Рис. С.4. Эволюция уровней гамильтониана нейтрино при удалении от центра Солнца

в центре Солнца почти совпадает с электронным нейтрино, а в вакууме — с линейной комбинацией ν_{μ} и ν_{τ} . При адиабатической эволюции переходы с уровня на уровень не происходят, что и объясняет малую вероятность выживания электронного нейтрино, образовавшегося в центре Солнца, если $\sin \theta_{sol}$ конечен, но мал.

Задача 2. Убедиться, что при малых sin θ_{sol} собственные значения гамильтониана (C.45) действительно эволюционируют с *L* так, как изображено на рис. C.4 *b*.

Задача 3. Рассмотреть (нереалистичную) модель Солнца, в которой плотность свободных электронов $n_e(L)$ изменяется линейно с L от своего значения в центре, $6 \cdot 10^{25}$ см⁻³, до нуля на границе (при $L = L_{\odot} = 7 \cdot 10^5$ км). В какой области параметров Δm_{sol}^2 и sin θ_{sol} эволюция вектора состояния нейтрино с L действительно является адиабатической? Рассмотреть отдельно случаи слабого и сильного смешивания, $|\sin \theta_{sol}| \ll 1$ и $|\sin \theta_{sol}| \sim 1$.

Задача 4. Найти аналог формулы (С.46) в случае осцилляций между тремя типами нейтрино, считая, что $|U_{e3}|^2 \ll 1$.

Отметим еще, что MSW-эффект может приводить к ряду других особенностей в экспериментах с нейтрино, таких как эффект «день — ночь» (различие в измеряемых потоках солнечных нейтрино, проходящих ночью сквозь вещество Земли и проходящих днем).

С.2.2. Атмосферные нейтрино, К2К и MINOS

В экспериментах другого класса были открыты осцилляции *мюонных* нейтрино. Впервые это явление было обнаружено при измерениях потока атмосферных нейтрино детекторами Kamiokande и Super-K.

Космические лучи — распространяющиеся в космической среде заряженные частицы (протоны и ядра), — взаимодействуя с частицами, образующими атмосферу Земли, рождают потоки вторичных частиц. Сечение рассеяния насыщается рождением большого числа частиц, среди которых доминируют легчайшие адроны — пионы (и в меньшем количестве каоны). Заряженные пионы (π^{\pm}) не долетают до поверхности Земли, а распадаются в атмосфере, рождая мюоны и мюонные нейтрино:

$$\pi^+ \to \mu^+ \nu_\mu, \quad \pi^- \to \mu^- \overline{\nu}_\mu.$$
 (C.47)

Если энергия первичной частицы не слишком высока, то мюоны, в свою очередь, также распадаются, вновь рождая нейтрино:

$$\mu^+ \to e^+ \nu_e \bar{\nu}_\mu, \quad \mu^- \to e^- \bar{\nu}_e \nu_\mu. \tag{C.48}$$

Нейтрино, образующиеся в реакциях типа (С.47), (С.48), и называют атмосферными; интересная с точки зрения осцилляций область энергий нейтрино составляет сотни МэВ – десятки ГэВ.

Задача 5. При каких энергиях первичной частицы бо́льшая часть мюонов будет долетать до поверхности Земли? Считать, что множественность (количество частиц, рожденных в результате одного столкновения) составляет в среднем от 10 до 500 при энергиях от десятка ГэВ до сотен ЕэВ. Учесть, что мюоны практически не взаимодействуют с атмосферой.

Поток космических лучей интересующих нас здесь энергий изотропен, поэтому в отсутствие осцилляций изотропным должен быть и поток атмосферных нейтрино⁷⁾. Однако поток мюонных нейтрино и антинейтрино на самом деле зависит от зенитного угла (график на правой половине рис. С.5). Это означает, что мюонные нейтрино, приходящие сверху и пролетающие

Рис. С.5. Зависимость потоков нейтрино с энергией меньше 1 ГэВ от зенитного угла [64]: график на левой половине рисунка относится к электронным нейтрино, график на правой половине рисунка относится к мюонным нейтрино. Сплошные линии соответствуют случаю отсутствия осцилляций, а пунктирные — осцилляциям с параметрами, полученными с помощью фитирования данных

⁷⁾ Для нейтрино с энергией несколько ГэВ и выше изотропия потока отсутствует: поток имеет пик в горизонтальном направлении, связанный с тем, что горизонтальные пионы и мюоны дольше распространяются в атмосфере, так что бо́льшая их доля успевает распасться.

всего несколько километров от места образования до детектора, не успевают испытать осцилляции; в то же время, нейтрино, приходящие снизу, проходят сквозь всю Землю и успевают частично превратиться в нейтрино других типов. В то же время, эффект осцилляций на поток электронных нейтрино невелик (левый график на рис. С.5); недостаток мюонных нейтрино означает, что должен иметься избыток ν_{τ} (если в природе отсутствуют нейтрино других типов, помимо ν_e , ν_{μ} и ν_{τ} , см. обсуждение в разделе С.3). Этот результат подтверждается всей совокупностью данных по атмосферным нейтрино, включая измерение абсолютных потоков ν_e , $\bar{\nu}_e$ и ν_{μ} , $\bar{\nu}_{\mu}$, измерение потоков нейтрино с энергией выше 1 ГэВ и т. д.

Вывод об осцилляциях мюонных нейтрино подтвержден в эксперименте К2К. Источником мюонных нейтрино в нем служат пионы, рожденные пучком протонов с ускорителя лаборатории КЕК в Японии и распадаюшиеся по каналу (С.47), а в качестве детектора выступает Super-K. Расстояние, которое пролетают нейтрино от места образования до места регистрации, составляет 250 км (расстояние между лабораторией КЕК и шахтой Камиока), а энергия нейтрино — 0,5–3 ГэВ. В эксперименте К2К обнаружено «исчезновение» мюонных нейтрино: их поток, измеренный детектором Super-K, меньше потока, рассчитанного на основе данных «ближнего» детектора нейтрино, находящегося непосредственно в лаборатории КЕК. Результаты эксперимента К2К находятся в хорошем согласии с данными по атмосферным нейтрино.

Исследованию осцилляций мюонных нейтрино посвящен и эксперимент, в котором пучок нейтрино с ускорителя Fermilab (Батавия, США) регистрируется подземным детектором MINOS (Миннесота, США). Результаты этого эксперимента также находятся в согласии с результатами Super-K и K2K.

Результаты многих экспериментов, кратко рассмотренных в этом разделе, также с неплохой точностью описываются двухнейтринной картиной⁸⁾, при этом наиболее простой и правдоподобной возможностью являются осцилляции ν_{μ} в ν_{τ} . В этом случае параметры осцилляций оцениваются следующим образом (более аккуратные оценки приведены в следующем разделе):

$$\Delta m_{atm}^2 \simeq (2 \div 3) \cdot 10^{-3} \Im B^2, \qquad (C.49)$$

$$\theta_{atm} \simeq 45^{\circ}.$$
 (C.50)

Отметим, что указанное значение θ_{atm} соответствует смешиванию, близкому к максимальному: фигурирующий в (С.11) параметр sin² $2\theta_{atm}$ близок к единице. Для ускорительных нейтрино влияние вещества Земли малосущественно, так что речь идет о вакуумных осцилляциях.

Задача 6. Используя параметры $\nu_{\mu} - \nu_{\tau}$ системы, определить, нейтрино каких энергий должны сильно осциллировать при пересечении Земли? Успевают ли пересечь атмосферу соответствующие мюоны?

⁸⁾ Двухнейтринная картина, вообще говоря, неприменима для атмосферных нейтрино. В этом случае почти полное отсутствие искажения потока электронных нейтрино обусловлено случайными причинами: близким к максимальному смешиванием (C.50) и соотношением между рожденными в атмосфере потоками электронных и мюонных нейтрино, $\Phi_{\nu_e}/\Phi_{\nu_\mu} \simeq 1/2$.

Задача 7. Оценить, какая доля ν_{μ} исчезнет (перейдет в ν_{τ}) в условиях эксперимента К2К.

C.2.3. CHOOZ: ограничение на $|U_{e3}|$

Наиболее сильное ограничение на примесь электронного нейтрино ν_e в массовом состоянии ν_3 сегодня следует из результатов эксперимента СНООZ во Франции. В нем используются электронные антинейтрино от ядерного реактора с энергиями в области нескольких МэВ, а расстояние от реактора до детектора составляет около 1 км. В этом случае влияние вещества Земли малосущественно и, кроме того, выполняется неравенство (С.16). Таким образом, речь идет о первом из случаев, рассмотренных в разделе С.1.2, и вероятность выживания электронных антинейтрино имеет вид (см. (С.20))

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - 4|U_{e3}|^2 (1 - |U_{e3}|^2) \sin^2\left(\frac{\Delta m_{31}^2}{4E}L\right).$$

Расстояние от реактора до детектора соответствует максимальной вероятности осцилляций нейтрино с энергией 2–3 МэВ для разности квадратов масс Δm_{atm}^2 : из (С.14) и (С.49) следует, что $L_{osc}/2 \simeq 1$ км именно для таких энергий. Поэтому при достаточно большом $|U_{e3}|$ должно наблюдаться исчезновение электронных антинейтрино и, самое главное, искажение их энергетического спектра. Этих эффектов обнаружено не было, и из результатов эксперимента было получено ограничение

$$|U_{e3}|^2 < 0.032$$

Это — единственный элемент матрицы PMNS, значение которого неизвестно, а имеется лишь ограничение сверху.

С.З. Значения параметров осцилляций

На рис. С.6 представлены области в пространстве параметров⁹⁾ tg² θ_{sol} и Δm^2 , разрешенные на 90 %-м уровне достоверности (Cl) и на 95 %-м уровне достоверности (Ga, KamLAND, SNO, Super-K) экспериментами по солнечным нейтрино и KamLAND. Видно, что все данные согласуются друг с другом в области $\Delta m_{sol}^2 = (0.7 \div 0.9) \cdot 10^{-4}$ эВ² и tg² $\theta_{sol} = 0.4 \div 0.6$.

На рис. С.7 представлены аналогичные данные по атмосферным нейтрино и К2К. Здесь разрешенная область — это $\Delta m_{atm}^2 = (1,6 \div 3,6) \cdot 10^{-3} \ \text{эB}^2$, $\text{tg}^2 \theta_{atm} = 0,5 \div 2$.

⁹⁾ Иногда вместо параметра $tg^2 \theta$ используют параметр $sin^2 2\theta$. В случае вакуумных осцилляций именно последний является наиболее естественным параметром, см. формулу (С.11). Как видно, например, из (С 46), $sin^2 2\theta$ не является адекватным параметром в случаях, когда существенны эффекты вещества. Действительно, $sin 2\theta$ не меняется при замене $\theta \to (\pi/2 - \theta)$, а вероятность осцилляций в веществе не инвариантна относительно такой замены.

Рис. С.6. (Цветную версию рисунка см. на вклейке.) Экспериментально разрешенные области пространства параметров для $\nu_e \leftrightarrow \tilde{\nu}$ осцилляций, следующие из экспериментов по солнечным нейтрино и из эксперимента KamLAND; линии с подписями Cl и Ga, KamLAND, SNO, Super-K показывают области, разрешенные на 90 %-м и 95 %-м уровнях достоверности соответственно [65]

Рис. С.7. Экспериментально разрешенные области пространства параметров для $\nu_{\mu} \leftrightarrow \nu_{\tau}$ осцилляций [66]: затемненные цветом области следуют из данных по атмосферным нейтрино (уровни достоверности 90 % и 99 %, черной точкой обозначено статистически наиболее вероятное значение осцилляционных параметров); показаны также области, следующие из результатов эксперимента К2К, звездочкой отмечено статистически наиболее вероятное значение параметров осцилляций для совместного анализа двух наборов данных

Следует упомянуть о еще одном эксперименте, в котором, по утверждению авторов, обнаружен положительный эффект, обусловленный нейтринными осцилляциями. На этот раз речь идет об осцилляциях $\bar{\nu}_{\mu} \leftrightarrow \bar{\nu}_{e}$ и эксперименте LSND, в котором изучался распад положительно заряжечных мюонов в покое, $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_{\mu}$. На расстоянии около 30 метров измерялся поток электронных антинейтрино, для которого было зарегистрировано превышение над фоном. Интерпретация данного результата состоит в осцилляции мюонных антинейтрино, образованных в распадах μ^+ , в электронные антинейтрино. При этом возможны две области параметров осцилляций: это либо $\Delta m_{LSND}^2 = (0,2 \div 1) \ \Im B^2, \ \sin^2 2\theta_{LSND} = (0,3 \div 3) \cdot 10^{-2},$ либо $\Delta m_{LSND}^2 \simeq 7 \ \Im B^2, \ \sin^2 2\theta_{LSND} \simeq 4 \cdot 10^{-3}$. Однако ни похожий эксперимент KARMEN, ни специально поставленный для проверки LSND эксперимент MiniBooNE не обнаружили этих осцилляций. Тем не менее, стоит отметить, что если бы результаты LSND подтвердились, то это означало бы, что массовых состояний в секторе нейтрино по крайней мере четыре. Действительно, в разностях квадратов масс Δm_{sol}^2 , Δm_{atm}^2 и Δm_{LSND}^2 видна сильная иерархия. В то же время, если массовых состояний только три, то сумма разностей квадратов масс, взятых с соответствующим знаком, должна быть равна нулю. С отмеченной иерархией этого достичь невозможно. Отметим, что в отличие от трех нейтрино Стандартной модели четвертое нейтрино должно быть *стерильным*, т. е. не участвовать в электрослабых взаимодействиях. Если за счет смешивания с обычными нейтрино четвертое термализовано в ранней Вселенной, то оно может оказывать существенное влияние на формирование структур и на картину анизотропии реликтового излучения. Объяснение результатов эксперимента LSND моделью с термализующимся стерильным нейтрино закрыто из наблюдений структур и анизотропии реликтового излучения.

Поскольку результаты эксперимента LSND не подтверждаются, необходимости вводить четвертое массовое состояние в сектор нейтрино нет (по крайней мере сейчас). Для описания результатов всех экспериментов по исследованию нейтринных осцилляций, кроме LSND, вполне достаточно трех массовых состояний нейтрино $|\nu_i\rangle$, i = 1, 2, 3. Матрицу PMNS удобно представить в следующем виде:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \times \\ \times \begin{pmatrix} c_{11} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\delta_{1}/2} & 0 & 0 \\ 0 & e^{i\delta_{2}/2} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

где $s_{ij} = \cos \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$, i, j = 1, 2, 3 и $\theta_{ij} \in [0, \pi/2]$, причем последний множитель (фазы δ_1, δ_2) имеет смысл только для майорановской массовой матрицы нейтрино (см. следующий раздел); за исключением этих фаз количество параметров в матрице смешивания нейтрино такое же, как и в матрице смешивания кварков (см. раздел В.4). Экспериментальные результаты о параметрах осцилляций, представленные на рис. С.6 и С.7, соответствуют значениям модулей элементов матрицы смешивания (3σ -интервалы достоверности):

$$|U_{\alpha i}| = \begin{pmatrix} 0,79-0,88 & 0,47-0,61 & < 0,18 \\ 0,19-0,52 & 0,42-0,73 & 0,58-0,82 \\ 0,20-0,53 & 0,44-0,74 & 0,56-0,81 \end{pmatrix}.$$

Современные ограничения на углы смешивания имеют вид (указаны также уровни достоверности) [4]:

$$0,82 \leqslant \sin^2 2\theta_{12} \leqslant 0,89, \quad 68\%,$$
 (C.51)

$$\sin^2 2\theta_{13} \leq 0.019, \quad 90\%,$$
 (C.52)

$$0,92 \leqslant \sin^2 2\theta_{23}, \qquad 90\%.$$
 (C.53)

Отметим, что большинство элементов матрицы смешивания оказались одного порядка, $U_{\alpha\jmath} \sim 0.5$. Эта «анархия» среди элементов матрицы смешивания нейтрино существенно отличает ее от аналогичной матрицы смешивания кварков — матрицы Кабиббо—Кобаяши—Маскава (В.32), между элементами которой имеется заметная иерархия.

Обратим также внимание на то, что малость угла смешивания θ_{13} приводит к дополнительному подавлению *СР*-нарушающих эффектов в секторе нейтрино (о других источниках подавления мы говорили раньше).

Помимо элементов матрицы смешивания $U_{\alpha j}$ из результатов, приведенных на рис. С.6 и С.7, определяются также разности квадратов масс. Совместный анализ существующих ограничений дает [4]:

$$7.7 \cdot 10^{-5} \ \Im B^2 \leqslant \Delta m_{21}^2 \equiv \Delta m_{sol}^2 \leqslant 8.4 \cdot 10^{-5} \ \Im B^2,$$

$$1.9 \cdot 10^{-3} \ \Im B^2 \leqslant \left| \Delta m_{32}^2 \right| \equiv \Delta m_{atm}^2 \leqslant 3.0 \cdot 10^{-3} \ \Im B^2$$
(C.54)

при уровнях достоверности 68 и 90 % соответственно. Как мы уже говорили, такие значения можно получить для двух различных иерархий масс нейтрино, см. рис. С.1.

Какая из этих двух возможностей реализована в природе — пока неизвестно. В то же время, из (С.54) следует ограничение снизу на массы нейтрино: по крайней мере одно из них должно иметь массу

$$m \ge m_{atm} \equiv \sqrt{\Delta m_{atm}^2} \simeq 0.05 \ \Im B,$$
 (C.55)

а масса другого - не меньше

$$m_{sol} \equiv \sqrt{\Delta m_{sol}^2} \simeq 0,009 \; \Im \mathrm{B.}$$
 (C.56)

Минимальная возможность состоит в том, что

$$m_1 \ll m_{sol}, \quad m_2 = m_{sol}, \quad m_3 = m_{atm}$$
 (C.57)

(прямая иерархия без вырождения), но широко обсуждаются и другие возможности, включая случай достаточно тяжелых нейтрино, почти вырожденных по массам, $m_1, m_2, m_3 \gg m_{atm}$.

С.4. Дираковские и майорановские массы. Стерильные нейтрино

Для фермионов в (3+1)-мерном пространстве-времени существует два разных типа масс: майорановский и дираковский. Соответствующие лоренц-

инвариантные массовые члены в лагранжиане для фермиона f имеют вид:

$$\mathcal{L}_f^M = \frac{m_M}{2} \overline{f_L^c} f_L + h. c., \qquad (C.58)$$

$$\mathcal{L}_f^D = m_D \overline{f_R} f_L + h. c., \qquad (C.59)$$

где зарядово-сопряженный фермион f^c получен в результате действия оператора зарядового сопряжения \widehat{C} на фермион f:

$$f^c \equiv \widehat{C}f.$$

Фиксировав представление для γ -матриц Дирака, можно записать зарядовосопряженный 4-компонентный спинор f^c в явном виде (см. (В.34)):

$$\boldsymbol{f}_{k}^{c} = \boldsymbol{C}_{kl} \boldsymbol{\bar{f}}_{l}^{T}, \quad \boldsymbol{k}, \boldsymbol{l} = 1, \dots, 4, \tag{C.60}$$

причем элементы матрицы С зависят от представления у-матриц.

Напомним, что 4-компонентный дираковский спинор f можно выразить в терминах 2-компонентных вейлевских спиноров χ_L , ξ_R (см. раздел В.1 Приложения В). В вейлевском базисе для матриц Дирака связь между спинорами определяется соотношением

$$f=\begin{pmatrix}\chi_L\\\xi_R\end{pmatrix}.$$

Для фермионов, образующих масовые члены (С.58), (С.59), получим

ç

$$f_L = \begin{pmatrix} \chi_L \\ 0 \end{pmatrix}, \quad f_R = \begin{pmatrix} 0 \\ \xi_R \end{pmatrix}, \quad \overline{f}_L^c = \begin{pmatrix} \chi^T i \sigma_2 & 0 \end{pmatrix}$$

Таким образом, в терминах вейлевских спиноров массовые члены (С.58) имеют вид

$$\mathcal{L}_f^M = rac{m_M}{2} \chi_L^T i \sigma_2 \chi_L + h. c., \ \mathcal{L}_f^D = m_D \xi_R^\dagger \chi_L + h. c.$$

Дираковский тип массы возможен только при наличии в теории как левых f_L так и правых f_R компонент фермиона f, в то время как для майорановской массы достаточно только левой (или только правой) компоненты. Все заряженные фермионы Стандартной модели имеют массу дираковского типа (см. Приложение B).

В состав Стандартной модели входят только левые компоненты нейтрино, поэтому ее минимальное обобщение, приводящее к массивным нейтрино и не требующее дополнительных полей, состоит во введении майорановских массовых членов:

$$\mathcal{L}_{\nu}^{M} = \frac{m_{\alpha\beta}}{2} \overline{\nu}_{L\alpha}^{c} \nu_{L\beta} + h. c., \qquad (C.61)$$

где мы воспользовались калибровочным базисом для записи полей нейтрино. Массовая матрица легких нейтрино $m_{\alpha\beta}$ симметрична, и ее можно диагонализовать преобразованием $m = U^T m^{\text{diag}} U$, где U — унитарная матрица. Именно она является матрицей PMNS в случае майорановских нейтрино. **Задача 8.** Показать, что выражение $\bar{\nu}_{L\alpha}^c \nu_{L\beta}$ симметрично по α , β . *Указание*: учесть, что фермионные поля антикоммутируют.

Поскольку майорановский массовый член перемешивает поле с его зарядово-сопряженным, то понятия частицы и античастицы в отношении нейтрино становятся не вполне адекватными. Это, в частности, означает, что нельзя ввести понятие сохраняющегося лептонного числа для нейтрино, поскольку майорановская масса его явно нарушает: выражение (С.61) не инвариантно относительно фазовых вращений

 $\nu \to e^{i\alpha}\nu, \quad \bar{\nu} \to e^{-i\alpha}\bar{\nu}.$

В случае ультрарелятивистских майорановских нейтрино собственными состояниями гамильтониана являются состояния с левой и правой спиральностью, причем с точностью до поправок, подавленных отношением m/E, состояния с левой спиральностью совпадают с состояниями нейтрино безмассовой теории, а состояния с правой спиральностью — с состояниями антинейтрино.

Задача 9. Проверить сделанное утверждение. Для этого обобщить уравнение Дирака на случай майорановской массы (С.58), найти его решения в терминах операторов рождения и уничтожения и сравнить с решениями безмассового уравнения для левых фермионов.

Задача 10. Убедиться, что в ультрарелятивистском случае недиагональная майорановская масса (С.61) приводит к осцилляциям между состояниями только левой или только правой спиральности.

Из результата последней задачи следует, что в случае майорановского массового члена возможны осцилляции $\nu_{\alpha} \leftrightarrow \nu_{\beta}$, $\overline{\nu}_{\alpha} \leftrightarrow \overline{\nu}_{\beta}$, но не осцилляции $\nu_{\alpha} \leftrightarrow \overline{\nu}_{\beta}$, если под нейтрино и антинейтрино понимать левоспиральное и правоспиральное состояния соответственно. При таком соглашении сохраняют смысл все результаты безмассовой теории, относящиеся к взаимодействиям нейтрино: например, в β -распаде нейтрона $n \rightarrow p + e^- + \overline{\nu}_e$ образуется именно антинейтрино (состояние с правой спиральностью), а примесь состояния с левой спиральностью (нейтрино) подавлена степенью m_{ν}/E_{ν} .

Массовые члены (С.61) нельзя получить из какого-либо $SU(3) \times SU(2)_W \times U(1)_Y$ -инвариантного перенормируемого взаимодействия. Отказ от перенормируемости позволяет записать, например, взаимодействие вида

$$\mathcal{L}_{int} = \sum_{\alpha,\beta} \frac{\xi^{\alpha\beta}}{\Lambda_{\nu}} \bar{L}_{\alpha} \tilde{H} \cdot \tilde{H}^{T} L_{\beta}^{c} + h. c., \qquad (C.62)$$

где мы опустили SU(2)-групповые индексы и ввели безразмерные константы взаимодействия $\xi^{\alpha\beta}$ ($\alpha, \beta = 1, 2, 3$ — нумеруют поколения); Λ_{ν} — энергетический масштаб теории, обобщающей Стандартную модель физики частиц при высоких энергиях и приводящей к неперенормируемому взаимодействию (C.62) при низких энергиях, поле \tilde{H} связано с полем H соотношением (B.11). В результате спонтанного нарушения электрослабой симметрии хиггсовское поле *H* приобретает ненулевое вакуумное среднее (см. Приложение В), поэтому взаимодействие (С.62) приводит, в частности, к появлению массовых членов

$$\frac{v^2}{2\Lambda_{\nu}}\xi^{\alpha\beta}\overline{\nu_{\alpha}^c}\nu_{\beta}+h.\,c.,$$

что совпадает с (С.61).

Отметим, что при $\xi^{\alpha\beta} \sim 1$ для обеспечения масс нейтрино порядка 10^{-2} эВ масштаб нового взаимодействия должен быть порядка $\Lambda_{\nu} \sim 10^{15}$ ГэВ. Этот масштаб близок к масштабу Большого объединения в суперсимметричных обобщениях Стандартной модели физики частиц и на пару порядков меньше масштаба теории струн.

Неперенормируемое эффективное взаимодействие вида (С.62) может возникнуть из перенормируемого взаимодействия нейтрино с новыми тяжелыми полями, аналогично тому, как возникает эффективное четырех-фермионное взаимодействие в результате «отынтегрирования» массивных векторных бозонов Стандартной модели. Малость масс нейтрино по сравнению с массами остальных фермионов Стандартной модели требует большой иерархии между юкавскими константами полей Стандартной модели и константами нового взаимодействия $y_{SM}^2 \gg \xi^{\alpha\beta}$ и/или между электрослабым масштабом и масштабом масс новых тяжелых полей. В конкретных моделях эта иерархия может получить то или иное естественное объяснение.

Одно из объяснений дает механизм качелей (see-saw). Рассмотрим для начала этот механизм на примере одного типа обычных нейтрино ν . Это нейтрино является компонентой левого лептонного дублета L Стандартной модели. Пусть кроме этого дублета имеется еще одно левое лептонное поле N_L , которое представляет собой синглет по отношению к калибровочной группе Стандартной модели $SU(3)_c \times SU(2)_W \times U(1)_Y$ (эквивалентно можно считать, что добавлено правое поле N_L^c). В отличие от известных полей Стандартной модели, поле N_L может иметь майорановскую массу M, никак не связанную с вакуумным средним поля Хиггса Стандартной модели; более того, естественно считать, что массовый масштаб M велик по сравнению с масштабом нарушения электрослабой симметрии, т. е. $M \gg v$. Замечательно, что калибровочная инвариантность Стандартной модели разрешает юкавское взаимодействие, включающее N_L , ν и хиггсовское поле H Стандартной модели. Итак, перенормируемый лагранжиан для полей N_L и L включает в себя слагаемые

$$\mathcal{L} = \frac{M}{2} \overline{N}_L^c N_L + y \overline{N}_L^c \widetilde{H}^{\dagger} L + h. c., \qquad (C.63)$$

где y — юкавская константа связи. В результате нарушения электрослабой симметрии поле \tilde{H}^{\dagger} приобретает вакуумное среднее $(v/\sqrt{2}, 0)$, поэтому в лагранжиане возникают массовые члены

$$\mathcal{L}_m = \frac{M}{2} \overline{N}_L^c N_L + y \frac{v}{\sqrt{2}} \overline{N}_L^c \nu + h. c. \qquad (C.64)$$

Объединяя фермионы с левой киральностью N_L и ν в столбец

$$\psi = \begin{pmatrix} \nu \\ N_L \end{pmatrix}, \tag{C.65}$$

получим, что массовый член (С.64) можно записать в виде

$$\mathcal{L}_m = rac{1}{2} \overline{\psi}^c m \psi + h. c.,$$

где матрица *m* равна¹⁰⁾

$$\begin{pmatrix} 0 & m_D \\ m_D & M \end{pmatrix}$$
(C.66)
$$m_D = \frac{yv}{\sqrt{2}}.$$

И

При $M \gg m_D$ собственные значения массовой матрицы (С.66) равны по абсолютной величине (знак массы фермиона несущественен)

$$m_{\nu} = \frac{m_D^2}{M} = \frac{y^2 v^2}{2M}, \quad m_N = M$$
 (C.67)

(с поправками, подавленными отношением m_D/M), причем меньшее собственное значение (С.67) соответствует собственному вектору

$$\begin{pmatrix} 1 \\ -\frac{m_D}{M} \end{pmatrix}$$

(вновь с малыми поправками). Из (С.63) видно, что главной компонентой этого вектора является обычное нейтрино ν . Итак, в результате описанного механизма нейтрино приобретает майорановскую массу m_{ν} , которая мала при $M \gg v$ в соответствии с (С.67). Отметим, что при $y = 10^{-6} \div 1$ (значения известных юкавских констант в Стандартной модели) значение $m_{\nu} \sim 10^{-2}$ эВ получается при

$$M \sim 10^3 - 10^{15}$$
 ГэВ,

т. е. условие $M \gg m_D$ действительно выполняется.

Для дальнейшего полезно заметить, что результат (С.67) можно получить, «отынтегрировав» тяжелое поле N_L . Запишем уравнение, которое получается варьированием лагранжиана по N_L . С учетом градиентного члена $i\overline{N}_L\gamma^{\mu}\partial_{\mu}N_L$ в лагранжиане и массовых членов (С.64) получим

$$-i\partial_\mu \overline{N}_L\gamma^\mu + M\overline{N}_L^c + rac{yv}{\sqrt{2}}ar{
u}^c = 0.$$

¹⁰⁾ Если вместо левого поля N_L использовать правое поле $(N_L)^c$, то второе слагаемое в (С 64) будет выглядеть как дираковский массовый член, в котором в качестве правой компоненты нейтрино выступает N_L^c Отсюда и обозначение m_D , используемое в дальнейшем.

При импульсах и энергиях, малых по сравнению с M, первое слагаемое в левой части пренебрежимо мало, и поле N_L алгебраически выражается через поле ν ,

$$N_L = -\frac{yv}{\sqrt{2}M}\nu.$$

Это выражение можно подставить обратно в исходный лагранжиан и получить таким образом эффективный лагранжиан для поля ν . При этом кинетический член получает несущественную малую добавку, а главным эффектом является массовый член

$$\mathcal{L}_{m_{
u}}=-rac{y^2v^2}{4M}ar{
u}^c
u+h.\,c.$$

Видно, что майорановская масса нейтрино ν действительно дается формулой (С.67), с точностью до опущенного в (С.67) знака. Отметим еще, что если вместо (С.64) в приведенном рассуждении использовать исходный лагранжиан (С.63), то эффективный лагранжиан после отынтегрирования тяжелого поля N_L будет иметь вид (С.62) с $\Lambda_{\nu} = M$ и $\xi = y^2$.

Перейдем теперь к случаю трех типов нейтрино, реализующемуся в природе. В этом случае естественно ввести три типа полей N_{α} , $\alpha = 1, 2, 3$ (индекс L в дальнейшем опускается), и обобщить лагранжиан (С.63) следующим образом:

$$\mathcal{L} = rac{1}{2} M_{lphaeta} \overline{N}^c_{lpha} N_eta + y_{lphaeta} \overline{N}^c_{lpha} \widetilde{H}^\dagger L_eta + h. c.$$

Здесь $M_{\alpha\beta}$ и $y_{\alpha\beta}$ — матрицы 3 × 3, вообще говоря, комплексные, причем матрица $M_{\alpha\beta}$ — симметричная. Базис в пространстве полей N_{α} всегда можно выбрать так, чтобы матрица $M_{\alpha\beta}$ была действительной и диагональной,

$$M = \operatorname{diag}(M_1, M_2, M_3).$$

В этом базисе поля N_{α} описывают тяжелые стерильные нейтрино с определенной массой. Эффективный массовый член легких нейтрино, возникающий благодаря нарушению электрослабой симметрии, проще всего построить, отынтегрировав тяжелые поля N_{α} . В результате получим для майорановского массового члена легких нейтрино выражение (С.61) с матрицей

$$\boldsymbol{m} = -\boldsymbol{m}_D \boldsymbol{M}^{-1} \boldsymbol{m}_D^T, \qquad (C.68)$$

где

$$m_{Dlphaeta}=rac{y_{lphaeta}v}{\sqrt{2}}.$$

В общем случае массы легких нейтрино и параметры их смешивания, входящие в матрицу PMNS, нетривиальным образом зависят как от элементов диагональной матрицы M, так и от элементов матрицы юкавских констант $y_{\alpha\beta}$.

Обсудим теперь возможность того, что известные нейтрино имеют дираковские массы. Для получения дираковских масс нейтрино к полям Стандартной модели требуется добавить новые легкие поля $\nu_{R\alpha}$ — правые компоненты нейтрино, тогда дираковский массовый член будет иметь вид

$$\mathcal{L}_{\nu}^{D} = m_{\alpha\beta}\bar{\nu}_{R\alpha}\nu_{L\beta} + h. c., \qquad (C.69)$$

где опять использован калибровочный базис. Эти правые компоненты должны быть нейтральными (*стерильными*) относительно калибровочной группы Стандартной модели, иначе они давали бы вклад, например, в полную ширину распада Z-бозона, которая измерена с высокой точностью и согласуется с предсказанием Стандартной модели.

Поскольку дираковская масса инвариантна относительно операции зарядового сопряжения, то в рассматриваемой теории имеет смысл понятие лептонного числа: массовые члены (С.69), как и все слагаемые лагранжиана Стандартной модели, инвариантны относительно преобразований

$$u_{\alpha} \to \mathrm{e}^{i\xi} \nu_{\alpha}, \quad \overline{\nu}_{\alpha} \to \mathrm{e}^{-i\xi} \overline{\nu}_{\alpha}.$$

Для диагональной матрицы $m_{\alpha\beta}$ можно ввести лептонные числа для каждого из лептонных ароматов в отдельности. Наблюдаемые нейтринные осцилляции свидетельствуют о нарушении этих чисел, т.е. о недиагональности массовой матрицы $m_{\alpha\beta}$.

Массовые члены (С.69) могут возникнуть, например, за счет перенормируемого юкавского взаимодействия

$$\mathcal{L} = \sum_{\alpha,\beta} y_{\alpha\beta} \overline{L}_{\alpha} \widetilde{H} \nu_{R\beta} + h. c., \qquad (C.70)$$

где использованы по существу те же обозначения, что используются в Приложении В, индексы $\alpha, \beta = 1, 2, 3$ нумеруют поколения. Юкавские константы $y_{\alpha\beta}$ при этом должны быть чрезвычайно малы. В ряде обобщений Стандартной модели (например, в суперсимметричных теориях и моделях Большого объединения) малость юкавских констант достигается естественным образом за счет наличия в теории промежуточного (между планковским и электрослабым) энергетического масштаба, на котором появляется эффективное взаимодействие (С.70). В результате юкавские константы оказываются подавлеными отношением (или степенью отношения) промежуточного и гравитационного масштабов. Иллюстрацией может служить взаимодействие с тяжелым скалярным полем S — синглетом относительно калибровочной группы Стандартной модели,

$$\mathcal{L} = rac{S}{M_{Pl}} \cdot \sum_{lpha,eta} Y_{lphaeta} \overline{L}_lpha \widetilde{H}
u_{Reta} + h. c.,$$

где безразмерные константы $Y_{\alpha\beta}$ можно считать величинами порядка единицы. Если на некотором энергетическом масштабе $\Lambda \ll M_{Pl}$ поле S приобретает ненулевое вакуумное среднее, то при более низких энергиях в теории появляется эффективное перенормируемое взаимодействие (С.70) с юкавскими константами порядка $\Lambda/M_{Pl} \ll 1$.

В заключение этого раздела отметим, что нельзя исключить возможность того, что в лагранжиане нейтрино имеются и майорановские, и дираковские массовые члены, и что оба типа масс существенны для описания свойств нейтрино. Такая возможность, однако, выглядит не слишком естественной,

поскольку механизмы, приводящие к появлению двух разных типов массовых членов, вообще говоря, различны, и трудно ожидать, что они приводят к значениям массовых параметров, одинаковым в пределах нескольких порядков величины.

С.5. Прямые поиски масс нейтрино

Современные прямые экспериментальные ограничения на массы нейтрино имеют вид [4]:

$$m_{\nu_e} < 2 \ \Im B,$$
 (C.71)

$$m_{\nu_{\mu}} < 0.19 \text{ M} \Rightarrow B,$$
 (C.72)

$$m_{\nu_{\tau}} < 18,2 \text{ M}$$
 B. (C.73)

Эти ограничения справедливы вне зависимости от типа массы нейтрино. Для модели с майорановскими массами ограничение на комбинацию масс нейтрино, существенную для процессов двойного β -распада ядер (подробности см., например, в [4]) более сильное:

$$m_{\nu} < 0.35$$
 эВ.

Для сравнения отметим, что современное ограничение на сумму масс нейтрино, следующее из измерения анизотропии реликтового излучения и изучения структур во Вселенной, находится на уровне

$$\sum_i m_{
u_i} < 0,2-1,0$$
 9B

в зависимости от того, какие космологические параметры фиксируются из иных наблюдений.

Ожидается, что в ближайшее время чувствительность прямых лабораторных экспериментов к массе электронного нейтрино повысится до 0,2–0,02 эВ (в зависимости от типа массы). Точность космологических оценок (или ограничений) на сумму масс нейтрино также будет повышаться.

КВАНТОВАЯ ТЕОРИЯ ПОЛЯ ПРИ КОНЕЧНЫХ ТЕМПЕРАТУРАХ

В этом Приложении мы кратко рассмотрим метод вычисления некоторых величин (свободной энергии, эффективного потенциала, статических функций Грина) в квантовой теории поля при конечных температурах. Мы будем рассматривать наиболее интересный с точки зрения космологии случай нулевых химических потенциалов, хотя весь подход допускает соответствующее обобщение.

Начнем с общего замечания. Квантовую теорию поля иногда полезно воспринимать как квантовую механику большого, но конечного числа степеней свободы. Действительно, теорию поля можно регуляризовать, введя пространственную решетку с малым, но конечным шагом (ультрафиолетовая регуляризация) и рассматривая систему в трехмерном ящике конечного, хотя и большого размера (инфракрасная регуляризация). При этом время удобно для наших целей считать непрерывным¹⁾. Тогда поля $\phi(\mathbf{x}, t)$ станут функциями узла решетки²⁾ и времени, $\phi(\mathbf{x}, t) \rightarrow \phi(\mathbf{x}_n, t)$, где \mathbf{x}_n — координаты узла решетки, нумеруемые дискретным индексом **n**. При такой регуляризации число динамических координат $\phi(\mathbf{x}_n, t)$ хотя и велико, но конечно, т. е. теория поля сводится к квантовой механике.

Мы будем пользоваться этим взглядом для получения формальных результатов³⁾. А именно, мы разовьем температурную технику в квантовой механике, а затем прямо перенесем ее в квантовую теорию поля.

D.1. Бозонные поля: евклидово время и периодические граничные условия

Итак, рассмотрим квантовомеханическую систему с динамическими координатами $q = (q^{(1)}, q^{(2)}, \dots, q^{(N)})$. Для начала будем считать q бозонными

¹⁾ В реальных численных расчетах на решетке время также дискретизуют. Нам в дальнейших рассуждениях это будет неудобно

²⁾ Калибровочные поля естественно считать живушими на ребрах решетки, а не на узлах. Для нас это несущественно.

³⁾ В связи с этим тонкие вопросы о снятии ультрафиолетовой и инфракрасной регуляризаций мы обсуждать не будем.

координатами, как обычно в квантовой механике. Пусть эта система находится при температуре T. Как известно из статистической физики, в состоянии термодинамического равновесия средние операторов в фиксированный момент времени вычисляются по формуле

$$\langle \widehat{O} \rangle_T = \frac{\text{Tr}\left(e^{-\beta \widehat{H}} \widehat{O}\right)}{\text{Tr}\left(e^{-\beta \widehat{H}}\right)},$$
 (D.1)

где оператор \widehat{H} — это гамильтониан системы, параметр β равен

$$\beta = \frac{1}{T},$$

а след берется по всем состояниям системы. Свободная энергия F определяется формулой

$$e^{-\beta F} = \text{Tr} (e^{-\beta \widehat{H}}). \tag{D.2}$$

Наша задача — найти удобное представление для правой части этого равенства. Рассмотрим систему с одной степенью свободы *q* и гамильтонианом

$$\widehat{H} = \frac{\widehat{p}^2}{2} + V(\widehat{q}). \tag{D.3}$$

В качестве полного набора состояний в (D.2) выберем собственные состояния оператора \widehat{q} , т. е. используем координатное представление. Тогда

Tr
$$(e^{-\beta \widehat{H}}) = \int dq \langle q | e^{-\beta \widehat{H}} | q \rangle.$$
 (D.4)

Здесь, как и в дальнейшем, мы опустили численный множитель перед интегралом, который приводит лишь к общему сдвигу свободной энергии, $F \rightarrow F + \text{const.}$ Нас будут интересовать средние типа (D.1), в которых эти множители сокращаются, а также разности свободных энергий для разных фаз, поэтому такой сдвиг для нас будет несущественен.

Получим представление для правой части (D.4) в виде функционального интеграла (см. подробнее, например, в [61]). Запишем

$$\langle q|\mathrm{e}^{-eta\widehat{H}}|q_1
angle = \langle q|\prod_{i}\mathrm{e}^{-\Delta\tau_i\widehat{H}}|q
angle = \int dq_1\dots dq_{n-1}\langle q|(1-\Delta\tau_1\cdot\widehat{H})|q_1
angle\langle q_1|(1-\Delta\tau_2\cdot\widehat{H})|q_2
angle\dots\langle q_{n-1}|(1-\Delta\tau_n\cdot\widehat{H})|q
angle,$$

где мы разбили отрезок длиной β на n малых отрезков длиной $\Delta \tau_1, \ldots, \Delta \tau_n$; нас будет интересовать предел $n \to \infty$, $\Delta \tau_i \to 0$. Вставим между каждыми скобками единицу и запишем

$$\int dq \ \langle q | {
m e}^{-eta \widehat{H}} | q
angle = \int \prod_{k=0}^n \ dq_k \ \delta(q_0-q_n) imes$$

$$\times \langle q_0 | (1 - \Delta \tau_1 \cdot \widehat{H}) | q_1 \rangle \langle q_1 | (1 - \Delta \tau_2 \cdot \widehat{H}) | q_2 \rangle \dots \langle q_{n-1} | (1 - \Delta \tau_n \cdot \widehat{H}) | q_n \rangle.$$
 (D.5)

Далее, воспользуемся соотношениями

$$\langle q'|V(\widehat{q})|q
angle = V(q)\delta(q'-q) = \int rac{dp}{2\pi}V(q)\mathrm{e}^{ip(q-q')}$$

 $\langle q'|rac{\widehat{p}^2}{2}|q
angle = \int rac{dp}{2\pi}rac{p^2}{2}\mathrm{e}^{ip(q-q')}.$

Опуская численный множитель, имеем для каждого сомножителя в (D.5)

$$\langle q_{k-1}|(1-\Delta\tau_k\cdot\widehat{H})|q_k\rangle = \int dp_k \,\mathrm{e}^{ip_k(q_k-q_{k-1})}\mathrm{e}^{-\left(\frac{p_k^2}{2}+V(q_k)\right)\Delta\tau_k},\tag{D.6}$$

где мы вновь записали

$$1-\left(rac{p_k^2}{2}+V(q_k)
ight)\Delta au_k=\mathrm{e}^{-\left(rac{p_k^2}{2}+V(q_k)
ight)\Delta au_k}$$

Интеграл по dp_k в (D.6) гауссов и вычисляется, как обычно, сдвигом

$$p_k
ightarrow p_k - i \dot{q}_k,$$

где

$$\dot{q}_k = rac{q_{k-1}-q_k}{\Delta au_k}.$$

В результате имеем

$$\langle q_{k-1} | (1-\Delta au_k \cdot \widehat{H}) | q_k
angle = \mathrm{e}^{-ig(rac{\dot{q}_k^2}{2} + V(q_k)ig) \Delta au_k}$$

Подставляя это выражение в (D.5), получим в пределе $n \to \infty$, $\Delta \tau_i \to 0$ представление для свободной энергии в виде функционального интеграла

$$e^{-\beta F} = \int_{q(\beta)=q(0)} \mathcal{D}q \ e^{-S_E^{(\beta)}[q(\tau)]}, \tag{D.7}$$

где

$$S_E^{(\beta)} = \int_0^\beta d\tau \left(\frac{\dot{q}^2}{2} + V(q)\right),$$
 (D.8)

причем $\dot{q} = dq/dt$.

Поясним введенное обозначение. S_E представляет собой евклидово действие системы с гамильтонианом (D.3). Оно получается из исходного действия

$$S = \int dt \left[\frac{1}{2} \left(\frac{dq}{dt} \right)^2 - V(q) \right]$$

формальной заменой

$$t = -i\tau, \tag{D.9}$$

после чего τ считается действительным. Точнее, при замене (D.9) S переходит в iS_E , так что

$$e^{iS} \to e^{-S_E}.$$
 (D.10)

Далее, в соответствии с (D.8) теория рассматривается на конечном интервале евклидова времени τ , длина которого равна $\beta \equiv T^{-1}$. Наконец, функциональный интеграл (D.7) берется по траекториям, *периодическим* с перидом β .

Представление (D.7) для свободной энергии интуитивно понятно. Оператор $e^{-\beta \hat{H}}$ можно воспринимать как оператор эволюции $e^{-i\hat{H}t_{\beta}}$ на мнимом (евклидовом) промежутке времени $t_{\beta} = -i\beta$. В соответствии с этим матричный элемент

$$\langle q_f | \mathrm{e}^{-eta \widehat{H}} | q_i
angle$$

представляется в виде функционального интеграла по траекториям в евклидовом времени, начинающимся в точке $q = q_i$ и заканчивающимся в точке $q = q_f$. Из формулы (D.4) ясно, что существенными являются *периодические* траектории $q_i = q_f = q$, на которые не накладывается никаких других условий.

Изложенный вывод непосредственно обобщается на квантовую механику многих степеней свободы и, в соответствии со сказанным в начале раздела, на квантовую теорию любых *бозонных* полей. Обозначая все бозонные поля коллективным символом ϕ , представление для свободной энергии запишем в виде, аналогичном (D.7),

$$\mathrm{e}^{-\beta F}=\int \mathcal{D}\phi\left(\mathbf{x},t\right)\cdot\mathrm{e}^{-S_{E}^{\left(\beta\right)}\left[\phi\left(\mathbf{x},t\right)\right]},$$

где интегрирование идет по полевым конфигурациям, *периодическим*⁴⁾ в евклидовом времени τ с периодом β , евклидово действие имеет вид

$$S_E^{(eta)} = \int\limits_0^eta d au \int d^3 \mathbf{x} \, \mathcal{L}_E(\phi, \dot{\phi})$$

и получается из исходного действия формальной заменой $\tau \to -i\tau$, $iS \to -S_E$, так же, как в (D.9), (D.10). Иначе говоря, евклидов лагранжиан \mathcal{L}_E в случае калибровочной теории со скалярными полями получается из исходного лагранжиана заменой метрики Минковского на евклидову метрику и изменением знака перед скалярным потенциалом и лагранжианом калибровочных полей. Схематически,

$$\mathcal{L}_{E} = \frac{1}{4} F^{a}_{\mu\nu} F^{a}_{\mu\nu} + D_{\mu} \phi^{\dagger} D_{\mu} \phi + V(\phi), \qquad (D.11)$$

где суммирование по четырехмерным индексам μ, ν ведется с евклидовой метрикой.

⁴⁾ В случае неабелевых калибровочных теорий конфигурации должны быть периодичны с точностью до «больших» (топологически нетривиальных) калибровочных преобразований, см. [38]. Для нас эта тонкость будет несущественна.

Задача 1. Убедиться, что изложенная процедура получения евклидова действия действительно приводит к выражению (D.11), если исходный лагранжиан в пространстве Минковского имеет вид

$$\mathcal{L} = -rac{1}{4}\eta^{\mu
u}\eta^{\lambda
ho}F^a_{\mu\lambda}F^a_{
u
ho}+\eta^{\mu
u}D_\mu\phi^\dagger D_
u\phi-V(\phi),$$

где $F^a_{\mu\nu}$ — напряженность калибровочного поля, соответствующего некоторой калибровочной группе G, символ ϕ обозначает все скалярные поля, преобразующиеся по некоторому (вообще говоря, приводимому и комплексному) представлению этой группы. *Указание*: сначала наложить калибровку $A^a_0 = 0$, а затем восстановить калибровочную инвариантность уже в евклидовой формулировке.

D.2. Фермионные поля: антипериодические условия

В случае фермионов представление для свободной энергии через функциональный интеграл нужно выводить заново. Мы ограничимся случаем действия, квадратичного по фермионным полям, хотя результат будет справедлив для общего случая. Точнее, мы рассмотрим теории, в которых фермионная часть лагранжиана в пространстве Минковского имеет вид

$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - \bar{\psi}M\psi, \qquad (D.12)$$

где M включает в себя массу фермиона и взаимодействие с бозонными полями (например, в электродинамике $M = m - e\gamma^{\mu}A_{\mu}$). Фермионных полей может быть несколько; обобщение на этот случай труда не представляет. Бозонные поля будем пока считать внешними и фиксированными.

Учитывая, что $\tilde{\psi} \equiv \psi^{\dagger} \gamma^{0}$, запишем лагранжиан (D.12) в виде

$$\mathcal{L} = i\psi^{\dagger}\partial_0\psi - H, \qquad (D.13)$$

где

$$H = -i\psi^{\dagger}\gamma^{0}\gamma^{i}\partial_{i}\psi + \psi^{\dagger}\gamma^{0}M\psi.$$
 (D.14)

Из (D.13) видно, что $p_{\psi} = i\psi^{\dagger}$ выступает в качестве обобщенного импульса, сопряженного обобщенной координате ψ , а H — гамильтониан теории.

В отличие от бозонных полей фермионные поля обладают антикоммутационными соотношениями; при равных временах

$$\left\{ \psi(\mathbf{x},t), \psi(\mathbf{x}',t) \right\} = \left\{ \psi^{\dagger}(\mathbf{x},t), \psi^{\dagger}(\mathbf{x}',t) \right\} = 0,$$

$$\left\{ \psi(\mathbf{x},t), \psi^{\dagger}(\mathbf{x}',t) \right\} = \delta(\mathbf{x}-\mathbf{x}').$$

Последнее равенство эквивалентно каноническому соотношению

$$\left\{\psi(\mathbf{x},t), p_{\psi}(\mathbf{x}',t)\right\} = i\delta(\mathbf{x}-\mathbf{x}').$$

Если ввести пространственную решетку и конечный объем пространства, то мы придем к квантовой механике операторов, обладающих (в представлении Шредингера) антикоммутационными соотношениями

$$ig\{\widehat{\psi}_m,\widehat{\psi}_nig\}=ig\{\widehat{\psi}_m^\dagger,\widehat{\psi}_n^\daggerig\}=0, \quad ig\{\widehat{\psi}_m,\widehat{\psi}_n^\daggerig\}=\delta_{mn},$$

а дискретизация гамильтониана (D.14) приводит к гамильтониану типа

$$\widehat{H}=\widehat{\psi}_m^{\dagger}h_{mn}\widehat{\psi}_n.$$

Наша задача — найти представление для $Tr(e^{-\beta \hat{H}})$ в такой теории в виде функционального интеграла.

Рассмотрим теорию с одним фермионным оператором $\widehat{\psi}$ и сопряженным ему $\widehat{\psi}^{\dagger}$. Они удовлетворяют соотношениям

$$\{\widehat{\psi}, \widehat{\psi}\} = \{\widehat{\psi}^{\dagger}, \widehat{\psi}^{\dagger}\} = 0, \quad \{\widehat{\psi}, \widehat{\psi}^{\dagger}\} = 1.$$

Это — коммутационные соотношения для фермионных операторов рождения и уничтожения. Будем для определенности считать ψ оператором рождения. Тогда пространство состояний имеет два базисных вектора $|0\rangle$, $|1\rangle$, такие что

$$egin{aligned} \widehat{\psi}^\dagger |0
angle = 0, & \widehat{\psi} |0
angle = |1
angle, \ \widehat{\psi}^\dagger |1
angle = |0
angle, & \widehat{\psi} |1
angle = 0. \end{aligned}$$

۰,

Удобно реализовать пространство состояний как пространство функций от антикоммутирующей грассмановой переменной ψ , основное свойство которой — это нильпотентность,

$$\boldsymbol{\psi} \cdot \boldsymbol{\psi} = \boldsymbol{0}. \tag{D.15}$$

Сопоставим вектору $|0\rangle$ числовую единицу, а вектору $|1\rangle$ — функцию $\Psi_1(\psi) = \psi$. Тогда линейное пространство с двумя базисными векторами $|0\rangle$ и $|1\rangle$ эквивалентно пространству функций вида

$$\Psi(\boldsymbol{\psi}) = \boldsymbol{\alpha} + \boldsymbol{\beta}\boldsymbol{\psi},$$

где α и β — комплексные числа. В действительности, все функции $\Psi(\psi)$ имеют такой вид, в чем легко убедиться, записав разложение Тэйлора по ψ и воспользовавшись (D.15). Операторы $\widehat{\psi}$ и $\widehat{\psi}^{\dagger}$ действуют в этом пространстве следующим образом:

$$\widehat{\psi}\Psi(\psi)=\psi\Psi(\psi),\quad \widehat{\psi}^{\dagger}\Psi(\psi)=rac{\partial}{\partial\psi}\Psi(\psi).$$

Полезно эти формулы представить в интегральном виде. Введем интеграл Березина, написав по определению

$$\int d\psi = 0, \quad \int d\psi \cdot \psi = 1.$$

Этих определений достаточно, чтобы найти интеграл от любой функции $\Psi(\psi)$. Нетрудно убедиться прямой подстановкой, что выполняются следующие соотношения:

$$\Psi(\psi) = \int d\widetilde{\psi} \, d\widetilde{\psi}^{\dagger} \, \mathrm{e}^{-\widetilde{\psi}^{\dagger}(\psi - \widetilde{\psi})} \Psi(\widetilde{\psi}), \qquad (\mathrm{D.16})$$

$$\widehat{\psi}\Psi(\psi) = \int d\widetilde{\psi} \, d\widetilde{\psi}^{\dagger} \, \mathrm{e}^{-\widetilde{\psi}^{\dagger}\left(\psi - \widetilde{\psi}\right)} \widetilde{\psi}\Psi(\widetilde{\psi}), \qquad (\mathrm{D}.17)$$

$$\widehat{\psi}^{\dagger}\Psi(\psi) = \int d\widetilde{\psi} \, d\widetilde{\psi}^{\dagger} \, \mathrm{e}^{-\widetilde{\psi}^{\dagger}(\psi-\widetilde{\psi})} \widetilde{\psi}^{\dagger}\Psi(\widetilde{\psi}), \qquad (\mathrm{D}.18)$$

$$\widehat{\psi}^{\dagger}\widehat{\psi}\Psi(\psi) = \int d\widetilde{\psi} \, d\widetilde{\psi}^{\dagger} \, \mathrm{e}^{-\widetilde{\psi}^{\dagger}\left(\psi-\widetilde{\psi}\right)} \widetilde{\psi}^{\dagger}\widetilde{\psi}\Psi(\widetilde{\psi}), \qquad (\mathrm{D}.19)$$

где все переменные и дифференциалы ψ , $\tilde{\psi}$, $\tilde{\psi}^{\dagger}$, $d\tilde{\psi}$, $d\tilde{\psi}^{\dagger}$ считаются антикоммутирующими между собой.

Теперь нетрудно записать функциональный интеграл для величины

 $(e^{-\beta \widehat{H}}\Psi)(\psi)$

и для гамильтониана вида $\widehat{H} = c \widehat{\psi}^{\dagger} \widehat{\psi}$. Поступим так же, как и в бозонном случае, и запишем

$$e^{-\beta \widehat{H}}\Psi = (1 - \widehat{H}\Delta \tau_1) \dots (1 - \widehat{H}\Delta \tau_n) \cdot \Psi.$$

Воспользовавшись формулами (D.16) и (D.19), получим

$$(\mathrm{e}^{-\beta\widehat{H}}\Psi)(\psi) = \int \prod_{k=1}^{n} d\psi_k \, d\psi_k^{\dagger} \, \mathrm{e}^{-\psi_1^{\dagger}(\psi-\psi_1)-H(\psi_1)\Delta\tau_1} \dots \, \mathrm{e}^{-\psi_n^{\dagger}(\psi_{n-1}-\psi_n)-H(\psi_n)\Delta\tau_n} \Psi(\psi_n).$$

Полезно заметить, что, как и в бозонном случае,

$$\psi_{k-1} - \psi_k = \psi(au_k) \cdot \Delta au_k$$

при малых $\Delta \tau_k$. В пределе $n \to \infty$, $\Delta \tau_i \to 0$ отсюда получим представление в виде функционального интеграла

$$(e^{-\beta \widehat{H}}\Psi)(\psi) = \int \mathcal{D}\psi \,\mathcal{D}\psi^{\dagger} \,e^{-S_{E}^{(\beta)}}\Psi(\psi_{i}), \qquad (D.20)$$

где

$$S_E^{(eta)} = \int\limits_0^eta \left(\psi^\dagger rac{\partial \psi}{\partial au} + H(\psi^\dagger \psi)
ight) \, d au.$$

Отметим, что функциональный интеграл в (D.20) включает интегрирование по ψ_i и ψ_i^{\dagger} в начальный «момент» $\tau = 0$ (причем $\psi_i = \psi(\tau = 0)$), но не включает интегрирование по ψ и ψ^{\dagger} в конечный «момент» $\tau = \beta$. Так же как и в бозонном случае, евклидово действие S_E получается из исходного действия в реальном времени

$$S=\int dt\,(i\psi^\dagger\partial_t\psi-H)$$

формальной заменой $t \rightarrow -i\tau$, $iS \rightarrow -S_E$.

Нам осталось выяснить, к каким граничным условиям приводит взятие следа. Запишем

$$(e^{-\beta \widehat{H}}\Psi)(\psi) = \int d\psi_i U(\psi, \psi_i) \Psi(\psi_i), \qquad (D.21)$$

где

$$U(\psi,\psi_i) = \int {\cal D}'\psi ~ {\cal D}\psi^\dagger \, {
m e}^{-S^{(eta)}_E},$$

а штрих означает, что по начальному значению переменной $\psi(\tau = 0) = \psi_i$ интегрирование не производится (оно оставлено в (D.21)). Запишем общее разложение функции двух грассмановых переменных

$$U(\psi,\psi_i)=u_0+u_1\psi+u_{-1}\psi_i+u_2\psi\psi_i.$$

Получим

$$\int d\psi_i \, U(\psi,\psi_i)\cdot 1 = u_{-1} - u_2 \psi_i$$
 $\int d\psi_i \, U(\psi,\psi_i)\cdot \psi_i = u_0 - u_1 \psi.$

На операторном языке это означает, что

$$\mathrm{e}^{-eta\widehat{H}}|0
angle = u_{-1}|0
angle - u_{2}|1
angle,$$

 $\mathrm{e}^{-eta\widehat{H}}|1
angle = u_{0}|0
angle - u_{1}|1
angle.$

Следовательно,

$$\operatorname{Tr} (\mathrm{e}^{-\beta \widehat{H}}) = u_{-1} - u_1 = \int d\psi_i \, U(-\psi_i, \psi_i).$$

Итак, мы получили

$$\operatorname{Tr} (\mathrm{e}^{-\beta \widehat{H}}) = \int_{\psi(\beta) = -\psi(0)} \mathcal{D} \psi \, \mathcal{D} \psi^{\dagger} \, \mathrm{e}^{-S_{E}^{(\beta)}},$$

т. е. интегрирование ведется по грассмановым траекториям с антипериодическими граничными условиями для $\psi(\tau)$ на интервале $(0,\beta)$. Переменную $\psi^{\dagger}(\tau)$ можно также считать антипериодической: на отрезке $(0,\beta)$ любая $\psi^{\dagger}(\tau)$ представима в виде суммы периодической и антипериодической функций, а периодическая часть не дает вклада в $S_E^{(\beta)}$, поскольку интегрируется с антипериодической $\psi(\tau)$.

Весь этот вывод переносится на системы со многими фермионными степенями свободы и, соответственно, на теорию фермионных полей. При этом существенную роль играют неиспользованные выше соотношения (D.17) и (D.18). Хотя при нашем выводе мы считали бозонные поля внешними, нетрудно понять, что это в действительности ограничением не является: в интеграле по бозонным и фермионным полям можно рассматривать интеграл по фермионам как внутренний (в нем бозонные поля будут фиксированы), а затем интегрировать по бозонным полям. Итак, свободная энергия дается интегралом

$$e^{-\beta F} = \int \mathcal{D}\phi \,\mathcal{D}\psi^{\dagger} \,\mathcal{D}\psi \,e^{-S_E^{(\beta)}} \equiv Z, \qquad (D.22)$$

где $S_E^{(\beta)}$ — евклидово действие теории на отрезке $(0, \beta)$, причем бозонные поля ϕ удовлетворяют периодическим, а фермионные ψ, ψ^{\dagger} — антипериодическим граничным условиям на этом отрезке.

Отметим в заключение этого раздела, что изложенный формализм можно обобщить на случай ненулевого химического потенциала. В общем случае химический потенциал вводится тогда, когда в среде имеется ненулевая плотность сохраняющегося (при данной температуре) квантового числа; в космологическом контексте наибольший интерес представляют барионное и лептонные числа. Соответствующие операторы имеют структуру типа

$$Q=\int d^3\mathbf{x}\,\overline{\psi}\gamma^0\psi.$$

Учет ненулевого среднего от плотности $n = \bar{\psi} \gamma^0 \psi$ сводится к добавлению в эффективный гамильтониан слагаемого $(-\mu Q)$, т.е.

$$H_{eff} = H - \mu Q, \tag{D.23}$$

где μ — химический потенциал. В рассматриваемом формализме это приводит к изменению евклидова действия,

$$S_E^{(\beta)} \to S_E^{(\beta)} - \mu \int_0^\beta d\tau \int d^3 x \, \bar{\psi} \gamma^0 \psi, \qquad (D.24)$$

в формуле (D.22). В этом случае для величины $F(T, \mu)$ используют термин «большой термодинамический потенциал».

D.3. Теория возмущений

Изложенный в разделах D.1, D.2 подход полезен для вычисления свободной энергии, эффективного потенциала $V_{eff}(T, \phi)$, введенного в Главе 10, а также статических функций Грина. Последние характеризуют отклик системы на не зависящее от времени внешнее воздействие. Например, пусть в теории с квантовым полем $\widehat{\Psi}$ введен статический источник $J(\mathbf{x})$. Это означает, что гамильтониан модифицируется следующим образом:

$$H \to H - \int J(\mathbf{x})\widehat{\Psi}(\mathbf{x}) d^3\mathbf{x} \equiv H_J,$$

где $\Psi(\mathbf{x})$ — шредингерово поле. Статистическая сумма в присутствии этого источника,

$$Z_J = \mathrm{e}^{-\beta F_J} = \mathrm{Tr} \, (\mathrm{e}^{-\beta H_J}),$$

представляется в виде функционального интеграла (D.22), а ее разложение по степеням J имеет своими коэффициентами статические функции Грина

$$G(\mathbf{x}_{1},...,\mathbf{x}_{n}) = Z^{-1} \int \mathcal{D}\phi \ \mathrm{e}^{-S^{(\theta)}[\phi]} \times \\ \times \frac{1}{\beta} \int_{0}^{\beta} d\tau_{1} \ \phi(\mathbf{x}_{1},\tau_{1}) \times \ldots \times \frac{1}{\beta} \int_{0}^{\beta} d\tau_{n} \ \phi(\mathbf{x}_{n},\tau_{n}) \qquad (\mathrm{D.25})$$

(нормировка со статистической суммой без источника и множители $1/\beta$ введены для удобства), индекс *E* в обозначении для евклидова действия здесь и в дальнейшем опускаем.

Простой пример — среднее поле, возникшее в среде благодаря введению статического источника

$$\langle \phi(\mathbf{x}) \rangle_J = \frac{\operatorname{Tr} \left(\mathrm{e}^{-\beta H_J} \phi(\mathbf{x}) \right)}{\operatorname{Tr} \left(\mathrm{e}^{-\beta H_J} \right)}$$

В низшем порядке по Ј оно равно

$$\langle \phi(\mathbf{x})
angle_J = \int G(\mathbf{x},\mathbf{y}) J(\mathbf{y}) \, d\mathbf{y}$$

Отличие $G(\mathbf{x}, \mathbf{y})$ от свободного пропагатора теории при нулевой температуре соответствует модификации закона Кулона или закона Юкавы в присутствии среды.

Отметим, что статические корреляторы (D.25) далеко не исчерпывают всех интересных классов функций Грина. Техника вычислений корреляторов при разных временах (например, метод Келдыша) достаточно сложна, но она нам не понадобится.

Обобщая (D.25), будем рассматривать евклидовы функции Грина

$$G(\mathbf{x}_1, \tau_1; \ldots; \mathbf{x}_n, \tau_n) = Z^{-1} \int \mathcal{D}\Phi \, \mathrm{e}^{-S^{(\beta)}[\Phi]} \Phi(\mathbf{x}_1, \tau_1) \ldots \Phi(\mathbf{x}_n, \tau_n), \qquad (\mathrm{D.26})$$

где Φ обозначает все поля, имеющиеся в теории, интегрирование ведется по бозонным и фермионным полям, периодическим и антипериодическим на интервале $[0, \beta]$ соответственно. Нормировочный множитель Z дается аналогичным интегралом, см. (D.22).

Исходя из представления (D.26), несложно построить диаграммную технику для вычислений по теории возмущений, аналогичную фейнмановской технике в теориях при нулевой температуре. Как обычно, расмотрим сначала свободные теории с источниками. В скалярном и фермионном случаях выражения для квадратичных действий имеют вид

0

$$S_{\varphi}^{(\beta)} = \int_{0}^{\beta} d\tau \int d^{3}\mathbf{x} \left(\frac{1}{2}\partial_{\mu}\varphi\partial_{\mu}\varphi + \frac{m^{2}}{2}\varphi^{2} - J_{\varphi}\varphi\right), \quad (D.27)$$

0

$$S_{\psi}^{(\beta)} = \int_{0}^{\beta} d\tau \int d^{3}x \left(\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi + m \bar{\psi} \psi - \bar{J}_{\psi} \psi - \bar{\psi} J_{\psi} \right).$$
(D.28)

Здесь $x^0 \equiv \tau$, суммирование ведется с евклидовой метрикой, а евклидовы γ -матрицы эрмитовы и удовлетворяют соотношению $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\delta^{\mu\nu}$.

Задача 2. Убедиться, что евклидово действие свободного дираковского поля с источником имеет вид (D.28).

Поскольку поле ϕ периодично по τ с периодом β , источник $J_{\varphi}(\mathbf{x}, \tau)$ тоже можно считать периодичным. Наоборот, J_{ψ} и \overline{J}_{ψ} антипериодичны.

Функциональный интеграл (D.22) для квадратичного действия с источником (D.27) гауссов и вычисляется сдвигом

$$\varphi(\mathbf{x}, \tau) \rightarrow \varphi(\mathbf{x}, \tau) + \varphi_c(\mathbf{x}, \tau),$$

где $\varphi_c(\mathbf{x}, \tau)$ удовлетворяет на интервале $0 \leq \tau \leq \beta$ уравнению

$$-\partial_{\mu}\partial_{\mu}\varphi_{c} + m^{2}\varphi_{c} = J_{\varphi}, \qquad (D.29)$$

причем φ_c должно быть периодично по τ с периодом β . Решение этого уравнения имеет вид

$$arphi_c(\mathbf{x}, au) = \int\limits_0^eta d au' \int d^3\mathbf{x}' \, D(\mathbf{x}, au;\mathbf{x}', au') J_arphi(\mathbf{x}', au'),$$

где D — свободный пропагатор при конечной температуре. С учетом периодичности J_{φ} нетрудно видеть, что уравнение (D.29) и условие периодичности для φ_c удовлетворяются, если свободный пропагатор имеет вид

$$D(\mathbf{x},\tau;\mathbf{x}',\tau') = \frac{1}{(2\pi)^3\beta} \sum_{n\in\mathbb{Z}} \int d^3\mathbf{p} \, \frac{\mathrm{e}^{i\mathbf{p}(\mathbf{x}-\mathbf{x}')+i\omega_n(\tau-\tau')}}{\mathbf{p}^2+\omega_n^2+m^2},$$

где

$$\omega_n = \frac{2\pi n}{\beta} \tag{D.30}$$

— мацубаровские частоты бозонных полей, нумеруемые целыми числами $n = 0, \pm 1, \ldots$ В отличие от теории поля при нулевой температуре здесь частоты образуют *дискретный* набор.

Свободный пропагатор векторного поля строится аналогичным образом и тоже является суммой по частотам (D.30).

В случае фермионного поля уравнение, аналогичное (D.29), выглядит слудующим образом:

$$\gamma^\mu \partial_\mu \psi_c + m \psi_c = J_\psi,$$

причем как $J_{\psi}(\mathbf{x}, \tau)$, так и решение $\psi_c(\mathbf{x}, \tau)$ антипериодичны по τ с периодом β . Решением этого уравнения служит

$$\psi_c(\mathbf{x}, au) = \int\limits_0^eta d au' \int d^3\mathbf{x}' \, S(\mathbf{x}, au;\mathbf{x}', au') J_\psi(\mathbf{x}', au'),$$

где свободный пропагатор равен

$$S(\mathbf{x},\tau;\mathbf{x}',\tau') = \frac{1}{(2\pi)^{3}\beta} \sum_{n'=\pm\frac{1}{2},\pm\frac{3}{2},\dots} \int d^{3}\mathbf{p} \, \frac{-i\gamma^{0}\omega_{n'}-i\gamma\mathbf{p}+m}{\mathbf{p}^{2}+\omega_{n'}^{2}+m^{2}} e^{i\mathbf{p}(\mathbf{x}-\mathbf{x}')+i\omega_{n}(\tau-\tau')}.$$
 (D.31)

Здесь

$$\omega_{n'} = \frac{2\pi n'}{\beta}, \quad n' = \pm \frac{1}{2}, \pm \frac{3}{2}, \dots$$
 (D.32)

— мацубаровские частоты для фермионного случая. То, что n' пробегает *полуцелые* значения, связано, разумеется, с антипериодичностью фермионных полей.

Дальнейшее развитие диаграммной техники происходит так же, как в евклидовой теории поля при нулевой температуре. Выражения для вершин взаимодействия в теориях при T = 0 и $T \neq 0$ совпадают. Из-за того что интегрирование по $d\tau$ в действии идет от нуля до β , вместо δ -функции сохранения энергии в каждой вершине возникает множитель

$$\beta\delta\left(\sum\omega\right),$$
 (D.33)

где $\sum \omega$ — сумма мацубаровских частот всех входящих линий (частот (D.30) для бозонных линий и частот (D.32) для фермионных), а функция $\delta(\sum \omega)$ принимает значение единица, если $\sum \omega = 0$, и нуль во всех остальных случаях.

Отметим, что включение химического потенциала приводит, в соответствии с (D.24), к замене $\partial_0 \rightarrow \partial_0 - \mu$ в действии (D.28). Соответствующее изменение свободного фермионного пропагатора (D.31) состоит в замене

$$\omega_{n'}
ightarrow \omega_{n'} + i \mu$$

в предэкспоненте под интегралом в (D.31), при этом в экспоненте $e^{i\omega_{n'}(\tau-\tau')}$ остаются сами мацубаровские частоты.

D.4. Однопетлевой эффективный потенциал

В качестве первого примера получим в рамках изложенной в разделах D.1, D.2 техники выражение (10.16) для вкладов частиц различных типов в эффективный потенциал. Наша задача — вычислить свободную энергию как функцию внешнего однородного скалярного поля ϕ в пренебрежении взаимодействием между частицами среды. Воспользуемся формулой (D.22) для свободной энергии. В указанном приближении действие $S^{(\beta)}$ (индекс Eпо-прежнему опускаем) квадратично по квантовым полям, а внешнее поле ϕ входит в него только через массы частиц. Интеграл (D.22) факторизуется на произведение интегралов по различным полям, так что свободная энергия действительно имеет структуру (10.14).

Отметим, что в рамках теории возмущений по константам связи в следующих порядках эффективный потенциал будет даваться диаграммами без внешних линий, в которых массы и вершины зависят от внешнего поля ϕ .

Рис. D.1. Схематическое изображение диаграмм, дающих вклад в эффективный потенциал в низших нетривиальных порядках теории возмущений по константе связи

Простейшие из таких диаграмм схематически изображены на рис. D.1. Эти диаграммы начинаются с двух петель. Поэтому рассматриваемое нулевое приближение по константам связи в излагаемом формализме естественно назвать однопетлевым.

Возвращаясь к однопетлевому приближению, рассмотрим для примера вклад скалярного поля, действие которого дается формулой (D.27) с $J_{\varphi} = 0$. Интеграл по φ типа (D.22) — гауссов и равен

$$\int \mathcal{D}\varphi \,\mathrm{e}^{-S^{(\beta)}[\phi]} = \left[\det\left(-\partial_{\mu}\partial_{\mu}+m^{2}\right)\right]^{-1/2},$$

где $m^2 = m^2(\phi)$, а детерминант можно понимать как произведение собственных значений оператора $(-\partial_{\mu}\partial_{\mu} + m^2)$, причем собственные функции должны быть периодичны по τ с периодом β . Если поместить систему в пространственный ящик большого размера L, то собственные значения указанного оператора будут равны

$$\lambda_{n,n_1,n_2,n_3} = \mathbf{p}^2 + \omega_n^2 + m^2$$

где

$$\mathbf{p} = \left(\frac{2\pi n_1}{L}, \frac{2\pi n_2}{L}, \frac{2\pi n_3}{L}\right), \quad n_1, n_2, n_3 \in \mathbb{Z},$$
(D.34)

а ω_n — мацубаровские частоты (D.30). Таким образом, вклад в свободную энергию равен

$$F_{arphi} = \sum_{n} \sum_{n_1,n_2,n_3} rac{1}{2} \ln\left(rac{\mathbf{p}^2 + \omega_n^2 + m^2}{\Lambda^2}
ight),$$

где обезразмеривающий параметр Λ приводит лишь к общему сдвигу свободной энергии, и поэтому нам несущественен. В пределе большого L

$$\sum_{n_1,n_2,n_3} \to L^3 \int \frac{d^3 \mathbf{p}}{\left(2\pi\right)^3},$$

так что свободная энергия действительно пропорциональна объему, а вклад в эффективный потенциал равен

$$f_{\varphi} = \frac{1}{2\beta} \sum_{n} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \ln\left(\frac{\mathbf{p}^2 + \omega_n^2 + m^2}{\Lambda^2}\right). \tag{D.35}$$

Удобно вычислять не сам этот вклад, а его производную по m^2 (вкладом, не зависящим от m^2 , т. е. от среднего поля ϕ , не интересуемся),

$$rac{\partial f_{arphi}}{\partial m^2} = rac{1}{2eta} \int rac{d^3 \mathbf{p}}{\left(2\pi\right)^3} \sum_n rac{1}{\mathbf{p}^2 + \omega_n^2 + m^2}.$$

Для вычисления суммы по всем целым n заметим, что ее можно представить в виде

$$\sum_{n=0,\pm1,\ldots} u(n) = \frac{1}{2i} \oint \operatorname{ctg}(\pi z) u(z) \, dz, \qquad (D.36)$$

где интегрирование идет по замкнутому контуру в комплексной плоскости, обходящему действительную ось против часовой стрелки, см. рис. D.2 *a*. Для доказательства формулы (D.37) достаточно заметить, что сtg πz имеет полюса при целых $z = 0, \pm 1, \ldots$ с вычетами, равными π^{-1} . В нашем случае

$$u(z) = \left[\mathbf{p}^2 + \left(\frac{2\pi}{\beta}z\right)^2 + m^2\right]^{-1}.$$
 (D.37)

Поскольку u(z) имеет особенности (полюса) только на мнимой оси, контур интегрирования в (D.37) можно продеформировать так, как изображено на рис. D.2 b. В результате вклад в интеграл дают два полюса

Рис. D.2. *а*) Контур интегрирования, фигурирующий в (D.36); *b*) деформированный контур

и мы получаем

$$rac{\partial f_{arphi}}{\partial m^2} = \int rac{d^3 \mathbf{p}}{\left(2\pi\right)^3} rac{1}{4\sqrt{\mathbf{p}^2 + m^2}} \operatorname{cth}\left(rac{eta}{2}\sqrt{\mathbf{p}^2 + m^2}
ight).$$

Это выражение можно представить в виде

$$rac{\partial f_{arphi}}{\partial m^2} = rac{\partial f_{arphi}(T=0)}{\partial m^2} + rac{\partial f_{arphi}^{(T)}}{\partial m^2},$$

где

$$\frac{\partial f_{\varphi}(T=0)}{\partial m^2} = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{4\sqrt{\mathbf{p}^2 + m^2}} = \frac{\partial}{\partial m^2} \left[\frac{1}{2} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \sqrt{\mathbf{p}^2 + m^2} \right] \quad (D.38)$$

не зависит от температуры, а температурный вклад равен

$$\frac{\partial f_{\varphi}^{(T)}}{\partial m^2} = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{2\sqrt{\mathbf{p}^2 + m^2}} \frac{1}{e^{\sqrt{\mathbf{p}^2 + m^2}/T} - 1}.$$
 (D.39)

Вклад (D.38) в эффективный потенциал при нулевой температуре — это просто сумма энергий нулевых колебаний осцилляторов поля φ ,

$$f_{\varphi}(T=0) = \frac{1}{L^3} \sum_{n_1, n_2, n_3} \frac{1}{2} \sqrt{\mathbf{p}^2 + m^2}, \qquad (D.40)$$

где мы для наглядности вернулись к теории в конечном пространственном объеме; импульс **p** дается формулой (D.34). Этот вклад для нас интереса сейчас не представляет, хотя он при определенных соотношениях между константами связи может приводить к интересным следствиям в теориях при нулевой температуре $^{5)}$.

Вклад (D.39), существенный при конечных температурах, в точности соответствует бозонному интегралу (10.16) с $g_i = 1$ (поскольку мы рассматриваем одно вещественное скалярное поле φ). Действительно, он равен

$$\frac{\partial f_{\varphi}^{(T)}}{\partial m^2} = \frac{1}{4\pi^2} \int_0^\infty \frac{p^2 \, dp}{\sqrt{p^2 + m^2}} \frac{1}{\mathrm{e}^{\sqrt{p^2 + m^2/T}} - 1}.$$
 (D.41)

С другой стороны, производная по m^2 интеграла (10.16) равна

$$-\frac{1}{6\pi^2}\int\limits_0^\infty k^4\,dk\,\frac{\partial}{\partial m^2}\left(\frac{1}{\sqrt{k^2+m^2}}\cdot\frac{1}{\mathrm{e}^{\sqrt{k^2+m^2}/T}-1}\right)=$$

⁵⁾ Нуль-температурный однопетлевой вклад (D.40) ультрафиолетово расходится. Эта расходимость устраняется обычной перенормировкой массы и константы самодействия хиггсовского поля ϕ .

$$= -\frac{1}{12\pi^2} \int_{0}^{\infty} k^4 \, dk \, \frac{1}{k} \frac{\partial}{\partial k} \left(\frac{1}{\sqrt{k^2 + m^2}} \cdot \frac{1}{e^{\sqrt{k^2 + m^2}/T} - 1} \right), \tag{D.42}$$

что совпадает с (D.41) после интегрирования по частям.

Вычисление с помощью изложенной в этом Приложении техники вклада фермионов в однопетлевой температурный эффективный потенциал вполне аналогично вышеприведенному. Для теории с действием (D.28) с $J_{\bar{\psi}} = \bar{J}_{\psi} = 0$ функциональный интеграл (D.22) равен

$$\int {\cal D} ar \psi \, {\cal D} \psi \, {
m e}^{-S_\psi^{(eta)}} = {
m det} \, \left[\gamma^\mu \partial_\mu + m(\phi)
ight] ,$$

причем собственные функции евклидова оператора Дирака должны быть антипериодичны по τ с периодом β . Для фиксированного трехмерного импульса **р** и мацубаровской частоты (D.32) имеется два собственных значения оператора Дирака,

$$\lambda_{\pm}=m\pm i\sqrt{\mathbf{p}^2+\omega_{n'}^2},$$

причем имеется две собственных функции для каждого из них. В результате для каждого импульса имеем множитель в детерминанте $(\lambda_+\lambda_-)^2$, так что вместо (D.35) получим

$$f_{\psi} = -\frac{2}{\beta} \int \frac{d^3\mathbf{p}}{\left(2\pi\right)^3} \sum_{n'=\pm\frac{1}{2},\pm\frac{3}{2},\ldots} \ln\left(\frac{\mathbf{p}^2 + \omega_{n'}^2 + m^2}{\Lambda^2}\right).$$

Подчеркнем, что отличие в знаке по сравнению с (D.35) связано с тем, что мы имеем дело с фермионами. При вычислении $\partial f_{\psi}/\partial m^2$ встречается сумма по полуцелым n', которую можно представить в виде

$$\sum_{n'=\pm\frac{1}{2},\pm\frac{3}{2},\ldots} u(n') = \frac{1}{2i} \oint \operatorname{tg}(\pi z) u(z) \, dz, \qquad (D.43)$$

где контур интегрирования совпадает с изображенным на рис. D.2, а u(z) по-прежнему дается формулой (D.37). Дальнейшее вычисление по существу повторяет выкладку для скалярного поля, и вклад фермионов также распадается на нуль-температурную и конечнотемпературную части, причем

$$f_{\psi}(T=0) = -2 \int rac{d^3 \mathbf{p}}{\left(2\pi
ight)^3} \sqrt{\mathbf{p}^2 + m^2}$$

представляет собой вклад моря Дирака (двукратно вырожденных для каждого **р** состояний с отрицательной энергией $-\sqrt{\mathbf{p}^2 + m^2}$), а

$$\frac{\partial f_{\psi}^{(T)}}{\partial m^2} = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{2}{\sqrt{\mathbf{p}^2 + m^2}} \frac{1}{e^{\sqrt{\mathbf{p}^2 + m^2}/T} + 1},$$

что совпадает с производной от фермионного интеграла (10.16) с учетом того, что суммарное число спиновых состояний фермиона и антифермиона равно g = 4.

Итак, в рамках рассматриваемого в этом Приложении формализма различие в функциях распределения бозонов и фермионов проявляется главным образом в различии между мацубаровскими частотами (D.30) и (D.32). В разделе 10.3 мы обсуждаем, насколько важно это различие с точки зрения инфракрасных свойств теории при высоких температурах.

Задача 3. В однопетлевом приближении найти большой термодинамический потенциал фермионной среды и плотность фермионного числа Q в среде с химическим потенциалом μ . Рассмотреть предельные случаи $T \gg \mu \gg m$ и $T \ll \mu$. Указание: использовать вытекающее из (D.23) свойство

$$rac{\partial F(\mu,T)}{\partial \mu} = -\langle Q
angle_{T,\mu}.$$

D.5. Дебаевская экранировка

В качестве второго примера рассмотрим однопетлевой вклад $\Pi_{\mu\nu}$ в поляризационный оператор фотона при конечных температурах в квантовой электродинамике, рис. D.3. Как обычно, он модифицирует пропагатор фотона

поляризационный оператор фотона

 $\mathcal{D}_{\mu\nu} \rightarrow \left[\mathcal{D}_{\mu\nu}^{-1} + \Pi_{\mu\nu}\right]^{-1}.$

Мы рассмотрим статический пропагатор, см. (D.25), поэтому нас будет интересовать поляризационный оператор при нулевой мацубаровской частоте, т. е.

$$\Pi_{\mu\nu}(\mathbf{p}) = \Pi_{\mu\nu}(\mathbf{p},\omega_n=0)$$

Иными словами, искомый вклад модифицирует статические уравнения Максвелла, которые (в импульсном представлении) приобретают в среде вид

$$\mathbf{p}^2 A_0 + \Pi_{00} A_0 + \Pi_{0i} A_i = j_0,$$

$$\mathbf{p}^2 A_i - p_i \mathbf{p} \mathbf{A} + \Pi_{i0} A_0 + \Pi_{ik} A_k = j_i,$$

где $j_{\mu}(\mathbf{p})$ — не зависящие от времени плотность заряда и плотность тока.

Прежде чем производить вычисление, заметим, что в силу калибровочной инвариантности электродинамики, которая имеет место и в присутствии среды, поляризационный оператор $\Pi_{\mu\nu}(\mathbf{p}, \omega_n)$ должен быть поперечным,

$$p^{\mu}\Pi_{\mu\nu}=0,$$

где $p^{\mu} = (\omega_n, \mathbf{p})$. В присутствии среды Лоренц-инвариантность не имеет места, но симметрия относительно пространственных вращений сохраняется. Поэтому общая структура поляризационного оператора такова:

$$\Pi_{00} = \Pi^{(E)}, \quad \Pi_{i0} = -\frac{p_i p_0}{\mathbf{p}^2} \Pi^{(E)},$$

$$\Pi_{ij} = \frac{p_i p_j p_0^2}{p^4} \Pi^{(E)} + \left(\delta_{ij} - \frac{p_i p_j}{p^2}\right) \Pi^{(M)},$$

где «электрический» и «магнитный» вклады, $\Pi^{(E)}$ и $\Pi^{(M)}$, зависят от \mathbf{p}^2 и $p_0 \equiv \omega_n$. В статическом пределе $p_0 \equiv \omega_n = 0$ остаются только Π_{00} и поперечная часть Π_{ij} , поэтому модификация уравнений Максвелла имеет вид

$$(\mathbf{p}^2 + \Pi^{(E)})A_0 = j_0,$$
 (D.44)

$$\left(\mathbf{p}^{2}+\Pi^{(M)}\right)\left(\delta_{ik}-\frac{p_{i}p_{k}}{\mathbf{p}^{2}}\right)A_{i}=j_{k}.$$
 (D.45)

Нас будет интересовать поведение полей на больших расстояниях, т. е. предел $\mathbf{p}^2 \to 0$. При этом порядок предельных переходов существенен: сначала нужно положить $p_0 \equiv \omega_n = 0$, а затем брать предел малых \mathbf{p}^2 .

Взаимодействие фермионов с электромагнитным полем вводится, как обычно, путем замены $\partial_{\mu} \rightarrow \partial_{\mu} - ieA_{\mu}$ в действии (D.28), поэтому диаграмма рис. D.3 дает

$$\Pi^{\mu\nu}(p,p') = -e^2 \int \operatorname{Tr} \left[\gamma^{\mu} S(x,y) \gamma^{\nu} S(y,x) \right] e^{i p_{\lambda}^{(i)} x^{\lambda}} e^{-i p_{\rho}^{(f)} y^{\rho}} d^4 x d^4 y,$$

где $p^{\mu} = (\omega_{n_i}, \mathbf{p}^{(i)}), p'^{\mu} = (\omega_{n_f}, \mathbf{p}^{(f)})$ — импульсы входящего и выходящего фотона, интегрирование по x^0 и y^0 ведется в интервале $(0, \beta)$, а пропагатор фермиона дается выражением (D.31). Выделяя δ -функции сохранения импульса и энергии (при этом последняя понимается в смысле (D.33)) и полагая $\omega_{n_i} = \omega_{n_f} = 0, \mathbf{p}^{(i)} = \mathbf{p}^{(f)} = \mathbf{p}$, получим

$$\Pi^{\mu\nu}(\mathbf{p}) = \frac{e^2}{(2\pi)^3\beta} \int d^3\mathbf{q} \sum_{n'} \frac{\text{Tr}\left[\gamma^{\mu}(-i\widehat{q}+m)\gamma^{\nu}(-i(\widehat{q}+\widehat{p})+m)\right]}{(q^2+m^2)((q+p)^2+m^2)}$$

где $\widehat{q} = \gamma^{\mu}q_{\mu}$, импульс фотона равен $p^{\mu} = (0, \mathbf{p}), q_0 = 2\pi n'/\beta$, суммирование ведется по полуцелым n', а квадраты в знаменателе понимаются в смысле четырехмерного евклидова пространства. Суммирование по мацубаровским частотам вновь выполним с помощью формулы (D.43). Перейдя к пределу малого импульса фотона, получим

$$\Pi_{\mu\nu}(\mathbf{p}\to 0,\omega=0) = \frac{2e^2}{(2\pi)^3} \int d^3\mathbf{q} \oint \frac{dq_0}{2\pi i} \operatorname{tg}\left(\frac{\beta}{2}q_0\right) \times \\ \times \frac{2q_\mu q_\nu - \delta_{\mu\nu}(q_0^2 + \mathbf{q}^2 + m^2)}{(q_0^2 + \mathbf{q}^2 + m^2)^2}.$$
(D.46)

Полюса подынтегрального выражения находятся при $q_0 = \pm i \sqrt{q^2 + m^2}$; они показывают, что по существу мы имеем дело с рассеянием фотона вперед на фермионах и антифермионах среды, что схематически изображено на рис. D.4, где крестики обозначают частицы среды. Здесь мы сталкиваемся

Рис. D.4. Интерпретация поляризационного оператора с точки зрения рассеяния фотона в среде

с ситуацией, когда формально однопетлевое вычисление соответствует древесным диаграммам рассеяния в среде, причем взаимодействие частиц среды между собой не учитывается; эта ситуация в определенном смысле аналогична встретившейся в предыдущем разделе (формально однопетлевое вычисление эффективного потенциала соответствует приближению, в котором частицы среды не взаимодействуют между собой).

Выполняя интегрирование по dq_0 в (D.46) с помощью теоремы о вычетах и опуская слагаемые, не зависящие от температуры, получим для 00-компоненты

$$\Pi_{00}(\mathbf{p}\to 0,\omega=0) \equiv \Pi^{(E)} = \frac{e^2}{\pi^2} \int_0^\infty \frac{dq}{\omega_q} \cdot \frac{\omega_q^2 + q^2}{e^{\omega_q/T} + 1},$$
 (D.47)

где $\omega_q = \sqrt{q^2 + m^2}$ (в вычислении, приводящем к (D.47), удобно воспользоваться трюком с интегрированием по частям, аналогичным использованному в (D.42)). В то же время, в пределе малого импульса фотона пространственные компоненты Π_{ij} равны нулю, т.е.

$$\Pi^{(M)}(\mathbf{p}\to 0,\,\omega=0)=0.$$

В соответствии с (D.44) и (D.45) это означает, что электрическое поле экранируется в среде, а магнитное поле — не экранируется (разумеется, мы убедились в этом лишь в рамках однопетлевого приближения). Действительно, решение уравнения (D.44) в координатном представлении в случае точечного заряда q, помещенного в начало координат, на больших расстояниях имеет вид

$$A_0(\mathbf{x}) = q \int \frac{d^3\mathbf{p}}{(2\pi)^3} \frac{e^{i\mathbf{p}\mathbf{x}}}{\mathbf{p}^2 + m_D^2} = \frac{q}{4\pi} \frac{e^{-m_D|\mathbf{x}|}}{|\mathbf{x}|},$$

где $m_D^2 = \Pi^{(E)}(\mathbf{p} \to 0, \omega = 0)$ — квадрат дебаевской массы. Для магнитного поля явление экспоненциального убывания на больших расстояниях отсутствует. Отметим, что при $T \ll m$ дебаевская масса экспоненциально мала (напомним, что мы рассматриваем среду без химического потенциала; в ней плотность фермион-антифермионных пар экспоненциально мала при низких температурах), а в обратном пределе

$$m_D=rac{e}{\pi}T,\quad T\gg m,$$

т. е. дебаевский радиус экранировки электрического поля $r_D = m_D^{-1}$ убывает с температурой.

В конце этого раздела упомянем, что дебаевская экранировка возникает и тогда, когда в среде имеются заряженные бозоны, а не фермионы; вклад бозонов в квадрат дебаевской массы по порядку величины совпадает с вкладом фермионов той же массы и с тем же электрическим зарядом.

Наконец, дебаевская экранировка возникает и в электрически нейтральной среде, в которой частицы с положительным и отрицательным зарядами (например, протоны и электроны) имеют разную массу. При этом температура может быть мала; в этом случае дебаевский радиус определяется плотностью заряженных частиц.

Задача 4. Найти дебаевский радиус в нейтральной электрон-протонной плазме при температурах в случаях $m_p \gg T \gg m_e$ и $m_e \gg T \gg \Delta$, где Δ — энергия связи электрона в атоме водорода ($\Delta = 13,6$ эВ). Считать заданными температуру и плотность числа электронов. *Указание*: провести вычисление при фиксированных химических потенциалах электронов и протонов, а для нахождения связи с плотностями числа частиц воспользоваться результатами задачи 2.
Монографии, обзоры

Приведем (далеко не полный) список монографий и обзоров, в которых рассматриваются вопросы, затронутые в этой книге.

Монографии

Зельдович Я. Б., Новиков И. Д. Строение и эволюция Вселенной. М.: Наука, 1975.

Zeldovich Ya. B. and Novikov I. D. The Structure and Evolution of the Universe // Relativistic Astrophysics. Vol. 2. University of Chicago Press, 1983.

Долгов А. Д., Зельдович Я. Б., Сажин М. В. Космология ранней Вселенной. М.: Изд-во МГУ, 1988.

Линде А. Д. Физика элементарных частиц и инфляционная космология. М.: Наука, 1990.

Kolb E. W. and Turner M. S. The Early Universe. Addison-Wesley, Redwood City, 1990. Frontiers in physics, 69.

Peebles P. J. E. Principles of physical cosmology. Princeton University Press, 1993.

Vilenkin A. and Shellard E. P. S. Cosmic Strings and Other Topological Defects. Cambridge University Press, 1994.

Peacock J. A. Cosmological Physics. Cambridge University Press, 1999.

Захаров А. В. Макроскопическая гравитация. М.: Янус-К, 2000.

Dodelson S. Modern Cosmology. Academic Press, Amsterdam, 2003.

Mukhanov V. Physical Foundations of Cosmology. Cambridge University Press, 2005.

Обзоры общего характера

Dolgov A. D. and Zeldovich Y. B. Cosmology And Elementary Particles // Rev. Mod. Phys. 1981. 53. 1.

Brandenberger R. H. Particle physics aspects of modern cosmology. Электронный ресурс: http://arxiv.org/hep-ph/9701276.

Turner M. S. and Tyson J. A. Cosmology at the millennium // Rev. Mod. Phys. 1999. **71**. S145. Электронный ресурс: http://arxiv.org/astro-ph/9901113.

Freedman W. L. and Turner M. S. Measuring and understanding the Universe // Rev. Mod. Phys. 2003. 75. 1433.

Электронный pecypc: http://arxiv.org/astro-ph/0308418.

Rubakov V. Introduction to cosmology // PoS. 2005. RTN2005. 003.

Лекции на школах по физике высоких энергий для молодых ученых

Peacock J. A. Cosmology and particle physics / Proc. 1998 European School of High-Energy Physics, St. Andrews, Scotland, 23 Aug-5 Sep 1998.

Shaposhnikov M. Cosmology and astrophysics / Proc. 2000 European School of High-Energy Physics, Caramulo, Portugal, 20 Aug-2 Sep 2000.

Rubakov V.A. Cosmology and astrophysics / Proc. 2001 European School of High-Energy Physics, Beatenberg, Switzerland, 2001.

Tkachev I. I. Astroparticle physics / Proc. 2003 European School on High-Energy Physics. Tsakhkadzor, Armenia, 24 Aug-6 Sep 2003. Электронный ресурс: http://arxiv.org/hep-ph/0405168.

Обзоры по конкретным темам

٦

Там, где это необходимо, в скобках указаны номера соответствующих разделов книги.

Глава 4

Weinberg S. The cosmological constant problem // Rev. Mod. Phys. 1989. 61. 1.

Sahni V. and Starobinsky A. A. The case for a positive cosmological Lambdaterm // Int. J. Mod. Phys. D. 2000. 9. 373.

Электронный pecypc: http://arxiv.org/astro-ph/9904398.

Weinberg S. The cosmological constant problems.

Электронный pecypc: http://arxiv.org/astro-ph/0005265.

Чернин А. Д. Космический вакуум // Усп. физ. наук. 2001. 44. 1153.

Padmanabhan T. Cosmological constant: The weight of the vacuum // Phys. Rept. 2003. 380. 235. Электронный ресурс: http://arxiv.org/hep-th/0212290.

Peebles P. J. E. and Ratra B. The cosmological constant and dark energy // Rev. Mod. Phys. 2003. 75. 559.

Электронный pecypc: http://arxiv.org/astro-ph/0207347.

Sahni V. Dark matter and dark energy // Lect. Notes Phys. 2004. 653. 141. Электронный ресурс: http://arxiv.org/astro-ph/0403324.

Sahni V. and Starobinsky A. Reconstructing dark energy // Int. J. Mod. Phys. D 15. 2006. 2105. Электронный ресурс: http://arxiv.org/astro-ph/0610026.

Глава 7

Dolgov A. D. Cosmological implications of neutrinos // Surveys High Energ. Phys. 2002. 17. 91. Электронный ресурс: http://arxiv.org/hep-ph/0208222.

Dolgov A. D. Neutrinos in cosmology // Phys. Rept. 2002. **370**. 333. Электронный ресурс: http://arxiv.org/hep-ph/0202122.

Lesgourgues J. and Pastor S. Massive neutrinos and cosmology // Phys. Rept. 2006. **429**. 307. Электронный ресурс: http://arxiv.org/astro-ph/0603494.

Глава 8

Boesgaard A. M. and Steigman G. Big Bang Nucleosynthesis: theories and observations // Ann. Rev. Astron. Astrophys. 1985. 23. 319.

Sarkar S. Big bang nucleosynthesis and physics beyond the standard model // Rept. Prog. Phys. 1996. **59**. 1493.

Электронный ресурс: http://arxiv.org/hep-ph/9602260.

Olive K. A., Steigman G. and Walker T. P. Primordial nucleosynthesis: Theory and observations // Phys. Rept. 2000. 333. 389.

Электронный pecypc: http://arxiv.org/astro-ph/9905320.

Глава 9

Primack J. R., Seckel D. and Sadoulet B. Detection of cosmic dark matter // Ann. Rev. Nucl. Part. Sci. 1988. 38. 751.

Smith P. F. and Lewin J. D. Dark matter detection // Phys. Rept. 1990. 187. 203.

Bottino A. and Fornengo N. Dark matter and its particle candidates. Электронный pecypc: http://arxiv.org/hep-ph/9904469.

Olive K. A. Dark matter.

Электронный pecypc: http://arxiv.org/astro-ph/0301505.

Bertone G., Hooper D. and Silk J. Particle dark matter: Evidence, candidates and constraints // Phys. Rept. 2005. 405. 279.

Электронный pecypc: http://arxiv.org/hep-ph/0404175.

Jungman G., Kamionkowski M. and Griest K. Supersymmetric dark matter // Phys. Rept. 1996. 267. 195.

Электронный ресурс: http://arxiv.org/hep-ph/9506380 (раздел 9.6).

Горбунов Д. С., Дубовский С. Л. и Троицкий С. В. Калибровочный механизм передачи нарушения суперсимметрии // Усп. физ. наук. 1999. **169**. 705. Электронный ресурс: http://arxiv.org/hep-ph/9905466 (раздел 9.6).

Высоцкий М. И. и Невзоров Р. Б. Избранные вопросы феноменологической суперсимметрии // Усп. физ. наук. 2001. 44. 939 (раздел 9.6).

Kim J. E. Light pseudoscalars, particle physics and cosmology // Phys. Rept. 1987. 150. 1 (раздел 9.7.1).

TurnerM. S. Windows on the axion // Phys. Rept. 1990. 197. 67 (раздел 9.7.1).

Глава 10

Рубаков В. А. и Шапошников М. Е. Электрослабое несохранение барионного числа в ранней Вселенной и в столкновениях частиц при высоких энергиях // Усп. физ. наук. 1996. 166. 493.

Электронный pecypc: http://arxiv.org/hep-ph/9603208.

Глава 11

Kolb E. W. and Turner M. S. Grand Unified Theories and the origin of the baryon asymmetry // Ann. Rev. Nucl. Part. Sci. 1983. 33. 645.

Dolgov A. D. NonGUT baryogenesis // Phys. Rept. 1992. 222. 309.

Dolgov A. D. Baryogenesis, 30 years after.

Электронный pecypc: http://arxiv.org/hep-ph/9707419.

Riotto A. and Trodden M. Recent progress in baryogenesis // Ann. Rev. Nucl. Part. Sci. 1999. **49**. 35. Электронный ресурс: http://arxiv.org/hep-ph/9901362.

Рубаков В. А. и Шапошников М. Е. Электрослабое несохранение барионного числа в ранней Вселенной и в столкновениях частиц при высоких энергиях // Усп. физ. наук. 1996. 166. 493.

Электронный ресурс: http://arxiv.org/hep-ph/9603208 (разделы 11.2.1, 11.5).

Buchmuller W. and Plumacher M. Neutrino masses and the baryon asymmetry // Int. J. Mod. Phys. A. 2000. 15. 5047.

Электронный ресурс: http://arxiv.org/hep-ph/0007176 (раздел 11.4).

Buchmuller W., Di Bari P. and Plumacher M. Leptogenesis for pedestrians // Annals Phys. 2005. 315. 305.

Электронный ресурс: http://arxiv.org/hep-ph/0401240 (раздел 11.4).

Cohen A. G., Kaplan D. B. and Nelson A. E. Progress in electroweak baryogenesis // Ann. Rev. Nucl. Part. Sci. 1993. 43. 27.

Электронный ресурс: http://arxiv.org/hep-ph/9302210 (раздел 11.5).

Trodden M. Electroweak baryogenesis // Rev. Mod. Phys. 1999. **71**. 1463. Электронный ресурс: http://arxiv.org/hep-ph/9803479 (раздел 11.5).

Enqvist K. and Mazumdar A. Cosmological consequences of MSSM flat directions // Phys. Rept. 380 (2003) 99.

Электронный ресурс: http://arxiv.org/hep-ph/0209244 (раздел 11.6).

Глава 12

Vilenkin A. Cosmic Strings And Domain Walls // Phys. Rept. 1985. 121. 263.

Hindmarsh M. B. and Kibble T. W. B. Cosmic strings // Rept. Prog. Phys. 1995. 58. 477. Электронный ресурс: http://arxiv.org/hep-ph/9411342.

Enqvist K. and Mazumdar A. Cosmological consequences of MSSM flat directions // Phys. Rept. 380 (2003) 99.

Электронный ресурс: http://arxiv.org/hep-ph/0209244 (раздел 12.7).

ر

Приложение С

Герштейн С. С., Кузнецов Е. П., Рябов В. А. Природа массы нейтрино и нейтриные осцилляции // Усп. физ. наук. 1997. **167**. 811.

Mohapatra R. N. ICTP lectures on theoretical aspects of neutrino masses and mixings. Электронный ресурс: http://arxiv.org/hep-ph/0211252.

Биленький С. М. Массы нейтрино, смешивание и осцилляции нейтрино // Усп. физ. наук. 2003. **173**. 1137.

Альберико У. М. и Биленький С. М. Массы нейтрино, смешивание и осцилляции нейтрино // ЭЧАЯ. 2004. 35. 545.

Электронный pecypc: http://arxiv.org/hep-ph/0306239.

De Gouvea A. 2004 TASI lectures on neutrino physics. Электронный pecypc: http://arxiv.org/hep-ph/0411274.

King S. F. Neutrino mass models // Rept. Prog. Phys. 2004. 67. 107. Электронный ресурс: http://arxiv.org/hep-ph/0310204.

Altarelli G. and Feruglio F. Models of neutrino masses and mixings // New J. Phys. 2004. **6**. 106. Электронный ресурс: http://arxiv.org/hep-ph/0405048.

Mohapatra R. N. and Smirnov A. Yu. Neutrino mass and new physics // Ann. Rev. Nucl. Part. Sci. 2006. 56. 569.

Электронный pecypc: http://arxiv.org/hep-ph/0603118.

Smirnov A. Yu. Recent developments in neutrino phenomenology // Proceedings of IPM School and Conference on Lepton and Hadron Physics (IPM-LHP06), Teheran, Iran, 15–20 May 2006. P. 0003.

Электронный pecypc: http://arxiv.org/hep-ph/0702061.

Приложение D

Shuryak E. V. Quantum Chromodynamics and the theory of superdense matter // Phys. Rept. 1980. 61. 71.

¥ e

Gross D. J., Pisarski R. D. and Yaffe L. G. QCD and instantons at finite temperature // Rev. Mod. Phys. 1981. 53. 43.

Литература

- 1. Schneider D. P. et al. [SDSS Collaboration], Astron. J. 123, 567 (2002). Электронный pecypc: www.sdss.org/dr1/algorithms/edrpaper.html#fig-ZhistQso.
- Le Fevre O. et al. [The VVDS Team Collaboration]. VVDS: early results on LSS distribution to z 1.5. Электронный pecypc: http://arxiv.org/astro-ph/0402203.
- 3. Spergel D. N. et al. // Astrophys. J. Suppl. 2003. 148. 175.
- 4. Yao W. M. et al. [Particle Data Group] // J. Phys. G. 2006. 33. 1.
- 5. *Hinshaw G. et al.*, Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Temperature analysis. arXiv:astro-ph/0603451; *Spergel D. N. et al.* Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology. Электронный pecypc: http://arxiv.org/astro-ph/0603449.
- 6. Freedman W. L. et al. // Astrophys. J. 2001. 553. 47.
- 7. Cornish N. J., Spergel D. N., Starkman G. D. and Komatsu E. // Phys. Rev. Lett. 2004. 92. 201302.
- Gawiser E. and Silk J. // Phys. Rept. 2000. 333. 245.
 Электронный ресурс: http://arxiv.org/astro-ph/0002044.
- 9. Mather J. C. et al. // Astrophys. J. 1999. 512. 511.
- Bennett C. L. et al. // Astrophys. J. Suppl. 2003. 148. 1. Электронный ресурс: http://arxiv.org/astro-ph/0302207.
- Kneib J. P. et al. // Astrophys. J. 2003. 598. 804. Электронный ресурс: http://antwrp.gsfc.nasa.gov/apod/ap980614.html & /ap030814.html;
- 12. Clowe D., Bradac M., Gonzalez A. H., Markevitch M., Randall S. W., Jones C. and Zaritsky D. A direct empirical proof of the existence of dark matter. Электронный ресурс: http://arxiv.org/astro-ph/0608407.
- Begeman K. G., Broeils A. H. and Sanders R. H. // Mon. Not. Roy. Astron. Soc. 1991. 249. 523.
- Хокинг С., Эллис Дж.Крупномасштабная структура пространства-времени М.: Мир, 1977. 431 с.
- 15. Filippenko A. V. and Riess A. G. Evidence from Type Ia Supernovae for an Accelerating Universe. Электронный ресурс: http://arxiv.org/astro-ph/0008057.
- 16. Riess A.G. et al. [Supernova Search Team Collaboration] // Astrophys. J. 2004. 607. 665.
- 17. Astier P. et al. The Supernova Legacy Survey: Measurement of Ω_M , Ω_Λ and w from the First Year Data Set // Astron. Astrophys. 2006. 447. 31. Электронный ресурс: http://arxiv.org/astro-ph/0510447.
- 18. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: В 10 т. Т. V: Статистическая физика. Ч. І. 5-е изд., стереот. М.: ФИЗМАТЛИТ, 2001. 616 с.
- 19. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: В 10 т. Т. IV: Квантовая электродинамика. 4-е изд., испр. / В. Б. Берестецкий, Е. М. Лифшиц, Л. П. Питаевский. М.: ФИЗМАТЛИТ, 2001. 720 с.
- 20. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: В 10 т. Т. II: Теория поля. 8-е изд., стереот. М.: ФИЗМАТЛИТ, 2001. 536 с.

- 21. Jaffe A. H. et al. [Boomerang Collaboration] // Phys. Rev. Lett. 2001. 86. 3475.
- 22. Lunardini C. and Smirnov A. Yu. // Phys. Rev. D. 2001. 64. 073006. Электронный ресурс: http://arxiv.org/hep-ph/0012056.
- 23. Dolgov A. D., Hansen S. H., Pastor S., Petcov S. T., Raffelt G. G. and Semikoz D. V. // Nucl. Phys. B. 2002. 632. 363. Электронный ресурс: http://arxiv.org/hep-ph/0201287.
- 24. Dolgov A. D. // Phys. Rept. 2002. **370**. 333. Электронный ресурс: http://arxiv.org/hep-ph/0202122.
- 25. Lesgourgues J. and Pastor S. // Phys. Rept. 2006. **429**. 307. Электронный ресурс: http://arxiv.org/astro-ph/0603494.
- 26. Notzold D. and Raffelt G. // Nucl. Phys. B. 1988. 307. 924.
- 27. Asaka T., Laine M. and Shaposhnikov M. // JHEP. 2007. 0701. 091. Электронный pecypc: http://arxiv.org/hep-ph/0612182.
- 28. Pierce A. and Murayama H. // Phys. Lett. B. 2004. **581**. 218. Электронный ресурс: http://arxiv.org/hep-ph/0302131.
- 29. Palomares-Ruiz S., Pascoli S. and Schwetz T. // JHEP. 2005. 0509. 048. Электронный pecypc: http://arxiv.org/hep-ph/0505216.
- 30. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: В 10 т. Т. III: Квантовая механика (нерелятивистская теория). 5-е изд., стереот. М.: ФИЗМАТЛИТ, 2001. 808 с.
- Smith M. S., Kawano L. H. and Malaney R. A. // Astrophys. J. Suppl. 1993. 85. 219; Cyburt R. H. // Phys. Rev. D. 2004. 70, 023505.
 Электронный ресурс: http://arxiv.org/astro-ph/0401091; Serpico P. D. et al. // JCAP. 2004. 0412. 010.
 Электронный ресурс: http://arxiv.org/astro-ph/0408076.
- 32. Olive K. A. TASI lectures on astroparticle physics. Электронный ресурс: http://arxiv.org/astro-ph/0503065.
- Kawasaki M., Kohri K. and Moroi T. // Phys. Rev. D. 2005. 71. 083502.
 Электронный ресурс: http://arxiv.org/astro-ph/0408426; Jedamzik K. // Phys. Rev. D. 2006. 74. 103509.
 Электронный ресурс: http://arxiv.org/hep-ph/0604251.
- 34. Akerib D. S. et al. [CDMS Collaboration]. Phys. Rev. Lett. 2006. 96. 011302. Электронный ресурс: http://arxiv.org/astro-ph/0509259.
- 35. Choi K. Y. and Roszkowski L. AIP Conf. Proc. 2006. 805. 30. Электронный ресурс: http://arxiv.org/hep-ph/0511003.
- 36. Bottino A., Fornengo N. and Scopel S. // Phys. Rev. D. 2003. 67. 063519. Электронный ресурс: http://arxiv.org/hep-ph/0212379.
- 37. Gouvea A. de, Moroi T. and Murayama H. Phys. Rev. D. 1997. 56. 1281. Электронный ресурс: http://arxiv.org/hep-ph/9701244.
- 38. Gross D. J., Pisarski R. D. and Yaffe L. G. Rev. Mod. Phys. 1981. 53. 43.
- 39. Raffelt G. G. Электронный ресурс: http://arxiv.org/hep-ph/0611118.
- 40. Мамаев С. Г., Мостепаненко В. М., Старобинский А. А. // ЖЭТФ. 1976. 70. 1577.
- 41. Witten E. // Phys. Rev. D. 1984. 30. 272.
- Kajantie K., Laine M., Rummukainen K. and Shaposhnikov M. E. // Phys. Rev. Lett. 1996.
 77. 2887. Электронный ресурс: http://arxiv.org/hep-ph/9605288;
 Karsch F., Neuhaus T., Patkos A. and Rank J. // Nucl. Phys. B. 1996. 474. 217.
 Электронный ресурс: http://arxiv.org/hep-lat/9603004;
 Karsch F., Neuhaus T., Patkos A. and Rank J. // Nucl. Phys. Proc. Suppl. 1997. 53. 623.
 Электронный ресурс: http://arxiv.org/hep-lat/9608087.

- 43. Рубаков В.А. Классические калибровочные поля. М.: УРСС, 1999. 336 с.
- 44. Chernodub M. N., Gubarev F. V., Ilgenfritz E. M. and Schiller A. // Phys. Lett. B. 1998.
 443. 244. Электронный ресурс: http://arxiv.org/hep-lat/9807016.
- 45. Coleman S. and De Luccia F. // Phys. Rev. D. 1980. 21. 3305.
- 46. Wyman M., Pogosian L. and Wasserman I. // Phys. Rev. D. 2005. 72. 023513 [Erratumibid. D. 2006. 73. 089905]. Электронный ресурс: http://arxiv.org/astro-ph/0503364.
- 47. Jeong E. and Smoot G. F. // Astrophys. J. 2005. 624. 21. Электронный ресурс: http://arxiv.org/astro-ph/0406432.
- Seljak U., Pen U. L. and Turok N. // Phys. Rev. Lett. 1997. 79. 1615; Fraisse A. A. Constraints on topological defects energy density from first year WMAP results. Электронный ресурс: http://arxiv.org/astro-ph/0503402.
- Olum K. D. and Vanchurin V. // Phys, Rev. D. 2007. 75. 063521.
 Электронный ресурс: http://arxiv.org/astro-ph/0610419.
- 50. Jenet F. A. et al. // Astrophys. J. 2006. 653. 1571. Электронный ресурс: http://arxiv.org/astro-ph/0609013.
- 51. Vilenkin A. and Shellard E. P. S. Cosmic Strings and Other Topological Defects. Cambridge University Press, 1994.
- 52. Klinkhamer F. R. and Manton N. S. // Phys. Rev. D. 1984. 30. 2212.
- 53. Arnold P., Son D. and Yaffe L. G. // Phys. Rev. D. 1997. 55. 6264. Электронный ресурс: http://arxiv.org/hep-ph/9609481.
- 54. Bodeker D., Moore G. D. and Rummukainen K. // Nucl. Phys. Proc. Suppl. 2000. 83. 583. Электронный ресурс: http://arxiv.org/hep-lat/9909054; Moore G. D. Электронный ресурс: http://arxiv.org/hep-ph/0009161.
- 55. Khlebnikov S. Y. and Shaposhnikov M. E. // Nucl. Phys. B. 1988. 308. 885; Kajantie K., Laine M., Rummukainen K. and Shaposhnikov M. E. // Nucl. Phys. B. 1996. 458. 90.
- 56. Buchmuller W., Di Bari P. and Plumacher M. // Annals Phys. 2005. **315**. 305. Электронный ресурс: http://arxiv.org/hep-ph/0401240; Buchmuller W., Di Bari P. and Plumacher M. // Nucl. Phys. B. 2003. **665**. 445. Электронный ресурс: http://arxiv.org/hep-ph/0302092.
- 57. Вайнберг С. Гравитация и космология М.: Мир, 1975.
- Дубровин Б. А., Новиков С. П., Фоменко А. Г. Современная геометрия: Методы и приложения. М.: Наука, Гл. ред. физ.-мат. лит., 1979. 760 с. 5-е изд., испр. М.: УРСС, 2001 (в 3 т.).
- 59. Боголюбов Н. Н., Ширков Д. В. Введение в теорию квантованных полей. 4-е изд., испр. М.: Наука, Гл. ред. физ.-мат. лит., 1984. 600 с.
- 60. Ициксон К., Зюбер Ж.-Б. Квантовая теория поля: В 2 т. / Пер. с англ. М.: Мир, 1984.
- 61. Вайнберг С. Квантовая теория поля: В 3 т. М.: URSS, 2003.
- 62. *Bernard C. et al.* [MILC Collaboration] // Phys. Rev. D. 2005. 71. 034504. Электронный pecypc: http://arxiv.org/hep-lat/0405029.
- 63. Bahcall J. N., Serenelli A. M. and Basu S. // Astrophys. J. 2005. 621. L85. Электронный ресурс: http://arxiv.org/astro-ph/0412440.
- 64. Ishitsuka M. [Super-Kamiokande Collaboration] Super Kamiokande results: Atmospheric and solar neutrinos. Электронный pecypc: http://arxiv.org/hep-ex/0406076.
- 65. Murayama H. Электронный ресурс: http://hitoshi.berkeley.edu/neutrino.
- 66. Gonzalez-Garcia M. C. Global analysis of neutrino data. Электронный ресурс: http://arxiv.org/hep-ph/0410030.

Предметный указатель*

Аномалия (аномальное несохранение тока) 298 антибарионы, остаточная концентрация 295 аромат кварка 467 Аррениуса формула 272 асимметрия барионная 420 — лептонная 157 — микроскопическая 318, 328 — (B—L) 318

Барионное число 469

—, нарушение в суперсимметричных теориях 208
—, плотность до электрослабого перехода 302
Березина интеграл 517
Бете закон 194
Большмана уравнение 132, 211, 234, 296, 322
Большое объединение 38, 221, 240, 367, 507
—, группа SU(5) 307
большой разрыв 33
Бьянки тождество 433

Вакуум ложный 273, 276 вакуумов многообразие 361 возмущения *см.* неоднородности ворс 403 время конформное 51

Гало галактик темное 28 Гамова энергия 183 Гаррисона—Зельдовича спектр 41

Гаусса формула 430 Гаусса-Бонне теорема 434 геодезическая линия, уравнение 449, 48 — — светоподобная 450 глюино 207 Голдбергера-Треймана формула 228, 255 голдстино 228 голдстоуновский бозон 252, 399 горизонт частиц 67 — событий 73 травитационные волны реликтовые 44 ·---, излучение струнами 390 **травитино** 123, 187 гравитон 227 -рассманова переменная 517 Грейзена-Зацепина-Кузьмина эффект 22 Грина функции 521 ^ьруппа гомотопическая 361, 367, 375, 395

Дебаевский радиус 530, 144 — масса 530, 144, 289, 291 Чействие евклидово 514, 290 — эффективное трехмерное 291 че Ситтера пространство 72 Дирака матрицы 460 — монополь 366 Алина волны координатная, физическая 52 четальный баланс 129 Джорджи—Глэшоу модель 364

Заряд глобальный 359, 404 Зоммерфельда параметр 183

Импульс координатный (конформный), физический 52 чнстантон 300

Каббибо—Кобаяши—Маскава матрица 472, 334, 466 -- –, параметризация 474 калибровочные константы 458 -- –, объединение 309

^{*} Этот указатель дополняет оглавление, не повторяя его. В указатель, как правило, не включены термины и понятия, отраженные в оглавлении. Указания на термины, присутствующие в оглавлении, приводятся тогда, когда из оглавления неочевидно, что данный термин используется на соответствующей странице. В некоторых случаях порядок следования страниц нарушен; в этих случаях на первой из перечисленных страниц термин обсуждается наиболее подробно

калибровочные преобразования в ОТО 446, 453 кварк-глюонная плазма 38, 264 Киббла механизм 362, 373, 402 кильватер струны 387 кинк 275, 395 - на струне 394 клюв на струне 394 конденсат кварковый 252, 264 конфайнмент 480 космологическая постоянная 71 — —, проблема 32 Кристоффеля символы 426, 49, 61 — —, свойства 429 критическая плотность ρ_c 78, 30 Кронекера тензор 423 кроссовер 269 кулоновский барьер 175

Jlеви — Чивиты тензор 425
 лептонные числа 110, 469
 — , плотность до электрослабого перехода 302
 линзирование гравитационное 26
 — струной 384

Магнитный заряд 366 — поток 374 масштабный фактор 14 мацубаровские частоты 522, 291 мегапарсек 12 метрика конформно-плоская 51 — пространства со струной 383 механизм качелей 507 Михеева—Смирнова резонанс 497 Михеева—Смирнова — Вольфенштейна эффект в Солнце 496 модель космологическая замкнутая, открытая, плоская 48 модель mSUGRA 220, 242 монополоний 370

Намбу—Гото действие 378 натяжение струны 364 нейтралино 187 —, проблема перепроизводства 220 нейтрино 457 — активные 158 —, калибровочный и массовый базисы 483 —, ограничение на эффективное число 173 нейтрино, осцилляции 328
— , длина и амплитуда 486
стерильные как темная материя 161
, эффективный потенциал в среде 490, 159
нелинейная гравитация, *f*(*R*)-гравитация 439
неоднородности плотности 41
— первичные 41, 43
— постоянной кривизны 359
— , генерация 388, 402
новые частицы, ограничения из нуклеосинтеза 173, 185
нуклеосинтез, основные реакции 173
ньютонов потенциал 451, 455

Обратный распад 320, 322 ожерелье 403 параметр порядка 268 параметры Ω_M , Ω_{rad} , Ω_{Λ} , Ω_{curv} , Ω_{γ} 78 $-\Omega_B, \Omega_{CDM}$ 79 Паули принцип 219 первичные элементы ${}^{2}H = D$, ${}^{3}He$, ${}^{4}He$, ⁷Li 163. 36 --- ⁷Be 181 Печчеи-Куинн симметрия 251 планковские время, длина, масса 11 плоское направление (модуль) 247, 352, 358, 415 плотность свободных электронов остаточная 145 поле аксионное, осцилляции 256 бозонное, инфракрасная часть 288 — — классическое 288, 292 векторное 422 - конформное 51 медиатор 240 -- скалярное 422 - - безмассовое 54 — — общего вида 99, 443 ----, режим быстрого скатывания 100 -- - - , режим медленного скатывания 100, 352, 358 — массивное, осцилляции 102, 123, 352 — — минимальное 443 — —, конденсат 247, 417 — —, —, неустойчивость 418 -- хиггсовское 463, 266 -- --, среднее 267, 277 — —, — вакуумное 465, 283 -- -, - после фазового перехода 283, 335

поле хигтсовское, эффективный потенциал 266 — электромагнитное 50, 443 поляризационный оператор фотона 528 Понтекорво-Маки-Накагава-Саката матрица 483, 328, 503, 509 пропагатор при конечной температуре 522, 523 пространственная кривизна 19 топология 19 протона распад 306, 470 процессы быстрые, медленные 127, 337 пузырь новой фазы 270, 337 — — —, поверхностное натяжение 274, 284 -----, свободная энергия 271 - критический 272 Равновесие по отношению к сфалеронным процессам 302 - термодинамическое 109, 294 — — локальное 337 — , релаксация к р. т. 128 - химическое 109 разложение высокотемпературное 278 расстояние углового размера 98 фотометрическое 91 резонанс ядерный 182 реликтовое микроволновое излучение. анизотропия 23, 41, 151 — — —, —, дипольная компонента 21 ---, -, мультиполи C_{lm}, C_l 22, 23 — — —, —, негауссовость 387 — — —, —, эффекты струны 386 – –, –, эффекты доменной стенки 398 — — —, современная плотность числа фотонов 122 — — —, спектр 20 — — —, поляризация 36 — — —, температура 20 реликтовые нейтрино 154 Римана тензор 431, 47 — , свойства 433 Риччи тензор 434, 47, 61 Саха уравнение 136, 169 Сахарова условия 294 сверхновые типа Іа 93, 151 свободное перемешивание 190 сечение рассеяния — — томсоновское 139

— , формула Резерфорда 143

симметрия восстановление 267, 280 – глобальная 399 —, нарушение 465, 265, 279, 361, 364, 372 - C 471, 294 - CP 471, 294, 318, 327, 338, 348 — —, нарушение 473, 475, 485 — —, —, проблема в сильных взаимодействиях 250 - P 471 сингулярность коническая 383 - космологическая 66 система отсчета локально-лоренцева 430 — — сопутствующая 48 скаляр кривизны 434, 62 скварк 206, 351, 415 слабый угол смешивания 0, 458 слептон 211, 351, 415 собственное время 49 спинор 457 вейлевский 459. 505 дираковский 460, 505 — левый, правый 459, 461 стадия расширения пылевидная промежуточная 357 сталкивающиеся скопления 1Е0657-558 28,29 степень свободы, число 69 — —, — эффективное 70, 113 — — спиновая 112, 206 супергравитация 228 суперпартнер 206, 336 — легчайший (LSP) 208, 227 - следующий за легчайшим (NLSP) 224, 236 суперсимметричное расширение Стандартной модели 207, 309, 336, 351, 413 суперсимметрия 206 – локальная 228 –, нарушение 208, 228 , —, гравитационный механизм передачи 220 -, -, калибровочный механизм передачи 240 суперструны 394 суперток 228 суперхиггсовский механизм 228 сфалеронные процессы 300, 340 — , правила отбора в электрослабой теории 302

Темная материя, плотность в Галактике 201 — —, поиски 202 — —, из Q-шаров 409, 420 температура эффективная 59 тензор энергии-импульса 63 — , ковариантное сохранение 445, 63 — — метрический 445 — — нетеровский 445 — — струны 376 — — газа струн 380 т'Хоофта эффект 298 Уравнение состояния -- - нерелятивистское («пыль») 66 — — релятивистское («радиация») 68 — — вакуумное 70 Фазовый переход 265, 361 — Большого объединения 265, 367 — квантовой хромодинамики 38, 264 — , температура 267, 480 — —, — критическая 280 — —, — — первая, вторая 283 — электрослабый 265, 334 — — І рода 268, 281, 334, 408 — — — , протекание во Вселенной 273 — — — , пузыри новой фазы 270 — — — —, скрытая теплота 284 — — II рода 268, 280 Ферми константа 479, 152, 164 флуктуации плотности см. неоднородности плотности функциональный интеграл 514 функция распределения бозонов (Бозе-Эйнштейна) 109, 288 — фермионов (Ферми—Дирака) 109 — Максвелла—Больцмана 60, 111 черного тела (планковская) 59 Хаббла параметр 14, 48 — — во время инфляции 43 — — современное значение 15, 53 Хиггса механизм 265 — бозон 69, 265, 457 — — аксиальный 216 — —, масса 335 модель абелева 372 химический потенциал 109, 115, 339, 520

— фотона 110 — частиц и античастиц 110 — — эффективный 60 — нейтрино, ограничение 157 $- - \kappa (B-L) 303$ — — к слабому гиперзаряду 303 Чаплыгина газ 76 частота конформная, физическая 52 четырехскорость 49, 448 координатная, физическая 55 четырехфермионное взаимодействие 478 Эйнштейна-Гильберта действие 436 Эйнштейна тензор 439 уравнения 438, 61, 65 электрический дипольный момент нейтрона 251, 348 — — — электрона 348 энергия связи водорода 135 — дейтерия 170 — стабильных легких ядер 171 энтропия видимой части Вселенной 42 —, плотность 42, 117 -, -, современное значение 121, 196 эффективный потенциал 266, 524 — , теория возмущений 524, 289 — — , — — , применимость 289 β -распад двойной 316, 511 С-, СР-инвариантность см. симметрия *СРТ*-теорема 471, 485 D-струна 394 F-струна 394 LSND-аномалия 502, 162 р-волна 219 *Р*-инвариантность см. симметрия R-четность 208 s-волна 194 W-бозон 457 —, масса 466 Z-бозон 457 --. масса 466 Λ-член 25 —, зависимость от времени 97 Λ_{QCD} , масштаб сильных взаимодействий 479 3-гиперболоид, 3-плоскость, 3-сфера 19, 45

URSS.ru URSS.ru **URSS.ru** URSS.ru

Уважаемые читатели! Уважаемые авторы!

Наше издательство специализируется на выпуске научной и учебной литературы, в том числе монографий, журналов, трудов ученых Российской академии наук, научно-исследовательских институтов и учебных заведений. Мы предлагаем авторам свои услуги на выгодных экономических условиях. При этом мы берем на себя всю работу по подготовке издания — от набора, редактирования и верстки до тиражирования и распространения.

 \hat{T}_{r}

URSS_Fu

RSS.ru

٢Â

URSS.ru

Среди вышедших и готовящихся к изданию книг мы предлагаем Вам следующие: Рубаков В.А. Классические калибровочные поля. Бозонные теории. Рубаков В. А. Классические калибровочные поля. Теории с фермионами. Некоммутативные теории. Грин Б. Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории. Ефремов Ю. Н. Вглубь Вселенной. Звезды, галактики и мироздание. Архангельская И. Д., Чернин А Д., Розенталь И. Л. Космология и физический вакуум. Розенталь И Л., Архангельская И. В. Геометрия, динамика, Вселенная. Чернин А. Д. Звезды и физика. Фридман А А. Мир как пространство и время. Тропп Э. А., Френкель В. Я., Чернин А. Д. Александр Александрович Фридман. Жизнь и деятельность. Бааде В. Эволюция звезд и галактик. Сажин М. В. Современная космология в популярном изложении. Левитан Е. П. Физика Вселенной: экскурс в проблему. Шваришильд М. Строение и эволюция звезд. Куликовский П. Г. Справочник любителя астрономии. Кинг А. Р. Введение в классическую звездную динамику. Хлопов М. Ю. Космомикрофизика. Хлопов М. Ю. Основы космомикрофизики. Тверской Б. А. Основы теоретической космофизики. Фок В.А. Теория пространства, времени и тяготения. Фок В.А. Теория Эйнштейна и физическая относительность. Кадомцев С. Б. Геометрия Лобачевского и физика. Вейль Г. Пространство. Время. Материя. Лекции по общей теории относительности. Эддингтон А. Теория относительности. Окунь Л.Б. Физика элементарных частиц. Окунь Л. Б. Лептоны и кварки. Капитонов И. М. Введение в физику ядра и частиц. Бояркин О. М. Введение в физику элементарных частиц. Бояркин О. М. Физика массивных нейтрино. Тарасов Л. В. Земля — беспокойная планета: Атмосфера, гидросфера, литосфера. Хван М. П. Неистовая Вселенная: от Большого взрыва до ускоренного расширения, от кварков до суперструн. Серия «Классический университетский учебник» Кононович Э В., Мороз В. И. Общий курс астрономии. Ишханов Б.С., Капитонов И.М., Юдин Н.П. Частицы и атомные ядра. Квасников И.А. Термодинамика и статистическая физика. В 4 т. Петровский И. Г. Лекции по теории обыкновенных дифференциальных уравнений. Гнеденко Б. В. Курс теории вероятностей. Колмогоров А. Н., Драгалин А. Г. Математическая логика. По всем вопросам Вы можете обратиться к нам: тел./факс (499) 135-42-16, 135-42-46 Научная и учебная или электронной почтой URSS@URSS.ru литература Полный каталог изданий представлен в интернет-магазине: http://URSS.ru

Дмитрий Сергеевич ГОРБУНОВ

Старший научный сотрудник Института ядерных исследований РАН. Физик-теоретик, автор более 50 научных работ. В круг научных интересов входят физика элементарных частиц, космология, квантовая теория поля, физика космических лучей высоких и сверхвысоких энергий. Лауреат Золотой медали с премией Российской академии наук для молодых ученых за 2003 год.

Валерий Анатольевич РУБАКОВ

Главный научный сотрудник Института ядерных исследований РАН, профессор Московского государственного университета им. М. В. Ломоносова, академик Российской академии наук. Физик-теоретик, известный специалист в области физики элементарных частиц, космологии, квантовой теории поля, теории гравитации. Лауреат Золотой медали с премией РАН для молодых ученых за 1984 год, премии им. А. А. Фридмана РАН (1999), Международных премий им. И. Я. Померанчука (2003) и им. М. А. Маркова (2005).

Наше издательство предлагает следующие книги:

Любые отзывы о настоящем издании, а также обнаруженные опечатки присылайте по адресу URSS@URSS.ru. Ваши замечания и предложения будут учтены и отражены на web-странице этой книги в нашем интернет-магазине http://URSS.ru