
Л.В. Шелехова

Математические методы в педагогике и психологии в педагогике и психологии

АДЫГЕЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Л.В. Шелехова

МАТЕМАТИЧЕСКИЕ МЕТОДЫ
В ПЕДАГОГИКЕ И ПСИХОЛОГИИ

УЧЕБНОЕ ПОСОБИЕ

Печатается по решению редакционно-издательской комиссии при НМС Адыгейского государственного университета

Рецензенты: к. ф.-м. н., доцент кафедры информатики и вычислительной техники Ушхо Д.С.

к.ф.н., доцент кафедры педагогической психологии Юрина А.А.

Л.В. Шелехова

Ш 42 Математические методы в педагогике и психологии: в схемах и таблицах /учебное пособие/: - Майкоп, изд-во АГУ, 2010. — 192 с.

В настоящем учебном пособии представлено многообразие статистических методов в виде упорядочной, логически и иерархически взаимосвязанной системы, отражающей возможности практического применения математических методов и ориентированной на читателя, не имеющего специальной математической подготовки.

Отличительной особенностью учебного пособия является изложение общих теоретических положений по всем темам курса «Математические методы в психологии и педагогике» в схемах и таблицах, подробные объяснения решения типовых задач. Материал, изложенный в наглядной и доступной форме, позволяет быстро освоить дисциплину.

Пособие может быть рекомендовано студентам психологических и педагогических специальностей, обучающихся по программам бакалавриата и магистратуры, аспирантам и преподавателям вузов и средних специальных учебных заведений.

ПРЕДИСЛОВИЕ

Перед любой наукой, в том числе психологической и педагогической, стоит задача выявления и исследования закономерностей, которым подчиняются реальные процессы. Решение данной задачи предполагает всесторонний анализ данных, что невозможно без использования количественных методов, основанных на использовании математического аппарата. Поэтому изучение элементов прикладной статистики является неотъемлемым компонентом образования на всех уровнях (ступенях) образования.

Знание основных принципов и правил статистических методов позволяет:

- компактно и информативно описывать результаты эксперимента;
- устанавливать степень достоверности сходства и различия исследуемых объектов на основании результатов измерений их показателей;
- анализировать наличие или отсутствие зависимости между различными показателями (явлениями);
 - количественно описывать эти зависимости;
 - выявлять информативные показатели;
- грамотно проводить анализ и интерпретацию полученных в ходе исследования данных.

Пособие составлено с учетом:

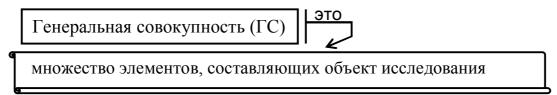
- требований Государственных образовательных стандартов высшего профессионального образования по математике для студентов;
- компактности изложения материала с сохранением необходимой строгости, детальной проработкой узловых понятий, алгоритмичностью;
- необходимости развития у студентов практических навыков работы с экспериментальным материалом с целью осознания ее прикладной психологопедагогической направленности математико-статистической подготовки;
- возможности методически правильно произвести обработку экспериментальных данных, сильно не углубляясь в теорию математической статистики.

В учебном пособии даны основные определения и методы статистики. Все теоретические положения и практические рекомендации проиллюстрированы соответствующими примерами прикладного психолого-педагогического характера. Это дает возможность приобщиться обучаемым к решению различных прикладных задач математического моделирования ситуаций и процессов.

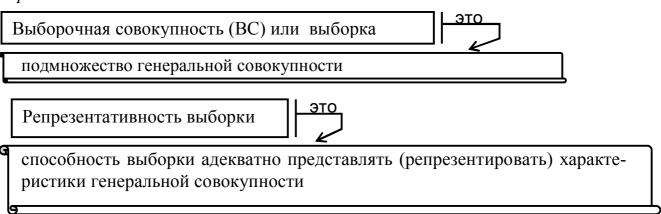
За основу пособия принят материал курса «Математические методы в педагогике и психологии», читаемых автором в Адыгейском государственном университете на педагогическом факультете на протяжении рядя лет.

Автор выражает искреннюю признательность рецензентам: А.А.Юриной и Д.С.Ушхо за ряд полезных замечаний, способствовавших улучшению книги.

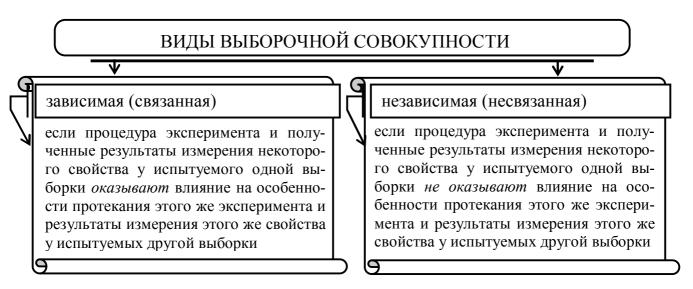
СОДЕРЖАНИЕ


Предисловие	3
Глава 1. Основы измерения и количественного описания данных	6
1.1. Суть выборочного метода	6
1.2. Описательная статистика	11
1.2.1 Мера центральной тенденции	12
1.2.2 Мера изменчивости	14
1.3. Вычисление ошибки репрезентативности для собственно случайной	24
выборки.	
Глава 2. Общие принципы проверки статистических гипотез	30
2.1. Понятие статистической гипотезы	30
2.2. Статистическая проверка гипотез	32
2.3. Классификация исследовательских задач, решаемых с помощью ста-	36
тистических критериев	
Глава 3. Непараметрические статистические критерии	40
3.1. Критерий Розенбаума	40
3.2. Критерий Манна-Уитни	45
3.3. Критерий Крускала-Уолиса.	48
3.4. Критерий тенденций Джонкира	51
3.5. Критерий Макнамары	53
3.6. Критерий знаков	57
3.7. Критерий Вилкоксона	59
3.8. Критерий Фридмана	62
3.9. Критерий тенденций Пейджа	64
3.10. Критерий Пирсона	66
3.11. Критерий Колмогорова-Смирнова	73
3.12. Критерий Фишера	77
Глава 4. Корреляционный анализ	80
4.1. Суть корреляционного анализа	80
4.2. Парный линейный корреляционный анализ	
4.2.1. Коэффициент ассоциации Д. Юла и контингенции К. Пирсона	84
4.2.2. Коэффициенты взаимной сопряженности К. Пирсона и А.А. Чупрова	87

4.2.3. Коэффициенты ранговой корреляции К. Спирмена	91
4.2.4. Коэффициент конкордации (ранговой корреляции) М. Кендалла	94
4.2.5. Коэффициент линейной корреляции г- Пирсона	97
4.2.6. Коэффициент ранговой корреляции Гудмена	99
4.2.7. Коэффициент рангово-биссериальной корреляции	101
4.2.8. Коэффициент точечной биссериальной корреляции	103
4.3. Парный криволинейный корреляционный анализ	105
4.4. Множественный линейный корреляционный анализ	109
4.4.1. Коэффициент множественной корреляции	109
4.4.2. Коэффициент множественной конкордациикачественных признаков	111
4.4.3. Частные коэффициенты корреляции	113
Глава 5. Регрессионный анализ	117
5.1. Понятие регерессионого анализа	117
5.2. Парный регерессионый анализ	118
5.3. Нелинейные модели регрессии	130
5.4. Система одновременных уравнений	143
Приложение	149
Литература	189

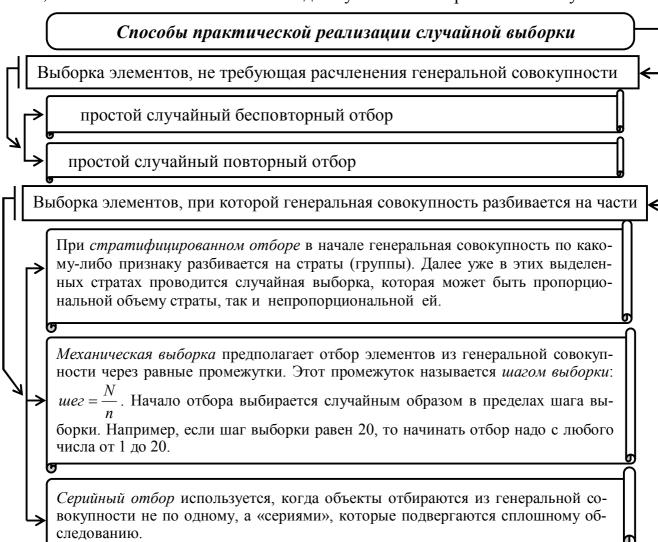

ГЛАВА 1. ОСНОВЫ ИЗМЕРЕНИЯ И КОЛИЧЕСТВЕННОГО ОПИСАНИЯ ДАННЫХ

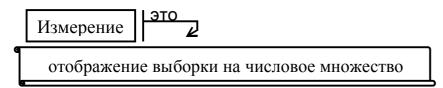
1.1. Суть выборочного метода


Сбор необходимых эмпирических данных об объекте является одной из основных задач, стоящих при проведении психолого-педагогического исследования. Наиболее простым, на первый взгляд, способом сбора данных является сплошное обследование генеральной совокупности.

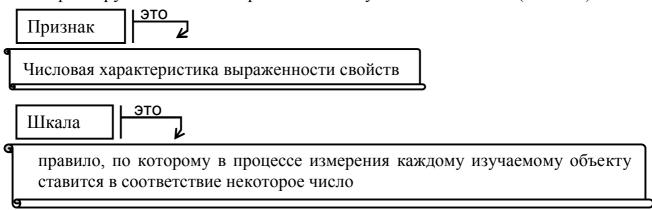
Однако применение сплошного обследования не всегда представляется возможным. В этом случае применяется выборочное обследование. Суть выборочного метода заключена в том, что обследованию подвергается только часть элементов ГС, которая называется выборочной совокупностью (ВС) или выборкой.

Различают два вида выборочной совокупности (выборки): *независимые* (*несвязанные*) и *зависимые* (*связанные*). Если исследования проводятся на одной и той же группе респондентов, то выборки в данном случае считаются зависимыми.

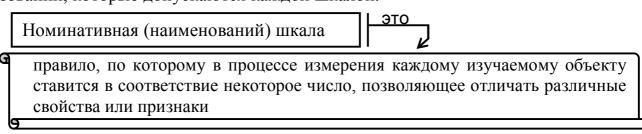



сокращает временные и материальные затраты на проведение исследования

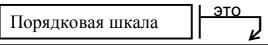
позволяет повысить достоверность результатов исследования, вследствие возможности привлечения персонала более высокого класса и применения различных процедур контроля качества получаемой информации


имеет более широкую область применения, так как небольшой (по сравнению с ГС) объем выборки позволяет использовать более сложные методы обследования, включая использование различных технических средств

Выборка называется *случайной*, если при извлечении выборки объема n все возможные комбинации из n элементов, которые могут быть получены из генеральной совокупности объема N, имеют равную вероятность быть извлеченными. Различают *повторную* и *бесповторную* выборку. При повторном отборе каждый выбранный элемент возвращается в Γ С. При бесповторном отборе выбранный элемент не возвращается в Γ С. Отбор называют *простым случайным*, если объекты извлекаются по одному из всей генеральной совокупности.



В процессе научного исследования у эмпирического объекта при помощи чисел фиксируется степень выраженности изучаемого свойства (свойств).



С. Стивенс предложил четыре вида шкал измерения: номинативную, порядковую, интервальную и отношений, на основе тех математических преобразований, которые допускаются каждой шкалой.

	Свойства номинативной шкалы
1	имеет только качественные (категориальные, неколичественные) значения
2	не имеет ни абсолютной, ни относительной начальной точки отсчета
3	не имеет базовой единицы измерения
4	не имеет интервалов
5	учитывает только одно свойство чисел - то, что это различные символы
6	единственными типами отношений между неколичественными значениями шкалы может быть равенство одинаковых значений переменных величин, соответствующих объектам одной категории или неравенство разных значений переменных величин, соответствующих объектам одной категории
7	категориальные, неколичественные значения шкалы не имеют порядков (рангов) и не могут быть упорядочены
8	любые арифметические операции со значениями переменных именованных числами, полученных с помощью номинативной шкалы, не имеют смысла
9	по выборочным данным могут быть подсчитаны количество отдельных значений номинативной переменной и их относительные частоты
10	единственной характеристикой распределения выборочных значений номинативной переменной является оценка модой положения центра распределения

Пример. Группе студентов предложено выбрать один из трех предметов: «математику», «русский язык», «информатика», который, по их мнению, является самым сложным для изучения. При этом студентам, выбравшим предмет «математика», ставилось в соответствие число «1», «русский язык» - число «2», «информатику» - число «3». При этом числа не имеют количественного значения, а только обеспечивают группировку респондентов в классы, идентичные в отношении определенного признака.

правило, по которому в процессе измерения каждому изучаемому объекту ставится в соответствие некоторое число, позволяющее расположить измерительные признаки по рангу — от самого большого до самого маленького или наоборот

		Свойства порядковой шкалы							
1	не и	меет определенной количественной меры							
2	не имеет ни абсолютной, ни относительной начальной точки отсчета								
3	в не имеет базовой единицы измерения, то есть значения, интервалы шкалы								
	име	ют размеры, но они не определены							
4	един	нственными типами отношений между неколичественными значениями							
	шка	лы могут быть:							
	a	равенство одинаковых значений порядковых переменных величин, соот-							
	ветствующих объектам одной категории								
	б неравенство разных значений переменных величин, соответствующих								
		объектам одной категории							
5		фметические операции со значениями переменных, именованных числами,							
		ученными с помощью порядковой шкалы, не имеют смысла, то есть при							
	-	внении признаков друг с другом мы можем определить, больше или мень-							
		выражено свойство, но нельзя сказать, насколько или во сколько раз боль-							
		или меньше оно выражено							
6		выборочным данным, полученным с помощью порядковой шкалы, могут							
		ь подсчитаны количество отдельных значений порядковой переменной в							
	выо	орке и их относительные частоты, медиана и интерквартильный размах							

Пример. Шкала порядка может применяться для ранжирования респондентов: 1) по индивидуальным чертам личности; 2) по успехам в учении; 3) по физическим данным; 3) по ученым степеням и званиям и т. д.

Например, пятибалльная шкала оценок, используемая в школьной практике, является порядковой шкалой, так как интервалы между отдельными показателями данной шкалы не отражают разрыва между реальными результатами, то есть отсутствует равномерность распределения между выставляемыми отметками. Нельзя сказать, что различие между отметками «1» и «2» столь же велико, как между «3» и «4» или «4» и «5». В данном случае можно судить лишь о том, что один ученик подготовился лучше другого, по опрашиваемой теме. И признак в оценке знаний отражен в цифровой отметке. Так как шкала оценок является порядковой шкалой, то нельзя вычислять на основании отметок среднюю арифметическую величину, то есть выводить среднюю оценку.

Шкала интервалов

правило, по которому в процессе измерения каждому изучаемому объекту ставится в соответствие некоторое число, равное количеству единиц измерения, пропорциональное выраженности измеряемого свойства

		Свойства шкалы интервалов							
1	име	ет количественную меру							
2	не имеет абсолютной начальной точки отсчета, но имеет определенную отно-								
	сительную начальную точку отсчета, то есть нуль вовсе не соответствует пол-								
	НОМ	у отсутствию измеряемого свойства							
3	име	ет базовую единицу измерения							
4		нственными типами отношений между количественными значениями шка- могут быть							
	a	равенство одинаковых значений интервальных переменных величин, соответствующих объектам одной категории							
	б неравенство разных значений переменных величин, соответствующи объектам одной категории								
5	шка чита свої	ичественные значения переменных, полученные с помощью интервальной лы, могут быть упорядочены, с ними могут производиться сложение и вызние, то есть можем судить, на сколько больше или меньше выражено йство при сравнении объектов, но нельзя сказать во сколько раз больше меньше выражено свойство							
6	ний	выборочным данным могут быть подсчитаны количество отдельных значе- интервальной переменной в выборке и их относительные частоты, выбо- ное среднее значение, оценка дисперсии средним квадратом отклонений							

Пример. Шкала интервалов может применяться для ранжирования: 1) сезонного изменения температуры воздуха; 2) коэффициента интеллекта (IQ) и т. д.

- 1) Если один предмет имеет температуру 10^{0} градусов, а другой 20^{0} , то утверждать можно лишь то, что разность температур в данном случае столь же велика, как и между предметами, имеющими температуру 50^{0} и 60^{0} соответственно, то есть разность температур составляет в каждом случае 10^{0} . Но по данной шкале нельзя установить пропорций (соотношение), то есть температура, равная 10^{0} , не может быть в два раза холоднее, чем температура 20^{0} .
- 2) Произвольно устанавливается точка отсчета и в стандартизированных тестах интеллекта, так как невозможно установить точку полного отсутствия интеллекта. Если при выполнении теста респондент не решит ни одной задачи, нельзя утверждать, что умственное развитие испытуемого равно нулю. По шкале интервалов можно судить лишь, что разность между показателями величины IQ 130 и 70 столь же велика, как и между IQ 120 и IQ 60, а именно 60 единиц IQ.

Шкала отношений

правило, по которому в процессе измерения каждому изучаемому объекту ставится в соответствие некоторое число, равное количеству единиц измерения, пропорциональное выраженности измеряемого свойства, учитывающее возможность «нулевой точки», соответствующую полному отсутствию выраженности измеряемого свойства

	Свойства шкалы отношений						
1	имеет количественную меру						
2	начинается с абсолютного нуля, соответствующего полному отсутствию выраженности измеряемого свойства						
3	разница или сумма значений шкалы соответствуют разнице или сумме значений меры, переменной, показателя, характеристики объекта исследования						
4	значения шкалы отношений, связанные отношениями пропорции, соответствуют отношениям пропорции меры, переменной, показателя, характеристики объекта исследования						

Пример. Шкала отношений может применяться для ранжирования: 1) роста; 2) веса, времени выполнения заданий и т. д.

Школьникам был предложено выполнить тест. Фиксировалось время выполнения теста. Результаты выполнения работы представляют собой шкалу отношений, так как в данном случае можно говорить о наличии «абсолютного нуля» и каждому респонденту ставится в соответствие некоторое число, равное количеству единиц измерения времени, затраченного на выполнение теста.

1.2. Описательная статистика

Если выборка объема n содержит m различных элементов $x_1, x_2, x_3, ..., x_m$, причем x_i встречается k_i раз, то число k_i называется uacmomoŭ элемента x_i , а отношение $f_i = \frac{k_i}{n}$ называется omhocumeльной uacmomoŭ элемента x_i $(1 \le i \le m)$.

Сумма всех относительных частот равна единице: $\sum_{i=1}^{m} f_i = 1$.

Вариационный (статистический) ряд

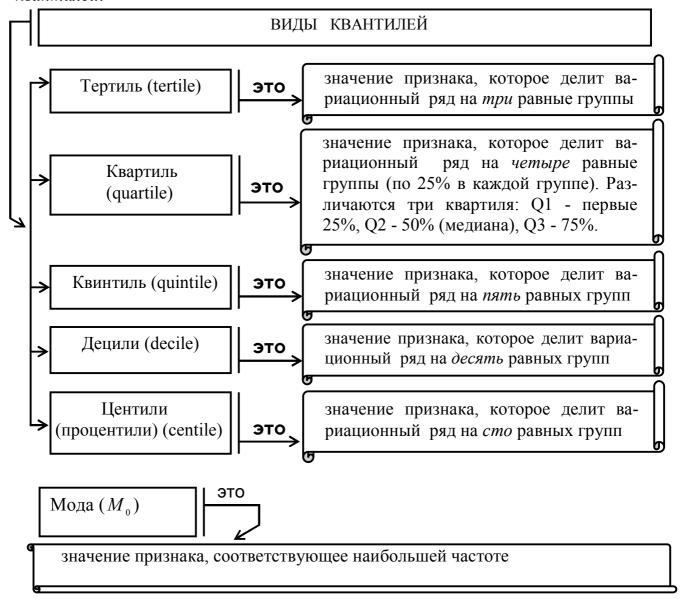
таблица, первая строка которой содержит в порядке возрастания элементы x_i , а вторая - их частоты k_i (относительные частоты $f_i = \frac{k_i}{n}$) $(1 \le i \le m)$

Элементы	x_1	x_2	 $x_{\rm m}$	
x_i				
Частота k_i	k_1	k_2	 k_m	$\sum_{i=1}^{m} k_i = n$
Относительная частота f_i	f_{I}	f_2	 f_m	$\sum_{i=1}^{m} f_i = 1$

Применимость описательной статистики в педагогических исследованиях объясняется многообразием ее гносеологических функций, которые позволяют описывать распределение при помощи чисел, характеризующих те или иные его параметры. Из этих параметров можно выделить две основные группы: меры центральной тенденции и меры изменчивости (рассеяния и формы распределения).

1.2.1 Мера центральной тенденции

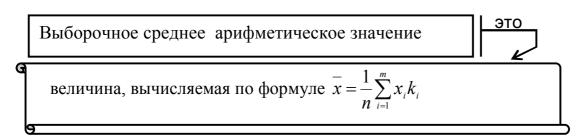
Мера центральной тенденции обладает большей устойчивостью и способностью характеризовать целую группу измерений одним числом. Особенность меры центральной тенденции заключается в способности аккумулировать и уравновешивать все индивидуальные результаты измерений, вследствие чего проявляется то типичное, что характеризует качественное своеобразие измеряемой группы показателей, то, что позволяет отличить ее от других, возникающих в процессе измерений, величин. Для определения меры центральной тенденции используют моду, медиану и выборочное среднее арифметическое значение признака.


Пусть выборка объема n задана вариационным рядом:

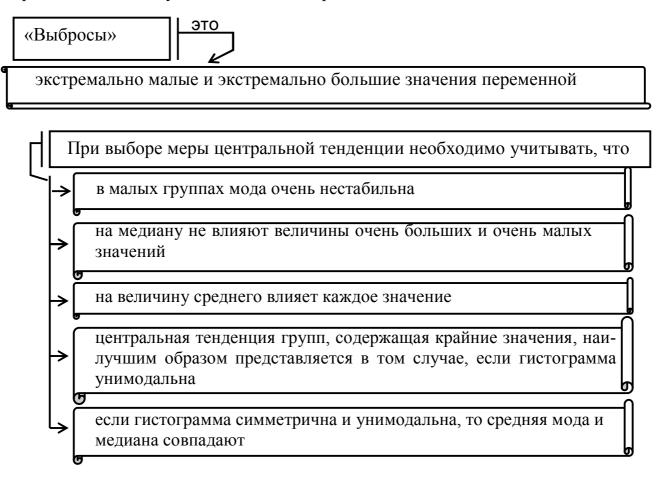
Элементы x_i	x_1	x_2	 $x_{\rm m}$	
Частота k_i	k_1	k_2	 k_m	$\sum_{i=1}^{m} k_i = n$

Если число элементов выборки нечетно, то есть n=2k+1, то $m_e=x_{k+1}$; при четном n=2k медиана вычисляется по формуле: $m_e=\frac{x_k+x_{k+1}}{2}$.

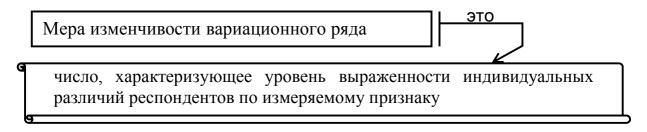
При анализе результатов измерения значений признака иногда необходимо сгруппировать результаты в равные группы при помощи «точек деления» – квантилей.

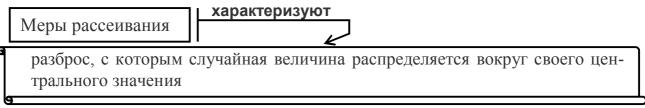

Пример. Для определения уровня развития воображения обучающихся был дан тест, результаты которого представлены в таблице.

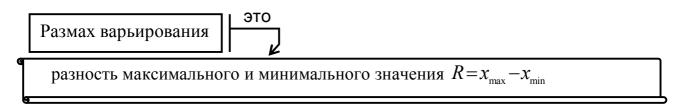
Количество баллов	14	15	16	17	18	19	20
Количество респондентов	4	11	15	16	19	15	5


Найдите моду и медиану данного вариационного ряда.

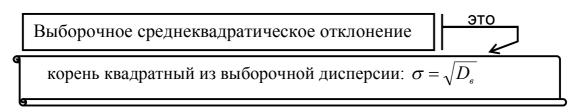
Мода $M_0 = 18$.


Количество респондентов данной выборки n=85. Медиана m_e =17.

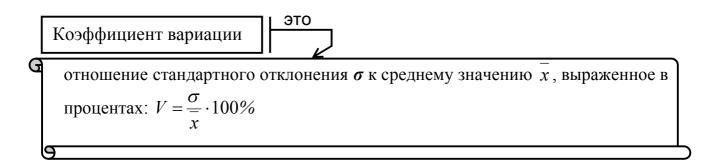

Выборочное среднее арифметическое значение признака, найденное для какой-либо группы респондентов, интерпретируется как значение для наиболее типичного для этой группы представителя. Однако бывают случаи, когда подобная интерпретация среднего арифметического несостоятельна, так как на величину среднего влияет каждое отдельное значение, то есть выборочное среднее значение чувствительно к выбросам.


1.2.2 Мера изменчивости

Мера изменчивости может быть представлена в виде мер рассеяния и формы.


Для определения меры рассеивания служат размах варьирования, дисперсия и среднеквадратическое отклонение.

Выявить и оценить степень влияния некоторого фактора на изменчивость изучаемого признака можно при помощи дисперсионного анализа.



Чем больше величина дисперсии, тем больше отклонения значений от среднего, а следовательно, больше изменчивость признака.

В психолого-педагогических исследованиях предпочтительнее использовать среднеквадратическое отклонение, так как дисперсия выражает изменчивость в квадратах исходных единиц измерения признака, а среднеквадратическое отклонение — в исходных единицах.

Однако на практике чаше используются *«исправленная»* дисперсия $\sigma^2 = \frac{1}{n-1} \sum_{i=1}^m k_i \left(x_i - \overline{x} \right)^2 \text{и} \quad$ *«исправленное»* $среднеквадратическое отклонение <math display="block">\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^m k_i \left(x_i - \overline{x} \right)^2} \; .$

Пример. Известно распределение исследовательских работ первой категории студентов АГУ по специальностям в 2010 году:

Количество работ первой категории	0	1	2	3	4	6	8	12
Количество специальностей	2	3	5	4	7	8	5	1

Дайте характеристику распределения признака (число исследовательских работ студентов по специальностям).

Найдем моду, медиану, выборочное среднее арифметическое значение признака, размах варьирования, дисперсию, среднеквадратическое отклонение:

Мода $M_0 = 6$.

Количество респондентов данной выборки n = 35. Медиана $m_e = 4$.

Выборочное среднее арифметическое значение:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{m} x_i k_i = \frac{0 \cdot 2 + 1 \cdot 3 + 2 \cdot 5 + 3 \cdot 4 + 4 \cdot 7 + 6 \cdot 8 + 8 \cdot 5 + 12 \cdot 1}{35} \approx 4.4.$$

Размах варьирования: $R = x_{max} - x_{min} = 12 - 0 = 12$.

Выборочная дисперсия
$$D_{\mathcal{B}} = \frac{1}{n} \sum_{i=1}^{m} k_i \left(x_i - \overline{x} \right)^2$$
 :

$$D_6 = \frac{(0-4)^2 \cdot 2 + (1-4)^2 \cdot 3 + (2-4)^2 \cdot 5 + (3-4)^2 \cdot 4 + (4-4)^2 \cdot 7 + (6-4)^2 \cdot 8 + (8-4)^2 \cdot 5 + (12-4)^2 \cdot 1}{35} \approx 7.$$

Выборочное среднеквадратическое отклонение: $\sigma = \sqrt{D_6} = \sqrt{7} \approx 2.6$.

Пример. Была произведена выборка студентов в количестве 100 человек, которым предложен тест. Время выполнения теста представлено в таблице:

время (мин.)	[154-158)	[158-162)	[162-166)	[166-170)	[170-174)	[174-178)	[178-182)
Количество	10	14	26	28	12	8	2
респондентов	10	17	20	20	12	0	2

Найдите выборочную среднюю и выборочное среднеквадратическое отклонение времени выполнения теста.

В качестве x_i примем середины интервалов и найдем выборочную среднюю времени выполнения теста:

$$\overline{x} = \frac{156 \cdot 10 + 160 \cdot 14 + 164 \cdot 26 + 168 \cdot 28 + 172 \cdot 12 + 176 \cdot 8 + 182 \cdot 2}{100} = 166$$

Выборочная дисперсия:

$$D_6 = \frac{(-10)^2 \cdot 10 + (-6)^2 \cdot 14 + (-2)^2 \cdot 26 + 2^2 \cdot 28 + 6^2 \cdot 12 + 10^2 \cdot 8 + 14^2 \cdot 2}{100} = 33,44 \cdot 100$$

Среднеквадратическое отклонение: $\sigma = \sqrt{D_{\it b}} = \sqrt{33,44} \approx 5,78$.

Если все значения количественного признака x_i разбиты на k групп, то рассматривая каждую группу как самостоятельную совокупность, можно найти групповую среднюю и дисперсию.

Внутригрупповая дисперсия

средняя арифметическая дисперсия, взвешенная по объемам $D_{\textit{внгр}} = \frac{1}{n} \sum_{i=1}^{m} N_{i} D_{\textit{гр}}$, где N_{i} - объем группы i ; n - объем всей совокупности

Межгрупповая дисперсия

относительно **G** дисперсия групповых средних $D_{\text{межер}} = \frac{1}{n} \sum_{i=1}^{m} N_i \left(\overline{x_i} - \overline{x}\right)^2$, где $\overline{x_i}$ – групповая средняя группы i, \overline{x} – общая

Общей дисперсией называют дисперсию значений признака всей совокупности относительно общей средней.

Пример. В двух группах студентов была проведена контрольная работа, состоящая из 5 заданий. Количество выполненных заданий в каждой группе представлено в таблицах: Первая группа.

Количество выполненных заданий	2	3	4	5
Количество респондентов	4	12	17	7

Вторая группа.

Количество выполненных заданий	1	2	3	4	5
Количество респондентов	1	4	16	13	1

Найти групповые, внутригрупповую, межгрупповую и общую дисперсии совокупности, состоящей из следующих двух групп:

Найдем общую и групповые средние:
$$\overline{x} = \frac{1 \cdot 1 + 2 \cdot 8 + 3 \cdot 28 + 4 \cdot 30 + 5 \cdot 8}{75} \approx 3;$$

$$\overline{x_1} = \frac{2 \cdot 4 + 3 \cdot 12 + 4 \cdot 17 + 5 \cdot 7}{40} \approx 4;$$

$$\overline{x_2} = \frac{1 \cdot 1 + 2 \cdot 4 + 3 \cdot 16 + 4 \cdot 13 + 5 \cdot 1}{35} \approx 3.$$

Найдем искомые:

а) групповые дисперсии:

$$D_{2p1} = \frac{(-2)^2 \cdot 4 + (-1)^2 \cdot 12 + 0^2 \cdot 17 + 1^2 \cdot 7}{40} \approx 0.9;$$

$$D_{2p2} = \frac{(-3)^2 \cdot 1 + (-2)^2 \cdot 4 + (-1)^2 \cdot 16 + 0^2 \cdot 13 + 1^2 \cdot 1}{35} = 1.2;$$

б) внутригрупповую дисперсию:

$$D_{\textit{BH2p}} = \frac{1}{n} \sum_{i=1}^{m} N_i D_{\textit{2p}} = \frac{0.9 \cdot 40 + 1.2 \cdot 35}{75} = 1.04$$

в) Найдем межгрупповую дисперсию:

$$D_{\text{межер}} = \frac{1}{n} \sum_{i=1}^{m} N_i \left(\overline{x_i} - \overline{x} \right)^2 = \frac{40 \left(4 - 3 \right)^2 + 35 \cdot \left(3 - 3 \right)^2}{75} \approx 0.5.$$

Пример. Были обследованы три группы по 10 респондентов на предмет воздействия различных методик, направленных на развитие коммуникативного навыка. Измерения проводились по 10-балльной шкале и представлены в таблице:

1 м	етодика	2 м	етодика	3 м	етодика
No	Уровень коммуни-	No	Уровень коммуни-	№	Уровень коммуни-
респондента	кативного навыка	респондента	кативного навыка	респондента	кативного навыка
1	6	1	5	1	5
2	3	2	1	2	2
3	4	3	4	3	5
4	4	4	4	4	5
5	5	5	4	5	4
6	6	6	4	6	3
7	4	7	3	7	2
8	6	8	5	8	4
9	5	9	3	9	4
10	5	10	5	10	3

Провести дисперсионный анализ данных можно с помощью программы «Анализ данных в EXCEL», инструмента «Однофакторный дисперсионный анализ». Для его осуществления необходимо: 1) не менее трех градаций фактора; 2) не менее двух испытуемых в каждой группе.

Группы	Счет	Сумма	Среднее	Дисперсия
Столбец 1	10	48	4,8	1,066667
Столбец 2	10	38	3,8	1,511111
Столбец 3	10	37	3,7	1,344444

Источник вариации	сумма квадратов отклонения SS	число степе- ней свободы df	дисперсия $MS = \frac{SS}{df}$	F _{расч}	Р-значение	$F_{\kappa p}$
Между группами	7,4	2	3,7	2,830028	0,076592	3,354131
Внутри групп	35,3	27	1,307407			
Итого	42,7	29				

Сопоставляются три различные группы людей, поэтому любые различия в показателях признака, обусловлены: 1) между группами – различными для каждой группы факторами (различными методиками); 2) внутри каждой группы – индивидуальными различиями между отдельными испытуемыми.

Внутригрупповая изменчивость выше, чем межгрупповая, поэтому можно говорить о том, что влияние различных методик на уровень коммуникативного навыка, прежде всего, обусловлено индивидуальными различиями самих испытуемых, нежели отличиями самих методик.

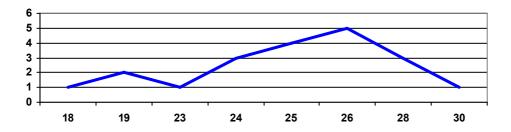
Полигон частот (относительных частот) выборки

<u>ЭТО</u>

ломаная, отрезки которой соединяют точки (x_i, k_i) $((x_i, f_i))$, $i = \overline{I; m}$.

Пример. В таблице приведены данные о количестве студентов в 20 группах педагогического факультета:

26	25	28	19	19	25	24	26	26	23
26	28	30	25	26	24	24	18	25	28

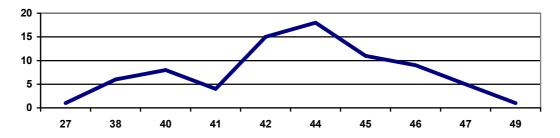

Найти вариационный ряд количества студентов в группах и размах варьирования. Построить полигон частот.

Решение. Записывая исходные данные в порядке возрастания, составим вариационный ряд:

x_i	18	19	23	24	25	26	28	30
k_i	1	2	1	3	4	5	3	1

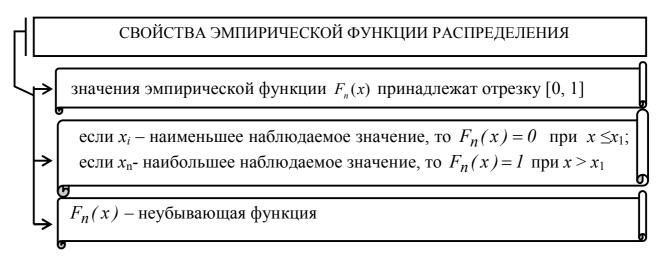
Размах варьирования $R = x_{max} - x_{min} = 30 - 18 = 12$.

Для построения полигона частот обозначим на оси абсцисс возможные значения признака, а на оси ординат соответствующие частоты k_i и полученные точки соединим отрезками.


Пример. Студентам был дан тест из 50 заданий. Оценка теста проводилась по количеству правильно решенных заданий и дала следующие результаты:

Количество баллов	27	38	40	41	42	44	45	46	47	49
Количество студентов	1	6	8	4	15	18	11	9	5	3

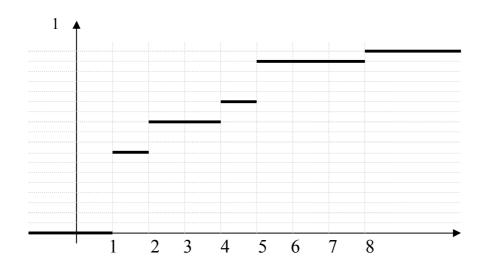
Запишите вариационный ряд количества студентов по количеству набранных баллов, и постройте полигон относительных частот.


$$n = 1 + 6 + 8 + 4 + 15 + 18 + 11 + 9 + 5 + 3 = 80$$

Количество	27	38	40	41	42	44	45	46	47	49
баллов										
Количество	1	6	8	4	15	18	11	9	5	3
студентов										
Относительная	0,0125	0,075	0,1	0,05	0,1875	0,225	0,1375	0,1125	0,0625	0,0375
частота f_i										

Эмпирическая функция распределения функция $F_n(x) = \frac{n_x}{n}$, где n – объем выборки, а n_x – число значений X в выборке, меньших x

Основное значение эмпирической функции распределения состоит в том, что она используется в качестве оценки функции распределения F(x) = P(X < x).


Пример. От каждого факультета на конференцию было делегировано следующее количество студентов: 5, 1, 2, 1, 1, 2, 5, 1, 8, 1, 1, 1, 4, 4, 5, 2, 1, 5. Построить эмпирическую функцию распределения.

Найдем сначала статистический ряд распределения числа студентов, принявших участие в конференции.

X_{i}	1	2	4	5	8
f_i	$\frac{8}{18}$	$\frac{3}{18}$	$\frac{2}{18}$	$\frac{4}{18}$	$\frac{1}{18}$

Запишем эмпирическую функцию распределения:

$$F_{18}(x) = \begin{cases} 0, & ecnu \quad x \le 1; \\ \frac{8}{18}, & ecnu \quad 1 < x \le 2; \\ \frac{11}{18}, & ecnu \quad 2 < x \le 4; \\ \frac{13}{18}, & ecnu \quad 4 < x \le 5; \\ \frac{17}{18}, & ecnu \quad 5 < x \le 8; \\ 1, & ecnu \quad x > 8. \end{cases}$$

Гистограмма выборки

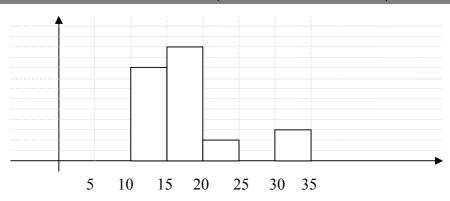
это фигура, построенная по данному алгоритму

Разбить область значений X (непрерывная случайная величина с неизвестной плотностью вероятности f(x)) на интервалы длины h_{i_i} ($i=\overline{1;s}$): $[x_0;x_1$), $[x_1;x_2)$, $[x_2;x_3)$, $[x_{s-1};x_s]$ (количество интервалов выбирается произвольно, обычно не меньше 5 и не больше 15)

Обозначить через x_i середины интервалов, а через m_i число элементов выборки, попавших в указанный интервал

Вычислить оценку плотности вероятности $f(x_i) \sim \frac{m_i}{nh_i}$ в точке x_i , если длины интервалов h_{i_i} ($i=\overline{1;s}$) различны, или относительные частоты $f(x_i) \sim \frac{m_i}{n_i}$ в точке x_i , если длины интервалов h_{i_i} ($i=\overline{1;s}$) одинаковы

Составить интервальный статистический ряд вида:

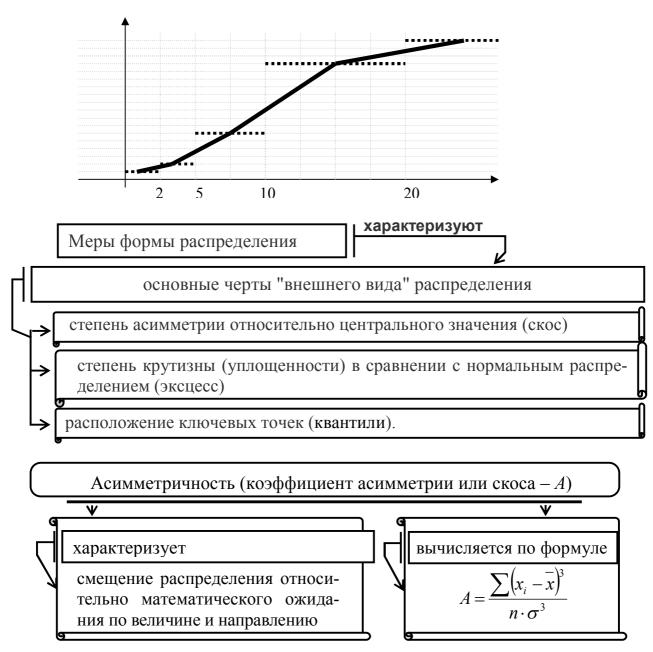

Элементы x_i	$[x_0; x_1]$	$[x_1;x_2)$	 $[x_{k-1};x_k]$	
Относительная частота f_i	f_1	f_2	 f_m	$\sum_{i=1}^{n} f_i = 1$

В прямоугольной системе координат построить прямоугольники с основаниями $h_{_i}$ ($i=\overline{1;s}$) и высотами $f(x_i)$.

Пример. В процессе исследования было зафиксировано время (в минутч) решения задачи студентами группы «1 А» педагогического факультета: 10, 10, 10, 12, 13, 13, 13, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 20, 24, 30, 30, 35. Постройте таблицу сгруппированных частот и гистограмму.

Размах варьирования $R = x_{\text{max}} - x_{\text{min}} = 35 - 10 = 25$. В нашем случае область значений X удобно разбить на интервалы h_{i_i} $(i = \overline{1;s})$ равной длины – 5 минут.

Номер интервала	Границы интервала	Число элементов вы- борки, попавших в	Плотность относи- тельной частоты
		указанный интервал $m_{_i}$	$f(x_i) \sim \frac{m_i}{n_i}$
1	[10; 15)	9	0,36
2	[15; 20)	11	0,44
3	[20; 25)	2	0,08
4	[25; 30)	0	0
5	[30; 35]	3	0,12


Кумулята распределения (график накопленных частот)

ломанная, отрезки которой соединяют точки (x_i, k_i) $((x_i, f_{i(cum)}))$, $i = \overline{1; m}$, где $f_{i(cum)} = \sum_{i=1}^m f_i$, $i = \overline{1; m}$ - накопительная частота элемента x_i .

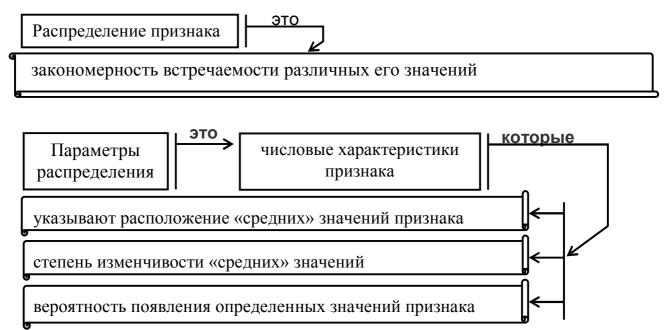
Кумулята распределения является графиком, отражающим функцию распределения случайной величины.

Пример. На факультете иностранных языков преподавательский состав характеризуется по стажу работы следующим образом: до 2-х лет - 6 человек, от 2 до 5 - 7, от 5 до 10 - 21 человек, от 10 до 20 - 59 человек, свыше 20 - 16. Постройте таблицу сгруппированных частот и кумулянту распределения стажа работы сотрудников данного факультета.

Номер интервала	Границы интервала	Число элементов выборки, попавших в указанный интервал m_i	Плотность относительной частоты $f(x_i) \sim \frac{m_i}{n_i}$	Накопительная частота $f_{i(cum)}$
1	(0; 2]	6	0,055	0,055
2	(2; 5]	7	0,064	0,119
3	(5; 10]	21	0,193	0,312
4	(10; 20]	59	0,541	0,853
5	более 20	16	0,147	1,000

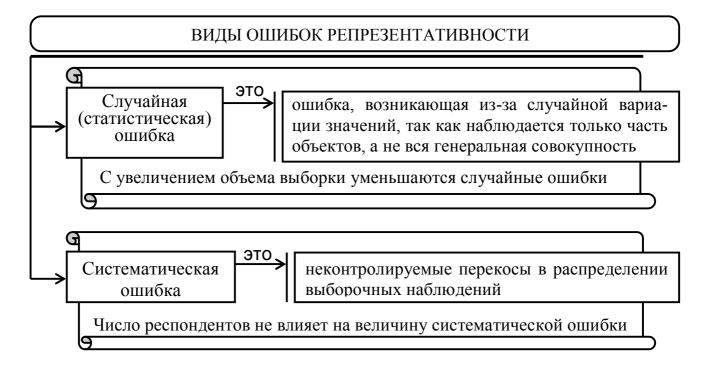
Если полигон асимметричен, то одна из его ветвей, начиная с вершины, имеет более пологий «спуск», чем другая. При положительном значении коэффициента распределения более пологий «спуск» полигона наблюдается справа. В противном случае — слева. Для нормального распределения коэффициент асимметрии равен 0. Асимметрия менее 0,5 считается малой (малыми значениями можно пренебречь).

Эксцесс нормального распределения равен 0. Если выборочному распределению соответствует отрицательный эксцесс, то полигон имеет более пологую вершину по сравнению с нормальной кривой. В случае положительного эксцесса – более крутой. Отрицательным пределом величины эксцесса является число –2, положительный предел – не существует. На практике для генеральных совокупностей больших объемов малыми значениями эксцесса можно пренебречь.


Пример. Была обследована группа из 20 человек с целью определения у них уровня развития лидерских способностей. Измерения проводились по 10-балльной шкале и представлены в таблице:

№ респондента	1	2	3	4	5	6	7	8	9	10
уровень развития лидерских способностей	6	3	4	4	5	6	4	6	5	5
№ респондента	11	12	13	14	15	16	17	18	19	20
уровень развития лидерских способностей	5	1	4	4	4	4	3	5	3	5

Провести полный анализ данных можно с помощью программы «Анализ данных в EXCEL», инструмента «Описательная статистика». В результате данной операции можно получить следующие данные:


Среднее	4,3	Интервал	5
Стандартная ошибка	0,272416	Минимум	1
Медиана	4	Максимум	6
Мода	4	Сумма	86
Стандартное отклонение	1,218282	Счет	20
Дисперсия выборки	1,484211	Наибольший(1)	6
Эксцесс	1,501552	Наименьший(1)	1
Асимметричность	-0,83829	Уровень надежности(95,0%)	0,570173

1.3. Вычисление ошибки репрезентативности для собственно случайной выборки

В качестве данных параметров выступают математическое ожидание, дисперсия, показатели асимметрии и эксцесса. Однако в психолого-педагогических исследованиях оперируют не параметрами, а их приближенными значениями, которые называются оценками параметров. Это обусловлено тем, что при помощи выборочного метода нельзя получить абсолютно точную оценку наблюдаемого признака, то есть существует вероятность ошибки.

Вычисление ошибки репрезентативности предполагает определение доверительного интервала для оценки математического ожидания нормального распределения при известном (неизвестном) значении среднеквадратического отклонения σ этого распределения.

Поясним на примере смысл, который имеет заданная надежность γ : если произведено достаточно большое число выборок, то надежность γ =0,95 указывает, что в 95% из них параметр действительно заключен в доверительный интервал; лишь в 5% случаев он может выйти за границы данного интервала.

ДОВЕРИТЕЛЬНЫЕ ИНТЕРВАЛЫ ДЛЯ ОЦЕНКИ МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ НОРМАЛЬНОГО РАСПРЕЛЕНИЯ ПРИ ИЗВЕСТНОМ **б**

количественный признак X генеральной совокупности распределён нормально

известно среднеквадратическое отклонение σ этого распределения

выборочная средняя \overline{x} является случайной величиной \overline{X} , то есть \overline{x} изменяется от выборки к выборке

выборочные значения признака $x_1, x_2, ..., x_n$ отражают одинаково распределённые независимые случайные величины $X_1, X_2, ..., X_n$, то есть математическое ожидание каждой из этих величин равно $M(\overline{X}) = a$ и среднеквадратическое отклонение $\sigma(\overline{X}) = \frac{\sigma}{\sqrt{a}}$.

неизвестное математическое ожидание a по выборочной средней x

доверительный интервал, покрывающий параметр a с надёжностью γ

решение

Для нахождения доверительного интервала, покрывающего параметр a с надёжностью γ , рассмотрим соотношение $P\left(|\overline{X}-a|<\delta\right)=\gamma$. Используя формулу $P(|X-a|<\delta)=2\Phi\left(\frac{\delta}{\sigma}\right)$, в которой заменив X на \overline{X} и σ на $\sigma(\overline{X})$, запи-

шем P ($|\overline{X}-\mathbf{a}|<\delta$) =2 Φ $\left(\frac{\delta\sqrt{n}}{\sigma}\right)$ = 2 Φ (t), где t = $\frac{\delta\sqrt{n}}{\sigma}$ (число t определяется по

таблице функции Лапласа: находим аргумент t, которому соответствует значение функции Лапласа, равное $\Phi(t) = \frac{\gamma}{2}$). Из данного равенства выразим

$$\delta = \frac{t\sigma}{\sqrt{n}}. \quad \text{Тогда} \quad P\left(\left|\overline{X} - a\right| < \frac{t\sigma}{\sqrt{n}}\right) = 2\Phi(t) \text{ или} \quad P\left(\frac{-}{x} - \frac{t\sigma}{\sqrt{n}} < a < \frac{-}{x} + \frac{t\sigma}{\sqrt{n}}\right) = 2\Phi(t) = \gamma.$$

Таким образом, *доверительный интервал* $\left(\frac{-}{x} - \frac{t\sigma}{\sqrt{n}}; \frac{-}{x} + \frac{t\sigma}{\sqrt{n}}\right)$ покрывает неизвестный параметр a с надёжностью γ .

Из полученного доверительного интервала запишем формулу ошибки penpesehmamushocmu для собственно случайного отбора $\delta = \frac{t\sigma}{\sqrt{n}}$.

Для оценки математического ожидания с наперед заданной точностью δ и надежностью γ необходим *минимальный объем выборки*, который находим по формуле: $n = \left(\frac{t\sigma}{s}\right)^2$.

ДОВЕРИТЕЛЬНЫЕ ИНТЕРВАЛЫ ДЛЯ ОЦЕНКИ МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ НОРМАЛЬНОГО РАСПРЕДЕЛЕНИЯ ПРИ НЕИЗВЕСТНОМ σ

Количественный признак Х генеральной совокупности распределён нормально.

Неизвестно среднеквадратическое отклонение σ этого распределения.

Выборочная средняя \overline{x} является случайной величиной \overline{X} , то есть \overline{x} изменяется от выборки к выборке.

Плотность распределения Стьюдента S(t, n). Распределение Стьюдента определяется параметром n — объемом выборки и не зависит от неизвестных параметров a и σ .

найти

Доверительный интервал, покрывающий параметр a с надёжностью γ .

решение

По данным выборки строится случайная величина $T = \frac{\overline{X} - a}{S / \sqrt{n}}$ (ее воз-

можные значения обозначают через t), имеющая распределение Стьюдента с k=n-1 степенями свободы. В данном соотношении \overline{X} - выборочная средняя, S – «исправленное» среднеквадратическое отклонение, n – объем выборки.

Для нахождения доверительного интервала, покрывающего параметр a с надёжностью γ , воспользуемся тем фактом, что S(t, n) — четная функция от t и вероятность осуществления неравенства $\left|\frac{\overline{X} - a}{S / \sqrt{n}}\right| < \gamma$ определяется по фор-

муле $P(\left|\frac{\overline{X}-a}{S/\sqrt{n}}\right| < t_{\gamma}) = 2\int_{0}^{t_{\gamma}} S(t,n)dt = \gamma$. Неравенство в круглых скобках можно пре-

образовать в равносильное ему двойное неравенство: $P\bigg(\overline{X} - \frac{t_{\gamma}S}{\sqrt{n}} < a < \overline{X} + \frac{t_{\gamma}S}{\sqrt{n}}\bigg) = \gamma \ . \ 3$ аменив случайные величины \overline{X} и S на неслу-

чайные величины x и s, которые можно найти по выборке $\frac{\sum_{i=1}^{l} x_i m_i}{n}$,

$$s = \sqrt{\frac{\sum\limits_{i=1}^{k} n_i \left(x_i - \overline{x}\right)^2}{n-1}}$$
, найдем **доверительный интервал** $\left(\overline{x} - \frac{t_\gamma s}{\sqrt{n}}; \overline{x} + \frac{t_\gamma s}{\sqrt{n}}\right)$, по-

крывающий неизвестный параметр a с надежностью γ . Используя «Таблицу значений $t_{\gamma} = t(\gamma, n)$ » по заданным n и γ можно найти t_{γ} .

Из полученного доверительного интервала запишем формулу ошибки репрезенташивности для собственно случайного отбора $\delta = \frac{t_{\gamma}s}{\sqrt{n}}$.

Пример. Была проведена выборка студентов в количестве 49 человек. Студентам данной выборки был предложен тест. Фиксировалось время выполнения теста. Среднее значение времени по выборке составило 3,9 минут, а среднее квадратическое отклонение - 3 минуты. Найти доверительные интервалы для оценки неизвестного математического ожидания a, если задана надёжность оценки γ =0,95.

Найдем t. Из соотношения $2\Phi(t)=0.95$ получим $\Phi(t)=0.475$. По таблице функции Лапласа находим t=1,96. Найдем точность оценки: $\delta=\frac{t\sigma}{\sqrt{n}}=\frac{1.96\cdot 3}{\sqrt{49}}=0.84$.

Доверительный интервал: (3,9-0,84; 3,9+0,84) или (3,06; 4,74).

Пример. Пусть была произведена выборка студентов в количестве 784 человек. Средний возраст по выборке - 20 лет, среднеквадратическое отклонение - 2 года. Найти доверительные интервалы для оценки неизвестного математического ожидания a, если задана надёжность оценки γ =0,95.

Найдем t. Из соотношения $2\Phi(t)$ =0,95 получим $\Phi(t)$ =0,475. По таблице функции Лапласа находим t=1,96. Найдем точность оценки: $\delta = \frac{t\sigma}{\sqrt{n}} = \frac{1,96 \cdot 2}{\sqrt{784}} = 0,14$.

Доверительный интервал: (20–0,14; 20+0,14) или (19,86; 20,14).

Пример. Была проведена выборка студентов в количестве 50 человек. Данные студенты должны были решить задачу несколькими способами. Полученные результаты представлены в таблице.

x_i	0	1	2	3	4
m_i	5	15	15	5	10

Оценить неизвестное математическое среднее ожидание при помощи доверительного интервала с надежностью 0,95.

Найдем выборочную среднюю и исправленное среднеквадратическое отклонение:

$$\overline{x} = \frac{0 \cdot 5 + 1 \cdot 15 + 2 \cdot 15 + 3 \cdot 5 + 4 \cdot 10}{50} = \frac{130}{50} = 2,6.$$

$$s = \sqrt{\frac{5(-2,6)^2 + 15(-1,6)^2 + 15(-0,6)^2 + 5(0,4)^2 + 10(1,4)^2}{49}} = \sqrt{\frac{89}{49}} = \sqrt{2}.$$

Используя «Таблицу значений $t_{\gamma} = t(\gamma, n)$ » по заданным n и γ найдем t_{γ} =2,009.

Точность оценки вычислим по формуле:
$$\delta = \frac{t_\gamma s}{\sqrt{n}} = \frac{2,009\sqrt{2}}{\sqrt{50}} = 0,4018$$
 .

Доверительный интервал: (2,6-0,4018; 2,6+0,4018) или (2,1982; 3,0018).

Пример. Была проведена выборка студентов в количестве 50 человек. Данные студенты должны были решить тест. Результаты исследования длительности выполнения тестового задания (в минутах) представлены в группированном виде:

$t_i; t_{i+1}$	[24; 32)	[32; 40)	[40; 48)	[48; 56)	[56; 64)	[64; 72)	[72; 80]
m_i	2	4	10	15	11	5	3

Построить доверительный интервал с надежностью 0,99 для средней длительности выполнения тестового задания.

Найдем выборочную среднюю и исправленное среднеквадратическое отклонение:

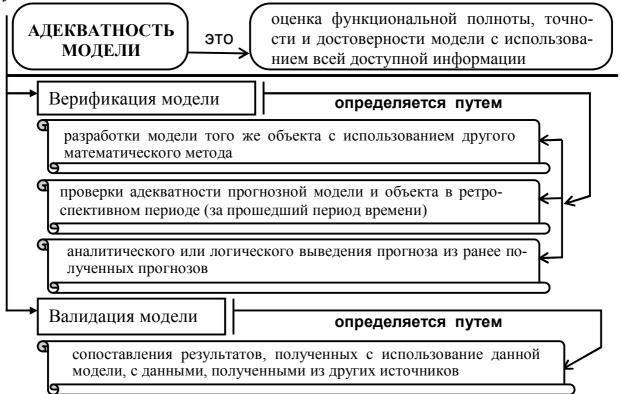
$$\bar{t} = \frac{28 \cdot 2 + 36 \cdot 4 + 44 \cdot 10 + 52 \cdot 15 + 60 \cdot 11 + 68 \cdot 5 + 76 \cdot 3}{50} = 52,96 .$$

$$s = \sqrt{\frac{2(-31)^2 + 4(-17)^2 + 10(-9)^2 + 15(-1)^2 + 11 \cdot 7^2 + 5 \cdot 15^2 + 3 \cdot 23^2}{49}} \approx 11,502 .$$

Используя «Таблицу значений $t_{\gamma} = t(\gamma, n)$ » по заданным n и γ найдем $t_{\gamma} = 2,679$.

Точность оценки вычислим по формуле: $\delta = \frac{t_\gamma s}{\sqrt{n}} = \frac{2,679 \cdot 11,502}{7,072} \approx 4,357$. Доверительный интервал: (48,603; 57,317).

ГЛАВА 2. ОБЩИЕ ПРИНЦИПЫ ПРОВЕРКИ СТАТИСТИЧЕСКИХ ГИПОТЕЗ


2.1. Понятие статистической гипотезы

Использование математических методов в психолого-педагогических исследованиях предполагает создание формального математического аппарата, пригодного для изучения педагогических явлений и процессов на специальном объекте — математической модели, являющейся промежуточным звеном между исследователем и предметом исследования.

Под математической моделью в психолого-педагогическом исследовании чаще всего понимают уравнение или систему уравнений, которые отражают связи между наиболее существенными показателями изучаемого объекта и строятся на основе эмпирических (статистических) данных. Поэтому, изучая модель, можно получить новые данные о предмете исследования, которые в обычных условиях определить достаточно сложно, а в некоторых случаях и невозможно.

Важным понятием математического моделирования является понятие адекватности модели (соответствие модели моделируемому объекту или процессу), которое в определенной мере условное понятие, так как полного соответствия математической модели реальному объекту не может быть. Имеется в виду адекватность не вообще, а только по тем свойствам, которые считаются существенными.

Построение математической модели предполагает количественное описания предмета исследования, формулирование статистической гипотезы и ее проверки.

Альтернативная гипотеза

предположение, принимаемое в случае отклонения нулевой гипотезы, которое содержит утверждение о наличии связи между изучаемыми переменными

Нулевая и альтернативная гипотезы образуют полную группу несовместных событий: если одна из них верна, то другая является ложной, и наоборот, поэтому отклонение одной из них влечет принятие другой.

	статистические гипотезы						
	нулевая гипотеза	альтернативная гипотеза (экспериментальная гипотеза)					
назначение	гипотеза об отсутствии различий	гипотеза о значимости различий					
предполагаемый	это то, что мы хотим оп-	это то, что мы хотим доказать					
результат	ровергнуть						
обозначается	$\mathcal{H}_{\!\scriptscriptstyle \mathrm{O}}$	\mathcal{H}_1					
математическая	X_1 - X_2 =0, где X_1 , X_2 – со-	X_1 - $X_2 \neq 0$, где X_1 , X_2 – сопостав-					
модель	поставляемые значения	ляемые значения признаков					
	признаков						

Нулевая и альтернативная гипотезы могут быть направленными и ненаправленными.

	Статистические гипотезы				
	нулевая гипотеза	альтернативная гипотеза			
направленные гипотезы	X_1 не превышает X_2	\mathcal{X}_1 превышает \mathcal{X}_2			
ненаправленные гипотезы	\mathcal{X}_1 не отличается от \mathbf{X}_2	X_1 отличается от X_2			

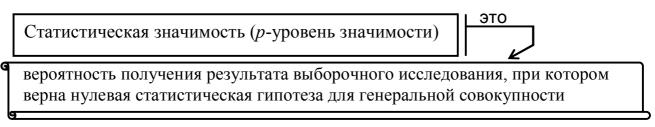
Направленные гипотезы формулируются, если надо доказать, что:


- 1) в одной из групп индивидуальные значения испытуемых по какомулибо признаку выше, а в другой ниже;
- 2) в одной из групп под влиянием каких-то экспериментальных воздействий произошли более выраженные изменения, чем в другой группе.

Ненаправленные гипотезы формулируются, если надо доказать, что различаются формы распределения признака в двух различных группах испытуемых.

2.2. СТАТИСТИЧЕСКАЯ ПРОВЕРКА ГИПОТЕЗ

Статистическая проверка гипотез


процедура обоснованного сопоставления высказанной гипотезы с имеющейся выборкой, осуществляемая при помощи того или иного статистического критерия

Центральными понятиями статистического критерия являются число степеней свободы, *p*-уровень значимости и правило принятия статистического вывода.

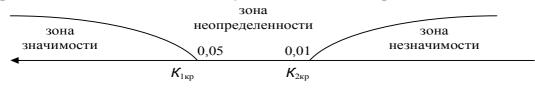
Число степеней свободы, как правило, линейно зависит от объема выборки n, а также от числа признаков k или их градаций (например, df=n-k-1) — чем больше эти показатели, тем больше число степеней свободы. Однако надо отметить, что нет универсальной формулы для определения числа степеней свободы для всех возможных случаев, поэтому статистический критерий содержит формулу для расчета числа степеней свободы.

Чем меньше p-уровень, тем больше оснований для того, чтобы отклонить H_0 в пользу H_1 и подтвердить исходную экспериментальную гипотезу.

Таблицы критических значений содержат квантили теоретического распределения, соответствующие наиболее важным критическим значениям p-уровня (0,1; 0,05; 0,01 и т.д.) для различных чисел степеней свободы. Для вычисленного числа степеней свободы по соответствующей статистическому критерию таблице определяются соответствующие ближайшие критические значения и p-уровни.

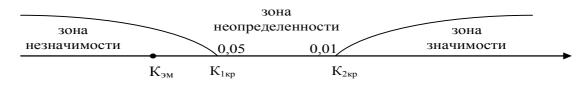
ПРАВИЛО ПРИНЯТИЯ СТАТИСТИЧЕСКОГО ВЫВОДА

на основе полученных экспериментальных данных вычислить эмпирическое значение критерия $K_{\scriptscriptstyle {\rm 3M}n}$


по соответствующим критерию таблицам найти критические значения $K_{1\kappa p}$ и $K_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1%

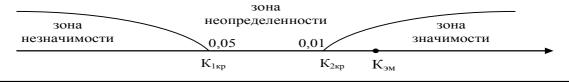
записать критическое значение в виде: $K_{\kappa p} = \begin{cases} K_{1 \kappa p} & \partial \pi & P \leq 0.05 ; \\ K_{2 \kappa p} & \partial \pi & P \leq 0.01 . \end{cases}$

расположить эмпиричское значение критерия Kэмn и критические значения K_1 кp и K_2 кp на оси значимости (ась абсцисс Ox декартовой системы координат, на которой выделено три зоны: левая (незначимости), средняя (неопределенности), правая (значимости))



Исключения: G-критерий знаков (для $n \le 100$), критерий Т-Вилкоксона и критерий U- Манна-Уитни. Для них устанавливаются обратные соотношения.

сформулировать принятие решения


если K эми находится в зоне $\mathit{нез}$ начимости, то принимается гипотеза H_0 об отсутствии различий

если Кэмп находится в зоне неопределенности, то есть вероятность принятия ложного решения (необходимо увеличить выборку или воспользоваться другим критерием)

если Kэми находится в зоне значимости, то гипотеза об отсутствии различий H_0 отклоняется и принимается гипотеза H_1 о наличии различий

Рассмотрим возможные исходы принятия решения в зависимости от действительного положения дел:

	верна \mathcal{H}_{o}	верна \mathcal{H}_1	всего
принимается \mathcal{H}_o	а	b	a+b
принимается \mathcal{H}_1	С	d	c+d
всего	a+c	b+d	n

ХАРАКТЕРИСТИКИ КРИТЕРИЯ

Ошибка Исследование проводится, как правило, на выборке, а вывод делается в отношении генеральной совокупности, поэтому, принимая решение, всегда допускается вероятность его ошибочности. В результате статистической проверки гипотезы могут быть допущены ошибки двух родов:

- а) *Ошибка первого рода* состоит в том, что будет отвергнута нулевая гипотеза, в то время как она верна. Вероятность ошибки первого рода $\frac{c}{}$.
- б) *Ошибка второго рода* состоит в том, что будет принята нулевая гипотеза, в то время как она неверна. Вероятность ошибки второго рода $-\frac{b}{b+d}$.

Мощность критерия (специфичность)

Это вероятность того, что правильно от-

вергнута нулевая гипотеза.

Мощность зависит от: 1) уровня значимости; 2) альтернативной гипотезы. Мощность возрастает с ростом объема выборки и убывает с уменьшением уровня значимости. Мощность критерия $-\frac{d}{L_{+}+L_{-}}$.

Чувствительность критерия

Определяется по формуле: $\frac{a}{a+a}$

Ожидаемая частота

Ожидаемая частота – $\frac{a}{n}$. Это вероятность того, что пра-

вильна нулевая гипотеза.

Относительный риск

Определяется по формуле : $\frac{a}{a+c}$: $\frac{c}{c+d}$

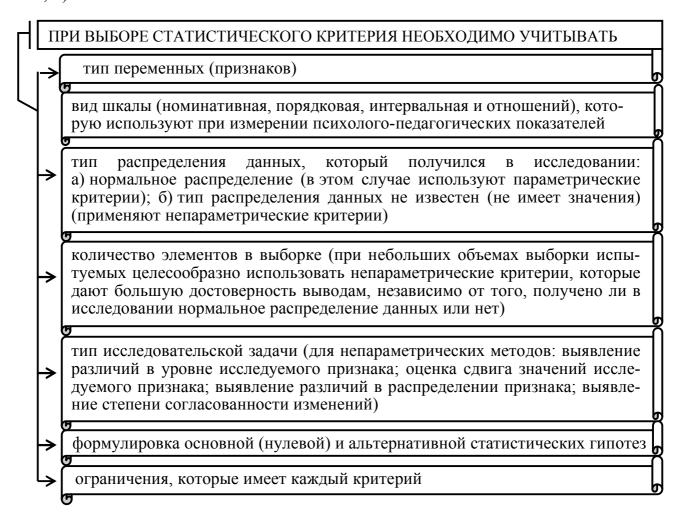
Ложно отрицательное заключение

При проверке гипотезы ложно отрицательное заключение состоит в том, что интересующую нас гипотезу объявляют ложной, когда на самом деле она истинна. Другими словами, когда допускается ошибка первого

рода. Доля ложно отрицательных – $\frac{c}{c+d}$.

Ложно положительное заключение

При проверке гипотезы ложно положительное заключение состоит в том, что интересующую нас гипотезу объявляют истинной, когда на самом деле она ложна. Другими словами, когда допускается ошибка второго рода. Лоня пожи положительных — b


рого рода. Доля ложно положительных –
$$\frac{b}{a+b}$$

Среди данных характеристик три являются независимыми, а остальные могут быть вычислены через них.

Практическая и познавательная ценность статистической проверки гипотезы определяется ее адекватностью изучаемым сторонам объекта, а также тем, насколько правильно выбран метод для его обоснования, т.е. насколько правильно построено психолого-педагогическое исследование.

2.3. КЛАССИФИКАЦИЯ ИССЛЕДОВАТЕЛЬСКИХ ЗАДАЧ, РЕШАЕМЫХ С ПОМОЩЬЮ СТАТИСТИЧЕСКИХ КРИТЕРИЕВ

Психолого-педагогические задачи, решаемые с помощью методов математической статистики, условно можно разделить на следующие группы: 1) выявление различий в уровне исследуемого признака; 2) оценка сдвига значений исследуемого признака; 3) выявление различий в распределении признака; 4) выявление степени согласованности изменений.

Учитывая вышесказанное, можно предложить следующую классификацию исследовательских задач и статистических критериев, предназначенных для их решения, учитывающую условия применимости критерия (тип шкалы, количество выборок и замеров) и соответствующие формулировки нулевой и альтернативной статистических гипотез.

Классификация исследовательских задач и непараметрических методов их решения					
Задача Условия Гипотеза		Гипотеза	Шкала	Критерий	
	1. Выя	вление различий в уровне исследуемого признака			
оценка различий между несколь- кими выборками по уровню ка- кого-либо признака, количест- венно измеренного		 Н₀: уровень признака в первой выборке не превышает уровня признака во второй выборке. Н₁: уровень признака в первой выборке превышает уровень признака во второй выборке. 	порядковая, интервальная	критерий Розенбаума критерий Манна- Уитни	
	более двух выборок	H ₀ : между выборками 1, 2, 3 и т.д. существуют лишь случайные различия по уровню исследуемого признака.	порядковая, интервальная	критерий Крускала- Уолиса	
H ₁ : между выборками 1, 2, 3 и т.д. существуют не- случайные различия по уровню исследуемого при-			номинативная, порядковая, интервальная	критерий Фишера	
		H_0 : тенденция возрастания значений признака при переходе от выборки к выборке является случайной. H_1 : тенденция возрастания значений признака при переходе от выборки к выборке не является случайной.	порядковая, интервальная	критерий тенденций Джонкира	
	2. 0	Оценка сдвига значений исследуемого признака	,	,	
(сдвиг - это разность	между вторы	м и первым замерами одного признака на одной и той	и́ же выборке ис	пытуемых)	
а) временные, ситуационные, умозрительные, измерительные	два замера одного	Н ₀ :отсутствие значимых различий в состоянии изучаемого свойства при первичном и вторичном изме-	номинативная	критерий Макнамары	
(одни и те же показатели, измеренные у одних и тех же испытуемых в разное время, в	признака на одной и той же вы-	рениях его состояния у респондентов рассматриваемой совокупности. Н ₁ : состояния изучаемого свойства значимо различ-	порядковая, интервальная	двухсторонний кри- терий знаков	
ситуациях в разных представляемых условиях или разными способами)	борке	ны в одной и той же совокупности респондентов при первичном измерении этого свойства и при вторичном его измерении.	интервальная	двухсторонний кри- терий Вилкоксона	

(5) OTRUCH HOT BRUGUNON ONORO	TD0 201/200	Donwove 1	норанкороа	A THE ATTORNEY WALL
б) сдвиги под влиянием экспе-	два замера	Вариант 1	порядковая,	односторонний кри-
риментальных воздействий (одни	одного	H_0 : результаты второго измерения изучаемого свой-	интервальная	терий знаков
и те же показатели, измерен-	признака	ства у одних и тех же объектов — y_i имеют тенден-		
ные у одних и тех же испытуе-	на одной и	цию быть меньше результатов первичного измерения		
мых до и после воздействия:	той же вы-	$-x_i$.	интервальная	односторонний кри-
при отсутствии или при нали-	борке	H_1 : результаты второго измерения изучаемого свой-	P	терий Вилкоксона
чии контрольной группы)		ства у одних и тех же объектов — y_i имеют тенден-		- op
		цию превышать результаты первичного измерения —		
		X_i .		
		Вариант 2		
		H_o : результаты второго измерения изучаемого свой-		
		ства у одних и тех же объектов — y_i имеют тенден-		
		цию быть больше результатов первичного измерения		
		$-x_i$.		
		Н ₁ : результаты второго измерения изучаемого свой-		
		ства у одних и тех же объектов — y_i имеют тенден-		
		цию быть меньше результаты первичного измерения		
		$-x_i$.		
в) структурные сдвиги (разные	более двух	Н ₀ : увеличение индивидуальных показателей при пе-	порядковая,	критерий тенденций
показатели одних и тех же испы-	замеров	реходе от первого условия ко второму, а затем к	интервальная	Пейджа
туемых, если они измерены в одних и	одного	третьему и далее, случайно.		
тех же единицах, по одной той же	признака	Н ₁ : увеличение индивидуальных показателей при пе-		
шкале)	на одной и	реходе от первого условия ко второму, а затем к		
	той же вы-	третьему и далее, неслучайно.		
	борке			
	более двух	Н ₀ : изменение индивидуальных показателей при пе-	интервальная	критерий Фридмана
	замеров	реходе от первого условия ко второму, а затем к	<u> </u>	
	одного	третьему и далее, случайно.	номинатив-	критерий Фишера
	признака	Н ₁ : изменение индивидуальных показателей при пе-	ная порядко-	
	на одной и	реходе от первого условия ко второму, а затем к	вая, интер-	
	той же вы-	третьему и далее, неслучайно.	вальная	
		±	l	

	3. Выявление	степени согласованности изменений з	начений признаков	
а) определение степени тесноты связи между двумя признаками, показателем которой является абсолютная величина линейного коэффициента	замеры двух признаков на одной и той же выборке	Вариант 1 H_0 : коэффициент линейной корреляции между переменными A и Б не отличается от нуля. H_1 : коэффициент линейной корреля-	номинативная	коэффициенты ассоциации Д.Юла и контингенции К.Пирсона Коэффициенты взаимной сопряженности К.Пирсона и А.Чупрова
корреляции		ции между переменными А и Б достоверно отличается от нуля. Вариант 2	порядковая	коэффициенты ранговой корреляции Спирмена, Кенделла
		H_0 : коэффициент линейной корреляции между иерархиями A и B не отличается от нуля. H_1 : коэффициент линейной корреля-	для одной переменной — номинативная; для другой — порядковая	коэффициенты ранговой корреляции Гудмана, ранговобиссериальной корреляции
		ции между иерархиями А и Б достоверно отличается от нуля.	интервальная	Коэффициент линейной корреляции К.Пирсона
			для одной переменной – номинативная; для другой – интервальная	Коэффициент точечной биссериальной
б) определение степени тесноты связи между двумя признаками, показателем которой является абсолютная величина криволинейного коэффициента корреляции	замеры двух признаков на одной и той же выборке	H_0 : коэффициент криволинейной корреляции между переменными A и B не отличается от нуля. H_1 : коэффициент криволинейной корреляции между переменными A и B достоверно отличается от нуля.	порядковая, интервальная	парный криволинейный корреляционный анализ
в) определение степени тесноты связи между тремя и более признаками, показателем которой является абсолютная	замеры трех и более призна- ков на одной и той же выборке	H_0 : коэффициент корреляции между признаками не отличается от нуля. H_1 : коэффициент корреляции между признаками достоверно отличается	номинативная порядковая, интервальная отношений	множественный корреляцион- ный анализ
величина коэффициента корреляции		от нуля.	порядковая	коэффициент множественной конкордации качественных признаков

г) выявить «чистую» зависимость признака от одного из факторов и установить, каково было бы влияние этого фактора на величину признака при условии, что влияние других (другого) факторов на этот признак исключается	замеры трех и более признаков на одной и той же выборке	Н ₀ : Частный коэффициент линейной корреляции между признаками не отличается от нуля. Н ₁ : Частный коэффициент линейной корреляции между признаками достоверно отличается от нуля.	номинативная порядковая, интервальная отношений	частный коэффициент линейной корреляции на основе рекуррентных соотношений, алгебраических дополнений
	4. B	выявление различий в распределении пр	ризнака	
Распределения м	огут различаться по	о средним, дисперсиям, асимметрии, эксце	ессу и по сочетанию даннь	іх параметров
а) сопоставление эмпирического распределения с теоретическим	один замер од- ного признака на одной выборке	 Н_о: полученное эмпирическое распределение не отличатся от теоретического распределения. Н₁: полученное эмпирическое распределение отличатся от теоретического распределения. 	номинативная порядковая, интервальная	критерий Пирсона с по- правкой на непрерыв- ность биномиальный критерий
б) сопоставление двух эмпирических распределений	две независимые выборки одина-	H _o : эмпирическое распределение 1 не отличатся от эмпирического распреде-	номинативная порядковая, интервальная	критерий Пирсона
одного и того же признака	ковой или различной численности	ления 2. Н ₁ : эмпирическое распределение 1 от- личатся от эмпирического распределе- ния 2.	порядковая, интервальная	критерий Колмогорова- Смирнова
в) сопоставление трех или более эмпирических распределений одного и того же признака	более двух независимых выборок одинаковой или различной численности	H_{o} : эмпирические распределения не различаются между собой. H_{1} : эмпирические распределения различаются между собой.	номинативная порядковая, интервальная отношений	критерий Фишера критерий Пирсона

	5. Установление ст	епени влияния независимых переменных на	зависимые	
а) по существующим значе-	замеры двух при-	H _o : модель парной регрессии не является	интервальная	парный регрессионный
ниям факторного признака х	знаков на одной и	адекватной, параметры модели – незначимы.	отношений	анализ
и значениям результативно-	той же выборке	Н ₁ : модель парной регрессии является адек-		
го признака у найти уравне-	(значение одного	ватной, параметры модели – значимы.		
ние, выражающее зависи-	признака рассмат-			
мость между признаками	ривается как ре-			
	зультативный, зна-			
	чение другого – как			
	факторный)			
б) по существующим значе-	замеры двух и более	H _o : модель множественной регрессии не яв-	интервальная	множественный регрес-
ниям факторных признаков	признаков на одной	ляется адекватной, параметры модели - не-	отношений	сионный анализ
$x_1, x_2,, x_n$ и значениям ре-	и той же выборке	значимы.		
зультативного признака у	(значение одного	Н ₁ : модель множественной регрессии явля-		
найти уравнение, выра-	признака рассмат-	ется адекватной, параметры модели – зна-		
жающее зависимость между	ривается как ре-	чимы.		
признаками	зультативный, зна-			
	чение остальных -			
	как факторные)			
б) по существующим значе-	замеры четырех и	H _o : в системе одновременных уравнений не	интервальная	Система одновременных
ниям факторных признаков	более признаков на	, , , , , , , , , , , , , , , , , , , ,	отношений	(совместных) уравнений
$x_1, x_2,, x_n$ и значениям ре-	одной и той же вы-	регрессии, которые признаны адекватными.		
зультативных признаков y_I ,	борке (значение	Н ₁ : в системе одновременных уравнений хо-		
y_2,\ldots, y_m найти систему	одних признаков	тя бы два уравнения множественной регрес-		
уравнений, выражающую	рассматриваются	сии признаны адекватными.		
зависимость между призна-	как результативные,			
ками	значение остальных			
	– как факторные)			

ГЛАВА 3. НЕПАРАМЕТРИЧЕСКИЕ СТАТИСТИЧЕСКИЕ КРИТЕРИИ

3.1. Критерий Розенбаума

Критерий Розенбаума позволяет определить

степень различий между двумя выборками по уровню какого-либо признака, количественно измеренного

Критерий Розенбаума включает следующие этапы:							
Определить признак, участвующий в сопоставлении (значения признака							
дол	жнь	и быть представлены не ниже порядковой шкалы).					
Про	изв	ести выборку двух групп респондентов, учитывая что:					
2.1	ВЬ	саждой из выборок должно быть более 10 испытуемых;					
2.2	об	ъёмы выборок должны примерно совпадать;					
2.3	во	спользоваться правилом Е.В. Гублера:					
	a	если в обеих выборках меньше 50 наблюдений, то абсолютная вели-					
	<u> </u>	чина разности между n_1 и n_2 не должна быть больше 10 наблюдений;					
	б	если в каждой из выборок больше 51 наблюдения, но меньше 100, то					
		абсолютная величина разности между n_1 и n_2 не должна быть больше					
	i !	20 наблюдений;					
	В	если в каждой из выборок больше 100 наблюдений, то допускается,					
	!	чтобы одна из выборок была больше другой не более чем в 1,5 – 2					
П	<u> </u>	раза.					
-		ти две серии наблюдений на двух независимых выборках респондентов					
ООБ	Сма						
		$x_1, x_2, \ldots x_i, \ldots x_{n_i};$					
		$y_1, y_2, \ldots, y_j, \ldots, y_{n_2}$					
где	слу	учайная переменная χ характеризует состояние изучаемого свойства в					
		из рассматриваемых совокупностей, а случайная переменная y — со-					
		е того же свойства во второй совокупности.					
		оны разброса значений признака в двух выборках не должны совпадать					
		улировать гипотезы:					
второй выборке.							
\mathcal{H}_1 Уровень признака в первой выборке превышает уровень признака во выборке.							
Vnc		очить значения признака отдельно в каждой выборке по степени воз-					
	•	1					
растания (или убывания).							
Выборку, значения в которой выше, принять за первую, а выборку, значения которой ниже, – за вторую.							
	Про 2.1 2.2 2.3 Про объе где однестоя Диа меж Сфо не упо раст	Должнь Произв 2.1 в н 2.2 об 2.3 во в провес объема Провес объема					

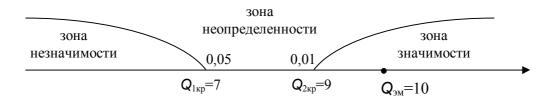
8	Определить максимальное значение во второй выборке.
9	Подсчитать количество значений признака в первой выборке, которые выше
	максимального значения во второй выборке. Обозначить полученную величи-
	ну как S_1 .
10	Определить минимальное значение признака в первой выборке.
11	Подсчитать количество значений во второй выборке, которые ниже мини-
	мального значения первой выборки. Обозначить полученную величину как
	S_2 .
12	Подсчитать эмпирическое значение Q по формуле: $\mathbf{Q}_{9MN} = S_1 + S_2$ (чем больше
	расхождения между выборками, тем больше величина $Q_{_{\mathfrak{IM}n}}$).
13	Определить критические значения $\mathbf{Q}_{1\kappa p}$ и $\mathbf{Q}_{2\kappa p}$, которые отвечают уровням
	значимости в 5% и 1%, по таблице № 1 приложения для данных n_1 и n_2 (при
	$n_{1,}$ $n_{2}>26$ сопоставить полученное эмпирическое значение с $Q_{\kappa p}=8$).
14	Расположить эмпирическое значение критерия $Q_{\scriptscriptstyle 3MR}$ и критические значения
	$Q_{1\kappa p}$ и $Q_{2\kappa p}$ на оси значимости.
15	Если $Q_{\scriptscriptstyle {\rm 9M}\it{n}}$ находится в зоне незначимости, то принимается гипотеза $\mathcal{H}_{\it{0}}$ об от-
	сутствии различий. Если $Q_{{}_{\!$
	сутствии различий \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии раз-
	личий. Если $Q_{_{9Mn}}$ находится в зоне неопределенности, то существует вероят-
	ность принятия ложного решения.
16	Если критерий Розенбаума не выявляет достоверных различий, то из этого не
	следует, что их в действительности нет. В этом случае необходимо применить
	критерий Фишера.

Пример. На выборке из 26 человек (подростков 16 лет, поставленных на учет в детскую комнату милиции) проведено исследование потенциала коммуникативной импульсивности. Из них было 14 юношей и 12 девушек. Показатели потенциала коммуникативной импульсивности представлены в таблице.

	юноши		девушки
No	Показатель потенциала ком-	$N_{\underline{0}}$	Показатель потенциала ком-
респондента	муникативной импульсивно-	респондента	муникативной импульсивно-
	сти		сти
1	56	1	62
2	57	2	64
3	62	3	54
4	50	4	62
5	49	5	65
6	56	6	62
7	50	7	61
8	53	8	62
9	50	9	51
10	46	10	57
11	53	11	66
12	45	12	59
13	52		
14	47		

Можно ли утверждать, что одна из групп превосходит другую по уровню потенциала коммуникативной импульсивности?

Сформулируем гипотезы:


 \mathcal{H}_0 : Девушки 16 лет, поставленные на учет в детской комнате милиции, не превосходят юношей данной категории по уровню потенциала коммуникативной импульсивности.

 \mathcal{H}_1 : Девушки 16 лет, поставленные на учет в детской комнате милиции, превосходят юношей данной категории по уровню потенциала коммуникативной импульсивности.

Упорядочим значения в обеих выборках.

	юноши		девушки	
$N_{\underline{0}}$	Показатель потен-	No	№ Показатель потенциа-	
респондента	циала коммуника-	респонден-	ла коммуникативной	
	тивной импульсив-	та	импульсивности	
	ности			
		11	66	1
		5	65	$S_1 = 3$
		2	64	<u> </u>
3	62	4	62	
		6	62	
		8	62	
		1	62	
		7	61	
		12	59	
2	57	10	57	
1	56			
6	56			
		3	54	
8	53			
11	53			
13	52			
		99	51	
7	50			<u>_</u>
9	50			
4	50			
5	49			
14	47			$S_2 = 7$
10	46			
12	45			<u>_</u>

$$Q_{\kappa p} = egin{cases} 7, \partial \text{ля } p \leq 0.05; \\ 9, \partial \text{ля } p \leq 0.01. \end{cases}$$

3.2. Критерий Манна-Уитни

	позволяет определить
Критерий Манна-Уитни	

степень различий между двумя выборками по уровню какого-либо признака

	Критерий Манна-Уитни включает следующие этапы:						
1	Определить признак, участвующий в сопоставлении (значения признака						
	должны быть представлены не ниже порядковой шкалы).						
2	Провести две серии наблюдений на двух независимых выборках респондентов						
	объема n_1 , и n_2 :						
	$x_1, x_2, \dots x_i, \dots x_{n_l}$;						
	$y_1, y_2,, y_j,, y_{n_2}$,						
	где случайная переменная χ характеризует состояние изучаемого свойства в						
	одной из рассматриваемых совокупностей, а случайная переменная y – со-						
	стояние того же свойства во второй совокупности (в каждой из выборок						
	должно быть более трех испытуемых или в одной выборке более одного ис-						
	пытуемого, а в другой более пяти испытуемых).						
3	Диапазоны разброса значений признака в двух выборках не должны совпадать						
	между собой.						
4	Сформулировать гипотезы:						
	$ \mathcal{H}_o $ $P(\mathcal{X} < \mathcal{Y}) = \frac{1}{2}$ (значение одной выборки будет равномерно распределе-						
	но среди значений другой выборки);						
	\mathcal{H}_1 $P(\mathbf{X} < \mathbf{Y}) \neq \frac{1}{2}$ (значение одной выборки будет преобладать на одном из						
	концов другой выборки).						
	$\mathfrak{G} \mid \mathcal{H}_o \mid$ медиана $m_e(x)$ равна медиане $m_e(y)$;						
	\mathcal{H}_{l} медиана $m_{e}(x)$ не равна медиане $m_{e}(y)$.						
	в \mathcal{H}_o $x = y$ (средние значения переменных χ и y равны);						
	$\mathcal{H}_1 \stackrel{=}{x} \stackrel{=}{\neq} \stackrel{=}{y}$ (средние значения переменных χ и y не равны);.						
5	Упорядочить значения признака отдельно в каждой выборке по степени воз-						
	растания (или убывания).						
6	Выборку, значения в которой выше, принять за первую, а выборку, значения						
	которой ниже, - за вторую.						
7	Упорядочить значения признака обеих выборок вместе по степени возраста-						
	ния (или убывания).						

- **8** Проранжировать значения признака в объединенной выборке (всего рангов должно получиться n_1+n_2).
- 9 Разбить объединенную выборку на две первоначальные выборки.
- 10 Подсчитать сумму рангов отдельно по каждой выборке.
- 11 Проверить, совпадает ли общая сумма рангов с расчетной.
- 12 Определить большую из двух ранговых сумм.
- 13 Вычислить значение $U_{\scriptscriptstyle \mathfrak{M} n}$ по формуле: $U_{\scriptscriptstyle \mathfrak{M} n} = n_{\scriptscriptstyle 1} \cdot n_{\scriptscriptstyle 2} + \frac{n_{\scriptscriptstyle x} \cdot (n_{\scriptscriptstyle x}+1)}{2} T_{\scriptscriptstyle x}$,

где n_{I} – количество испытуемых в первой выборке;

 n_2 – количество испытуемых во второй выборке;

 T_{x} – большая из двух ранговых сумм;

 n_x – количество испытуемых в группе с большей суммой рангов.

Эмпирическое значение критерия $U_{\scriptscriptstyle 3Mn}$ отражает, насколько велика зона совпадения между рядами, поэтому чем меньше $U_{\scriptscriptstyle 3Mn}$, тем более вероятно, что различия достоверны.

- Определить критические значения $U_{l\kappa p}$ и $U_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1% по таблице № 2 приложения.
- **15** Расположить эмпирическое значение критерия $U_{_{^{3M}}}$ и критические значения $U_{_{1\kappa p}}$ и $U_{2\kappa p}$ на оси значимости.
- 16 Если Uэмп находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об отсутствии различий. Если Uэмп находится в зоне значимости, то гипотеза об отсутствии различий \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии различий. Если Uэмп находится в зоне неопределенности, то существует вероятность принятия ложного решения.

Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами. Чем меньше область перекрещивающихся значений, тем более вероятно, что различия достоверны.

Пример. Группа из 11 студентов первого курса исследовалась относительно уровня сформированности онтогенетической рефлексии. Из них было 4 человека, которые закончили школу с золотой или серебренной медалью и 7 человек, у которых в аттестате были тройки. Показатели уровня сформированности онтогенетической рефлексии представлены в таблице (чем меньше балл, тем выше уровень сформированности онтогенетической рефлексии).

Студенты, ко	торые закончили школу с золо-	Студенты, у	которых в аттестате были
той или сереб	бренной медалью	тройки	
No	уровень сформированности	№	уровень сформированности
респондента	онтогенетической рефлексии	респондента	онтогенетической рефлексии
1	56	1	62
2	64	2	42
3	42	3	54
4	50	4	39
		5	38
		6	62
		7	54

Можно ли утверждать, что одна из групп превосходит другую по уровню сформированности онтогенетической рефлексии?

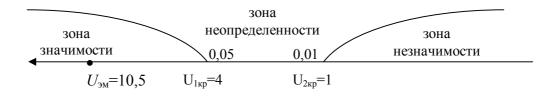
Упорядочим значения в обеих выборках.

Студенты	, которые закончили шк	олу	Студенты, у н	которых в аттестате были	тройки
с золотой	или серебренной медал	ІЬЮ			
No	уровень сформиро-	ранг	$\mathcal{N}_{\underline{o}}$	уровень сформирован-	ранг
респондента	ванности онтогене-		респондента	ности онтогенетиче-	
	тической рефлексии			ской рефлексии	
2	64	1			
			1	62	2,5
			6	62	2,5
1	56	4			0
			3	54	5,5
			7	54	5,5
4	50	7			0
			2	42	8,5
3	42	8,5			0
			4	39	10
			5	38	11
суммы	212	20,5		351	45,5

Общая сумма рангов: 20,5+45,5=66 совпадает с расчетной
$$\sum_{i=1}^n d_i^{\ 2} = \frac{n(n+1)}{2} = \frac{11\cdot 12}{2} = 66 \ \cdot$$

По уровню сформированности онтогенетической рефлексии с более высокими показателями является выборка студентов, у которых в аттестате были тройки. На эту выборку приходится большая ранговая сумма: 45,5.

Сформулируем гипотезы:


 \mathcal{H}_0 : Студенты, у которых в аттестате были тройки, не превосходят студентов, которые закончили школу с золотой или серебренной медалью, по уровню сформированности онтогенетической рефлексии.

 \mathcal{H}_1 : Студенты, у которых в аттестате были тройки, превосходят студентов, которые закончили школу с золотой или серебренной медалью, по уровню сформированности онтогенетической рефлексии.

Вычислить значение
$$U_{\text{эмn}} = 4.7 + \frac{7.(7+1)}{2} - 45.5 = 10.5$$
.

По таблице № 2 приложения определим $U_{\kappa p}$ для n_1 =4, n_2 =7:

$$U_{\kappa p} = \begin{cases} 4, \partial \pi & p \le 0.05; \\ 1, \partial \pi & p \le 0.01. \end{cases}$$

 $U_{\rm \scriptscriptstyle 2MR}$ находится в зоне значимости, то есть студенты, у которых в аттестате были тройки, превосходят студентов, которые закончили школу с золотой или серебренной медалью, по уровню сформированности онтогенетической рефлексии.

3.3. КРИТЕРИЙ КРУСКАЛА-УОЛИСА.

Критерий Крускала-Уолиса предназначен для оценки различий одновременно между несколькими (более двух) выборками *по уровню* какого-либо признака.

Критерий Крускала-Уолиса позволяет установить

что *уровень* признака *изменяется* при переходе от группы к группе, но не указывает на направление этих изменений

	Критерий Крускала-Уолиса включает следующие этапы:						
1	Определить признак, участвующий в сопоставлении (значения признака						
	должны быть представлены не ниже порядковой шкалы).						
2	Произвести выборку более двух групп респондентов, учитывая, что при со-						
	поставлении 3-х выборок допускается:						
	а чтобы в одной из них было три респондента, а в двух других – два (уста-						
	новить различия в данном случаем можно лишь на низшем уровне значи-						
	мости при р≤ 0,05);						
	б чтобы в каждой выборке было не менее трех респондентов, или в одной						
	из них было четыре респондента, а в двух других – два (установить разли-						
	чия в данном случаем можно на более высоком уровне значимости при						
	$ p \le 0.01$).						
3	Диапазоны разброса значений признака в данных выборках не должны совпа-						
	дать между собой.						
4	Упорядочить значения признака отдельно в каждой выборке по степени воз-						
	растания (или убывания).						
5	Упорядочить значения признака всех выборок вместе по степени возрастания						
	(или убывания).						
6	Проранжировать значения признака в объединенной выборке (общее количест-						
	во рангов будет равняться количеству испытуемых в объединенной выборке).						
7	Разбить объединенную выборку на первоначальные выборки.						
8	Подсчитать сумму рангов отдельно по каждой выборке:						
	а если различия между выборками случайны, суммы рангов не будут разли-						
	чаться сколько-нибудь существенно, так как высокие и низкие ранги рав-						
	номерно распределятся между выборками;						
	6 если в одной из выборок будут преобладать низкие значения рангов, в						
	другой — средние, а в третьей — высокие, то критерий H — Крускала-						
	Уолиса позволит установить эти различия.						
9	Сформулировать гипотезы:						
	\mathcal{H}_0 Между выборками 1, 2, 3 и т.д. существуют лишь случайные различия по						
	уровню исследуемого признака.						
	\mathcal{H}_1 Между выборками 1, 2, 3 и т.д. существуют неслучайные различия по						
	уровню исследуемого признака.						
10	Проверить, совпадает ли общая сумма рангов с расчетной.						

11	Выч	ислить значение $H_{\scriptscriptstyle 3MR}$ по формуле: $H_{\scriptscriptstyle 3MR} = \frac{12}{N(N+1)} \cdot \sum \frac{T_i^2}{n_i} - 3(N+1)$,					
	где N — общее количество испытуемых в объединенной выборке;						
	r	$n_{\rm i}$ – количество испытуемых в i -той группе;					
	7	T_i – суммы рангов по каждой группе.					
12	Опр	еделить критические значения $H_{I\kappa p}$ и $H_{2\kappa p}$, которые отвечают уровням					
	знач	имости в 5% и 1%:					
	a e	если рассматриваются три группы $(n_1, n_2, n_3 \le 5)$, то находят критические					
	3	вначения и соответствующий им уровень значимости по таблице № 3 при-					
	J	ожения;					
		если рассматривается более трех групп или n_1 , n_2 , $n_3 > 5$, то находят					
	Ь	критические значения χ^2 по таблице № 4 приложения. Количество степе-					
	F	ней свободы при этом определяется по формуле: $df=c-1$ (c – количество					
	C	сопоставляемых выборок).					
13	В Расположить эмпирическое значение критерия $H_{\text{эмп}}$ и критические значения						
	$H_{1\kappa p}$ и $H_{2\kappa p}$ на оси значимости.						
14	Если H_{2MR} находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об от-						
	сутствии различий. Если $H_{\scriptscriptstyle 3MR}$ находится в зоне значимости, то гипотеза об от-						
	сутс	твии различий \mathcal{H}_0 отклоняется и принимается гипотеза H_1 о наличии раз-					
	личи	ий. Если H_{2MN} находится в зоне неопределенности, то существует вероят-					
		ть принятия ложного решения					

Пример. Была проведена выборка студентов из первого, второго и третьего курсов в количестве шести, восьми и семи человек соответственно для определения у них интегральной самооценки личности. Количественные результаты исследования представлены в таблице.

Студен	гы 1 курса	Студен	гы 2 курса	Студенты 3 курса		
№	показатель	№	показатель	№	показатель	ин-
респонден-	интегральной	респонден-	интегральной	респондента	тегральной	ca-
та	самооценки	та	самооценки		мооценки л	тич-
	личности		личности		ности	
1	61	1	43	1	44	
2	46	2	49	2	51	
3	55	3	46	3	28	
4	47	4	31	4	43	
5	36	5	42	5	38	
6	26	6	59	6	35	
		7	37	7	47	
		8	41			

Можно ли утверждать, что одна из групп превосходит другую по уровню интегральной самооценки личности?

Сформулируем гипотезы:

 \mathcal{H}_0 : Между студентами 1, 2 и 3 курсов существуют лишь случайные различия по уровню интегральной самооценки личности.

 \mathcal{H}_1 : Между студентами 1, 2 и 3 курсов существуют неслучайные различия по уровню интегральной самооценки личности.

Упорядочим значения в выборках.

	Студенты 1 курса			Студенты 2 курса		Студенты 3 курса		
<u>№</u>	показатель инте-	ранг	$N_{\underline{0}}$	показатель инте-	ранг	$N_{\underline{0}}$	показатель инте-	ранг
	гральной само-			гральной само-			гральной само-	
	оценки личности			оценки личности			оценки личности	
6	26	1						
						3	28	2
			4	31	3			
						6	35	4
5	36	5						
			7	37	6			
						5	38	7
			8	41	8			
			5	42	9			
						4	43	10,5
			1	43	10,5			
						1	44	12
			3	46	13,5			
2	46	13,5						
4	47	15,5						
						7	47	15,5
			2	49	17			
						2	51	18
3	55	19						
			6	59	20			
1	61	21						
Σ	271	75	-	348	87	-	286	69

$$N=n_1+n_2+n_3=6+8+7=21$$
.

Общая сумма рангов: 75+87+69=231 совпадает с расчетной
$$\sum_{i=1}^{n} d_i^2 = \frac{N(N+I)}{2} = \frac{2I \cdot 22}{2} = 23I$$
.

Определим эмпирическое значение Н:

$$H_{\text{\tiny 2MB}} = \frac{12}{21(21+1)} \cdot \left(\frac{75^2}{6} + \frac{87^2}{8} + \frac{69^2}{7}\right) - 3(21+1) \approx 0.6.$$

Так как количество респондентов в группах больше 5, необходимо сопоставлять полученное эмпирическое значение H с критическими значениями χ^2 .

Найдем количество степеней свободы df для c = 3: df = c - 1 = 3 - 1 = 2.

Определим критические значения по таблице \mathbb{N}_2 4 приложения для df = 2:

$$\chi_{\kappa p}^{2} = \begin{cases} 5.991 & (p \le 0.05); \\ 9.210 & (p \le 0.01). \end{cases}$$

 $H_{\rm _{2MR}}$ находиться в зоне неопределенности, есть вероятность принятия ложного решения (необходимо увеличить выборку или воспользоваться другим критерием).

3.4. Критерий тенденций Джонкира

Критерий используется при сопоставлении более двух выборок *по уровню* какого-либо признака.

	1	позволяет выявить
Критерий тенденций Джонкира	Ш	
	IJ	,,

тенденции изменения признака при переходе от выборки к выборке, что позволяет упорядочить обследованные выборки по заданному признаку

Интерпретация полученных результатов будет зависеть от того, по какому принципу были сформированы исследуемые выборки:

- 1) если выборки различаются по *качественным* признакам (профессии, национальности, месту жительства и т.п.), то с помощью критерия S можно упорядочить выборки по *количественно* измеряемому признаку (креативности, объему памяти, скорости выполнения задания и т.п.);
- 2) если выборки различаются или специально сгруппированные по количественному признаку (возрасту, росту, уровню сформированности логического мышления и др.), то, упорядочивая их по другому количественному признаку, можно установить меру связи между двумя количественными признаками.

P	асчет S – критерия тенденций Джонкира включает следующие этапы:						
1	Определить признак, участвующий в сопоставлении (значения признака						
	должны быть представлены не ниже порядковой шкалы).						
2	Произвести выборку более двух групп респондентов, учитывая, что:						
	а количество выборок должно быть не менее 3 и не более 6;						
	б количество наблюдений в каждой выборке должно быть не менее 2 и не						
	более 10;						
	в в каждой из сопоставляемых выборок должно быть одинаковое число на-						
	блюдений;						
	г если количества респондентов в группах не совпадают, необходимо						
	уравнять группы, ориентируясь на количество наблюдений в меньшей из						
	групп (из остальных групп необходимо случайным образом извлечь лиш-						
	нее число респондентов).						
3	Сформулировать гипотезы:						
	\mathcal{H}_0 Тенденция возрастания значений признака при переходе от выборки к выборке является случайной.						
	\mathcal{H}_1 Тенденция возрастания значений признака при переходе от выборки к						
	выборке не является случайной.						
4	Упорядочить значения признака отдельно в каждой выборке по степени воз-						
	растания (или убывания).						
5	Вычислить среднее значение (сумму всех значений) исследуемого признака						
	каждой выборки отдельно.						
6	Расположить все выборки в порядке возрастания их средних значений (сумм						
	всех значений) исследуемого признака.						
7	Подсчитать для каждого индивидуального значения рассматриваемого при-						

	знака количество значений признака расположенных справа от него и превы-
	шающих его по величине (S_i) .
8	Подсчитать для каждой выборки $S_{\kappa p} = \sum_{i=1}^{n} S_{i}$, где n - количество респондентов в
	каждой выборке $(S_n=0)$.
9	Найти сумму $S_{\kappa p}$ всех выборок по формуле $S_{o \delta} = \sum_{i=1}^{k} S_{\kappa p-i}$, где k - количество
	групп.
10	Определить эмпирическое значение S по формуле: $S_{\mathfrak{I}Mn} = 2S_{oo} - \frac{k(k-1)}{2} \cdot n^2$.
11	Определить критические значения $S_{1\kappa p}$ и $S_{2\kappa p}$, которые отвечают уровням зна-
	чимости в 5% и 1% по таблице № 5 приложения.
12	Расположить эмпирическое значение критерия $S_{\text{эмп}}$ и критические значения
	$S_{1\kappa p}$ и $S_{2\kappa p}$ на оси значимости.
13	Если $S_{_{\!$
	сутствии различий. Если $S_{\tiny 2MR}$ находится в зоне значимости, то гипотеза об от-
	сутствии различий H_0 отклоняется и принимается гипотеза H_1 о наличии раз-
	личий. Если $S_{\text{эмп}}$ находится в зоне неопределенности, то существует вероят-
	ность принятия ложного решения.

Пример. Для определения уровня депрессии у студентов с разными показателями успеваемости был проведен тест Т.И. Балашова, результаты которого представлены в таблице:

Студенты, кот зультатам сесс		Студенты, ко все экзамен	•	Студенты, которые сдали все экзамены только на 5		
No	уровень	$N_{\underline{o}}$	Уровень	№	уровень	
респондента	депрессии	респондента	депрессии	респондента	депрессии	
1	41	1	49	1	43	
2	44	2	51	2	39	
3	35	3	48	3	56	
4	42	4	45	4	55	
5	37	5	37	5	52	

Можно ли утверждать, что тенденция возрастания значений показателя депрессии при переходе от группы студентов с низкими показателями успеваемости к группе с более высокими показателями успеваемости не является случайной?

Упорядочим значения в выборках.

Места испытуемых	Студенты, которые по результатам сессии имеют 3				
Ме	уровень депрессии	S_i	Уровень депрессии	S_i	уровень депрессии
1	35	10	37	5	39
2	37	9	45	3	43
3	41	8	48	3	52
4	42	8	49	3	55
5	44	7	51	3	56
суммы	199	42	230	17	245

Сформулируем гипотезы:

 \mathcal{H}_0 : Тенденция возрастания значений показателя депрессии при переходе от группы студентов с низкими показателями успеваемости к группе с более высокими показателями успеваемости является случайной.

 \mathcal{H}_1 : Тенденция возрастания значений показателя депрессии при переходе от группы студентов с низкими показателями успеваемости к группе с более высокими показателями успеваемости не является случайной.

Найдем
$$S_{ob} = \sum_{i=1}^{k} S_{\kappa p}$$
 $_{i} = 42 + 17 + 0 = 59$.

Определим эмпирическое значение $S_{\text{\tiny 9MB}} = 2 \cdot 59 - \frac{3(3-1)}{2} \cdot 5^2 = 43$.

По таблице № 5 приложения определяем критические значения $S_{\kappa p}$:

$$S_{\kappa p} = \begin{cases} 33 \ (p \le 0.05); \\ 45 \ (p \le 0.01). \end{cases}$$

 $S_{\tiny 2MR}$ находится в зоне неопределенности, есть вероятность принятия ложного решения (необходимо увеличить выборку или воспользоваться другим критерием).

3.5. КРИТЕРИЙ МАКНАМАРЫ

Критерий Макнамары

позволяет установить

наличие или отсутствие различий в состоянии изучаемого свойства при первичном и вторичном измерениях его состояния у респондентов рассматриваемой совокупности

Критерий Макнамары включает следующие этапы:

- 1 Определить признак, участвующий в сопоставлении (значения признака должны быть представлены по шкале наименований).
- 2 Провести две серии наблюдений на одной и той же выборке респондентов (количество респондентов не менее 5):

$$x_1, x_2, ..., x_i, ... x_N;$$

 $y_1, y_2, ..., y_i, ... y_N$

где случайная переменная \mathcal{X} характеризует состояние некоторого свойства при первичном измерении данного свойства; случайная переменная \mathcal{Y} характеризует состояние этого же свойства при вторичном измерении (выборки зависимые).

		11			1					
3			вида (x_i, y_i) , учитывая:							
	i									
		одного и того же респондента;								
			» и «1», поэтому пары (x _i , y	_і) могут быть только чет	тырех ви-					
	[1), (1,0), (1, 1);							
	в пары	(x_i, y_i)	взаимно независимы, т. е. ч	члены выборки никак не	е влияют					
	друг	на друга	J.							
4		-3	гипотезы:							
			вначимых различий в сост	_	_					
			вторичном измерениях его	о состояния у респонден	нтов рас-					
			й совокупности.							
			учаемого свойства значимо	•						
	i i		пондентов при первичном	измерении этого свойст	тва и при					
			о измерении.							
5	Записать	данные	в виде таблицы:		7					
			Классифин	4	_					
			$y_i=0$	$y_i=1$						
	KI	$x_i = 0$	a	b	a+b					
	аци		(число пар, у которых	(число пар, у которых						
	\mathbb{K} лассификация x_i	1	$x_i=0, y_i=0)$	$x_i=0, y_i=1$						
	ж, х _і	$x_i=1$	\boldsymbol{c}	d	c+d					
	acc		(число пар, у которых	(число пар, у которых						
	 2		$x_i=1, y_i=0$	$x_i=1, y_i=1$	N I					
			a+c	b+d	N					
6	Подсчита	ть эмпи	рическое значение $T_{\scriptscriptstyle 9MR}$ по ф	ормуле:						
	L		В качестве статистики испо		กลหมลด					
	Lesin ove		аименьшему из значений b							
			тика критерия $T_{\text{эмn}} = \min(b, a)$							
			ту закону с $p = 0.5$.	/ 1 ··· I · · · · · · · · · · · · · · · ·	110					
	Если b+с	> 20			$(b-c)^2$					
		1	В качестве статистики выбир	растся величина $T_{9Mn} = \frac{1}{2}$	$\frac{b+c}{b+c}$.					
		P	аспределение статистики к	ритерия $T_{\scriptscriptstyle 2MN}$ аппроксим	ируется					
			аспределением χ^2 с одной с							
	21101101111									
	эначения	статист	ик $T_{\text{эмп}}$ не зависит от значен	ии и и и.						
7	Пусть $b+$	c=n и p	– принятый уровень значим	ости.						
8	Для <i>n</i> ≤2	5 По т	аблице № 7 приложения по	значению <i>п</i> и величине (статисти-					
			ритерия $T_{\text{эмп}}$ находим $P(T \le$							
		i	ения статистики, меньшего	******						
			ения статистики, меньшего ом значении <i>п</i> . Если эта в	_	_					
			ом значении n . Если эта во ого уровня значимости p , то	-						
				о на ург	odno sna-					
	I	: чим(ости <i>р</i> .							

	Для $n > 25$	\mathcal{H}_0 отклоняется на уровне значимости p , если значение $T_{\scriptscriptstyle \mathrm{ЭМП}}$ пре-
		восходит критическое значение статистики критерия, отвечаю-
		щее данному уровню значимости p .
		Для $p = 0.05$ $T_{\kappa p} = 3.84$;
		$p = 0.025$ $T_{\kappa p} = 5.02$;
		$p = 0.01$ $T_{\kappa p} = 6.63$.
9	При отклоне	нии \mathcal{H}_0 принимается гипотеза:
	a) <i>H</i> ₁ :	$P(x_i=0, y_i=1) < P(x_i=1, y_i=0)$ если $b < c$;
	б) <i>H</i> ₁ :	$P(x_i=0, y_i=1) > P(x_i=1, y_i=0)$ если $b > c$.
10	Π ри $b = c$	результаты эксперимента не позволяют использовать критерий
	Макнамары	для проверки статистических гипотез.

Пример. При формировании содержания курса по выбору учитывалось мнение 160 студентов. Им предлагалось оценить вариант содержания предстоящего для изучения курса до его изучения и после и ответить на вопрос: «Каково ваше отношение к предложенному варианту содержания курса по выбору?» (Ответы: «нравится» — «не нравится»). Методом случайного отбора из данной группы респондентов была составлена выборка из 20 студентов. Результаты ответов представляют измерения по шкале наименований, имеющей две категории: «нравится» обозначим значком «1», «не нравится» — значком «0».

Результаты опроса 20 студентов запишем таблице:

		Ответы студ	ентов после	
		изучения пре	дложенного	
		курса по	выбору	
		не нравится	нравится	
Ответы студентов до	не нравится	3	10	13
изучения предложенного	нравится	2	5	7
курса по выбору		5	15	20

Сформулируем гипотезы:

 \mathcal{H}_{o} : посещение данного курса по выбору не оказывает влияния на отношение студентов к изучаемому содержанию.

 \mathcal{H}_{1} (b>c): посещение данного курса по выбору положительно влияет на отношение студентов к изучаемому содержанию.

Так как $n \le 25$ (n = b + c = 10 + 2 = 12; 12 < 25) подсчитывается значение статистики по следующей формуле: T = min (2, 10)=2. По таблице № 7 вероятность появления значения $T \le 2$ при n = 12 равна 0,019. Если уровень значимости проверки гипотез p = 0,05, то $\frac{p}{2} = 0,025$ и в данном случае верно неравенство 0,019<0,025.

Следовательно, гипотеза \mathcal{H}_0 отклоняется на уровне значимости p=0,05 и принимается альтернативная гипотеза \mathcal{H}_1 . Таким образом, на основе результатов проведенного эксперимента можно сделать вывод о том, что разработанный курс по выбору положительно влияет на отношение студентов к изучаемому содержанию.

Пример. Для определения влияние формы контроля знаний обучающихся на результаты проверки качества знаний по одному и тому же материалу были составлены: контрольная работа, состоящая из 6 заданий, и тест, содержащий 40 вопросов. Выборке из 50 студентов были предложены к выполнению оба варианта письменных испытаний. Результаты выполнения каждой формы испытания в отдельности позволили выделить две категории студентов: усвоивших и неусвоивших изучаемый материал.

Результаты проверки качества зна-
ний обучающихся, основанные на
проведенном тестировании

		Не усвоил	Усвоил	
Результаты проверки качества	Не усвоил	6	19	25
знаний обучающихся,	Усвоил	4	21	25
основанные на проведенной		10	40	50
контрольной работе				

Сформулируем гипотезы:

 \mathcal{H}_{o} : Показатели качества знаний обучающихся не зависят от выбранной письменной формы контроля.

 \mathcal{H}_1 : Показатели качества знаний обучающихся зависит от выбранной письменной формы контроля.

Так как n>25 (n=b+c=4+19=23), то подсчитывается значение статистического критерия T по формуле $T=\frac{(b-c)^2}{b+c}=\frac{(19-4)^2}{19+4}=9,78$.

Для уровня значимости p=0,05 критическое значение $T_{\kappa p}$ =3,84. Следовательно, верно неравенство $T_{\text{ЭМП}} > T_{\kappa p}$, то есть 9,78>3,84, поэтому нулевая гипотеза отвергается на уровне значимости p=0,05 и принимается альтернативная гипотеза. Таким образом, на основе результатов проведенного эксперимента можно сделать вывод о том, что показатели качества знаний обучающихся зависят от выбранной письменной формы контроля.

3.6. КРИТЕРИЙ ЗНАКОВ

Критерий предназначен для сравнения состояния некоторого свойства у респондентов двух зависимых выборок на основе измерений, сделанных по шкале не ниже порядковой.

Критерий знаков

позволяет установить

направление сдвига исследуемого признака - в какую сторону изменяются значения признака при переходе от первого измерения ко второму (в сторону улучшения, повышения или усиления или, наоборот, в сторону ухудшения, понижения или ослабления).

Критерий знаков включает следующие этапы:

- 1 Определить признак, участвующий в сопоставлении (значения признака должны быть представлены не ниже порядковой шкалы).
- **2** Провести две серии наблюдений (m>5) на одной и той же выборке респондентов:

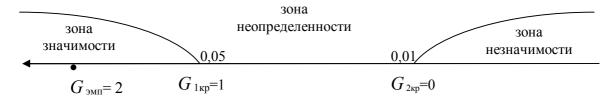
$$x_1, x_2, \ldots, x_i, \ldots x_m;$$

$$y_1, y_2, ..., y_i, ..., y_m;$$

где случайная переменная x_i характеризует состояние некоторого свойства при первичном измерении данного свойства; случайная переменная y_i характеризует состояние этого же свойства при вторичном измерении (выборки зависимые).

Составить m пар вида (x_i, y_i) , учитывая:								
\mathbf{a} x_i, y_i — результаты двукратного измерения одного и того же свойства у одного и того же респондента;								
б пары (x_i, y_i) взаимно независимы, т. е. члены выборки никак не влияют друг на друга.								
Сравнить элементы каждой пары x_i , y_i между собой по величине:								
а если $x_i < y_i$, то паре присваивается знак «+»;								
б если $x_i > y_i$, то паре присваивается знак «—»;								
в если $x_i = y_i$, то паре присваивается знак «0».								
г Подсчитать количество пар, у которых сдвиг является преобладающим. Считать сдвиг в преобладающем направлении типичным.								
Подсчитать значение величины								
$n \le 100$ $G_{_{2,MR}}$ равно числу пар, отражающих нетипичный сдвиг.								
$n > 100$ w_1								
$G_{9Mn} = \frac{n-2}{\sqrt{0.25/n}}$, где w — число пар, отражающих типичный сдвиг.								
Сформулировать гипотезы:								
\mathcal{H}_0 Преобладание типичного направления сдвига является случайным.								
\mathcal{H}_{l} Преобладание типичного направления сдвига не является случайным.								
Определить критические значения $G_{1\kappa p}$ и $G_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1%, для n - равного количеству пар, в которых $x_i \neq y_i$:								
$n \le 100$ по таблице № 8 приложения.								
$n > 100$ $(1.96, \partial \pi p \le 0.05;$								
$n > 100$ принимается критическое значение $G_{\kappa p} = \begin{cases} 1.96, \partial \pi p \leq 0.05; \\ 2.57, \partial \pi p \leq 0.01. \end{cases}$								
Расположить эмпирическое значение критерия $G_{\text{эмп}}$ и критические значения $G_{1\kappa p}$ и $G_{2\kappa p}$ на оси значимости.								
Если G_{3Mn} находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 о случайности типичного направления сдвига. Если G_{3Mn} находится в зоне значимости, то гипотеза \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о неслучайности типичного направления сдвига. Если G_{3Mn} находится в зоне неопределенности, то сущнствует вероятность принятия ложного решения.								

Пример. Для проверки эффективности мультимедийной программы, разработанной с целью самообразования студентов, были проведены две контрольные работы — до и после применения данной программы. Результаты двукратного выполнения работы 13 студентами представлены в форме таблицы:


№ респондента	1	2	3	4	5	6	7	8	9	10	11	12	13
Первое выполнение	3	3	4	3	4	4	5	3	5	3	2	4	3
Второе выполнение	4	5	3	3	4	5	5	4	4	5	3	5	4
Знак разности отметок	+	+	-	0	0	+	0	+	_	+	+	+	+

Проверяется гипотеза \mathcal{H}_0 : уровень знаний студентов не повысился после работы с мультимедийной программой. При альтернативе \mathcal{H}_1 : уровень знаний студентов повысился после работы с мультимедийной программой.

Подсчитаем значение статистики критерия, равное числу нетипичных разностей отметок, полученных студентами: $G_{\mathfrak{IM}n}=2$. Из 13 пар в 3 случаях разность измерений равна нулю, следовательно, n=13<100.

По таблице № 8 приложения определяем критические значения $G_{\kappa p}$ при n=10:

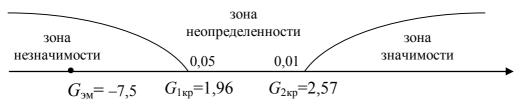
$$G_{\kappa p} = \begin{cases} 8 & (p \le 0.05); \\ 9 & (p \le 0.01). \end{cases}$$

В соответствии с правилом принятия решения необходимо сделать вывод о том, что принимается \mathcal{H}_1 гипотеза, то есть уровень знаний студентов повысился после работы с мультимедийной программой.

Пример. Что бы проверить уровень готовности студентов к обучению решению задач был разработан тест, который предлагался студентам до и после разработанной системы лекций, семинарских и лабораторных занятий по спецкурсу. Результаты тестирования оценивались по стобальной системе. Тестирование и статистическая обработка проводились с целью проверки эффективности реализации исследования по подготовке будущих учителей математики на основе личностно-ориентированных технологий.

В связи с большим объемом выборки (676 студентов) результаты удобно записать в форме таблицы.

Число студентов	246	192	238
Знак разности	0	-	+


Проверяется гипотеза \mathcal{H}_0 : уровень готовности студентов к обучению решению задач учащимися не изменится после проведенного курса по выбору, — при альтернативе \mathcal{H}_1 : уровень готовности студентов к обучению решению задач учащимися изменится после изучения курса по выбору.

Так как из 676 пар в 246 случаях разность измерений равна нулю, следовательно n=646 - $246=430 \ge 100$.

$$G_{\kappa p} = egin{cases} 1,96 \ , \ \partial \mathrm{ЛЯ} & p \leq 0\,,\!05 \ ; \ 2,57 \ , \ \partial \mathrm{ЛЯ} & p \leq 0\,,\!01 \ . \end{cases}$$

Подсчитаем значение статистики критерия $G_{\mathfrak{I}Mn}$ по формуле:

$$G_{\mathfrak{IMN}} = \frac{w - p_0}{\sqrt{p_0 g_0 / N}} = \frac{\frac{238}{676} - \frac{1}{2}}{\sqrt{0.25 / 676}} \approx \frac{0.35 - 0.5}{0.02} = -7.5$$

В соответствии с правилом принятия решения необходимо сделать вывод о том, что полученные результаты не дают достаточных оснований для отклонения нулевой гипотезы, поэтому нельзя отклонить утверждение об отсутствии изменения уровня готовности студентов к обучению решению задач учащихся после проведенного курса по выбору.

3.7. Критерий Вилкоксона

Критерий Вилкоксона может быть применен *для сравнения состояния не-которого свойства* у респондентов двух зависимых выборок на основе измерений, сделанных по шкале не ниже интервальной.

Критерий Вилкоксона

не только направленность изменений исследуемого признака - в какую сторону изменяются значения признака при переходе от первого измерения ко второму, но и их выраженность.

	Критерий Вилкоксона включает следующие этапы:						
1	Определить признак, участвующий в сопоставлении (значения признака должны быть представлены не ниже порядковой шкалы).						
2	Провести две серии наблюдений на одной и той же выборке респондентов: $x_1, x_2,, x_i, x_N;$ $y_1, y_2,, y_i, y_N,$ где случайная переменная x_i характеризует состояние некоторого свойства при первичном измерении данного свойства; случайная переменная y_i характеризует состояние этого же свойства при вторичном измерении (выборки зависимые, при этом количество респондентов должно быть $5 \le n \le 50$).						
3	Сформулировать гипотезы: $\mathcal{H}_0 \qquad \text{Интенсивность сдвигов в типичном направлении не превышает интенсивности сдвигов в нетипичном направлении.}$ $\mathcal{H}_1 \qquad \text{Интенсивность сдвигов в типичном направлении превышает интенсивности сдвигов в нетипичном направлении.}$						
4	Составить N пар вида $(x_i; y_i)$, где x_i, y_i — результаты двукратного измерения одного и того же свойства у одного и того же респондента (пары $(x_i; y_i)$ взаимно независимы, т. е. члены выборки никак не влияют друг на друга).						
5							
6	Проранжировать пары $(x_i; y_i)$ по возрастанию значения $ D_i $.						

7	Приписать каждому рангу «+», если он соответствует $D_i > 0$, и знак «-», если $-D_i < 0$.
8	Подсчитать значение величины $T_{_{\mathfrak{I}Mn}}$, которое равно сумме рангов нетипичных сдвигов.
9	Определить критические значения $T_{1\kappa p}$ и $T_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1% по таблице № 6 приложения.
10	Расположить эмпирическое значение критерия T_{3Mn} и критические значения $T_{1\kappa p}$ и $T_{2\kappa p}$ на оси значимости.
11	Если $T_{_{3Mn}}$ находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об отсутствии различий. Если $T_{_{3Mn}}$ находится в зоне значимости, то гипотеза об отсутствии различий \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии различий. Если $T_{_{3Mn}}$ находится в зоне неопределенности, то существует вероятность принятия ложного решения.

Критерий Вилкоксона более чувствителен к улавливанию особенностей измерений по сравнению с критерием знаков, так как его применение основано не только на учете знаков разностей измерений x_i и y_i , но и на учете абсолютных значений этих разностей.

Пример. К зачету студенты в количестве 12 человек должны были выполнить два проекта, которые оценивались по 20 бальной системе. После выполнения первого проекта студентам были объявлены полученные ими балы и сообщено, что после выполнения ими второго проекта студенты, которые подготовят достойные проекты, смогут представить их на конференции, в которой примут участие представители известных фирм, занимающиеся набором персонала.

Результаты двукратного выполнения проектов приведены в таблице.

№ респондентов	1	2	3	4	5	6	7	8	9	10	11	12
результаты 1 проекта	13	18	15	14	12	11	16	17	11	13	14	12
результаты 2 проекта	14	18	16	12	16	13	16	20	16	20	17	18

Запишем процесс приписывания рангов R_i в данном примере в форме таблицы.

No	Результаты	Результаты	$y_i - x_i = D_i$	$ D_i $	Ранг $ D_i $	+/-	$T_{\mathfrak{IMn}}$
респондентов	1 проекта	2 проекта					
2	18	18	0	1	1,5	1,5	
7	16	16	0	1	1,5	1,5	
1	13	14	1	2	3,5	3,5	
3	15	16	1	2	3,5	3,5	
4	14	12	-2	3	5,5	-5,5	5,5
6	11	13	2	3	5,5	5,5	
8	17	20	3	4	7,5	7,5	
11	14	17	3	4	7,5	7,5	
5	12	16	4	5	9	9	
9	11	16	5	6	10	10	
12	12	18	6	7	11	11	
10	13	20	7	8	12	12	
сумма	_				78		5,5

Общая сумма рангов 78 совпадает с расчетной:
$$\sum_{i=1}^{n} d_i^2 = \frac{n(n+1)}{2} = \frac{12 \cdot 13}{2} = 78$$
.

Проверяется гипотеза \mathcal{H}_0 : возможность проявить свои профессиональные качества перед потенциальными работодателями не улучшает качество выполнения проектов студентами. При альтернативной гипотезе \mathcal{H}_{l} : возможность проявить свои профессиональные качества перед потенциальными работодателями улучшает качество выполнения проектов студентами.

$$T_{\tiny{ЭМЛ}}$$
 =5,5. По таблице № 9 приложения определим $E_{\kappa p}$ для n =12:

$$T_{\kappa p} = \begin{cases} 17, \, \partial$$
ля $p \leq 0.05; \\ 9, \, \partial$ ля $p \leq 0.01. \end{cases}$ зона неопределенности зона зона незначимости $T_{1\kappa p} = 17$ $T_{2\kappa p} = 9$ $T_{2M} = 5.5$

 $T_{\text{эмп}} < T_{\kappa p}$ 0,01, нулевая гипотеза отклоняется, то есть возможность проявить свои профессиональные качества перед потенциальными работодателями улучшает качество выполнения проекта студентов.

 $T_{1 \text{KP}} = 17$

3.8. Критерий Фридмана

позволяет Критерий Фридмана

сопоставить показатели некоторого свойства на основе измерений в трех или более условиях на одной и той же выборке респондентов (установить, что величины показателей от условия к условию изменяются, но при этом не указывает на направление изменений)

	Критерий Фридмана включает следующие этапы:								
1	Определить признак, участвующий в сопоставлении (значения признака должны быть представлены не ниже интервальной шкалы).								
2	Провести белее двух измерений одного и того же признака на одной и той же выборке респондентов (не менее 2-х испытуемых, каждый из которых прошел не менее 3-х замеров).								
3	Сфо	ррмулировать гипотезы:							
	\mathcal{H}_{o} В состоянии изучаемого свойства нет значимых различий при первич ном, вторичном и последующих измерениях.								
	\mathcal{H}_1	В состоянии изучаемого свойства выявлены значимые различия при первичном, вторичном и последующих измерениях.							

- 4 Проранжировать индивидуальные значения каждого респондента, полученные им в 1-м, 2-м, 3-м и т. д. измерений одного и того же признака.
- 5 Подсчитать сумму рангов отдельно по каждой серии измерения признака.
- **6** Вычислить эмпирическое значение χ_r^2 по формуле:

$$\chi_{r \ni Mn}^2 = \frac{12}{k \cdot n \cdot (n+1)} \cdot \sum_{i=1}^{n} R_i^2 - 3 \cdot k \cdot (n+1),$$

где k – количество испытуемых;

n – количество измерений одного и того же признака

 R_i – суммы рангов для каждой серии наблюдений.

- 7 Определить уровни статистической значимости для $X_{r,3mn}^2$:
 - **7.1** | **a** при n=3, k ≤ 9 по таблице № 9 приложения;
 - **б** при n=4, k ≤ 4 по таблице № 10 приложения.

Расположить уровень статистической значимости для $X_{r \text{ эмn}}^2$ и уровни статистической значимости на оси значимости p=0,01 и p=0,05.

Если уровень статистической значимости для $X^2_{r \, {\scriptscriptstyle 3MN}}$ находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об отсутствии различий. Если уровень статистической значимости для $X^2_{r \, {\scriptscriptstyle 3MN}}$ находится в зоне значимости, то гипотеза об отсутствии различий \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии различий. Если уровень статистической значимости для $X^2_{r \, {\scriptscriptstyle 3MN}}$ находится в зоне неопределенности, то существует вероятность принятия ложного решения.

7.2 При большем количестве наблюдений (респондентов) определить количество степеней свободы df по формуле: df = n - 1.

По таблице № 4 приложения определить критические значения $\mathbf{u}^2_{I\kappa p}$ и $\mathbf{u}^2_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1%, при данном числе степеней свободы df.

Расположить эмпирическое значение критерия $X_{r \text{ эмп}}^2$ и критические значения $\mathbf{u}_{l\kappa p}^2$ и $\mathbf{u}_{l\kappa p}^2$ на оси значимости.

Если χ_r^2 эмп находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об отсутствии различий. Если χ_r^2 эмп находится в зоне значимости, то гипотеза об отсутствии различий \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии различий. Если χ_r^2 эмп находится в зоне неопределенности, то существует вероятность принятия ложного решения.

Пример. Чтобы понять, как влияет процесс обучения в вузе на уровень лидерских способностей, была применена диагностика Е. Жарикова и Е. Крушельницкойй на выборке студентов в количестве 5 человек. Данные студенты подвергались обследованию после окончания первого, второго и третьего года обучения. Количественные результаты диагностики представлены в таблице.

№ ондентов	Уровень лидерских способностей							
№ респонд	по окончании первого года обучения	по окончании второго года обучения	по окончании третьего года обучения					
1	25	26	32					
2	37	40	38					
3	27	31	33					
4	38	35	37					
5	24	26	28					

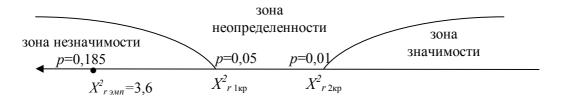
Можно ли утверждать, что уровень лидерских способностей различен при первичном, вторичном и последующих измерениях, проведенных после первого, второго и третьего годов обучения соответственно.

Сформулируем гипотезы:

 \mathcal{H}_{o} : в уровне лидерских способностей нет значимых различий при первичном, вторичном и последующих измерениях, проведенных после первого, второго и третьего годов обучения соответственно.

 \mathcal{H}_{l} : уровень лидерских способностей различен при первичном, вторичном и последующих измерениях, проведенных после первого, второго и третьего годов обучения соответственно

Проранжируем индивидуальные значения каждого респондента, полученные ими в 1-м, 2-м и 3-м измерениях уровня лидерских способностей.


№ 10ндентов	по окончании первого го- да обучения		по окончании втор года обучения	ОГО	по окончании третьего года обучения		
респон	уровень лидерских Ті уровень способностей ских спосо		уровень лидер- ских способностей	T_{i}	уровень лидерских способностей	T _i	
1	25	1	26	2	32	3	
2	37	1	40	3	38	2	
3	27	1	31	2	33	3	
4	4 38 3		35 1		37	2	
5	24	1	26 2		28	3	
суммы	151 7		158	10	168	13	

Вычислим эмпирическое значение χ_r^2 :

$$\chi_{r_{3Mn}}^2 = \frac{12}{5 \cdot 3 \cdot (3+1)} \cdot (7^2 + 10^2 + 13^2) - 3 \cdot 5 \cdot (3+1) = 3.6.$$

В данном примере рассматриваются: k = 5 (количество испытуемых) и n = 3 (количество измерений одного и того же признака), поэтому можно воспользоваться специальной таблицей x^2 , а именно таблицей N 10 приложения.

Уровень статистической значимости для $X_{r, 3Mn}^2 = 3,6$ равен p = 0,185.

 $X^2_{r\,{\scriptscriptstyle 3MR}}$ находится в зоне незначимости, поэтому мы не можем отклонить $\mathcal{H}_{\scriptscriptstyle 0}$., то есть в уровне лидерских способностей нет значимых различий при первичном, вторичном и последующих измерениях, проведенных после первого, второго и третьего годов обучения соответственно.

3.9. Критерий тенденций Пейджа

позволяет выявить

Γ	позволяет выявить
L	Критерий Пейджа
	тенденции в изменении величин признака при переходе от условия к условию
	на основе измерений в трех или более условиях на одной и той же выборке испытуемых
وا	
	Кртерий Пейджа включает следующие этапы:
1	Определить признак, участвующий в сопоставлении (значения признака
	должны быть представлены не ниже интервальной шкалы).
2	Провести белее двух измерений одного и того же признака на одной и той
	же выборке респондентов (не менее 2-х и не более 12 испытуемых, каждый
	из которых прошел не менее 3-х и не более 6 замеров).
3	Сформулировать гипотезы:
	$ \mathcal{H}_0 $ Увеличение индивидуальных показателей при переходе от первого ус-
	ловия ко второму, а затем к третьему и далее, случайно.
	\mathcal{H}_1 Увеличение индивидуальных показателей при переходе от первого ус-
	ловия ко второму, а затем к третьему и далее, неслучайно.
4	Проранжировать индивидуальные значения каждого респондента , полу-
	ченные им в 1-м, 2-м, 3-м и т. д. измерений одного и того же признака.
5	Подсчитать сумму рангов отдельно по каждой серии измерения признака.
6	Проверить совпадение общей суммы рангов с расчетной суммой.
7	Расположить все серии измерений в порядке возрастания их ранговых сумм
	в таблице.
8	Вычислить эмпирическое значение L по формуле: $L_{\mathfrak{I}Mn} = \sum_{i=1}^k (R_i \cdot i),$
	где R_i — сумма рангов по данному условию;
	i — порядковый номер столбца, получившийся в новой таблице,

Определить критические значения $L_{1\kappa p},\,L_{2\kappa p}$ и $L_{3\kappa p},\,$ которые отвечают уров-

упорядоченной по сумме рангов;

ням значимости в 5%, 1% и 0,1%, по таблице № 11 приложения.

k — число измерений.

10	Расположить эмпирическое значение критерия $L_{\scriptscriptstyle 2MR}$ и критические значения
	$L_{1\kappa p}, L_{2\kappa p}$ и $L_{3\kappa p}$ на оси значимости.

¹¹ Если $L_{_{9MN}}$ находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об отсутствии различий. Если $L_{_{9MN}}$ находится в зоне значимости, то гипотеза об отсутствии различий \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии различий. Если $L_{_{9MN}}$ находится в зоне неопределенности, то есть вероятность принятия ложного решения.

Пример. Пятерым испытуемым было предложено найти решение к трем задачам. В таблице приведены показатели времени нахождения решения к 1, 2 и 3 задачам.

No	время, зат	раченное на поиск реше	ения (мин)
респондента	Задача №1	Задача №2	Задача №3
1	15	18	30
2	17	19	15
3	20	22	28
4	25	28	43
5	38	25	40
Σ	115	112	156
среднее время	23	22,4	31,2

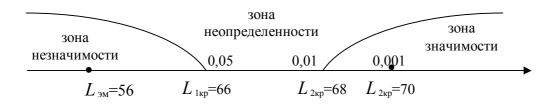
Можно ли утверждать, что нахождение решения к задачам увеличивается при такой последовательности их предъявления респондентам?

Сформулируем гипотезы:

 \mathcal{H}_0 : Тенденция увеличения индивидуальных показателей от первого условия к третьему является случайной.

 \mathcal{H}_1 : Тенденция увеличения индивидуальных показателей от первого условия к третьему не является случайной.

Среднее время поиска решения второй задачи меньше, чем первой. Однако, в гипотезе отражены не среднегрупповые тенденции, а степень совпадения индивидуальных тенденций (важен именно порядок, а не абсолютные показатели времени).


No	Задача №1		Задача №2		Задача №3		
респондента	время, затрачен-	Ранг	время, затра-	Ранг	Время, затрачен-	Ранг	
	ное на поиск		ченное на поиск		ное на поиск ре-		
	решения		решения		шения		
1	15	1	18	2	30	3	
2	17	2	19	3	15	1	
3	20	1	22	2	28	3	
4	25	1	28	2	43	3	
5	38	2	25	1	40	3	
Σ		7		10		13	

Общая сумма рангов: 7+10+12=30 совпадает с расчетной
$$\sum R_i = n \cdot \frac{k(k+I)}{2} = 5 \cdot \frac{3 \cdot (3+I)}{2} = 30.$$

Вычислим эмпирическое значение L: $L_{\text{ЭМЛ}} = 7 \cdot 1 + 10 \cdot 2 + 13 \cdot 3 = 46$.

По таблице № 12 приложения определяем критические значения L для данного количества испытуемых: n=5, и данного количества условий: k=3:

$$L_{\kappa p} \; = egin{cases} 70 \; \ \partial \mbox{\it ля} \; \; p \leq 0\,,\! 001 \; ; \ 68 \; \mbox{\it для} \; \; p \leq 0\,,\! 01 \; ; \ 66 \; \mbox{\it для} \; \; p \leq 0\,,\! 05 \; . \end{cases}$$

 $L_{\text{эмп}}$ находится в зоне незначимости, поэтому мы не можем отклонить $\mathcal{H}_{\text{o-}}$, то есть увеличение индивидуальных показателей при переходе от первого условия ко второму, а затем к третьему случайно.

3.10. Критерий Пирсона

	V питопий Пипооно	позволяет сравнить
9	Критерий Пирсона	
4	эмпирическое распределение с те	соретическим распределением

		Критерий Пирсона включает следующие этапы:				
1	Определить признак, который необходимо исследовать (значения признака может быть представлены в любой шкале измерения).					
2	Провести наблюдение одной выборки респондентов объема n (Объем выборки должен быть больше 30):					
		$x_1, x_2, \dots x_i, \dots x_{n_l},$				
		случайная переменная X характеризует состояние изучаемого свойства в матриваемой совокупности.				
3	Сфор	омулировать гипотезы:				
	\mathcal{H}_0 Полученное эмпирическое распределение не отличатся от теоретического распределения.					
	\mathcal{H}_1	Полученное эмпирическое распределение отличатся от теоретического распределения.				

4		Исходные выборочные данные сгруппировать и представить в виде:								
4	Исх	одныс	выбороч	иные данн	ые сгруп	пироват	ь и предс	тавить	в виде: 	
	a	Стат	истическ	ого ряда ј	распреде:	пения ча	астот (дл	я норма	ального распр	реде-
		лени								
		Во	зможные і	варианты						1
			x_i	1	x_1	x_2		x_{m}		
		ЭМ	тирическа:	я частота					m	
			$k_i^{\partial MI}$		$k_1^{\mathfrak{I}Mn}$	$k_2^{\mathfrak{I}MN}$		$k_m^{\mathfrak{IMN}}$	$\sum_{i=1}^{m} k_i^{\mathfrak{I}MN} = n$	
			κ_i		1	2		THE STATE OF THE S	i=I	
			тропі пог	· · · · · · · · · · · · · · · · · · ·		рапо ра	оспрацац		 стот (для рас	
	б		-				-		` -	-
			ния случа оеделени:		ичины п	э равног	мерному	закону,	для нормаль	ног о
		pacii	•		1	1	1			7
			элемен	ТЫ	$[x_0; x_1]$	$[x_1; x_2)$		$[x_{m-1};x_m]$		
		<u> </u>	x_i							-
		ЭМ:	пирическа		₁₋ ЭМП	₁₋ ЭМП		_{1_} ЭМП	$\sum_{k=3Mn}^{m} - n$	
			$k_i^{\partial MI}$	n	^k 1	κ_2	••••	κ_m	$\sum_{i=1}^{m} k_i^{\mathfrak{IMN}} = n$	
		Част	ота ппя к	аждой яче			•		· ·	_
_										
5	Для	кажд	ой ячейк	и вычисл	ить теоре	етически	е частот	гы k_i^{med}	p^p (частоты, і	кото-
	рые	след	iveт ожі	идать. ко	огда гип	отеза 3	<i>H₀</i> спр	аведлив	ва) по форм	иуле:
	•		-		, , , , ,		·			<i>J</i>
			p_i , где p				;		-,	
	5.1	Для	нормальн	ного распр	ределени	я $p_i = p($	$(x_i < X \le x)$	$(c_{i+1}) = \Phi_0$	$Q(z_{i+1}) - \Phi_Q(z_i)$, где
			_							
		$z_i = 1$	$\frac{v_l}{\sigma}$, $i =$	$=0;m, X_{i}$	– левый 1	конец i	интервал	а, значе	ение z_0 поло	жить
		nonii	0 ×	0 01101101111	о 7 пот	ionalimi r	NODIII IM	- 2110	опония Ф. (2) оп
							јавным п	г∞. Эна	ачения $\Phi_0(z_i)$) 011-
		_		аблице №						
	5.2	Для	распреде	ления слу	/чайной	величин	ы по раг	вномерн	юму закону,	если
		исхо	дные выб	орочные ,	данные с	группир	овать и п	редстав	вить в виде:	
		a		10011050 70	по поопп	энонония	т ноотот	n = n(1)	$V = M \cdot 1$.	
			латистич	кү оломээн	да распро	еделения	1 4ac 101	$p_i - p_i$	$X = x_i$) = $\frac{1}{m}$;	
		б 1	интервали	ьного с	татистич	еского	ряда	распре	деления ча	астот
			$p_i = p(x_i < \lambda)$	$(x \le x_{i+1}) = \frac{x_{i+1}}{x_1}$	-1 <i>t</i>					
									\2	
6	Выч	Вычислить значение χ^2 по формуле: 2 $\int_{0}^{\infty} \left(k_i^{3Mn} - k_i^{meop}\right)^2$								
	DDI	Вычислить значение $\chi^2_{_{\mathfrak{I}MN}}$ по формуле: $\chi^2_{_{\mathfrak{I}MN}} = \sum_{i=1}^m \frac{\left(k_i^{_{\mathfrak{I}MN}} - k_i^{_{meop}}\right)^2}{k_i^{_{meop}}}$.								
		ля нахождения значения $\chi^2_{_{9MN}}$, данные можно записать в таблицу:								
	Для	нахох	кдения зн	начения χ	$\frac{2}{9Mn}$, дані	ные мож	но запис	ать в та	блицу:	
		ементь	I _{1,} эмп	₁₋ meop	1_9MN 1	теор	(- 2Mh - m	reon 2 ($\frac{1}{2}$ meon $\frac{1}{2}$	
		x_i	κ_i	κ_i	κ_i - κ	ϵ_i	$(k_i^{j,m}-k_i^m)$	$ \underline{k} $	$(k_i^{\text{min}} - k_i^{\text{min}})$	
									$\frac{\frac{\partial MN}{\partial i} - k_i^{meop}}{k_i^{meop}}$	
	•		•			1				

7	Определить количество степеней свободы по формуле:
	${f a}$ для нормального распределения df = c - 3 ;
	б для распределения случайной величины по равномерному закону $df=c-1$, где c – число элементов в выборке. Если $df=1$, то внести поправку на «не-
	прерывность».
8	Определить критические значения $\chi^2_{1\kappa p}$ и $\chi^2_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1% по таблице № 4 приложения.
9	Расположить эмпирическое значение критерия $\chi^2_{_{2MN}}$ и критические значения $\chi^2_{_{1KP}}$ и $\chi^2_{_{2KP}}$ на оси значимости.
10	Если χ^2_{9Mn} находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об отсутствии различий. Если χ^2_{9Mn} находится в зоне значимости, то гипотеза об отсутствии различий \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии различий. Если χ^2_{9Mn} находится в зоне неопределенности, то существует вероятность принятия ложного решения.

Пример. Имеются сгруппированные данные о количества баллов, набранных на тестировании по математике студентами:

элементы (x_i)	[40; 50)	[50; 60)	[60; 70)	[70; 80)	[80; 90)	[90;100]
эмпирическая частота (k_i^{3Mn})	10	26	56	64	30	14

Требуется проверить гипотезу \mathcal{H}_0 : число баллов, набранных на тестировании, есть случайная величина, распределенная по нормальному закону. При альтернативной гипотезе \mathcal{H}_1 : число баллов, набранных на тестировании, есть случайная величина, не распределенная по нормальному закону.

Для каждой ячейки необходимо вычислить теоретические частоты k_i^{meop} по форму-

ле:
$$k_i^{meop} = n \cdot (\Phi_0(z_{i+1}) - \Phi_0(z_i))$$
, где $z_i = \frac{x_i - \overline{x}}{\sigma}$, $i = \overline{I; m}$.

Для нахождения значения $\chi^2_{_{\mathfrak{I}\!M\!n}}$, данные запишем в таблицу:

элементы	[40; 50)	[50; 60)	[60; 70)	[70; 80)	[80; 90)	[90;100]	Σ
x_i				. , ,		, ,	
$k_i^{\ni Mn}$	10	26	56	64	30	14	200
Нормированные интервалы $(z_i; z_{i+1})$	(-∞; -1,70)	[-1,70; -0,86)	[-0,86; -0,08)	[-0,08;0,73)	[0,73; 1,54)	[1,54;+∞)	
$\Phi_0(z_{i+1}) - \Phi_0(z_i)$	0,045	0,142	0,281	0,299	0,171	0,062	1
k_i^{meop}	9	28,4	56,2	59,8	34,2	12,4	200
$k_i^{\scriptscriptstyle \mathfrak{IMN}} - k_i^{\scriptscriptstyle meop}$	1	-2,4	-0,2	4,2	-4,2	1,6	
$\left(k_i^{\mathfrak{I}Mn} - k_i^{meop}\right)^2$	1	5,76	0,04	17,64	17,64	2,56	
$\frac{\left(k_i^{\mathfrak{IMN}} - k_i^{meop}\right)^2}{k_i^{meop}}$	0,11	0,20	0,00	0,29	0,52	0,21	1,33

 χ^2_{9Mn} = 1,33. Количество степеней свободы при этом определяется по формуле: df=6-3=3.

Определим по таблице № 4 приложения критические значения $\chi^2_{1\kappa p}$ и $\chi^2_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1%:

Оснований для отклонения \mathcal{H}_0 нет, поэтому число баллов, набранных на тестировании, есть случайная величина, распределенная по нормальному закону.

Критерий Пирсона позволяет сравнить

одно эмпирическое распределение с другим эмпирическим распределением

	Критерий Пирсона включает следующие этапы:
1	Определить признак, содержащий k разрядов, участвующий в сопоставлении (значения признака должны быть представлены не ниже порядковой шкалы).
2	Произвести выборку двух групп респондентов.
3	Провести две серии наблюдений на двух независимых выборках респондентов объема n_1 , и n_2 :
	$\chi_1, \chi_2, \ldots \chi_i, \ldots \chi_{n_1};$
	$y_1, y_2, \ldots, y_j, \ldots, y_{n_2}$
	где случайная переменная χ характеризует состояние изучаемого свойства в одной из рассматриваемых совокупностей, а случайная переменная y — состояние того же свойства во второй совокупности (число членов в обеих выборках должно быть в сумме больше 40, т. е. $n_1 + n_2 > 40$)
4	Сформулировать гипотезы:
	\mathcal{H}_0 Законы распределения случайных величин \mathcal{X} и \mathbf{Y} одинаковы в обеих рассматриваемых совокупностях.
	\mathcal{H}_1 Законы распределения случайных величин \mathcal{X} и \mathbf{Y} различны в обеих рассматриваемых совокупностях.
5	Распределить элементы каждой выборки объемов n_1 и n_2 на k категории, соответствующие разрядам исследуемого признака.

6	На основе полученных результатов составить таблицу вида:					
	выборки	разряды исследуемого признака				~
		1	2	•••	k	Σ
	1	m_{11}	m_{12}	•••	m_{1k}	n_1
	2	m_{21}	m_{22}	•••	m_{2k}	n_2
	\sum	$m_{11} + m_{21}$	$m_{12}+m_{22}$		$m_{1k}+m_{2k}$	$n_1 + n_2$
	Не рекомендуется использовать критерий для проверки гипотез, если хотя бы одно из значений m_{ij} меньше 5.					
7	Вычислить значение $\chi^2_{\mathfrak{I}Mn}$ по формуле: $\chi^2_{\mathfrak{I}Mn} = \frac{1}{n_l \cdot n_2} \sum_{i=1}^k \frac{(n_l \cdot m_{2i} - n_2 m_{1i})^2}{m_{li} + m_{2i}}$.					
8	Определить критические значения $\chi^2_{1\kappa p}$ и $\chi^2_{2\kappa p}$, которые отвечают уровням					
	значимости в 5% и 1% по таблице № 4 приложения. Количество степеней сво-					
	боды при этом определяется по формуле: $df = (k - 1)$. Если $df = 1$, то внести					
	поправку на «непрерывность».					
9	Расположить эмпирическое значение критерия χ^2_{3MR} и критические значения					
	$\chi^2_{1\kappa p}$ и $\chi^2_{2\kappa p}$ на оси значимости.					
10	Если $\chi^2_{_{9MN}}$ находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об от-					
	сутствии различий. Если $\chi^2_{_{\mathcal{I}\!M\!n}}$ находится в зоне значимости, то гипотеза об					
	отсутствии различий \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии					
	различий. Если $\chi^2_{_{9MN}}$ находится в зоне неопределенности, то существует ве-					
	роятность принятия ложного решения.					

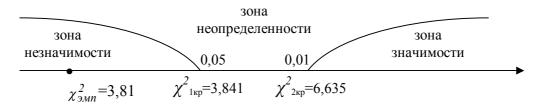
Пример. Чтобы проверить эффективность нового метода обучения были привлечены две случайно отобранные группы студентов в количестве 29 и 31 человек. Первая группа обучалась по традиционному методу, вторая - по новому методу. По окончанию изучаемого курса им был предложен один и тот же тест, результаты которого представлены в таблице.

Число баллов	Абсолютная частота в первой выборке f_1	Абсолютная частота во второй выборке $f_{\scriptscriptstyle 2}$	$f = f_1 + f_2$	Накопленная частота $\sum f$
15	1	0	1	60
14	1	1	2	59
13	0	2	2	57
12	2	0	2	55
11	1	2	3	53
10	0	1	1	50
9	0	5	5	49
8	2	3	5	44
7	4	6	10	39
6	6	3	9	29
5	5	5	10	20
4	4	2	6	10
3	1	0	1	4
2	2	1	3	3
1	0	0	0	0
0	0	0	0	0
	n_I =29	$n_2 = 31$	N=60	

Проверяется гипотеза \mathcal{H}_0 : $m_1 = m_2$ — медианы распределения учащихся по числу баллов, полученных за выполнение работы, одинаковы в совокупностях студентов, обучающихся по традиционному и новому методам. Альтернативная гипотеза \mathcal{H}_1 : $m_1 \neq m_2$.

Число студентов в двух выборках N=60 — число четное, поэтому медиана равна среднему арифметическому значений, стоящих в упорядоченном ряду на 30-м и 31-м местах. В данном ряду, начиная с 30-го и заканчивая 39-м номером, расположены одинаковые значения, каждое из которых равно 7. Следовательно, среднее арифметическое значений, стоящих на 30-м и 31-м местах, равно $\frac{7+7}{2}$ = 7, т. е. медиана равна 7.

Распределим значения каждой из выборок учащихся на две категории: больше 7 и меньше или равны 7, и запишем полученные результаты в таблицу, необходимую для подсчета статистики медианного критерия:


	Число студентов, набравших	Число студентов, набравших	
	больше 7 баллов	7 или менее баллов	
Выборка № 1	18	11	29
Выборка №2	11	20	31
	29	31	60

Найдем значение статистики критерия χ^2_{3Mn} :

$$\chi_{\mathfrak{I}Mn}^{2} = \frac{1}{31 \cdot 29} \left[\frac{(29 \cdot 11 - 31 \cdot 18)^{2}}{29} + \frac{(29 \cdot 20 - 31 \cdot 11)^{2}}{31} \right] = 3,81.$$

Определим по таблице № 4 приложения критические значения $\chi^2_{1\kappa p}$ и $\chi^2_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1%:

$$\chi_{_{\kappa p}} = \begin{cases} 3,841 \text{ , для } p \leq 0.05; \\ 6,635 \text{ , для } p \leq 0.01. \end{cases}$$

Оснований для отклонения \mathcal{H}_0 нет, поэтому нет достаточных оснований считать различными медианы распределений студентов по числу баллов в совокупностях студентов, обучающихся по новому и традиционному методам.

Пример. Была проведена выборка абитуриентов. Для каждого респондента выборки определены: а) пол; б) одна из 4 предпочитаемых специальностей. Результаты исследования представлены в таблице.

пол	факультеты				Σ
	1	2	3	4	
Ж (1)	4	21	17	9	51
M (2)	6	25	11	5	47
Σ	11	48	31	18	98

Проверяется гипотеза \mathcal{H}_0 : предпочтения у юношей и девушек в выборе специальностей совпадают. Альтернативная гипотеза \mathcal{H}_1 : предпочтения у юношей и девушек в выборе специальностей не совпадают.

Найдем значение статистики критерия χ^2_{3Mn} :

$$\chi_{3Mn}^{2} = \frac{1}{51.47} \left[\frac{(51.6 - 47.4)^{2}}{11} + \frac{(51.25 - 47.2)^{2}}{48} + \frac{(51.11 - 47.17)^{2}}{31} + \frac{(51.5 - 47.9)^{2}}{18} \right] \approx 2,67.$$

Определим по таблице № 4 приложения критические значения $\chi^2_{1\kappa p}$ и $\chi^2_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1% и df=4-1=3:

$$\chi_{_{\kappa p}} = \begin{cases} 7,815 \text{ , } \partial \pi p \leq 0,05; \\ 11,345 \text{ , } \partial \pi p \leq 0,01. \end{cases}$$
 зона неопределенности зона незначимости $0,05$ $0,01$ значимости

Оснований для отклонения \mathcal{H}_0 нет, поэтому предпочтения у юношей и девушек в выборе специальностей совпадают.

3.11. Критерий Колмогорова-Смирнова

Критерий предназначен для сопоставления двух распределений: а) эмпирического с теоретическим; б) одного эмпирического распределения с другим эмпирическим распределением.

Критерий Колмогорова-Смирнова

эмпирическое распределение с теоретическим распределением

	Критерий Колмогорова-Смирнова включает следующие этапы:					
1	Определить признак, который необходимо исследовать (значение признака может быть представлено в любой шкале измерения).					
2	Провести наблюдения одной выборки респондентов объема n (Объем выборки должен быть больше 50): x_1, x_2, x_i, x_{n_l} , где случайная переменная X характеризует состояние изучаемого свойства в рассматриваемой совокупности.					
3	Сформулировать гипотезы: \mathcal{H}_0 Полученное эмпирическое распределение не отличатся от теоретического го распределения. \mathcal{H}_1 Полученное эмпирическое распределение отличатся от теоретического распределения.					

4	Результаты измерения объектов выборки записать в ряд по возрастанию.							
5	Исх вали	Исходные выборочные данные сгруппировать и представить в виде интервального статистического ряд распределения частот (для распределения случайной величины по равномерному закону, для нормального распределения):						
		эле	менты x_i	$[x_0;x_1]$	$[x_1; x_2]$	••••	$(x_{\text{m-1}};x_{\text{m}}]$	
	ЭМ	•	ская частота эмп i	$k_I^{\mathfrak{I}Mn}$	$k_2^{\mathfrak{I}Mn}$		$k_m^{\mathfrak{I}Mn}$	$\sum_{i=1}^{m} k_i^{\mathfrak{IMN}} = n$
6	Для каждой ячейки найти значение эмпирической функции распределения изучаемого свойства: $S(x)_i^{9Mn} = \frac{a}{n}$, где a — число значений $x_i \le x$.							
7	Для	каждой	ячейки выч	ислить $S(x)$	$)_i^{meop}$ по (формуле:		
	a							$z_i = \frac{x_i - \overline{x}}{\sigma},$
			, x_i – правы начения $arPhi_0$ (кить равным
	б	для ра	е $\frac{n}{m} + i\frac{r}{m}$	я случайно 1	ой величи			
8			пить значени ахождения з				I	ı
	элс	ементы x_i	$S(x)_i^{9Mn}$	$S(x)_i^{meop}$	$S(x)_i^{3Mn}$ –	$S(x)_i^{meop}$	$\left S(x)_i^{\mathfrak{I}^{Mn}}\right $	$-S(x)_i^{meop}$
9		Определить критические значения $\lambda^2_{1\kappa p}$ и $\lambda^2_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1% по таблице №13 или №14 приложения.						
10		Расположить эмпирическое значение критерия λ_{9MN} и критические значения λ_{1kp}^2 и λ_{2kp}^2 на оси значимости.						
11	Есл	и λ _{эмп}	находится в	зоне незна	ачимости,	то прини	имается ги	потеза \mathcal{H}_0 об
	отсу	утствии	различий. Е	сли $\lambda_{_{\mathfrak{I}\!$	находится	в зоне зн	начимости,	то гипотеза
		-	_		_			\mathcal{H}_1 о наличии
						оеделенно	ости, то су	ществует ве-
	роя	гность п	ринятия лож	сного решен	. RИ			

Критерий Колмогорова-Смирнова

позволяет сравнить

одно эмпирическое распределение с другим эмпирическим распределением

Критерий Колмогорова-Смирнова включает следующие этапы:

- 1 Определить признак, участвующий в сопоставлении (значения признака должны быть представлены не ниже порядковой шкалы).
- 2 Произвести выборку двух групп респондентов (при увеличении объема выборки точность критерия повышается).
- **3** Провести две серии наблюдений на двух независимых выборках респондентов объема n_1 , и n_2 :

$$x_1, x_2, \ldots x_i, \ldots x_{n_1};$$

$$y_1, y_2, \ldots, y_j, \ldots, y_{n_2},$$

где случайная переменная χ характеризует состояние изучаемого свойства в одной из рассматриваемых совокупностей, а случайная переменная y- состояние того же свойства во второй совокупности.

- 4 В зависимости от объема выборки:
 - 4.1 При небольших объемах выборки:
 - **а** Результаты измерения объектов первой выборки записать в ряд по возрастанию. Для каждого значения переменной χ найти значение эмпирической функции распределения изучаемого свойства: $S(x) = \frac{a}{n_1}$, где a число значений $x_i \leq x$.
 - **б** Результаты измерения объектов второй выборки записать в ряд по возрастанию. Для каждого значения переменной y найти значение эмпирической функции распределения изучаемого свойства: $S(y) = \frac{b}{n_2}$, где

b — число значений $y_i \le y$.

Ланные записать в таблицу вида:

:	данные за	imeard b raosing	вида.	
	x_i	y_j	$S(x)_i^{i}$	$S(x)_i^{\mathfrak{I}MN}$

- 4.2 При больших объемах выборок:
 - а Составить таблицу, в которой значения наблюдений обеих выборок записываются в форме интервального ряда. Для каждого интервала значений наблюдений подсчитываются абсолютные частоты для каждой из выборок f_1 и f_2 .

- б По каждой выборке на основе абсолютных частот подсчитать накопительные частоты $\sum f_1$ и $\sum f_2$.
- Вычислить значения эмпирических функций по формулам: $S(x) = \frac{\sum f_1}{n_1} \text{ и } S(y) = \frac{\sum f_2}{n_2}.$
- г | Данные записать в таблицу вида:

Границы интервала	Абсолютная частота		Накопит част		$S(x)_i^{\mathfrak{I}^{\mathfrak{M}^n}}$	$S(x)_i^{3Mn}$
1	f_1	$f_{\scriptscriptstyle 2}$	$\sum f_1$	$\sum f_2$		

- 5 | Сформулировать гипотезы:
 - \mathcal{H}_0 Законы распределения случайных величин \mathcal{X} и \mathbf{Y} одинаковы в обеих рассматриваемых совокупностях.
 - \mathcal{H}_1 Законы распределения случайных величин \mathcal{X} и \mathbf{Y} различны в обеих рассматриваемых совокупностях.
- Вычислить значение $\lambda_{\mathfrak{I}Mn}$ по формуле $\lambda_{\mathfrak{I}Mn} = \max \left| S(x)_i^{\mathfrak{I}Mn} S(y)_i^{\mathfrak{I}Mn} \right| \cdot \sqrt{n}$, где $n = \frac{n_1 \cdot n_2}{n_1 + n_2}$.

Для нахождения значения $\lambda_{\scriptscriptstyle \mathfrak{IM}n}$ данные можно записать в таблицу:

элементы x_i	$S(x)_i^{\mathfrak{I}^{Mn}}$	$S(x)_i^{\mathfrak{I}^{Mn}}$	$S(x)_i^{9Mn} - S(y)_i^{9Mn}$	$\left S(x)_i^{\mathfrak{I}^{MN}} - S(y)_i^{\mathfrak{I}^{MN}} \right $

- 7 Определить критические значения $\lambda_{1\kappa p}$ и $\lambda_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1% по таблицам № 13 или №14 приложения.
- **8** Расположить эмпирическое значение критерия λ_{9MN} и критические значения $\lambda_{1\kappa p}$ и $\lambda_{2\kappa p}$ на оси значимости.
- Если λ_{9Mn} находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об отсутствии различий. Если λ_{9Mn} находится в зоне значимости, то гипотеза об отсутствии различий \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии различий. Если λ_{9Mn} находится в зоне неопределенности, то существует вероятность принятия ложного решения.

Пример. Для того, чтобы показать преимущества разработанной методической системы обучения решению задач относительно традиционной, в качестве одного из показателей эффективности использовались результаты выполнения студентами тестирования. Извлечены две выборки студентов объемами n_I = 40 (новая методическая система обучения) и n_2 = 50 (традиционная система обучения). Результаты выполнения тестирования двух выборок представлены таблице.

Число верных ответов	Частота в первой выборке	Частота во второй выборке
41-45	1	1
46-50	1	0
51-55	1	1
56-60	0	1
61-65	1	4
66-70	1	2
71-75	1	2
76-80	2	6
81-85	3	5
86-90	4	2
91-95	10	8
96-100	15	18
Σ	40	50

Требуется проверить гипотезу \mathcal{H}_0 : число баллов, набранных на тестировании в обеих выборках, подчиняются одному и тому же закону распределенная. При альтернативной гипотезе \mathcal{H}_1 : число баллов, набранных на тестировании, в обеих выборках подчиняются различным законам распределения.

Число верных	Абсол	ютная	Накопи	тельная	Эмпирическая		$\left S_1(x)-S_2(x)\right $
ответов	частот	a	частота		функция		
	f_1	$f_{\scriptscriptstyle 2}$	$\sum f_1$	$\sum f_2$	$S_1(x)$	$S_2(x)$	
41-45	1	1	1	1	0,03	0,02	0,01
46-50	1	0	2	1	0,05	0.02	0,03
51-55	1	1	3	2	0,08	0,04	0,04
56-60	0	1	3	3	0,08	0,06	0,02
61-65	1	4	4	7	0,10	0.14	0,04
66-70	1	2	5	9	0,13	0.18	0,05
71-75	1	2	6	11	0,15	0,22	0,07
76-80	2	6	8	17	0,20	0,34	0,14
81-85	3	5	11	22	0,28	0,44	0,16
86-90	4	2	15	24	0,38	0,48	0,10
91-95	10	8	25	32	0,63	0,64	0,01
96-100	15	18	40	50	1,00	1,00	0,00

Вычислим
$$\lambda_{'3MN} = 0.16 \cdot \sqrt{\frac{40 \cdot 50}{40 + 50}} = 0.16 \sqrt{22.2} \approx 0.75$$
.

Определим по таблице № 13 приложения критические значения $\lambda_{1\kappa p}$ и $\lambda_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1%:

$$\lambda_{\kappa p} = egin{cases} 0.91 \ , \ \partial \pi & p \leq 0.05 \ ; \ 1.09 \ , \ \partial \pi & p \leq 0.01 \ . \end{cases}$$
 зона неопределенности зона незначимости $0.05 \ 0.01$ $\lambda_{3M} = 0.75$ $\lambda_{1\kappa p} = 0.91$ $\lambda_{2\kappa p} = 1.09$

 λ_{9Mn} находится в зоне незначимости. Оснований для отклонения \mathcal{H}_0 нет, поэтому число баллов, набранных на тестировании в обеих группах, есть случайная величина, распределенная по одному и тому же закону, следовательно, говорить о преимуществах новой системы обучения относительно традиционной нельзя.

3.12. КРИТЕРИЙ ФИШЕРА

Критерий Фишера	позволяет сравнить				
две выборки по частоте встречаемости исследуемого признака					

			Критерий Фишера включает следующие этапы:					
1	Опр	Определить признак, который необходимо исследовать (значение признака мо-						
			ть представлено в любой шкале измерения) и критерий, позволяющий од-					
	нозі	начн	о определить наличие и отсутствие проявления данного признака у испы-					
	туем	иых.						
2	Про	изве	ести выборку двух групп респондентов, учитывая что:					
3	3.1	дол	іжны соблюдаться следующие соотношения в численности двух выборок:					
		a	если в одной выборке всего 2 наблюдения, то во второй должно быть не менее 30;					
		б если в одной из выборок всего 3 наблюдения, то во второй должно быть не менее 7;						
		в если в одной из выборок всего 4 наблюдения, то во второй должно быть не менее 5;						
		Γ	при $n_1 \ge 5$ и $n_2 \ge 5$ возможны любые сопоставления;					
	3.2	вы(борки могут быть сколь угодно большими.					
4	_		ти две серии наблюдений на двух независимых выборках респондентов n_1 , и n_2 :					
			$\chi_1, \chi_2, \ldots \chi_i, \ldots \chi_{n_1};$					
			$y_1, y_2, \ldots, y_j, \ldots, y_{n_2}$,					
	где	слу	чайная переменная х характеризует состояние изучаемого свойства в од-					
			рассматриваемых совокупностей, а случайная переменная у – состояние					
	того	же	свойства во второй совокупности.					
5	- '	-	ировать переменные χ и y относительно критерия, позволяющего определичие признака» и «отсутствие признака».					

6	Записа	ать данные в виде с	ледующей таблицы				
			признак				
		наличие		отсутствие	Σ		
		количество респондентов	% доля	количество респондентов	2		
	Івыборка	а	$d_1 = \frac{a}{n_1} 100 \%$	b	$n_1=a+b$		
	2выборка	С	$d_2 = \frac{c}{n_2} 100 \%$	d	$n_2=c+d$		
			тличны от нуля. Ес рваться другим крит		о из них ра	авно	
7	Сформулиро	вать гипотезы:					
		иц, у которых про , чем в выборке 2.	оявляется исследуе	мый признак, в	выборке	1 не	
	\mathcal{H}_1 Доля лиц, у которых проявляется исследуемый признак, в выборке 1 больше, чем в выборке 2.						
8	Используя таблицу №15 приложения перевести процентные доли d_1 и d_2 в величины центрального $\varphi(d_1)$ и $\varphi(d_2)$.						
9	Вычислить эмпирическое значение g^* по формуле: $\varphi_{\mathfrak{I}Mn}^* = \varphi_I - \varphi_2 \cdot \sqrt{\frac{n_1 \cdot n_2}{n_1 + n_2}}$.						
10	Критические значения $\varphi^*_{I\kappa p}$ =1,64 и $\varphi^*_{2\kappa p}$ =2,18, которые отвечают уровням значимости в 5% и 1%, имеют фиксированную величину.						
11	Расположит	ь эмпирическое зна	чение критерия ϕ_{2n}^*	" и критические	значения о	φ* _{1κη}	
	Расположить эмпирическое значение критерия φ_{9Mn}^* и критические значения φ_{1kp}^* и φ_{2kp}^* на оси значимости.						
12	Если φ_{2Mn}^* н	аходится в зоне нез	значимости, то при	нимается гипотез	за \mathcal{H}_0 об от	сут-	
	ствии различий. Если $\varphi_{_{2M}n}^{*}$ находится в зоне значимости, то гипотеза об отсутст-						
		3,,,,,	принимается гипот				
	ли ϕ_{9Mn}^* нахо ложного рец		еделенности, то суг	цествует вероятн	юсть прин	китк	
13	При необхо, значимости,	*	е № 16 приложени	ия определить то	очный уро	вень	

Пример. Исследовалось влияние пола на отрицательное отношение к курению в юношеском возрасте. Для этого была проведена выборка из 60 человек. Данные приведены в таблице.

	кур	ОИТ	не курит	
выборка	Количество	% доля	Количество	\sum
	респондентов		респондентов	
M (1)	10	$d_1 = 38,5\%$	16	26
Ж (2)	8	$d_2 = 23,5\%$	26	34

Требуется проверить гипотезу \mathcal{H}_0 : Доля лиц, которая курит, среди юношей не больше, чем среди девушек. При альтернативной гипотезе \mathcal{H}_I : Доля лиц, которая курит, среди юношей больше, чем среди девушек.

Используя таблицу №15 приложения перевести процентные доли d_1 и d_2 в величины центрального $\varphi(d_1)$ = 1,339 и $\varphi(d_2)$ = 1,036.

Вычислим
$$\varphi_{\mathfrak{I}Mn}^* = |1,339 - 1,036| \cdot \sqrt{\frac{26 \cdot 34}{26 + 34}} \approx 1,80 \cdot$$

ГЛАВА 4. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ

4.1. СУТЬ КОРРЕЛЯЦИОННОГО АНАЛИЗА

При изучении психолого-педагогических явлений необходимо учитывать, что на них воздействуют множество различных факторов. При этом зависимость между величинами рассматриваемых признаков не проявляется как при функциональной зависимости в каждом отдельном случае. В этом случае говорят о статистической зависимости

Зависимость, при которой каждому значению независимой переменной x соответствует множество значений зависимой переменной y, при этом заранее неизвестно, какое именно значение примет y

Частным случаем статистической зависимости является корреляционная зависимость.

Корреляционная зависимость

статистическая зависимость, при которой каждому значению независимой переменной x соответствует определенное математическое ожидание (среднее значение) зависимой переменной y

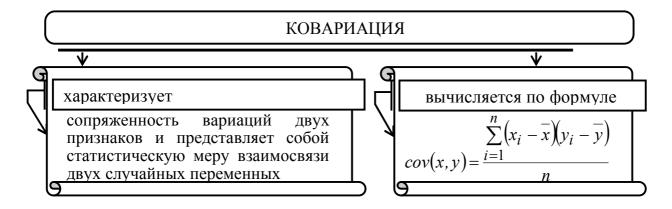
Корреляционная связь проявляется не в каждом отдельном случае, а только в средних величинах при большом объеме выборки. Таким образом, данная связь отражает свойство совокупности в целом, а не отдельных ее единиц.

Корреляционный анализ

раздел математической статистики, рассматривающий взаимосвязи между случайными величинами и заключающийся в количественном определении тесноты связи между двумя признаками (при парной связи) и между зависимым и множеством независимых признаков (при многофакторной связи)

Корреляционный анализ применяется на выборке из генеральной совокупности, распределенной по многомерному нормальному закону.

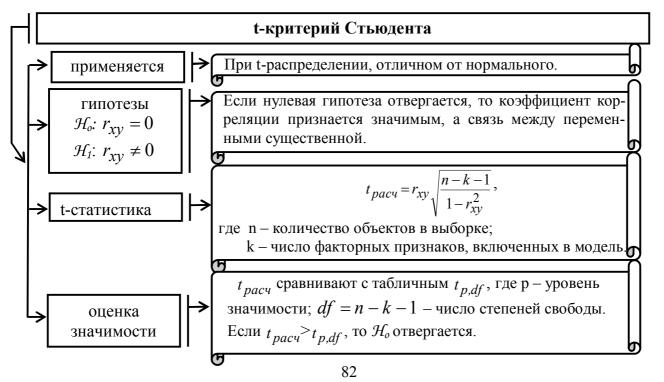
В качестве измерителя степени тесноты связей между количественными переменными используется коэффициент корреляции.

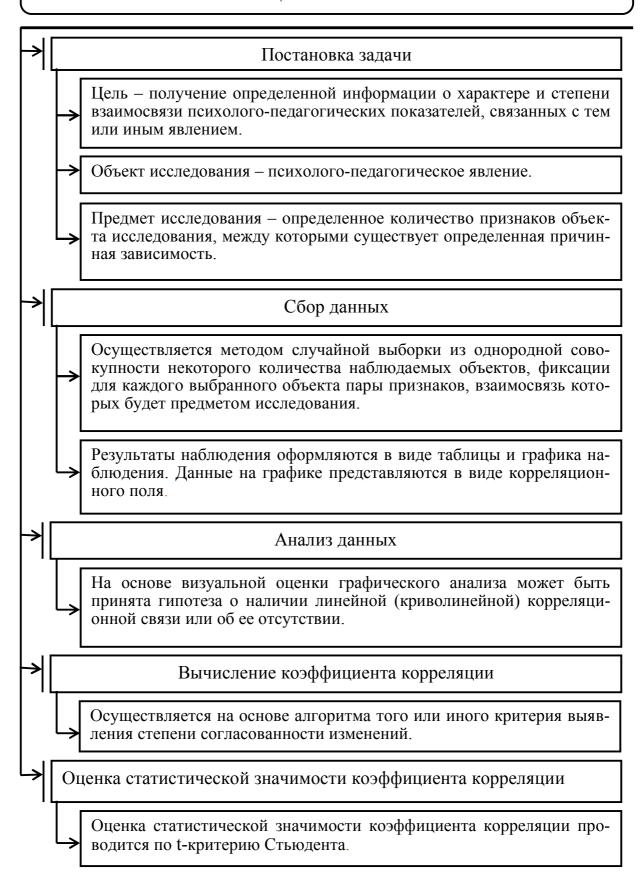

Коэффициент корреляции

количественная мера силы и направления вероятностной взаимосвязи двух переменных, принимающая значение в диапазоне от -1 до +1

Корреляционные связи различаются по форме, направлению и степени (силе).

КЛАССИФИКАЦИЯ КОРРЕЛЯЦИОННЫХ СВЯЗЕЙ ПО ИХ ФОРМЕ					
прямолинейная	криволинейная				
	ных связей по их направлению				
показателем направления связи явля	ется знак коэффициента корреляции				
Положительная (прямая)	Отрицательная (обратная)				
КЛАССИФИКАЦИЯ КОРРЕЛЯЦ	ИОННЫХ СВЯЗЕЙ ПО ИХ СИЛЕ				
показателем силы связи является абсолю	тная величина коэффициента корреляции				
Уровень силы корреляционной связи	Величина коэффициента корреляции				
Сильная	$r \ge 0.70$				
Средняя	$0.50 < r \le 0.69$				
Умеренная	$0.30 < r \le 0.49$				
Слабая	$0.20 < r \le 0.29$				
Очень слабая	$r \le 0.19$				


Нахождение коэффициента корреляции основано на сумме произведений отклонений индивидуальных значений признаков x_i и y_i от их средних значений \overline{x} и \overline{y} : $\sum_{i=1}^n \left(x_i - \overline{x}\right) \left(y_i - \overline{y}\right)$. Эта величина, деленная на число единиц совокупности n, называется ковариацией.


Корреляция бывает парной, частной и множественной.

Совокупность наблюдений, как правило, представляет собой выборку, поэтому значение любого показателя, в том числе и коэффициента корреляции, вычисленного на основе выборки, требует проверки. Оценка значимости коэффициента корреляции осуществляется при помощи t-критерия Стьюдента.

ЭТАПЫ КОРРЕЛЯЦИОННОГО АНАЛАЛИЗА

4.2. Парный линейный корреляционный анализ

4.2.1. Коэффициент ассоциации Д. Юла и контингенции К. Пирсона.

	Для выявления степени согласованности изменений между двумя признаками одной и той же выборки необходимо:						
1	Оп	редел	іить дв	а качественных призн	ака $oldsymbol{x}_i$ и $oldsymbol{y}_i$, каждый из н	соторых принимает	
				іючающих значения <i>х</i>	<u> </u>		
2	Пр	овест	ги две с	ерии наблюдений на с	дной и той же выборке	респондентов:	
				$x_2,\ldots,x_i,\ldots x_n;$			
	гπа	СПХЛ	-	$y_2, \dots, y_i, \dots, y_n$	еризует состояние перв	ого признака: спи	
		-		неременная у характо нная У – состояние вт		ого признака, слу-	
3							
3		ī		р вида (x_i, y_i) , учитыва			
	a	1	γ_i — рефресион,	-	вух различных признак	ов у одного и того	
	б	+			менований, имеющей д	 тве категории обо-	
				-	ары (x_i, y_i) могут быть	-	
				0, 1), (1,0), (1, 1);		1	
	В	пар	ы (х _і ,)	(v_i) взаимно независим	ы, т. е. члены выборкі	и никак не влияют	
		:	т на др		_		
4	По	счита	ать част	тоты сопоставляемых	признаков: $a(0;0)$, $b(0;0)$	l), c(1;0) и d(1;1).	
5			3a	писать данные в виде	таблицы сопряженност	ги 2х2:	
				I	Тризнак <i>у</i>		
				y=0	<i>y</i> =1	Итого	
			x=0	а	b		
		ризнак х		(число пар, у которых $x=0, y=0$)	(число пар, у которых $x=0, y=1$)	a +b	
		изн	<i>x</i> =1	<i>c</i>	$\frac{x-0,y-1}{d}$		
		Пр		(число пар, у которых	(число пар, у которых	c +d	
	-	Итог	0	x=1, y=0) $a+c$	x=1, y=1)	n = a + b + c + d	
_	u = c $b = u$ $u = a + b = c + u$						
6	Если хотя бы одно из четырех значений в таблице сопряженности 2x2 отсутст-						
	вует, то значение коэффициента ассоциации Д. Юла будет равно единице, а это						
	преувеличенная оценка степени тесноты связи между признаками. В данном случае необходимо использовать коэффициент контингенции К. Пирсона.						
7				ть гипотезу:	· -	*	
	\mathcal{H}_0	К	орреля	ция между признаками	X и Y не отличается (от нуля.	
	\mathcal{H}_1				и X и Y достоверно отл		

8	Вы	числить коэффициент корреляции:			
	а коэффициент ассоциации Д. Юла: $Q = \frac{ad - bc}{ad + bc}$;				
	б	коэффициент контингенции К. Пирсона: $K_k = \frac{ad - bc}{\sqrt{(a+b)(c+d)(a+c)(b+d)}}$.			
9	Сравнить величину коэффициента корреляции с уровнем силы корреляционной связи.				

Коэффициент ассоциации всегда больше коэффициента контингенции при условии, что они вычислены по одним и тем же данным. Коэффициент контингенции дает более осторожную оценку степени тесноты связи и отражает двустороннюю связь, а коэффициент ассоциации — одностороннюю.

Пример. На выборке из 11 человек исследуется взаимосвязь двух признаков: \boldsymbol{x} – более одного ребенка в семье и \boldsymbol{y} – умение находить компромиссы в конфликтных ситуациях. Данные переменные могут принимать следующие значения: \boldsymbol{x}_1 =1, \boldsymbol{x}_2 =0, \boldsymbol{y}_1 =1, \boldsymbol{y}_2 =0. Полученные результаты представлены в таблице:

№ n/n	х	у	$a(x_1;y_1)$	$b(x_1;y_2)$	$c(x_2;y_1)$	$d(x_2;y_2)$
1	0	0				+
2	1	1	+			
3	0	1			+	
4	0	0				+
5	1	1				+
6	1	0		+		
7	0	1			+	
8	1	1	+			
9	0	0				+
10	1	1	+			
11	1	1	+			
		Итого:	4	1	2	4

Таблица сопряженности имеет вид:

		П	ризнак <i>у</i>	Итого
		y =0	<i>y</i> =1	
Признак <i>х</i>	x =0	4	1	5
	$x_2=1$	2	4	6
Итого		6	5	11

Пример. Необходимо оценить, влияют ли занятия студентов в научноисследовательской лаборатории на уверенность при защите квалификационных работ. Располагая данные о результатах исследования 320 студентов, из которых 240 занимаются в студенческой научно-исследовательской лаборатории, составим следующую таблицу:

		Уверенності квалификаци	Всего	
		уверенность в своих действиях	неуверенность в своих действиях	Beero
Группы студентов	Занимаются в студенческой научно-исследовательской лаборатории	163	77	240
Грул студе	Не занимаются в студенческой научно-исследовательской лаборатории	46	34	80
	Bcero	209	111	320

Подсчитаем коэффициенты ассоциации и контингенции:

$$Q = \frac{163 \cdot 34 - 77 \cdot 46}{163 \cdot 34 + 77 \cdot 46} = 0,22;$$

$$K_k = \frac{163 \cdot 34 - 77 \cdot 46}{\sqrt{240 \cdot 111 \cdot 209 \cdot 80}} = 0,095.$$

Поскольку Q = 0,22 и $K_{\kappa} = 0,095$ меньше 0,30, то степень тесноты связи невелика. А это значит, что по результатам проведенного обследования нельзя сделать убедительный вывод о взаимосвязи уверенности студентов при защите квалификационных работ от посещения занятий студенческой научно-исследовательской лаборатории.

Пример. Необходимо оценить, влияет ли опора на субъектный опыт обучаемых к учебному предмету на их успеваемость по этому предмету. В таблице представлены данные, полученные в результате исследования выборки студентов в количестве 43 человек.

		Успеваемость	по предмету	Итого
Н		успевают	не успевают	111010
ора на ивный опыт чаемых	являлась неотъемлемым ком-понентом обучения	20	0	20
опора на субъективный обучаемы	использовалась фрагментально	15	8	23
cy	Итого	35	8	43

Подсчитаем коэффициенты ассоциации и контингенции:

$$Q = \frac{20 \cdot 8 - 15 \cdot 0}{20 \cdot 8 + 15 \cdot 0} = 1{,}00$$
 - величина коэффициента ассоциации Д. Юла говорит о нали-

чии прямой функциональной связи между опорой на субъективный опыт обучаемых к учебному предмету и успеваемостью студентов по предмету. Это преувеличенная оценка степени тесноты связи между признаками.

$$K_k = \frac{20 \cdot 8 - 15 \cdot 0}{\sqrt{35 \cdot 8 \cdot 20 \cdot 23}} = 0.45$$
 - коэффициент контингенции К. Пирсона позволяет отме-

тить умеренную связь между данными признаками. Таким образом, связь между опорой на субъективный опыт обучаемых к учебному предмету студентов и их успеваемостью по данному предмету достоверна, но степень силы связи невелика. Следовательно, наряду с опорой на субъективный опыт обучаемых к учебному предмету на успеваемость студентов влияют и другие факторы, которые необходимо выявить.

4.2.2. Коэффициенты взаимной сопряженности К. Пирсона и А.А. Чупрова

Для выявления степени согласованности изменений между двумя признаками одной и той же выборки необходимо:

- 1 Определить два качественных признака x_i и y_i , каждый из которых принимает более двух взаимоисключающих значения.
- 2 Провести две серии наблюдений на одной и той же выборке респондентов:

$$x_1, x_2, \ldots, x_i, \ldots x_n;$$

$$y_1, y_2, ..., y_i, ..., y_n$$

где случайная переменная X характеризует состояние первого признака; случайная переменная Y – состояние второго признака.

- **3** Составить *n* пар вида (x_i , y_i), учитывая:
 - x_i, y_i результаты измерения двух различных признаков у одного и того же респондента;
 - **б** x_i измерения по шкале наименований, имеющей более двух категорий, обозначенные «0», «1»,..., « m_1 »;
 - обозначенные «0», «1»,.., « m_1 »; y_i — измерения по шкале наименований, имеющей более двух категорий, обозначенные «0», «1»,.., « m_2 »;
 - г пары (x_i, y_i) взаимно независимы, т. е. члены выборки никак не влияют друг на друга;
 - д количество пар (x_i, y_i) равно $m_1 \cdot m_2$.
- 4 Подсчитать частоты сопоставляемых признаков, соответствующих парам (x_i, y_i) .
- 5 Записать данные в виде таблицы сопряженности $m_1 \times m_2$:

		Признак у				Σ	
		y=0	<i>y</i> =1	•••	$y = m_2$	۷	
Признак х	<i>x</i> =0	k_{00}	k_{01}	•••	k_{om_2}	$\sum_{j=1}^{m_2} k_{oj}$	
	<i>x</i> =1	k_{10} k_{11}		•••	k_{Im_2}	$\sum_{j=1}^{m_2} k_{Ij}$	
	•••	•••	•••	•••	•••	•••	
	$x = m_I$	k_{m_1o}	k_{m_II}	•••	$k_{m_1 m_2}$	$\sum_{j=1}^{m_2} k_{m_1 j}$	
Σ		$\sum_{i=1}^{m_I} k_{io}$	$\sum_{i=1}^{m_I} k_{iI}$	•••	$\sum_{i=1}^{m_1} k_{im_2}$	n	

_	O 1							
O		ррмулировать гипотезу: ·						
	\mathcal{H}_0	Корреляция между признаками X и Y не отличается от нуля.						
	\mathcal{H}_1	Корреляция между признаками X и Y достоверно отличается от нуля.						
7	Для	т каждой ячейки вычислить k_{ij}^2 и $\frac{k_{ij}^2}{\sum\limits_{i=l}^{m_l}k_{ij}\sum\limits_{j=l}^{m_2}k_{ij}}$.						
8	Вычислить Q^2 — показатель средней квадратической сопряженности по формуле: $Q^2 = \sum_{i=1}^{m_2} \sum_{j=1}^{m_l} \frac{k_{ij}^2}{\sum\limits_{j=1}^{m_l} k_{ij}} - 1$.							
9		нислить коэффициент корреляции:						
	a	коэффициент взаимной сопряженности К. Пирсона: $P = \sqrt{\frac{Q^2}{I + Q^2}}$;						
	$oldsymbol{6}$ коэффициент взаимной сопряженности А.А. Чупрова: $C = \sqrt{\frac{Q^2}{(m_l-1)(m_2-1)}}$.							
10	_	внить величину коэффициента корреляции с уровнем силы корреляционсвязи.						
11		товерность связи проверяется по критерию χ^2 с числом степеней свобо- $df = (m_1 - 1)(m_2 - 1)$ и уровнем значимости 0,05:						
		определить по формуле: $\chi^2_{pac4} = n \times Q^2$;						
	б	По таблице № 4 приложения определить критические значения $\chi^2_{1\kappa p}$ и $\chi^2_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1%.						
	В Расположить эмпирическое значение критерия X^2_r и критические значения $\chi^2_{I\kappa p}$ и $\chi^2_{2\kappa p}$ на оси значимости.							
	Γ	Если χ^2 находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об отсутствии корреляционной связи. Если χ^2 находится в зоне значимости, то гипотеза \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии корреляционной связи. Если χ^2 находится в зоне неопределенности, то существует вероятность принятия ложного решения.						

Коэффициент А.А. Чупрова дает более осторожную оценку степени тесноты связи.

Пример. Необходимо оценить, влияет ли продолжительность обучения в вузе на использование приемов целеполагания в учебной деятельности студентов. Для этого была проведена выборка студентов первого курса в количестве 24 человек, второго курса — 51 человек, третьего курса — 25 человек, которым было предложено ответить на вопрос: «Применяете ли Вы в своей учебной деятельности приемы целеполагания?». Данные опроса представлены в таблице.

Ответ		студенты		
	1 курс	2 курс	3 курс	
да	2	12	32	46
редко	8	25	9	42
нет	28	8	1	37
Итого:	38	45	42	125

Внесем в таблицу промежуточные результаты:

а) значения квадратов частот каждой клетки корреляционной таблицы:

$$2^2=4;$$
 $12^2=144;$ $32^2=1024;$ $8^2=64;$ $25^2=625;$ $9^2=81;$ $1^2=1.$

б) частные от деления квадратов частот на произведение суммы частот по столбцу и строке:

$$\frac{4}{38 \cdot 46} = 0.002; \qquad \frac{144}{45 \cdot 46} = 0.069; \qquad \frac{1024}{42 \cdot 46} = 0.530;$$

$$\frac{64}{38 \cdot 42} = 0.040; \qquad \frac{625}{45 \cdot 42} = 0.331; \qquad \frac{81}{42 \cdot 42} = 0.046;$$

$$\frac{784}{38 \cdot 37} = 0.558; \qquad \frac{64}{45 \cdot 37} = 0.038; \qquad \frac{1}{42 \cdot 37} = 0.001.$$

Ответ		студенты	Итого:		
O I BC I	1 курс	2 курс	3 курс	A	В
	4	144	1024		
да	2	12	32	46	
	0,002	0,069	0,530		0,601
	64	625	81		
редко	8	25	9	42	
_	0,040	0,331	0,046		0,417
	784	64	1		
нет	28	8	1	37	
	0,558	0,038	0,001		0,597
Итого:	38	45	42	125	1,615

Тогда $Q^2 = 1,615 - 1 = 0,615$.

Подсчитаем коэффициенты взаимной сопряженности:

а) К. Пирсона $P = \sqrt{\frac{Q^2}{1+Q^2}} = \sqrt{\frac{0,615}{1+0,615}} \approx 0,617$ - полученное значение коэффициента взаимной со-

пряженности говорит о наличии средней связи между изучаемыми признаками.

б) А.А. Чупрова
$$C = \sqrt{\frac{Q^2}{(m_1 - 1)(m_2 - 1)}} = \sqrt{\frac{0.615}{(3 - 1)(3 - 1)}} \approx 0.392$$
 - значение коэффициента взаим-

ной сопряженности позволяет отметить умеренную связь между продолжительностью обучения в вузе на использование приемов целеполагания в учебной деятельности студентов, то есть коэффициент взаимной сопряженности А.А. Чупрова дает более осторожную оценку степени тесноты связи.

Проверим достоверность связи по критерию χ^2 с числом степеней свободы:

$$df = (3 - 1)(3 - 1) = 4$$
 и уровнем значимости 0,05.

$$\chi^2_{pacy} = n \times Q^2 = 125 \cdot 0,615 = 76,875$$
.

Сравним его с табличным значением $\chi^2_{KDUM} = 9,488$.

Так как 76,875 > 9.488, то на уровне значимости 0,05 можно говорить о достоверности связи между рассматриваемыми признаками. Расчетное значение больше табличного, следовательно, связь между рассматриваемыми признаками существенная.

Пример. Необходимо определить наличие связи между уровнем подготовленности студента к научно-исследовательской деятельности, и степенью сформированости аналитикорефлексивных способностей субъекта обучения в высшей школе. Данные выборки из 355 студентов представлены в таблице.

Степень сформированости аналитико-рефлексивных спо-		уровень подготовленности студента к на- учно-исследовательской деятельности				
собностей субъекта обучения	высокий	средний	низкий	нулевой		
высокая	96	35	5	0	136	
средняя	28	64	24	13	129	
низкая	0	7	31	52	90	
Итого:	124	106	60	65	355	

Вычислим
$$Q^2 = \frac{96^2}{124 \cdot 136} + \frac{35^2}{106 \cdot 136} + \frac{5^2}{60 \cdot 136} + \frac{0^2}{65 \cdot 136} + \frac{28^2}{124 \cdot 129} + \frac{64^2}{106 \cdot 129} + \frac{24^2}{60 \cdot 129} + \frac{13^2}{65 \cdot 129} + \frac{0^2}{124 \cdot 90} + \frac{7^2}{106 \cdot 90} + \frac{31^2}{60 \cdot 90} + \frac{52^2}{65 \cdot 90} - 1 \approx 1,723 - 1 = 0,723$$
.

Подсчитаем коэффициенты взаимной сопряженности:

а) К. Пирсона
$$P = \sqrt{\frac{Q^2}{I + Q^2}} = \sqrt{\frac{0.723}{I + 0.723}} \approx 0.648$$
 - полученное значение коэффициента взаимной

сопряженности, говорит о наличии средней связи между изучаемыми признаками.

б) А А. Чупрова
$$C = \sqrt{\frac{Q^2}{(m_1 - 1)(m_2 - 1)}} = \sqrt{\frac{0,723}{(4 - 1)(3 - 1)}} \approx 0,347$$
 - значение коэффициент взаим-

ной сопряженности позволяет отметить умеренную связь между уровнем подготовленности студента к научно-исследовательской деятельности и степенью сформированости аналитикорефлексивных способностей субъекта обучения в высшей школе.

Проверим достоверность связи по критерию χ^2 с уровнем значимости 0,05 и числом степеней свободы df = (4 - 1)(3 - 1) = 6.

$$\chi^2_{pacu} = n \times Q^2 = 355 \cdot 0,723 = 256,665$$
. Сравним его с табличным значением $\chi^2_{\kappa pum} = 12,592$: 256,665 > 12,592 , поэтому на уровне значимости 0,05 можно говорить о достоверности связи между рассматриваемыми признаками. Расчетное значение больше табличного, следовательно, связь между рассматриваемыми признаками существенная.

4.2.3. Коэффициенты ранговой корреляции К. Спирмена

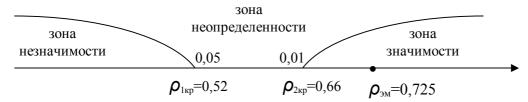
Коэффициент ранговой корреляции К. Спирмена позволяет определить фактическую степень параллелизма между двумя количественными рядами изучаемых признаков и дать оценку тесноты установленной связи с помощью количественно выраженного коэффициента.

Расчет коэффициента ранговой корреляции К. Спирмена включает следующие этапы: Определить два признака (две иерархии признаков), участвующие в сопостав-Провести две серии наблюдений на одной и той же выборке респондентов: $x_1, x_2, \ldots, x_i, \ldots x_n$; $y_1, y_2, ..., y_i, ..., y_n$ где случайная переменная X характеризует состояние первого признака; случайная переменная У – состояние второго признака. Сформулировать гипотезу: \mathcal{H}_0 Корреляция между признаками X и Y не отличается от нуля. \mathcal{H}_1 Корреляция между признаками X и Y достоверно отличается от нуля. Проранжировать значения признаков по возрастанию (или убыванию). Определить разности рангов каждой пары сопоставляемых значений: $d_i = R_{x_i} - R_{y_i}.$ Возвести в квадрат каждую разность d_i^2 и суммировать полученные результаты: $\sum_{i=1}^{n} d_i^2$. Вычислить коэффициент корреляции рангов по формуле: при отсутствии одинаковых рангов: $\rho_{_{3Mn}} = 1 - \frac{6\sum_{i=1}^{n} d_{i}^{2}}{n(n^{2}-1)};$ $T_{x(y)} = \sum_{j=1}^{k} \frac{t_{j}^{3} - t_{j}}{12}$, t – объем каждой группы одинаковых рангов в ранговом ряду X(Y). Сравнить величину коэффициента корреляции с уровнем силы корреляцион-

ной связи.

9	Проверяется	дос	стоверность связи:
	для $n \le 40$	a	Определить критические значения $\rho_{1\kappa p}$ и $\rho_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1% по таблице № 18.
			Расположить эмпирическое значение критерия $\rho_{_{3Mn}}$ и критические значения $\rho_{1\kappa p}$ и $\rho_{2\kappa p}$ на оси значимости.
		В	Если $\rho_{\scriptscriptstyle 3MR}$ находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об отсутствии корреляционной связи. Если $\rho_{\scriptscriptstyle 3MR}$ находится в зоне значимости, то гипотеза \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии корреляционной связи между признаками. Если $\rho_{\scriptscriptstyle 3MR}$ находится в зоне неопределенности, то есть вероятность принятия ложного решения
	для $n > 40$	a	Вычислить: $Z_{\mathfrak{I}_{MN}} = \frac{\rho}{\sqrt{n-1}}$.
		б	По таблице №19 найти S (значение площади под кривой единичного нормального распределения, находящегося справа от Z), соответствующее значению $Z_{\tiny \tiny 3MII}$.
		В	Определить уровень значимости по формуле $p < 2S$.
		Г	Определить, какой «зоне» соответствует полученный уровень значимости.

Пример. По выборке из 15 человек необходимо определить наличие связи между уровнем развития самостоятельности и степенью сформированности креативных способностей. В таблице представлены результаты проведенного исследования данных показателей, выраженные в баллах.


№ респондента	• •	ровень развития степень сформированное креативных способност			$d_i = R_{x_i} - R_{y_i}$	d_i^2
	Баллы	$Pahr(R_x)$	Баллы	$Paнr(R_y)$		
1	58	7	52	5	2	4
2	68	11	62	11	0	0
3	56	5	53	6	-1	1
4	53	2	45	1	1	1
5	65	10	70	15	-5	25
6	52	1	48	3	-2	4
7	72	13	63	12	1	1
8	75	14	57	7	7	49
9	55	4	46	2	2	2
10	62	9	59	9	0	0
11	60	8	67	14	-6	36
12	54	3	58	8	-5	25
13	80	15	64	13	2	2
14	70	12	61	10	2	2
15	57	6	50	4	2	2
					Итого:	154

Вычислим коэффициент ранговой корреляции К. Спирмена:

$$\rho_{\rm GMN} = 1 - \frac{6\sum_{i=1}^n d_i^2}{n(n^2 - 1)} = 1 - \frac{6 \cdot 154}{15(15^2 - 1)} = 0,725.$$

Проверим коэффициент $\rho_{\scriptscriptstyle 3MN}$ на статистическую значимость.

По таблице № 18 найдем $\rho_{1\kappa p}$ и $\rho_{2\kappa p}$: $\rho_{\kappa p} = \begin{cases} 0.52, \, \partial \pi s \ p \leq 0.05; \\ 0.66, \, \partial \pi s \ p \leq 0.01. \end{cases}$

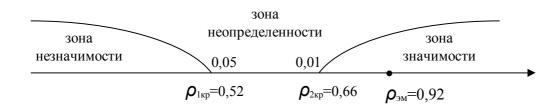
Так как $\rho_{\text{эмп}}$ в зоне значимости, можно принять гипотезу о связи между уровнем развития самостоятельности и степенью сформированности креативных способностей.

Пример. С помощью тестов оценивались уровни развития уверенности в себе и самоконтроля. По выборке из 15 человек необходимо определить наличие связи между данными признаками. Полученные данные представлены в таблице.

№ респондента	уровень развития уверенности в себе		уровень развития самоконтроля		$d_i = R_{xi} - R_{yi}$	d_i^2
	Баллы	$Pahr(R_x)$	Баллы	$Paнr(R_y)$		
1	18	2	36	4	-2	4
2	20	4,5	34	1,5	3	9
3	36	15	44	14	1	1
4	27	11	45	15	-4	16
5	31	14	42	12	2	4
6	18	2	34	1,5	0,5	0,25
7	24	8	39	9	-1	1
8	20	4,5	37	6	-1,5	2,25
9	25	9,5	39	9	0,5	0,25
10	25	9,5	39	9	0,5	0,25
11	18	2	35	3	-1	1
12	28	12	43	13	-1	1
13	21	6	37	6	0	0
14	23	7	37	6	1	1
15	29	13	41	11	2	4
					Итого:	45

Вычислим T_x и T_y :

$$T_x = \frac{(3^3 - 3) + (2^3 - 2) + (2^3 - 2)}{12} \approx 2,83$$
.


$$T_y = \frac{(2^3 - 2) + (3^3 - 3) + (3^3 - 3)}{12} \approx 4,42$$
.

Вычислим коэффициент ранговой корреляции К. Спирмена:

$$\rho = 1 - \frac{6 \cdot 45 + 2,83 + 4,42}{15(15^2 - 1)} \approx 0,92.$$

По результатам расчета коэффициента К. Спирмена можно предположить наличие достаточно сильной связи между уверенностью в себе и самоконтролем.

По таблице № 18 найдем
$$\boldsymbol{\rho}_{1\kappa p}$$
 и $\boldsymbol{\rho}_{2\kappa p}$: $\boldsymbol{\rho}_{\kappa p} = \begin{cases} 0.52, \, \partial \text{ля } p \leq 0.05; \\ 0.66, \, \partial \text{ля } p \leq 0.01. \end{cases}$

Так как $\rho_{\scriptscriptstyle 3MR}$ в зоне значимости, можно принять гипотезу о связи между уверенностью в себе и самоконтролем.

4.2.4. Коэффициент конкордации (ранговой корреляции) М. Кендалла

Pac	чет коэффициента конкордации М. Кендалла включает следующие этапы:
1	Определить два качественно измеренных признака (две иерархии признаков), участвующие в сопоставлении.
2	Провести две серии наблюдений на одной и той же выборке респондентов: $x_1, x_2,, x_i, x_n;$ $y_1, y_2,, y_i, y_n,$ где случайная переменная X характеризует состояние первого признака; случайная переменная Y — состояние второго признака.
3	Сформулировать гипотезу:
4	Проранжировать значения признаков по возрастанию (или убыванию).
5	Упорядочить испытуемых по переменной X .
6	Для каждого исследуемого объекта подсчитывается число Q , показывающее сколько раз его ранг по переменной Y оказывается меньше, чем ранги объектов, находящихся ниже.
7	Для каждого исследуемого объекта подсчитывается число P , показывающее сколько раз его ранг по переменной Y оказывается больше, чем ранги объектов, находящихся ниже.

8	Вы	Вычислить коэффициент конкордации рангов по формуле:							
	а при отсутствии одинаковых рангов: $\tau_{\mathfrak{IM}} = \frac{2(P-Q)}{n(n-1)}$; б при наличии одинаковых рангов: $\tau_{\mathfrak{IM}} = \frac{P-Q}{n(n-1)}$								
	б	при наличии одинаковых рангов: $\tau_{_{\mathcal{I}\!\!M\!\!N}} = \frac{P-Q}{\sqrt{\left(\frac{n(n-1)}{2} - T_x\right)}\sqrt{\left(\frac{n(n-1)}{2} - T_y\right)}},$							
		где $T_{x(y)} = \sum_{j=1}^k \frac{t_j^2 - t_j}{2}$, t - объем каждой группы одинаковых рангов в ранговом ряду $X(y)$							
9	-	авнить величину коэффициента корреляции с уровнем силы корреляционй связи.							
10	Пр	оверяется достоверность связи:							
	a	Вычислить: $Z = \tau \cdot \sqrt{\frac{9n(n-1)}{4n+10}}$.							
	б По таблице № 19 найти S (значение площади под кривой единичного нормального распределения, находящегося справа от Z), соответствующее значению $Z_{\text{эмп}}$.								
	В	Определить уровень значимости по формуле $p < 2S$.							
	Γ	Определить, какой «зоне» соответствует полученный уровень значимости.							

Пример. По выборке из 15 человек необходимо определить наличие связи между уровнями экстраверсии и уверенностью в себе. В таблице представлены результаты проведенного исследования данных показателей, выраженные в баллах.

№ респондента	уровень развития экстраверсии		уровень развития уверенности в себе		Р	Q
	Баллы	$Paнr(R_x)$	Баллы	$Pahr(R_y)$		
1	22	1	18	3	12	2
2	23	2	15	1	13	0
3	24	3	28	8	7	5
4	25	4	16	2	11	0
5	26	5	23	6	8	2
6	27	6	20	4	9	0
7	28	7	22	5	8	0
8	30	8	37	14	1	6
9	32	9	29	9	5	1
10	35	10	40	15	0	5
11	38	11	32	11	2	2
12	40	12	31	10	2	1
13	42	13	33	12	1	1
14	45	14	27	7	1	0
15	50	15	34	13	0	0
				Итого:	80	25

Вычислим коэффициент ранговой корреляции М. Кендалла:

$$\tau = \frac{2(P-Q)}{n(n-1)} = \frac{2(80-25)}{15\cdot 14} \approx 0.52.$$


Величина коэффициента τ свидетельствует о наличии средней связи между рассматриваемыми признаками.

Проверим связь на достоверность:

$$Z = \tau \cdot \sqrt{\frac{9n(n-1)}{4n+10}} = 0.52\sqrt{\frac{9 \cdot 15 \cdot 14}{4 \cdot 15 + 10}} \approx 2.7$$
.

По таблице №19 определим S (значение площади под кривой единичного нормального распределения, находящегося справа от Z): S=0,0026.

Уровень значимости p < 0.0052.

Так как p в зоне значимости, можно принять гипотезу о связи между уровнями экстраверсии и уверенностью в себе. Заключаем, что связь между рассматриваемыми признаками является статистически значимой.

Пример. С помощью тестов оценивались уровни развития практичности и невозмутимости. По выборке из 12 человек необходимо определить наличие связи между данными признаками. Полученные данные представлены в таблице.

№ респондента	уровень развития экстраверсии		уровень развития уверенности в себе		Р	Q
	Баллы	$Paнr(R_x)$	Баллы	Баллы Ранг(<i>R_y</i>)		
1	22	1,5	18	3	9	2
2	22	1,5	15	1	10	0
3	24	3	28	7	5	4
4	25	4	16	2	8	0
5	27	6	23	6	5	2
6	27	6	20	4,5	5	0
7	27	6	22	4,5	5	0
8	30	8	37	11,5	0	3
9	32	9	29	8	3	0
10	35	10	40	11,5	0	2
11	38	11	32	10	0	1
12	40	12	31	9	0	0
				Итого:	50	14

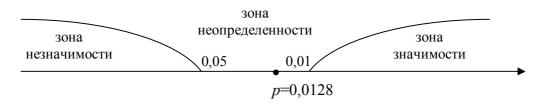
Вычислим T_x и T_y :

$$T_x = \frac{(2^2 - 2) + (3^2 - 3)}{12} \approx 0,83.$$

$$T_y = \frac{(2^2 - 2) + (2^2 - 2)}{12} \approx 0,67.$$

Вычислим коэффициент ранговой корреляции М. Кендалла:

$$\tau = \frac{50 - 14}{\sqrt{\left(\frac{12 \cdot 11}{2} - 0.83\right)} \sqrt{\left(\frac{12 \cdot 11}{2} - 0.67\right)}} \approx 0.551.$$


Величина коэффициента $\tau = 0,551$ свидетельствует о наличии средней связи между исследуемыми признаками.

Проверим связь на достоверность:

$$Z = 0,551 \cdot \sqrt{\frac{9 \cdot 12 \cdot 11}{4 \cdot 12 + 10}} \approx 2,49.$$

По таблице №19 определим S (значение площади под кривой единичного нормального распределения, находящегося справа от Z): S=0,0064.

Уровень значимости p < 0.0128.

Так как p в зоне неопределенности, связь между рассматриваемыми признаками не является статистически значимой.

Если сравнить значения коэффициентов К. Спирмена и М. Кендалла, вычисленных по одним и тем же данным, то коэффициент М. Кендалла дает более осторожную оценку степени тесноты связи двух признаков, поэтому на практике ему отдают предпочтение.

4.2.5. Коэффициент линейной корреляции г- Пирсона

Pac	счет коэффициента корреляции r -Пирсона включает следующие этапы:
1	Определить два признака (две иерархии признаков), участвующие в сопоставлении.
2	Провести две серии наблюдений на одной и той же выборке респондентов: $x_1, x_2,, x_i, x_n$; y_1, y_2, y_i, y_n ,
	где случайная переменная X характеризует состояние первого признака; случайная переменная Y — состояние второго признака.
3	Сформулировать гипотезу:
	\mathcal{H}_0 Корреляция между признаками \mathcal{X} и \mathcal{Y} не отличается от нуля.
	\mathcal{H}_1 Корреляция между признаками χ и γ достоверно отличается от нуля.
4	Вычислить \bar{x} и \bar{y} .

5 Вычислить коэффициент корреляции рангов по формуле:

$$r_{\mathfrak{I}Mn} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot \sum_{i=1}^{n} (y_i - \overline{y})^2}}.$$

Для нахождения значения r_{2Mn} , данные можно записать в таблицу:

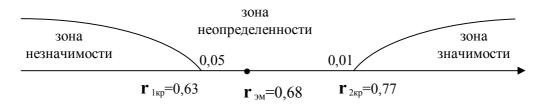
№	Значения при- знака		$x_i - \overline{x}$	$\left(x_i - \overline{x}\right)^2$	$y_i - \overline{y}$	$\left(v_i - \overline{v}\right)^2$	$(x_i - \overline{x})(y_i - \overline{y})$
	x_i	y_i	·				
Σ							

- 6 Сравнить величину коэффициента корреляции с уровнем силы корреляционной связи.
- 7 Проверить достоверность связи:
 - а Определить критические значения $\mathbf{r}_{1\kappa p}$ и $\mathbf{r}_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1% по таблице № 20 приложения.
 - **б** Количество степеней свободы при этом определяется по формуле df = n-2.
 - **В** Расположить эмпирическое значение критерия r_{9Mn} и критические значения $\mathbf{r}_{1\kappa p}$ и $\mathbf{r}_{2\kappa p}$ на оси значимости.
 - Если r_{9Mn} находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об отсутствии корреляционной связи. Если r_{9Mn} находится в зоне значимости, то гипотеза \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии корреляционной связи. Если r_{9Mn} находится в зоне неопределенности, то существует вероятность принятия ложного решения.

Необходимо учитывать, что коэффициент корреляции Пирсона:

- а) принято использовать для оценки взаимосвязи между двумя нормальными переменными. Если распределение переменных отличается от нормального, к нему нельзя применять методы проверки на значимость, хотя он попрежнему продолжает характеризовать степень взаимосвязи между ними;
- б) не устойчив к выбросам при их наличии можно ошибочно сделать вывод о наличии корреляции между переменными.

Пример. Для того, чтобы определить одинаковой ли сложности (трудности) два теста, группе студентов из 10 человек предложили выполнить в начале задания первого теста, а затем - второго теста. Результаты тестирования представлены в таблице.


№	баллы			(- \2		$-\sqrt{2}$	$\begin{pmatrix} x & -1 \\ y & -1 \end{pmatrix}$
	1 тест	2 тест	$x_i - x$	(x_i-x)	$y_i - y$	$(y_i - y)$	$(x_i - x)(y_i - y)$
1	19	18	-2,3	5,29	-3,1	9,61	7,13
2	24	23	2,7	7,29	1,9	3,61	5,13
3	29	23	7,7	59,29	1,9	3,61	14,63
4	21	23	-0,3	0,09	1,9	3,61	-0,57
5	17	19	-4,3	18,49	-2,1	4,41	9,03
6	25	24	3,7	13,69	2,9	8,41	10,73
7	18	20	-3,3	10,89	-1,1	1,21	3,63
8	15	18	-6,3	39,69	-3,1	9,61	19,53
9	31	22	9,7	94,09	0,9	0,81	8,73
10	14	21	-7,3	53,29	-0,1	0,01	0,73
Σ	213	211	0	302,1	0	44,9	78,7
\bar{x}, \bar{y}	21,3	21,1					

Вычислим коэффициент корреляции Пирсона: $r_{9MN} = \frac{78.7}{\sqrt{302.1\cdot44.9}} \approx 0.68$. Получен-

ная величина коэффициента корреляции свидетельствует о возможном наличии средней связи между тестами.

Проверим связь на достоверность для df = 10 - 2 = 8.

$$r_{\kappa p} = \begin{cases} 0.63, \ \partial \pi g \ p \le 0.05; \\ 0.77, \ \partial \pi g \ p \le 0.01. \end{cases}$$

 $r_{\scriptscriptstyle 3MR}$ находится в зоне неопределенности, есть вероятность принятия ложного решения (необходимо увеличить выборку или воспользоваться другим критерием). Если и в этом случае результат будет таким же, то можно говорить о различии тестов по степени сложности (трудности).

4.2.6. Коэффициент ранговой корреляции Гудмена

Расчет коэффициента ранговой корреляции Гудмена включает следующие этапы:

- 1 Определить два признака (две иерархии признаков), участвующие в сопоставлении.
- 2 Провести две серии наблюдений на одной и той же выборке респондентов:

$$x_1, x_2, \ldots, x_i, \ldots x_n;$$

$$y_1, y_2, ..., y_i, ..., y_n,$$

где случайная переменная X характеризует состояние первого признака; случайная переменная Y – состояние второго признака.

3	Co	стави	ить <i>и</i> пар вид	$(a(x_i, y_i), y$ чить	івая:					
	a	x_i, y_i — результаты измерения двух различных признаков у одного и того же респондента;								
	б		—измерению менований: «		неской (альтері	нативные приз	наки) шкале на-			
	В	<i>у</i> _і 3н	— измерени аченные «0»	ия по шкале по , «1»,, « <i>m</i> » и	ррядка, имеющ большое число	ей более двух связанных раі	категорий, обо-			
	Г	па			симы, т. е. чле		икак не влияют			
	Д	кс	личество па	р (x_i, y_i) равно	2m.					
4	По	дсчи	гать частоты	сопоставляемы	іх признаков, со	оответствующи	іх парам (x_i, y_i) .			
5	3aı	писат	ъ данные в в	иде таблицы с	опряженности	2 × m:				
					П	ризнак y				
				y=0	<i>y</i> =1	•••	y = m			
		ak $oldsymbol{\mathcal{X}}$	x=0	k_{00}	k_{01}	•••	k_{om_2}			
		Признак х	x=1	k_{10}	k_{11}	•••	k_{Im_2}			
6	Сф	орму	/лировать ги	потезу:						
	\mathcal{H}_0	Кор	реляция меж	кду признакам	и <i>X</i> и У не отл	ичается от нул	ія.			
	\mathcal{H}_1 Корреляция между признаками X и Y достоверно отличается от нуля.									
7	Вычислить коэффициент корреляции: $\gamma_{9MN} = \frac{S-D}{S+D}$,									
	где S – сумма произведений частот на сумму частот, расположенных ниже и									
	правее данной клетки таблицы; D – сумма произведений частот на сумму частот, расположенных ниже и левее									
		_	ма произвед клетки таблі		а сумму частот,	, расположенн	ых ниже и левее			
8	Ср	авни	ть величину	коэффициента	а корреляции о	с уровнем сил	ы корреляцион-			

Пример. Для того, чтобы установить наличие связи между занятием в спортивной секции и адекватной самооценкой обучающимися своего здоровья, было проведено обследование группы учеников в количестве 364 человек. Занятие в спортивной секции отслеживалось по дихотомической шкале наименований: 1 — занимается в секции; 0 — не занимается в секции. Степень адекватности самооценки отслеживалась по комплексу диагностических методик в шкале порядка, а конечный результат ранжировался пятью показателями: 0 - низкий уровень; 1 - средний; 2 - выше среднего уровня; 3 - достаточный уровень; 4 - высокий уровень. Обобщенные данные представлены в таблице.

ной связи.

Самообразование	Степень адекватности самооценки				
	высокий	достаточный	выше среднего	средний	низкий
занимаются	82	54	48	23	3
не занимаются	22	46	96	118	72

```
Найдем S, D и \gamma. S = 82 (46+96+118+72) + 54 (96+118+72) + 48 (118+72) + 23 (72) =53444; D = 3 (118+96+46+22) + 23 (96+46+22) + 48 (46+22) + 54 (22) =9070.  \gamma = \frac{53444 - 9070}{53444 + 9070} = 0.71 \cdot
```

Величина коэффициента Гудмена говорит о возможном наличии сильной связи между занятием в спортивной секции и адекватной самооценкой обучающимися своего здоровья.

4.2.7. Коэффициент рангово-биссериальной корреляции

Рас	чет коэффициента рангово-биссериальной корреляции включает следующие пы:
1	Определить два признака (две иерархии признаков), участвующие в сопоставлении.
2	Провести две серии наблюдений на одной и той же выборке респондентов:
	$X_1, X_2, \ldots, X_i, \ldots X_n$
	$y_1, y_2, \ldots y_i, \ldots y_n$
	где случайная переменная X характеризует состояние первого признака, изме-
	ренного по дихотомической (альтернативные признаки) шкале наименований:
	«0», «1»;
	случайная переменная Y — состояние второго признака, измеренного <i>no</i>
	<i>шкале порядка</i> , имеющей более двух категорий, обозначенные «0», «1»,, « <i>m</i> »
	и имеющей несвязанные ранги.
3	Сформулировать гипотезу:
	\mathcal{H}_0 Корреляция между признаками \mathcal{X} и \mathbf{Y} не отличается от нуля.
	\mathcal{H}_1 Корреляция между признаками \mathcal{X} и \mathbf{Y} достоверно отличается от нуля.
4	Результаты измерения объекта записать в ряд по возрастанию относительно
	случайной переменной \boldsymbol{y} .
5	Проранжировать значения признака Упо возрастанию.
6	Посчитать $n(1)$ — число объектов, имеющих единицу по X и $n(0)$ — число объ-
	ектов, имеющих нуль по X .
7	Вычислить $\overline{R_{y}(1)}$ — средний ранг объектов У , имеющих единицу по X и
	$\overline{R_{\nu}(0)}$ – средний ранг объектов У , имеющих нуль по <i>X</i> .
	Ry(0) epedimi pain obsertos , intelomin nyils no ; .
8	Вычислить коэффициент корреляции рангов по формуле:
	$r_{rb} = \frac{2}{n} \left(\overline{R_{y}(1)} - \overline{R_{y}(0)} \right).$
9	Сравнить величину коэффициента корреляции с уровнем силы корреляционной связи

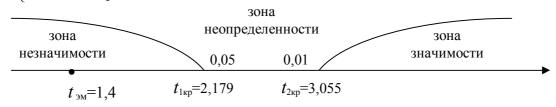
10	CRO	оверитьидостоверность связи, используя t-критерий Стьюдента для степени боды $df = (n - 2)$:								
	a	Рассчитать по формуле: $t_{3Mn} = r_{rb} \sqrt{\frac{n-2}{1-r_{rb}^2}}$.								
	б	Определить критические значения $t_{1\kappa p}$ и $t_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1% по таблице № 22 приложения.								
	Расположить эмпирическое значение критерия t_{3MN} и критические значим $t_{1\kappa p}$ и $t_{2\kappa p}$ на оси значимости.									
	Γ	Если t_{9Mn} находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об отсутствии корреляционной связи. Если t_{9Mn} находится в зоне значимости, то гипотеза \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии корреляционной вязи. Если t_{9Mn} находится в зоне неопределенности, то существует вероятность принятия ложного решения.								

Пример. Для определения связи между познавательными мотивами и рейтенгом успеваемости была проведена выборка студентов объемом, равным 14. Мотивы измерялись в дихотомической шкале наименований: 1 - познавательные мотивы выражены ярко; 0 - познавательные мотивы не выражены. Полученные результаты представлены в таблице.

Мотивы	1	0	0	1	1	1	1	1	0	1	0	0	0	1
рейтинг	8	1	4	5	2	12	13	6	10	14	3	11	7	9
успеваемости														

Результаты измерения объекта запишем в ряд по возрастанию относительно случайной переменной ${\it Y}$.

рейтинг успеваемости	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Мотивы	0		0	0			0			0	0				n(0)=6
		1			1	1		1	1			1	1	1	n(1)=8
$R_{y}(0)$	1		3	4			7			10	11				36
$R_{y}(1)$		2			5	6		8	9			12	13	14	69


$$r_{rb} = \frac{2}{n} \left(\overline{R_y(1)} - \overline{R_y(0)} \right) = \frac{2}{14} \left(\frac{69}{8} - \frac{36}{6} \right) = 0.375$$

Полученная величина коэффициента корреляции говорит о наличии умеренной связи между рассматриваемыми признаками.

Проверим связь на статистическую значимость:
$$t_{9MN} = 0.375 \sqrt{\frac{14-2}{1-0.375}^2} = 1.4$$

По таблице № 22 приложения определим $t_{1\kappa p}$ и $t_{2\kappa p}$ для df=(n-2)=14-2=12:

$$t_{\kappa p} = \begin{cases} 2,179 \text{ , для } p \le 0,05; \\ 3,055 \text{ , для } p \le 0,01. \end{cases}$$

 $t_{\it ЭМП}$ находится в зоне незначимости, поэтому связь между рассматриваемыми признаками не является статистически значимой.

4.2.8. Коэффициент точечной биссериальной корреляции

Расчет коэффициента точечной биссериальной корреляции включает следующие этапы:

- 1 Определить два признака (две иерархии признаков), участвующие в сопоставлении.
- 2 Провести две серии наблюдений на одной и той же выборке респондентов:

$$x_1, x_2, \ldots, x_i, \ldots x_n;$$

$$y_1, y_2, ..., y_i, ..., y_n,$$

где случайная переменная χ характеризует состояние первого признака, измеренного по дихотомической (альтернативные признаки) шкале наименований: «0», «1»;

случайная переменная Y — состояние второго признака, измеренного по интервальной шкале.

- 3 Сформулировать гипотезу:
 - \mathcal{H}_0 Корреляция между признаками \mathcal{X} и \mathbf{Y} не отличается от нуля.
 - \mathcal{H}_{l} Корреляция между признаками X и Y достоверно отличается от нуля.
- **4** Результаты измерения объекта записать в ряд по возрастанию относительно случайной переменной **У**.
- 5 Подсчитать n(1) число объектов, имеющих единицу по X и n(0) число объектов, имеющих нуль по X.
- **6** Вычислить $\overline{y(1)}$ среднее по *У*, имеющих единицу по *X* и $\overline{y(0)}$ среднее по *У*, имеющих нуль по *X*.
- 7 Вычислить $\sigma_y = \sqrt{\frac{\sum (y_i \overline{y})^2}{n}}$ стандартное отклонение значений по *У*.
- 8 Вычислить коэффициент корреляции рангов по формуле:

$$r_{pb} = \frac{\overline{y(1)} - \overline{y(0)}}{\sigma_y} \sqrt{\frac{n(1) \cdot n(0)}{n(n-1)}} \cdot$$

Для нахождения значения r_{nb} , данные можно записать в таблицу:

No	Мот	ивы	***	Дан	ные для расчё	та коэффицие	ента
	<i>x</i> =1	<i>x</i> =0	IQ	$\overline{y(1)}$	$\overline{y(0)}$	$(y_i - \overline{y})$	$(y_i - \overline{y})^2$
Σ	n(1)	n(0)					
\bar{x}							

9 Сравнить величину коэффициента корреляции с уровнем силы корреляционной связи.

10	_	оверяется достоверность связи, используя t-критерий Стьюдента для степени боды $df = (n - 2)$:
	a	Рассчитать по формуле: $t_{\mathfrak{I}_{MN}} = r_{rb} \sqrt{\frac{n-2}{l-r_{rb}^2}}$.
	б	Определить критические значения $t_{1\kappa p}$ и $t_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1% по таблице № 22 приложения.
	В	Расположить эмпирическое значение критерия t_{3MN} и критические значения $t_{1\kappa p}$ и $t_{2\kappa p}$ на оси значимости.
	Γ	Если t_{9Mn} находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об отсутствии корреляционной связи. Если t_{9Mn} находится в зоне значимости, то гипотеза \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии значимой корреляционной связи. Если t_{9Mn} находится в зоне неопределенности, то существует вероятность принятия ложного решения.

Пример. Для определения связи между познавательными мотивами и IQ было проведено обследование 14 студентов. Мотивы измерялись в дихотомической шкале наименований: 1 - познавательные мотивы выражены ярко; 0 - познавательные мотивы не выражены. Полученные результаты представлены в таблице.

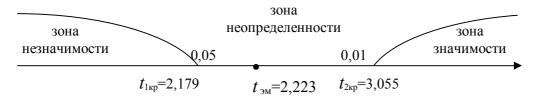
No	Моя		IO	Дан	ные для расчё	та коэффицис	ента
	Мот	ивы	IQ	$\overline{y(1)}$	$\overline{y(\theta)}$	$\left(y_i - \overline{y}\right)$	$(y_i - \overline{y})^2$
1	1		86	86	_	4,3	18,96
2		0	82	ı	82	0,3	0,09
3		0	81	ı	81	-0,7	0,49
4	1		77	77	ı	5,3	28,09
5	1		85	85	_	3,3	10,89
6	1		84	84		2,3	5,29
7		0	80	ı	80	-1,7	2,89
8		0	81	ı	81	-0,7	0,49
9	1		85	85	ı	3,3	10,89
10		0	79	ı	79	-2,7	2,29
11	1		83	83		1,3	1,69
12		0	77	_	77	5,3	28,09
13	1		83	83	ı	1,3	1,69
14	1		81	81		-0,7	0,49
Σ	n(1)=8	n(0)=6	1144	664	480		112,33
\bar{x}			81,7	83	80		

Для вычисления коэффициента точечной биссериальной корреляции найдем стандартное отклонение значений по X, определяемое по формуле:

$$\sigma_x = \sqrt{\frac{\sum (x_i - x)^2}{n}} = \sqrt{\frac{112.33}{14}} = 2.83$$

Подставим найденное значение стандартного отклонения в формулу

$$r_{pb} = \frac{\overline{x_1} - \overline{x_0}}{\sigma_x} \sqrt{\frac{n_1 n_0}{n(n-1)}} = \frac{83 - 80}{2,83} \sqrt{\frac{8 \cdot 6}{14(14-1)}} = 0,54$$


Полученная величина коэффициента точечной биссериальной корреляции говорит о наличии средней связи между рассматриваемыми признаками.

Проверим связь на статистическую значимость:

$$t_{9Mn} = r_{rb} \sqrt{\frac{n-2}{1-r_{rb}^2}} = 0.54 \sqrt{\frac{14-2}{1-0.54^2}} = 2.223.$$

По таблице № 22 приложения определим $t_{1\kappa p}$ и $t_{2\kappa p}$ для df = (n-2) = 14-2 = 12:

$$t_{\kappa p} = egin{cases} 2,179,\,\partial \text{ля } p \leq 0,05; \ 3,055,\,\partial \text{ля } p \leq 0,01. \end{cases}$$

 $t_{\it ЭMN}$ находится в зоне неопределенности, поэтому есть вероятность принятия ложного решения.

4.3. ПАРНЫЙ КРИВОЛИНЕЙНЫЙ КОРРЕЛЯЦИОННЫЙ АНАЛИЗ

Коэффициент корреляции отражает искомую степень тесноты связей как со стороны переменной $\mathcal X$ по отношению к $\mathcal Y$, так и со стороны переменной $\mathcal Y$ по отношению к $\mathcal X$, а следовательно, ему соответствуют два числовых показателя η_{xy} и η_{yx} .

Коэффициент корреляциі	и вычисляется по формуле									
со стороны переменной X по отношению к Y	со стороны переменной $\mathcal Y$ по отношению к $\mathcal X$									
$\eta_{xy} = \sqrt{\frac{\sum f_y (\overline{x}_y - \overline{x})^2}{\sum f_x (x_i - \overline{x})^2}}$	$\eta_{yx} = \sqrt{\frac{\sum f_x (\overline{y}_x - \overline{y})^2}{\sum f_y (y_i - \overline{y})^2}}$									
$0 \le i$	$0 \le \eta \le 1$.									
$\eta_{xy} = \eta_{yx}$ при строгой линейной зависимости между переменными X и Y .										
$\eta_{xy} \neq \eta_{yx}$ при криволинейной зависимости между переменными X и Y .										

При отсутствии корреляционной связи между $\mathcal Y$ и $\mathcal X$ значение $\eta=0$.

- 1 Определить признаки X и Y (значения признака должны быть представлены не ниже порядковой шкалы).
- 2 Провести две серии наблюдений на одной и той же выборке респондентов:

$$x_1, x_2, \ldots, x_i, \ldots x_n;$$

 $y_1, y_2, ..., y_i, ..., y_n$

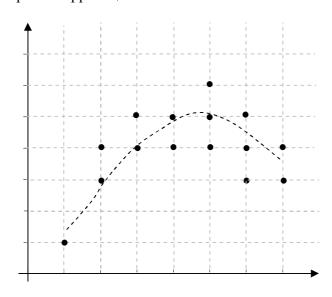
где случайная переменная X характеризует состояние первого признака; случайная переменная Y — состояние второго признака.

- 4 $\mid_{\text{Вычислить }} \overline{y} \text{ и } \overline{x}$
- **5** Составить *n* пар вида (x_i, y_i)
- **6** Упорядочить пары по степени возрастания переменной x_i
- 7 Попределить f_x частоту переменной x_i
- 8 Подсчитать y_x групповые средние по переменной y_i для соответствующей частоты f_x .
- **9** Упорядочить пары по степени возрастания переменной y_i
- **10** | Определить f_y частоту переменной y_i
- 11 Подсчитать x_y групповые средние по переменной x_i для соответствующей частоты f_y .
- 12 Определить эмпирическое значение

$$\eta_{xy} = \sqrt{\frac{\sum f_y (\bar{x}_y - \bar{x})^2}{\sum f_x (x_i - \bar{x})^2}} \qquad \qquad \eta_{yx} = \sqrt{\frac{\sum f_x (\bar{y}_x - \bar{y})^2}{\sum f_y (y_i - \bar{y})^2}}$$

- 13 Проверить статистическую значимость η :
 - \mathbf{a} Вычислить $F_{\phi a \kappa m u v} = \frac{n-k}{k-1} \cdot \frac{\eta^2}{1-\eta^2}$, где k число группировочных признаков, для каждого η_{xy} и η_{yx} .
 - б По таблице № 23 приложения найти $F_{1 \text{кр}}$ и $F_{2 \text{кр}}$, которые отвечают уровням значимости в 5% и 1% и числам степеней свободы $df_1 = k-1$ и $df_2 = n-k$.
 - **в** Расположить $F_{\phi(xy)}(F_{\phi(yx)})$ и критические значения $F_{1 \text{кр}}$, $F_{2 \text{кр}}$ на оси значимости.
 - Если $F_{\phi(xy)}(F_{\phi(yx)})$ находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об отсутствии корреляционной связи. Если $F_{\phi(xy)}(F_{\phi(yx)})$ находится в зоне значимости, то гипотеза \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии значимой корреляционной связи. Если $F_{\phi(xy)}(F_{\phi(yx)})$ находится в зоне неопределенности, то существует вероятность принятия ложного решения.

Пример. В таблице приведены результаты двух психологических показателей:


У – количество человек, с которыми одновременно проводятся занятия по иностранному языку;

X – количество баллов, набранных при тестировании по иностранному языку (максимальное количество баллов 10).

Необходимо оценить тесноту связи как со стороны переменной X по отношению к Y, так и со стороны переменной Y по отношению к X.

X	1	3	2	4	5	2	6	7	4	6	5	3	5	6	7
У	1	5	3	5	6	4	4	3	4	5	4	4	5	3	4

Построим корреляционное поле.

Между У и X может существовать криволинейная зависимость. Упорядочить пары по степени возрастания переменной x_i :

X	1	2	2	3	3	4	4	5	5	5	6	6	6	7	7
У	1	3	4	4	5	4	5	4	5	6	3	4	5	3	4

Определить f_x — частоту переменной x_i и подсчитать y_x .

f_x	1	2	2	2	3	3	2
x_i	1	2	3	4	5	6	7
\overline{y}_x	1	3,5	4,5	4,5	5	4	3,5

$$\overline{y} = \frac{1+5+3+5+6+4+4+3+4+5+4+4+5+3+4}{15} = 4.$$

Упорядочить пары по степени возрастания переменной y_i :

У	1	3	3	3	4	4	4	4	4	4	5	5	5	5	6
X	1	2	6	7	2	3	4	5	6	7	3	4	5	6	5

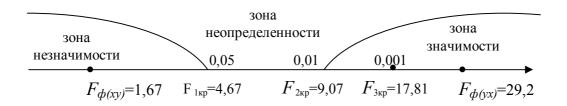
Определить f_{y} — частоту переменной y_{i} и подсчитать x_{y} .

f_y	1	3	6	4	1
y_i	1	3	4	5	6
\bar{x}_y	1	5	4,5	4,5	5

$$\overline{x} = \frac{1+3+2+4+5+2+6+7+4+6+5+3+5+6+7}{15} = 4,4.$$

$$\eta_{yx} = \sqrt{\frac{1(1-4)^2 + 2(3.5-4)^2 + 2(4.5-4)^2 + 2(4.5-4)^2 + 3(5-4)^2 + 3(4-4)^2 + 2(3.5-4)^2}{1(1-4)^2 + 3(3-4)^2 + 6(4-4)^2 + 4(5-4)^2 + 1(6-4)^2}} \approx 0.84$$

$$\eta_{xy} = \sqrt{\frac{1(1-4,4)^2 + 3(5-4,4)^2 + 6(4,5-4,4)^2 + 4(4,5-4,4)^2 + 1(5-4,4)^2}{1(1-4,4)^2 + 2(2-4,4)^2 + 2(3-4,4)^2 + 2(4-4,4)^2 + 3(5-4,4)^2 + 2(6-4,4)^2 + 2(7-4,4)^2}} \approx 0.35 \cdot \frac{1(1-4,4)^2 + 2(2-4,4)^2 + 2(3-4,4)^2 + 2(4-4,4)^2 + 3(5-4,4)^2 + 2(6-4,4)^2 + 2(7-4,4)^2}{1(1-4,4)^2 + 2(2-4,4)^2 + 2(3-4,4)^2 + 2(4-4,4)^2 + 3(5-4,4)^2 + 2(6-4,4)^2 + 2(7-4,4)^2} \approx 0.35 \cdot \frac{1}{1}$$


Проверим η_{xy} и η_{yx} на значимость.

$$F_{\phi(yx)} = \frac{15-2}{2-1} \cdot \frac{0.84^2}{1-0.84^2} = 29.2.$$

$$F_{\phi(xy)} = \frac{15-2}{2-1} \cdot \frac{0.35^2}{1-0.35^2} = 1.67.$$

По таблице № 23 приложения определим критические значения $F_{1 \text{кр}}$ и $F_{2 \text{кр}}$ для n=15 и k =2:

$$F_{\kappa p} = egin{cases} 17,81 \ \partial \mathrm{ЛЯ} & p \leq 0,001; \ 9,07 \ \partial \mathrm{ЛЯ} & p \leq 0,01; \ 4,67 \ \partial \mathrm{ЛЯ} & p \leq 0,05. \end{cases}$$

 $F_{\phi(xy)}$ находится в зоне незначимости, а $F_{\phi(yx)}$ находится в зоне значимости, поэтому нет значимого влияния со стороны переменной X по отношению к Y, а со стороны переменной Y по отношению к X значимое влияние существует, то есть количество человек, с которыми одновременно проводится занятия, влияет на количество набранных баллов при тестировании по иностранному языку, и, напротив, на количество набранных баллов при тестировании по иностранному языку не влияет количество человек, с которыми одновременно проводится занятия.

4.4. Множественный линейный корреляционный анализ

4.4.1. Коэффициент множественной корреляции

Значение изучаемого показателя складывается под влиянием не одного, а нескольких факторов. При этом может оказаться, что каждый из факторов в отдельности не оказывает существенного влияния, однако их совместное влияние является достаточно сильным.

коэффициент множественной линейной корреляции интенсивность совместного влияния всех факторов на изучаемый признак

II .	
II	ножественный линейный корреляционный анализ основывается на парной
ЛИ	нейной корреляции.
1	Определить n признаков: X_i , $i = \overline{1;n}$.
2	Провести <i>п</i> серий наблюдений на одной и той же выборке респондентов:
	$x_{11}, x_{12}, x_{1n};$
	$x_{21}, x_{22}, x_{2n};$
	$X_{n1}, X_{n2}, \dots X_{nn}$.
3	Сформулировать гипотезу:
	\mathcal{H}_0 Корреляция между признаками \mathcal{X}_i , $i=\overline{1;n}$ не отличается от нуля.
	\mathcal{H}_1 Корреляция между признаками X_i , $i = \overline{1;n}$ достоверно отличается от нуля.
3	Вычислить парные коэффициенты корреляции r_{ij} между каждой парой пси-
	хологических (педагогических) показателей: X_i и X_j , $i = \overline{1;n}$, $j = \overline{1;n}$.
4	x_1 x_2 x_n
	Составить корреляционную матрицу: $K_{(n)} = \begin{array}{c} x_1 \begin{pmatrix} 1 & r_{12} & \dots & r_{1n} \\ r_{21} & 1 & \dots & r_{2n} \\ \dots & \dots & \dots & \dots \\ x_n \begin{pmatrix} r_{n1} & r_{n2} & \dots & 1 \end{pmatrix}.$
	Составить корреляционную матрицу: $x_2 \mid r_{21} = 1 = \dots = r_{2n} \mid$.
	$K_{(n)} = {}^{n} {}^{2} {}^{n} {}^{2} {}^{n} {}^{n}$
	$x_n (r_{n1} r_{n2} \dots 1)$
6	Вычислить коэффициент множественной линейной корреляции по форму-
	ле: $R_{(n)} = \sqrt{1 - \frac{ K }{ K_{ii} }}$, где $ K $ – определитель полной матрицы корреляции, а
	$ K_{ii} $ – минор матрицы корреляции, содержащей все элементы, за исключением
	элементов і строки и і столбца.

- 7 Сравнить величину коэффициента корреляции с уровнем силы корреляционной связи.
- 8 Проверить статистическую значимость $R_{(n)}$:
 - **а** Вычислить $F_{\mathfrak{I}_{MN}} = \frac{n-k-1}{k} \cdot \frac{R_{(n)}^2}{1-R_{(n)}^2}$, где k число группировочных при-

знаков.

- б По таблице № 23 приложения найти $F_{1\text{кр}}$ и $F_{2\text{кр}}$, которые отвечают уровням значимости в 5% и 1% и числам степеней свободы $df_1 = k-1$ и $df_2 = n-k$.
- в Расположить $F_{\text{эмп}}$ и критические значения $F_{\text{1кр}}$, $F_{\text{2кр}}$ на оси значимости.
- Г Если $F_{_{3Mn}}$ находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об отсутствии корреляционной связи. Если $F_{_{3Mn}}$ находится в зоне значимости, то гипотеза \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии значимой корреляционной связи. Если $F_{_{3Mn}}$ находится в зоне неопределенности, то существует вероятность принятия ложного решения.

Пример. Дана матрица парных коэффициентов линейной корреляции между 4 психо-

логическими показателями
$$x_1, x_2, x_3, x_4$$
:
$$K_{(4)} = \begin{bmatrix} x_1 & 1 & 0,69 & 0,58 & 0,55 \\ x_2 & 0,69 & 1 & 0,49 & 0,50 \\ x_3 & 0,58 & 0,49 & 1 & 0,41 \\ x_4 & 0,55 & 0,50 & 0,41 & 1 \end{bmatrix}, \text{ составлен-}$$

ная при условии, что объем исследуемой выборки равен 20.

Определить совместное влияние на переменную x_1 всех остальных факторов x_2 , x_3 , x_4 .

Вычислим множественный коэффициент корреляции: $R_{(4)} = \sqrt{1 - \frac{|K|}{|K_{II}|}}$

$$\left|K_{(4)}\right| = \begin{vmatrix} 1 & 0.69 & 0.58 & 0.55 \\ 0.69 & 1 & 0.49 & 0.50 \\ 0.58 & 0.49 & 1 & 0.41 \\ 0.55 & 0.50 & 0.41 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0.69 & 0.58 & 0.55 \\ 0 & 0.5239 & 0.0898 & 0.1205 \\ 0 & 0.0898 & 0.6636 & 0.091 \\ 0 & 0.1205 & 0.091 & 0.6975 \end{vmatrix} = \begin{vmatrix} 1 & 0.69 & 0.58 & 0.55 \\ 0 & 0.5239 & 0.0898 & 0.6636 & 0.091 \\ 0 & 0.1205 & 0.091 & 0.6975 \end{vmatrix}$$

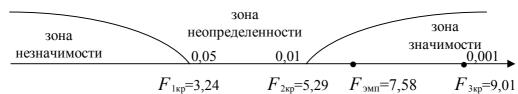
 $= 1 \cdot (-1)^2 (0.5239 \cdot 0.6636 \cdot 0.6975 + 0.0898 \cdot 0.091 \cdot 0.1205 + 0.0898 \cdot 0.091 \cdot 0.1205$

 $-0.1205 \cdot 0.6636 \cdot 0.1205 - 0.0898 \cdot 0.0898 \cdot 0.6975 - 0.091 \cdot 0.091 \cdot 0.5239 \ \) \approx 0.23.$

$$\left|K_{11}\right| = \begin{vmatrix} 1 & 0.49 & 0.50 \\ 0.49 & 1 & 0.41 \\ 0.50 & 0.41 & 1 \end{vmatrix} = 1 \cdot 1 \cdot 1 + 0.49 \cdot 0.41 \cdot 0.50 + 0.49 \cdot 0.41 \cdot 0.50 - 0.41 \cdot 0.50 + 0$$

$$-0.50 \cdot 1 \cdot 0.50 - 0.41 \cdot 0.41 \cdot 1 - 0.49 \cdot 0.49 \cdot 1 \approx 0.55$$

$$R_{(4)} = \sqrt{1 - \frac{0.23}{0.55}} \approx 0.77$$


Проверим статистическую значимость $R_{(4)}$:

$$F_{\mathfrak{IMN}} = \frac{n-k-1}{k} \cdot \frac{R_{(4)}^2}{1 - R_{(4)}^2} = \frac{20 - 3 - 1}{3} \cdot \frac{0.59}{1 - 0.59} \approx 7.58.$$

n – объем выборки, k – число факторов, влияние которых изучается

По таблице № 23 приложения определить критические значения $F_{1\kappa p}$ и $F_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1%, при $df_2=k=3$ и $df_1=n-k-1=16$:

$$F_{\kappa p} \; = egin{cases} 9,01 \; \partial \mathrm{ЛЯ} & p \leq 0,001 \; ; \ 5,29 \; \partial \mathrm{ЛЯ} & p \leq 0,01 \; ; \ 3,24 \; \partial \mathrm{ЛЯ} & p \leq 0,05 \; . \end{cases}$$

4.4.2. Коэффициент множественной конкордации качественных признаков

Данный коэффициент используется для оценки силы связи между двумя или несколькими признаками, значения которых проранжированы по степени убывания (или возрастания).

1	Определить n признаков: χ_i , $i = \overline{1;n}$, измеряемых в шкале порядка.						
2	Провести <i>п</i> серий наблюдений на одной и той же выборке респондентов:						
	$x_{11}, x_{12},x_{1n};$						
	$x_{21}, x_{22}, x_{2n};$						
	$X_{n1}, X_{n2}, \dots X_{nn}$.						
3	Сформулировать гипотезу:						
	\mathcal{H}_0 Корреляция между признаками \mathcal{X}_i , $i = \overline{1;n}$ не отличается от нуля.						
	\mathcal{H}_1 Корреляция между признаками \mathcal{X}_i , $i=\overline{1;n}$ достоверно отличается от нуля.						

Вычислить сумму квадратов отклонений рангов S: $S = \sum_{i=1}^{n} \left(\sum_{i=1}^{m} R_{ij} \right)^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} \sum_{i=1}^{m} R_{ij} \right)^{2},$ где R_{ij} ранг i – го признака у j – ой единицы. 5 Вычислить коэффициент конкордации качественных признаков по формуле: при отсутствии $\omega = \frac{12 S}{m^2 n (n^2 - 1)}$. при наличии $\omega = \frac{12S}{m^2 \left(n^3 - n\right) - m\sum_{j=1}^m T_j}, \text{ где } T_j = \frac{1}{12}\sum_{j=1}^m \left(t_j^3 - t_j\right).$ где т – число признаков; n – число ранжируемых единиц (категорий; индивидов).; t — количество связанных рангов по отдельным показателям. Сравнить величину коэффициента корреляции с уровнем силы корреляционной связи. 7 Проверить значимость коэффициента ω по критерию χ^2 с числом степеней свободы df = n - 1: Определить расчетное значение по формуле: $X^2 = \frac{12S}{mn(n+1)}$. По таблице № 4 приложения определить критические значения $\chi^2_{-1\kappa \nu}$ и $\chi^2_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1%. Расположить эмпирическое значение критерия X_r^2 и критические значения χ^2 $_{I\kappa p}$ и χ^2 $_{2\kappa p}$ на оси значимости. Если χ^2 находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об отсутствии корреляционной связи. Если χ^2 находится в зоне значимости, то гипотеза \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии корреляционной связи. Если χ^2 находится в зоне неопределенности, то существует вероятность принятия ложного решения.

Пример. Была проведена выборка из 8 человек. Респонденты ранжированы экспертами по степени сформированности творческого потенциала личности (ТПЛ), коммуникативной социальной компетентности (КСК) и уровню конфликтоустойчивости (КУ). Результаты ранжирования и все необходимые данные для расчета коэффициента конкордации представлены в таблице. Определить, есть ли связь между исследуемыми признаками?

№	Ран	$\sum_{ij}^{m} r_{ij}$	$\left(\sum_{i=1}^{m} r_{ij}\right)^2$		
	ТПЛ	КСК	КУ	i=1	$\left(\sum_{i=1}^{2} i^{j}\right)$
1	5	2	1	8	64
2	4	6	5	15	225
3	2	1	3	6	36
4	1	3	4	8	64
5	6	5	7	18	324
6	7	8	6	21	441
7	8	7	8	23	529
8	3	4	2	9	81
\sum				108	1764

Сумма квадратов отклонения рангов: $S = 1764 - \frac{108^2}{8} = 306$.

Величина коэффициента конкордации: $\omega = \frac{12 \cdot 306}{3^2 8 (8^2 - 1)} = 0.81$.

Проверим значимость коэффициента ω : $X^2 = \frac{12 \cdot 306}{3 \cdot 8(8+1)} = 17$.

По таблице № 4 приложения определим критические значения $\chi^2_{1\kappa p}$ и $\chi^2_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1%, при df=8-1=7:

$$\chi_{_{\kappa p}} = \begin{cases} 14,067 & \text{, для} & p \leq 0,05; \\ 18,475 & \text{, для} & p \leq 0,01. \end{cases}$$

 χ^2 находится в зоне неопределенности, поэтому есть вероятность принятия ложного решения (необходимо увеличить выборку или воспользоваться другим критерием).

4.4.3. Частные коэффициенты корреляции

Частный коэффициент линейной корреляции

выявить «чистую» зависимость признака от одного из факторов и установить, каково было бы влияние этого фактора на величину признака при условии, что влияние других (другого) факторов на этот признак исключается

Частные коэффициенты могут быть разных порядков. Порядок коэффициента определяется числом факторов, влияние которых исключается.

СПОСОБЫ РАСЧЕТА ЧАСТНЫХ КОЭФФИЦИЕНТОВ КОРРЕЛЯЦИИ

на основе рекуррентных соотношений

Рекуррентная формула для расчета частного коэффициента корреляции **первого порядка** между результативным признаком «у» и факторным «х» при исключении влияния независимого признака «z»:

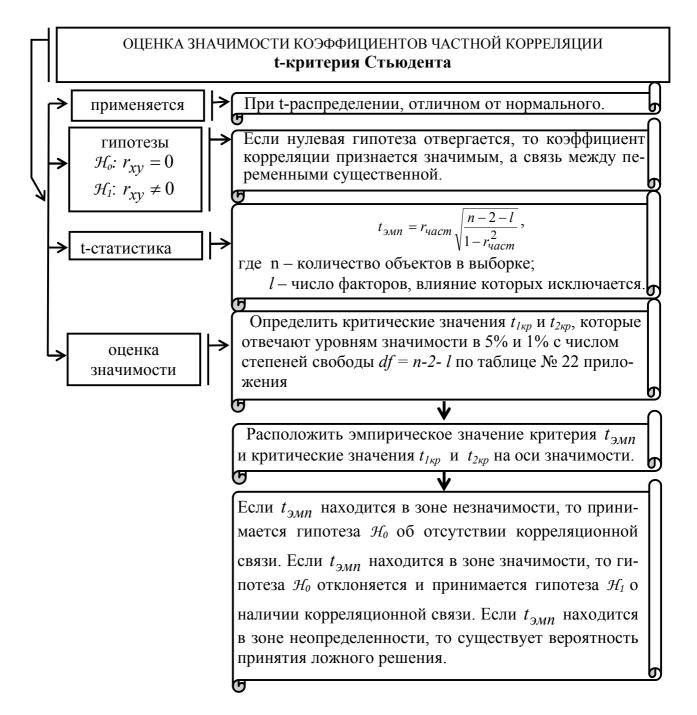
$$r_{xy}(z) = \frac{r_{xy} - r_{yz}r_{xz}}{\sqrt{1 - r_{yz}^2 - r_{xz}^2}}.$$

Недостатком этого способа является то, что для расчета коэффициента здесь требуется знание значений парных коэффициентов r_{xy} , r_{yz} , r_{yz} .

Рекуррентная формула для расчета частного коэффициента корреляции **второго порядка**:

$$r_{xy(zv)} = \frac{r_{xy(z)} - r_{xv(z)}r_{yv(z)}}{\sqrt{(1 - r_{xv(z)}^2)(1 - r_{yv(z)}^2)}}.$$

Для расчета коэффициента $r_{xy(zv)}$ требуется знание значений частных коэффициентов первого порядка $r_{xy(z)}, r_{xv(z)}, r_{yv(z)}$.


Общая рекуррентная формула для расчета частного коэффициента корреляции *п* порядка:

$$r_{x_1x_2}(x_3x_4...x_n) = \frac{r_{x_1x_2}(x_3x_4...x_{n-1}) - r_{x_1x_n}(x_3x_4...x_{n-1})r_{x_2x_n}(x_3x_4...x_{n-1})}{\sqrt{\left(1 - r_{x_1x_n}^2(x_3x_4...x_{n-1})\right)\left(1 - r_{x_2x_n}^2(x_3x_4...x_{n-1})\right)}} \cdot \frac{r_{x_1x_2}(x_3x_4...x_n)}{\sqrt{\left(1 - r_{x_1x_n}^2(x_3x_4...x_{n-1})\right)\left(1 - r_{x_2x_n}^2(x_3x_4...x_{n-1})\right)}}$$

на основе алгебраических дополнений

$$r_{x_1x_2}(x_3x_4...x_n)=-rac{A_{12}}{\sqrt{A_{11}A_{22}}},$$
 где где A_{11} , A_{12} , A_{22} – алгебраические дополне-

ния соответственно к элементам r_{11} , r_{12} , r_{22} корреляционной матрицы.

Сравнение значений частных и соответствующих им парных коэффициентов корреляции позволяет сделать один из следующих выводов:

- 1) $r_{x_1x_2} > r_{x_1x_2}(x_3x_4...x_n)$ факторы $x_3, x_4,..., x_n$ искажают взаимосвязь между x_1 и x_2 в сторону ее увеличения.
- 2) $r_{x_1x_2} < r_{x_1x_2}(x_3x_4...x_n)$ факторы $x_3, x_4,..., x_n$ искажают взаимосвязь между x_1 и x_2 в сторону ее уменьшения.
- 3) $r_{x_1x_2} \approx r_{x_1x_2}(x_3x_4...x_n)$ факторы $x_3, x_4,..., x_n$ практически не влияют на взаимосвязь между x_1 и x_2 .

Пример. Исследуется связь между двумя факторными признаками: X – умение студентов выделять главное в учебном материале; Z – способность к самообучению и результативным Y – успеваемость по математике. Диагностика обучающихся проводилась с помощью тестов на выборке объемом 20 человек. Анализ данных показал, что корреляция между признаками X и Y равна 0,75, между Z и Y равно 0,63, между X и Z равна 0,82. Необходимо определить степень влияния каждого факторного признака на результативный при элиминировании другого, а также влияние факторных признаков друг на друга при элиминировании результативного признака.

Определим частные коэффициенты корреляции и проверим их на достоверность.

 $r_{\chi y(z)}$ найдем двумя способами:

а) На основе рекуррентных соотношений:

$$r_{xy}(z) = \frac{0.75 - 0.63 \cdot 0.82}{\sqrt{(1 - 0.63^2)(1 - 0.82^2)}} = 0.52$$

б) На основе алгебраических дополнений:

$$K_{(3)} = x \begin{pmatrix} y & x & z \\ y & 1 & 0.75 & 0.63 \\ 0.75 & 1 & 0.82 \\ z & 0.63 & 0.82 & 1 \end{pmatrix}.$$

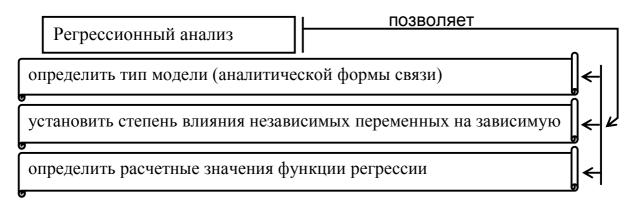
Вычислим алгебраические дополнения:

$$A_{xy} = (-1)^3 \begin{vmatrix} 0.75 & 0.63 \\ 0.82 & 1 \end{vmatrix} = -(0.75 \cdot 1 - 0.63 \cdot 0.82) = -2.33;$$

$$A_{xx} = (-1)^4 \begin{vmatrix} 1 & 0.63 \\ 0.63 & 1 \end{vmatrix} = 1 \cdot 1 - 0.63 \cdot 0.63 = 0.6;$$

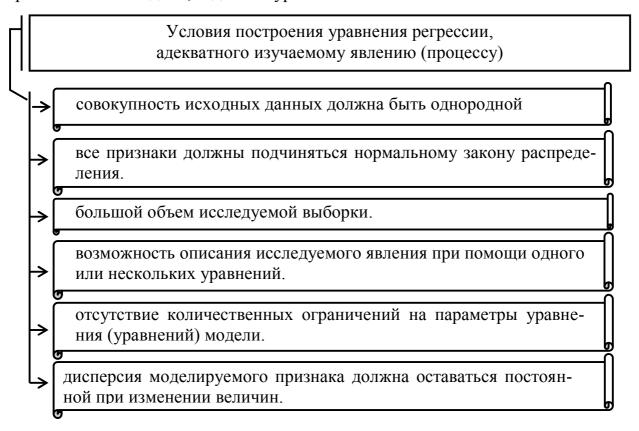
$$A_{yy} = (-1)^2 \begin{vmatrix} 1 & 0.82 \\ 0.82 & 1 \end{vmatrix} = 1 \cdot 1 - 0.82 \cdot 0.82 = 0.33.$$

Частный коэффициент корреляции $r_{xy}(z) = -\frac{-2,33}{\sqrt{0,6\cdot0,33}} = 0,52$.


 $r_{\chi z}(y)$ и $r_{\chi z}(x)$ найдем только на основе рекуррентных соотношений:

$$r_{xz(y)} = \frac{0.82 - 0.63 \cdot 0.75}{\sqrt{(1 - 0.63^2)(1 - 0.75^2)}} = 0.69;$$

$$r_{yz(x)} = \frac{0.63 - 0.82 \cdot 0.75}{\sqrt{(1 - 0.75^2)(1 - 0.82^2)}} = 0.05.$$


Полученные величины частных коэффициентов корреляции говорят о том, что связь между рассматриваемыми признаками при условии их комплексного воздействия слабая. Практически отсутствует связь между признаками $\langle x \rangle$ и $\langle x \rangle$ при элиминировании признака $\langle x \rangle$: ryz(x)=0.05. Связь между признаками $\langle x \rangle$, $\langle x \rangle$ и $\langle x \rangle$, $\langle x \rangle$ — средняя.

ГЛАВА 5. РЕГРЕССИОННЫЙ АНАЛИЗ

5.1. Понятие регерессионого анализа

Если существует влияние факторного признака x (факторных признаков $x_1, x_2, ..., x_n$) на результативный признак y, то можно попробовать найти уравнение, выражающее эту зависимость. В данном случае можно говорить только о приближенной модели, заданной уравнением.

В регрессионном анализе чаще всего используют уравнение линейной зависимости из-за ограниченности вариации переменных и возможности в большинстве случаев нелинейные формы связи для выполнения расчетов преобразовать (путем логарифмирования или замены переменных) в линейную форму.

5.2. Парный регрессионый анализ

Формулы для определения значения параметров a_{yx} и b_{yx}

1 способ

Параметры уравнения a и b находят методом наименьших квадратов (метод решения систем уравнений, при котором в качестве решения принимается точка минимума суммы квадратов отклонений). В основу этого метода положено требование минимальности сумм квадратов отклонений эмпирических данных yi от выравненных \hat{y} : $\sum (y_i - \hat{y})^2 = \sum (y_i - a - bx_i)^2 \rightarrow min$

Для нахождения минимума данной функции приравняем к нулю ее частные производные и получим систему двух линейных уравнений, которая называется системой нормальных уравнений:

$$\begin{cases} a\sum x + b\sum x^2 = \sum xy; \\ na + b\sum x = \sum y. \end{cases}$$

Решение данной системы в общем виде:

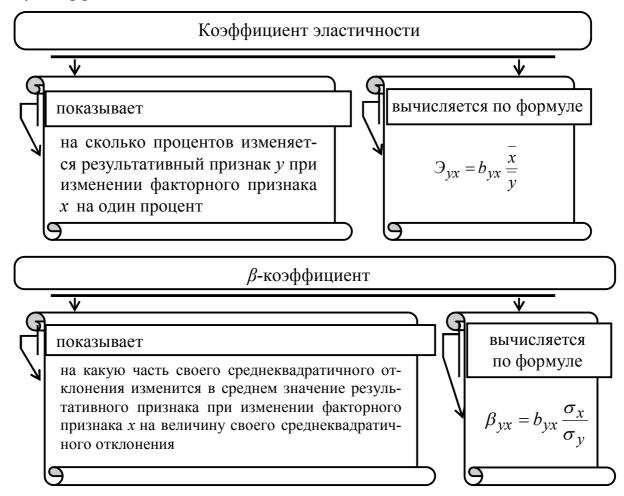
$$a_{yx} = \frac{\sum y \sum x^2 - \sum xy \sum x}{n \sum x^2 - (\sum x)^2}$$

$$b_{yx} = \frac{n \sum xy - \sum y \sum x}{n \sum x^2 - (\sum x)^2}$$

2 способ

Если известны средние x и y, стандартные отклонения σ_x и σ_y , корреляция r_{xy} , то коэффициенты a_{yx} и b_{yx} можно найти по формулам:

$$a_{yx} = \overline{y} - b_{yx} \overline{x}$$


$$b_{yx} = r_{yx} \frac{\sigma_y}{\sigma_x}$$

3 способ

Параметры уравнения регрессии можно определить с помощью программы «Анализ данных в EXCEL», инструмента «Регрессия».

Определив значения a, b и подставив их в уравнение связи $\hat{y}_x = a + bx_i$, находим значения \hat{y} , зависящие только от заданного значения x.

Из-за различия единиц измерения исследуемых показателей параметр b нельзя использовать для непосредственной оценки влияния факторного признака на результативный признак. Для это используют коэффициент эластичности или β -коэффициент.

После нахождения уравнения регрессии необходимо проверить его на адекватность изучаемому явлению.

ПРОВЕРКА АДЕКВАТНОСТИ МОДЕЛИ

определение значимости отдельных коэффициентов уравнения регрессии и модели в целом выборки

установление наличия или отсутствия систематической ошибки выборки

ПРОВЕРКА АДЕКВАТНОСТИ МОДЕЛИ

Определение значимости отдельных коэффициентов уравнения регрессии

t-критерий Стьюдента

Сформулировать гипотезы:

Коэффициенты уравнения не значимы.

 \mathcal{H}_1 Коэффициенты уравнения значимы.

2

Вычислить $S_{\mathcal{E}}$ по формуле: $S_{\mathcal{E}} = \sqrt{\frac{\sum\limits_{i=1}^{n} \varepsilon^2}{n-k-1}}$, \mathbf{k} – число факторных признаков.

Вычислить S_a и S_b по формулам:

$$S_a = S_{\varepsilon} \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n \sum_{i=1}^{n} (x_i - \overline{x})^2}}$$

$$S_b = \frac{S_{\varepsilon}}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

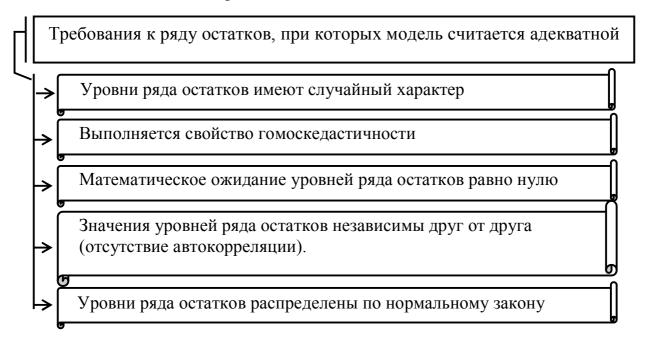
где S_{ε} - стандартная ошибка модели.

Вычислить t_{pacu} для каждого коэффициента регрессии по формулам:

$$t_{pac4\ a} = \frac{a}{S_a}$$

$$t_{pacu\ b} = \frac{b}{S_b}$$

 $t_{pac\textit{ч}\;a} = \frac{a}{S_a} \qquad \qquad t_{pac\textit{ч}\;b} = \frac{b}{S_b}$ где S_a и S_b - стандартные отклонения свободного члена и коэффициента регрессии.


5 Определить критические значения $t_{1\kappa p}$ и $t_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1% по таблице № 22 приложения при df = n-k-1.

Расположить значения критерия $t_{pacu\ a}$ и $t_{pacu\ b}$, критические значения $t_{1\kappa p}$ и $t_{2\kappa p}$ 6 на оси значимости.

Если t_{pacu} находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об отсутствии значимости коэффициентов. Если t_{pacy} находится в зоне значимости, то гипотеза об отсутствии значимости коэффициентов \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии значимости коэффициентов уравнения регрессии. Если t_{pacq} находится в зоне неопределенности, то существует вероятность принятия ложного решения.

	Определение значимости уравнения регрессии в целом
	F-критерий Фишера
1	Сформулировать гипотезы:
	\mathcal{H}_0 Уравнение регрессии в целом не значимо.
	\mathcal{H}_1 Уравнение регрессии в целом значимо.
2	В случае парной линейной регрессии значимость модели определяется по
	формуле: $F_{pacu} = \frac{r_{yx}^2}{1 - r_{yx}^2} (n - k - 1)$.
3	Определить критические значения $F_{1\kappa p}$ и $F_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1% по таблице № 23 приложения при $df_1 = k$ и $df_2 = n - k - 1$.
4	Расположить значения критерия F_{pacy} , критические значения $F_{1\kappa p}$ и $F_{2\kappa p}$ на оси значимости.
5	Если F_{pacq} находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об отсутствии значимости уравнения регрессии. Если F_{pacq} находится в зоне значимости, то гипотеза об отсутствии значимости уравнения регресии \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии значимости уравнения регрессии. Если F_{pacq} находится в зоне неопределенности, то существует вероятность принятия ложного решения.

Проверка наличия или отсутствия систематической ошибки осуществляется на основе анализа ряда остатков.

	Уровни ряда остатков имеют случайный характер							
			Критерий поворотных точек (пиков)					
	Точка называется поворотной, если выполняются следующие условия: $\varepsilon_{i-1}<\varepsilon_i>\varepsilon_{i+1}$ или $\varepsilon_{i-1}>\varepsilon_i<\varepsilon_{i+1}$.							
1	Подсчитать	колі	ичество поворотных точек $-p$.					
2.			по формуле: $p_{9Mn} = \left[\frac{2}{3}(n-2) - 1,96\sqrt{\frac{16n-29}{90}}\right]$ (квадратные					
			т, что берется целая часть числа, заключенного в скобки).					
3	Сравнить <i>р</i> и							
	Если $p > p_{3\lambda}$	ın, T	о модель считается адекватной с 5%-ным уровнем значимости.					
	Математ	тич	еское ожидание уровней ряда остатков равно нулю					
1	Вычислить с	ред	нее значение ряда остатков: $\stackrel{-}{\varepsilon} = \sum \frac{\varepsilon_i}{n}$.					
2	$\stackrel{-}{C}$ равнить $\stackrel{-}{arepsilon}$	с ну	/лем:					
	Если $\overline{\varepsilon} \approx 0$		одель не содержит постоянной систематической ошибки и аде-					
	— Если <i>ε</i> ≠ 0		ватна по критерию нулевого среднего. спользовать t-критерий Стьюдента					
	Lenn 6 + 0	a						
		a	Сформулировать гипотезы: \mathcal{H}_0 Математическое ожидание равно нулю.					
			\mathcal{H}_1 Математическое ожидание не равно нулю.					
		б	Вычислить $t_{pac^{q}}$ по формуле: $t=\frac{\left \overline{\varepsilon}\right -0}{S_{\varepsilon}}\cdot\sqrt{n}$, где S_{ε} — стан-					
			дартное отклонение остатков модели (стандартная ошибка).					
		В	Определить критические значения $t_{1\kappa p}$ и $t_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1% по таблице № 22 приложения при $df = n-k-1$.					
		Γ	Расположить значения критерия $t_{pacч\ a}$ и $t_{pacч\ b}$, критические значения $t_{1\kappa p}$ и $t_{2\kappa p}$ на оси значимости.					
	Вачения $t_{1\kappa p}$ и $t_{2\kappa p}$ на оси значимости. Д Если $t_{pac q}$ находится в зоне незначимости, то принимается ги потеза \mathcal{H}_0 о том, что математическое ожидание равно нулю Если $t_{pac q}$ находится в зоне значимости, то гипотеза \mathcal{H}_0 откло няется и принимается гипотеза \mathcal{H}_1 о том, что математическое ожидание равно не нулю. Если $t_{pac q}$ находится в зоне неопре деленности, то существует вероятность принятия ложного решения.							

	Выполнение свойства гомоскедастичности					
Лист	персия уровней ряда остатков должна быть одинаковой для всех значений х _і .					
11 ' '	это не соблюдается, то имеет место гетероскедастичность.					
	пя оценки гетероскедастичности используют метод Гольдфельда-Квандта					
	Расположить значения x_i в порядке возрастания.					
2	Выбросить $c = \frac{4n}{15}$ значений x_i , которые находятся в середине упорядоченной последовательности.					
3	Разделить оставшуюся совокупность упорядоченных наблюдений на две группы.					
4	По каждой группе наблюдений построить уравнения регрессии.					
]	Определить остаточные суммы квадратов для первой и второй групп по формулам: $S_1 = \sum_{i=1}^n \varepsilon_i^2$; $S_2 = \sum_{i=n_1+1}^{n_2} \varepsilon_i^2$, где n_1 – число наблюдений в первой группе; n_2 – число наблюдений во второй группе.					
6	Найти значение критерия по формуле: $F_{pacu}=\frac{S_1}{S_2}$ или $F_{pacu}=\frac{S_2}{S_1}$ (в числигеле должна быть большая сумма квадратов).					
H H	Сформулировать гипотезы:					
II	Но Имеет место гомоскедастичность.					
	\mathcal{H}_1 Имеет место гетероскедастичность.					
1	Определить критические значения $F_{1\kappa p}$ и $F_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1% по таблице № 23 приложения при $df_1 = n_1 - m$ и $df_2 = n_2 - m$ для каждой остаточной суммы квадратов (где m – число оцениваемых параметров в уравнении регрессии).					
9]	Расположить значения критерия F_{pac^q} , критические значения $F_{1\kappa p}$ и $F_{2\kappa p}$ на оси значимости					
3	Если F_{pac^q} находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 о наличии гомоскедастичности. Если F_{pac^q} находится в зоне значимости, то гипотеза \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии гетероскедастичности. Если F_{pac^q} находится в зоне неопределенности, то существует вероятность принятия ложного решения.					
	Значения уровней ряда остатков независимы друг от друга (отсутствие автокорреляции)					
	d–критерий Дарбина-Уотсона					
1	Сформулировать гипотезы:					
II	\mathcal{H}_0 Имеет место автокорреляция.					
	\mathcal{H}_1 Автокорреляция отсутствует.					

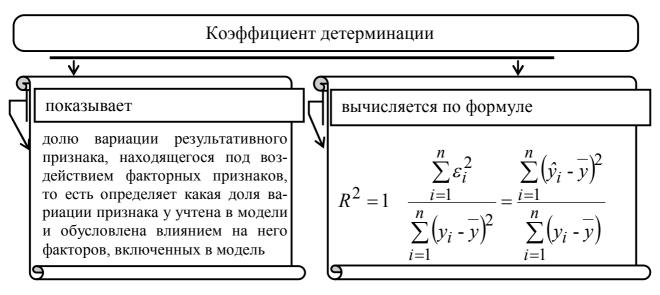
2	$\sum_{i=1}^{n} (\varepsilon_i - \varepsilon_{i-1})^2$ Вычислить эмпирическое значение по формуле: $d = \frac{i=1}{n}$.
	$\sum_{i=1}^{n} \varepsilon_i^2$

- 3 Если d > 2, то расчетное значение критерия необходимо преобразовать по формуле d' = 4 d и сравнить с критическим значением d', а не d.
- 4 Определить нижнее $d_{1\kappa p}$ и верхнее $d_{2\kappa p}$ критические значения, которые отвечают уровню значимости в 5% по таблице № 24 приложения.
- 5 Расположить значения критерия d, критические значения $d_{1\kappa p}$ и $d_{2\kappa p}$ на оси значимости.
- Если d находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 о наличии автокорреляции (модель признается неадекватной). Если d находится в зоне значимости, то гипотеза \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 об отсутствии автокорреляции (модель признается адекватной). Если d находится в зоне неопределенности, то существует вероятность принятия ложного решения.

Уровни ряда остатков распределены по нормальному закону


$$\frac{R}{S}$$
 — критерий

- 1 Сформулировать гипотезы:
 - \mathcal{H}_0 Уровни ряда остатков не распределены по нормальному закону.
 - \mathcal{H}_{l} Уровни ряда остатков распределены по нормальному закону.
- Вычислить эмпирическое значение по формуле: $\left(\frac{R}{S}\right)_{\mathfrak{I}_{MN}} = \frac{\varepsilon_{max} \varepsilon_{min}}{S_{\varepsilon}}$, где
 - $S_{\mathcal{E}}$ стандартное отклонение остатков модели (стандартная ошибка).
- 3 По таблице № 25 приложения определить нижнее $\left(\frac{R}{S}\right)_{1\kappa p}$ и верхнее $\left(\frac{R}{S}\right)_{2\kappa p}$ кри-


тические значения, которые отвечают одному и тому же уровню значимости.

- 9
 Расположить значения критерия $\left(\frac{R}{S}\right)_{_{3MN}}$, критические значения $\left(\frac{R}{S}\right)_{_{1\kappa p}}$ и $\left(\frac{R}{S}\right)_{_{2\kappa p}}$ на оси значимости.

данным уровнем значимости гипотеза \mathcal{H}_1 о нормальности распределения отвергается, в противном случае гипотеза \mathcal{H}_1 принимается.

Для оценки качества регрессионных моделей используют коэффициент детерминации. Чем ближе \mathbf{R}^2 к 1, тем выше качество модели.

Если установлено, что модель регрессии является адекватной, а параметры модели значимыми, то переходят к построению прогноза.

Прогнозирование в регрессионных моделях

Построение оценки зависимой переменной для некоторого набора независимых переменных, которых нет в исходных переменных.

ВИДЫ ПРОГНОЗИРОВАНИЯ

Точечное прогнозирование

Прогнозируемое значение переменной y получается при подстановке в уравнение регрессии ожидаемой величины независимой переменной $x_{пронг}$:

$$\hat{y}_{nporn} = a + bx_{nporn}$$

интервальное прогнозирование

- а) зависит от стандартной ошибки, удаления x_{nporn} от своего среднего значения x, количества наблюдений n и уровня значимости α ;
 - б) вычисляется по формуле:

$$u(k) = t_{ma6\pi} \cdot S_{\varepsilon} \cdot \sqrt{1 + \frac{1}{n} + \frac{\left(x_{npo2\mu} - \overline{x_i}\right)^2}{\sum \left(x_i - \overline{x_i}\right)^2}},$$

где $t_{\text{табл}}$ - определяется по таблице распределения Стьюдента для уровня значимости α и числа степеней свободы $\gamma=n-k-1$.

Пример. Была произведена выборка студентов в количестве 10 человек, которым предложили выполнить тесты, позволяющие определить аналитические и прогностические умения. Полученные результаты представлены в таблице. Необходимо построить уравнение регрессии, оценить его адекватность и точность, сделать выводы.

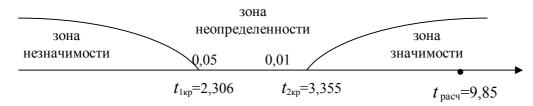
No	баллы	по тестам	$x \cdot y$	x^2	y^2	$x_i - \overline{x}$	$\left(\begin{pmatrix} x - x \end{pmatrix}^2 \right)$
респондента	аналитические	прогностические				i	$(x_i - x)$
	умения, х	умения, у					
1	4	7	28	16	49	-1,5	2,25
2	5	7	35	25	49	-0,5	0,25
3	3	6	18	9	36	-2,5	6,25
4	1	4	4	1	16	-4,5	20,25
5	10	9	90	100	81	4,5	20,25
6	2	5	10	4	25	-3,5	12,25
7	6	8	48	36	64	0,5	0,25
8	9	10	90	81	100	3,5	13,25
9	7	8	56	49	64	1,5	2,25
10	8	9	72	64	81	2,5	6,25
Σ	55	73	451	385	565		83,5

1. Установим наличие или отсутствие тесноты связи между признаками.

. Установим наличие или отсутствие тесноты свя
$$b_{yx} = \frac{n\sum xy - \sum y\sum x}{n\sum x^2 - (\sum x)^2} = \frac{10 \cdot 451 - 73 \cdot 55}{10 \cdot 385 - 55^2} = 0,6.$$

$$b_{xy} = \frac{n\sum xy - \sum y\sum x}{n\sum y^2 - (\sum y)^2} = \frac{10 \cdot 451 - 73 \cdot 55}{10 \cdot 565 - 73^2} \approx 1,54.$$

$$r = \sqrt{b_{yx}b_{xy}} = \sqrt{0,6 \cdot 1,54} \approx 0,96.$$


Величина коэффициента корреляции свидетельствует о тесной связи между аналитическими и прогностическими умениями.

Значимость коэффициента корреляции проверяется с помощью t-критерия Стьюдента

по формуле:
$$t_{pacy} = r \sqrt{\frac{n-k-1}{1-r^2}} = 0.96 \sqrt{\frac{10-1-1}{1-0.924}} \approx 9.85$$
.

По таблице № 22 приложения определим $t_{1\kappa p}$ и $t_{2\kappa p}$ для df=n-k-1=8 :

$$t_{\mathit{KP}} = egin{cases} 2,306, \, \partial\mathit{л}\mathit{Я} \ p \leq 0,05; \ 3,355, \, \partial\mathit{Л}\mathit{Я} \ p \leq 0,01. \end{cases}$$

 $t_{\it ЭМП}$ находится в зоне значимости, следовательно, значение коэффициента корреляции признается значимым, поэтому можно приступить к нахождению уравнения линейной регрессии.

2. Уравнение линейной регрессии имеет вид: $\hat{y}_x = a + bx_i$, где $b_{yx} = 0.6$

$$a_{yx} = \frac{\sum y \sum x^2 - \sum xy \sum x}{n \sum x^2 - (\sum x)^2} = \frac{73 \cdot 385 - 451 \cdot 55}{10 \cdot 385 - 55^2} = 4, \text{ то есть } \hat{y}_x = 4 + 0,6x_i.$$

Коэффициент регрессии $b_{yx} = 0.6$ показывает, что с увеличением показателя степени аналитических умений на 1 балл показатель степени прогностических умений возрастет на 0.6 балла.

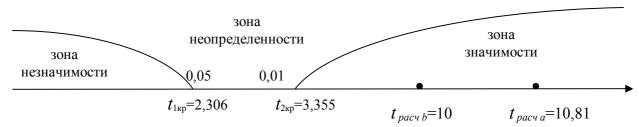
3. Проверка адекватности (значимости) модели.

No	\mathcal{Y}_{i}	$\hat{\mathcal{Y}}_{x}$	\mathcal{E}_{i}	${m \mathcal{E}}_i^2$	точки поворота	$\left(\varepsilon_{i}-\varepsilon_{i-1}\right)$	$\left(\varepsilon_{i}-\varepsilon_{i-1}\right)^{2}$	$\left \mathcal{E}_{i}\right $
1	7	6,4	0,6	0,36	-	-	-	0,6
2	7	7	0	0	1	-0,6	0,36	0
3	6	5,8	0,2	0,04	0	0,2	0,04	0,2
4	4	4,6	-0,6	0,36	0	-0,8	0,64	0,6
5	9	10	-1	1	1	-0,4	0,16	1
6	5	5,2	-0,2	0,04	1	0,8	0,64	0,2
7	8	7,6	0,4	0,16	0	0,6	0,36	0,4
8	10	9,4	0,6	0,36	1	0,2	0,04	0,6
9	8	8,2	-0,2	0,04	0	-0,8	0,64	0,2
10	9	8,8	0,2	0,04	-	0,4	0,16	0,2
\sum	70	73	0,0	2,4	4	-0,4	3,04	4

Значимость отдельных коэффициентов уравнения регрессии оценим при помощи *t*-критерия Стьюдента по формулам:

$$t_{pacu \, a} = \frac{a}{S_a},$$
$$t_{pacu \, b} = \frac{b}{S_b},$$

где S_a и S_b - стандартные отклонения свободного члена и коэффициента регрессии.


$$S_{a} = \sqrt{\frac{\sum_{i=1}^{n} \varepsilon^{2}}{n - k - 1} \cdot \frac{\sum_{i=1}^{n} x_{i}^{2}}{n \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}} = \sqrt{\frac{2.4}{8} \cdot \frac{385}{10 \cdot 83.5}} \approx 0.37$$

$$S_b = \sqrt{\frac{\sum_{i=1}^n \varepsilon^2}{(n-k-1)\sum_{i=1}^n (x_i - \overline{x})^2}} = \sqrt{\frac{2,4}{8 \cdot 83,5}} \approx 0.06$$

$$t_{pacu\ a} = \frac{a}{S_a} = \frac{4}{0.37} = 10.81; \quad t_{pacu\ b} = \frac{b}{S_b} = \frac{0.6}{0.06} = 10.$$

По таблице № 22 приложения определим $t_{1\kappa p}$ и $t_{2\kappa p}$ для df = n - k - 1 = 8:

$$t_{\kappa p} = egin{cases} 2,306, \, \partial \text{ля} \ p \leq 0,05; \ 3,355, \, \partial \text{ля} \ p \leq 0,01. \end{cases}$$

 $t_{\it pacu\,a}$ и $t_{\it pacu\,b}$ находятся в зоне значимости, следовательно, параметры a и b значимы.

Используем F-критерий Фишера для проверки значимости уравнения регрессии в целом.

$$F_{pac4} = \frac{r_{yx}^2}{1 - r_{yx}^2} (n - k - 1) = \frac{0.924}{1 - 0.924} \cdot 8 \approx 97.26.$$

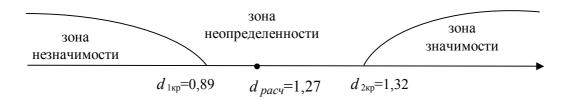
По таблице № 23 приложения определим $F_{1\kappa p}$ и $F_{2\kappa p}$ для $df_1=1$ и $df_2=8$:

$$F_{\kappa p} = \begin{cases} 5,32, \ \partial \text{ля } p \le 0,05; \\ 11,26, \ \partial \text{ля } p \le 0,01. \end{cases}$$

Расчетное значение F-критерий Фишера находится в зоне значимости, следовательно, модель в целом статистически значима.

Для проверки свойства случайности ряда остатков воспользуемся критерием поворотных точек (пиков).

Количество поворотных точек p=4. Критерием случайности с 5%-ным уровнем значимости, то есть с доверительной вероятностью 95%, является выполнение неравенства:


$$4 > \left[\frac{2}{3}(10-2)-1,96\sqrt{\frac{16\cdot 10-29}{90}}\right] = 2$$
. Модель может быть признана адекватной по критерию случайности.

 $\frac{1}{\varepsilon} = \sum \frac{\varepsilon_i}{n} = 0$ - модель не содержит постоянной систематической ошибки и адекватна по критерию нулевого среднего.

Проверку независимости последовательности остатков осуществим с помощью d-критерия Дарбина-Уотсона по формуле:

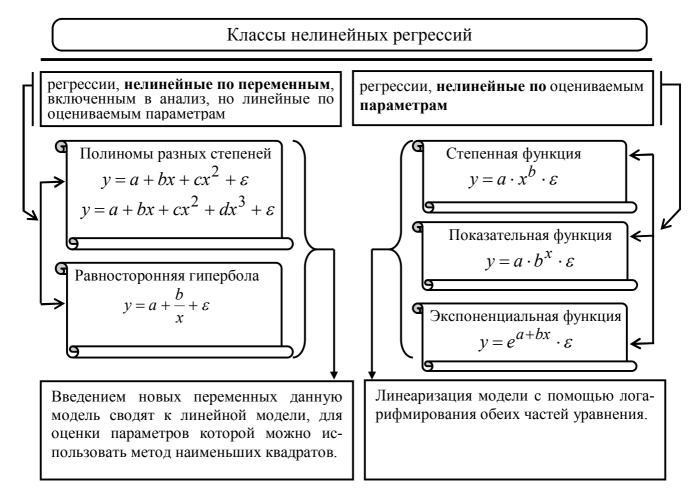
$$d = \frac{\sum_{i=1}^{n} (\varepsilon_{i} - \varepsilon_{i-1})^{2}}{\sum_{i=1}^{n} \varepsilon_{i}^{2}} = \frac{3.04}{2.4} = 1.27.$$

По таблице № 24 приложения определим нижнее $d_{1\kappa p}$ = 0,89 и верхнее $d_{2\kappa p}$ =1,32 критические значения, которые отвечают уровню значимости в 5%.

d находится в зоне неопределенности, поэтому есть вероятность принятия ложного решения.

Проверку соответствия распределения остаточной последовательности нормальному закону распределения проведем с помощью $\frac{R}{S}$ - критерия, который определяется по форму-

ле:
$$\frac{R}{S} = \frac{\varepsilon_{\text{max}} - \varepsilon_{\text{min}}}{S_{\varepsilon}} = \frac{0.6 + 1}{\sqrt{\frac{2.4}{8}}} = 2.91$$
.


По таблице № 25 приложения определим нижнее $\left(\frac{R}{S}\right)_{1\kappa p}$ =2,67 и верхнее $\left(\frac{R}{S}\right)_{2\kappa p}$ =3,57 критические значения, которые отвечают уровню значимости в 5%.

В качестве показателя точности модели используем с*реднюю абсолютную* ошибку: $\frac{1}{\varepsilon} \frac{1}{a \delta c} = \frac{1}{n} \sum_{i=1}^{n} \left| \varepsilon_i \right| = \frac{4}{10} = 0,4$. На 0,4 в среднем отклоняются фактические значения от модели.

5.3. НЕЛИНЕЙНЫЕ МОДЕЛИ РЕГРЕССИИ

В психолого-педагогических исследованиях соотношения между изучаемыми признаками, как правило, выражаются нелинейными функциями.

Пример. Была обследована выборка из 10 респондентов по степени владения двумя коммуникативными навыками: активное слушание и снижение эмоционального напряжения. Измерения проводились по 10-балльной шкале и представлены в таблице:

№ респондента	1	2	3	4	5	6	7	8	9	10
Активное слушание	6	3	4	4	6	4	3	6	6	5
Снижение эмоционального напряжения	5	1	4	4	4	5	5	5	5	6

Построение парной линейной регрессии, оценивание ее параметров и их значимости можно выполнить с помощью программы «Анализ данных в EXCEL», инструмента «Регрессия». С этой целью построим вспомогательную таблицу:

у	Х	lg(y)	lg(x)	$z = \sqrt{x}$	$z = \frac{1}{x}$
6	5	0,778151	0,69897	2,236068	0,2
3	1	0,477121	0	1	1
4	4	0,60206	0,60206	2	0,5
4	4	0,60206	0,60206	2	0,5
6	4	0,778151	0,60206	2	0,5
6	5	0,778151	0,69897	2,236068	0,2
3	5	0,477121	0,69897	2,236068	0,2
6	5	0,778151	0,69897	2,236068	0,2
6	5	0,778151	0,69897	2,236068	0,2
5	6	0,69897	0,778151	2,44949	0,166

Рассмотрим различные варианты уравнения регрессии:

а) Линейное уравнение регрессии.

	Регрессионная статистика	
Множественный R	0,537359	
R-квадрат	0,288754	
Нормированный R-квадрат	0,199849	
Стандартная ошибка	1,150954	
	Коэффициенты	Стандартная ошибка
Ү-пересечение	2,646341	1,302404
Переменная Х 1	0,512195	0,284208

Линейное уравнение регрессии имеет вид: $\hat{y}(x) = 2.65 + 0.51x$.

б) Степенное уравнение регрессии.

Построению степенной модели $\hat{y}=a\cdot x^b$ предшествует процедура линеаризации переменных, которая производится путем логарифмирования обеих частей уравнения: $lg\ y=lg\ a+b\cdot lg\ x$. После введения обозначений: $V=lg\ y$, $X=lg\ x$ и $A=lg\ a$ уравнение примет линейный вид: $Y=A+b\cdot X$.

	Регрессионная статистика	
Множественный R	0,57526	
R-квадрат	0,330924	
Нормированный R-квадрат	0,24729	
Стандартная ошибка	0,109256	
	Коэффициенты	Стандартная ошибка
Ү-пересечение	0,475655	0,105913
Переменная Х 1	0,327599	0,164692

В результате получили уравнение V=0.48+0.32X . Степенное уравнение регрессии имеет вид: $\hat{y}=3.02\cdot x^{0.32}$.

в) Показательное уравнение регрессии.

Построению показательной модели $\hat{y}=a\cdot b^x$ предшествует процедура линеаризации переменных, которая производится путем логарифмирования обеих частей уравнения: $lg\ y=lg\ a+x\cdot lg\ b$. После введения обозначений: $V=lg\ y$, $B=lg\ b$ и $A=lg\ a$ уравнение примет линейный вид: $V=A+B\cdot x$.

	Регрессионная статистика						
Множественный R	0,560195						
R-квадрат	0,313818						
Нормированный R-квадрат	0,228045						
Стандартная ошибка	0,110644						
	Коэффициенты	Стандартная ошибка					
Ү-пересечение	0,444864	0,125203					
Переменная X 1	0,05226	0,027322					

В результате получили уравнение Y=0.44+0.05x . Показательное уравнение регрессии имеет вид: $\hat{y}=10^{-0.44}\cdot 10^{-0.05x}=2.75\cdot 1.12^{-x}$.

г) Уравнение регрессии в виде полинома степени $\frac{1}{2}$.

Нахождению уравнения полинома степени $\frac{1}{2}$ $\hat{y}=a+b\cdot\sqrt{x}$ предшествует процедура линеаризации переменных, которая производится путем замены переменной $z=\sqrt{x}$: $\hat{y}=a+b\cdot z$.

-		
	Регрессионная статистика	
Множественный R	0,547106	
R-квадрат	0,299325	
Нормированный R-квадрат	0,21174	
Стандартная ошибка	1,142369	
	Коэффициенты	Стандартная ошибка
Ү-пересечение	1,270673	1,996177
Переменная Х 1	1,759262	0,95164

В результате получили уравнение $\hat{y}=1,27+1,76\cdot z$. Уравнение регрессии в виде полинома степени $\frac{1}{2}$ имеет вид $\hat{y}=1,27+1,76\cdot \sqrt{x}$.

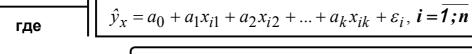
д) Уравнение регрессии в виде равносторонней гиперболы.

Нахождению уравнения равносторонней гиперболы $\hat{y} = a + b \cdot \frac{1}{x}$ предшествует процедура линеаризации переменных, которая производится путем замены переменной $z = \frac{1}{x}$: $\hat{y} = a + b \cdot z$.

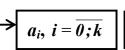
X								
	Регрессионная статистика							
Множественный R	0,564154							
R-квадрат	0,31827							
Нормированный R-квадрат	0,233054							
Стандартная ошибка	1,126819							
	Коэффициенты	Стандартная ошибка						
Ү-пересечение	5,902942	0,629522						
Переменная Х 1	-2,73579	1,41562						

В результате получили уравнение $\hat{y}=5.9-2.7\cdot z$. Уравнение регрессии в виде равносторонней гиперболы имеет вид $\hat{y}=5.9-2.7\cdot \frac{1}{x}$.

Степенному уравнению регрессии соответствует максимальное из имеющихся значений, значение скорректированного коэффициента детерминации (0,24729), следовательно, данная модель наиболее точно отражает взаимосвязь между двумя коммуникативными навыками: активное слушание и снижение эмоционального напряжения.


5.4 Множественный регрессионный анализ

Уравнение множественной линейной регрессии


среднее значение изменения результативного признака y при изменении факторных признаков x_i , $i = \overline{1;n}$ на одну единицу их измерения

показывает

имеет вид

теоретическое значение результативного признака, полученное по уравнению регрессии

Коэффициент (параметр) уравнения регрессии. Коэффициент регрессии a_i показывает, на какую величину в среднем изменится значение результативного признака y при изменении факторного признака x_i на одну единицу его измерения при фиксированном значении других факторов, входящих в уравнение регрессии.

независимая, нормально распределенная случайная величина (остаток $\varepsilon_i = y_i - \hat{y_i}$ с нулевым математическим ожиданием и постоянной дисперсией), отражает тот факт, что изменение y будет неточно описываться изменением x, изза присутствия других факторов, не учтенных в данной модели.

Формулы для определения значения параметров $a_i,\ i=\overline{\theta;k}$

1 способ

1 Записать уравнение линейной множественной регрессии в матричной форме

$$m{Y} = m{A}m{X} + m{e}$$
 или $egin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} = egin{pmatrix} a_0 \\ a_1 \\ \dots \\ a_k \end{pmatrix} \cdot egin{pmatrix} 1 & x_{11} & \dots & x_{1k} \\ 1 & x_{21} & \dots & x_{2k} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n1} & \dots & x_{nk} \end{pmatrix} + egin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_n \end{pmatrix}$

где У – вектор значений зависимой переменной.

X – матрица значений независимых переменных

A – вектор неизвестных параметров

 ε – вектор случайных отклонений

Вычислить параметры регрессионного уравнения по формуле: $A = (X/X)^{-1} X/Y$.

2 способ

Параметры уравнения регрессии можно определить с помощью программы «Анализ данных в EXCEL», инструмента «Регрессия».

ОЦЕНКА ЗНАЧИМОСТИ КАЖДОГО КОЭФФИЦИЕНТА УРАВНЕНИЯ РЕГРЕССИИ **t-критерия Стьюдента**

 \mathcal{H}_{o} : $\boldsymbol{a_i}$, $\boldsymbol{i} = \overline{\boldsymbol{0;k}}$ — незначимый коэффициент регрессии \mathcal{H}_{i} : $\boldsymbol{a_i}$, $\boldsymbol{i} = \overline{\boldsymbol{0;k}}$ — значимый коэффициент регрессии

t-статистика

для любого из коэффициентов регрессии a_i , $i = \overline{\theta;k}$

Определить b_{ii} - диагональные элементы матрицы $(X^/X)^{\!-1}$.

Вычислить S_{ε} - стандартное (среднеквадратическое) отклонение уравнения регрессии, определяемое по формуле:

$$\sigma_{\varepsilon} = \sqrt{\frac{\sum (y - \hat{y})^2}{n - k - 1}}.$$

Вычислить значение t-критерия по формуле: $t_{pac} = \frac{a_i}{S_{\mathcal{E}} \sqrt{b_{ii}}}$

оценка значимости

Определить критические значения $t_{1\kappa p}$ и $t_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1% с числом степеней свободы df = n-k-1 по таблице № 22 приложения.

Расположить эмпирическое значение критерия t_{9MN} и критические значения $t_{1\kappa p}$ и $t_{2\kappa p}$ на оси значимости.

Если t_{9Mn} находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 о незначимости коэффициента регрессии. Если t_{9Mn} находится в зоне значимости, то гипотеза \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о значимости коэффициента регрессии. Если t_{9Mn} находится в зоне неопределенности, то существует вероятность принятия ложного решения.

Пример. Даны следующие условные данные о:

У – количестве решенных задач на контрольной работе;

 X_{I} (ч) – количестве времени, затраченном на подготовку обучающегося к контрольной работе;

 X_2 (%) — степени использования информационных технологий в процессе подготовки к контрольной работе. Предполагая, что между V, X_1 и X_2 существует линейная корреляционная зависимость, найдите ее аналитическое выражение, используя данные, приведенные в таблице:

$N_{\underline{0}}$	1	2	3	4	5	6	7	8	9	10
x_{i1}	8	11	12	9	8	8	9	9	8	12
x_{i2}	5	8	8	5	7	8	6	4	5	7
y_i	5	10	10	7	5	6	6	5	6	8

Для нахождения параметров регрессионного уравнения воспользуемся формулой $A = (X^{\top}X)^{-1} X^{\top}Y$.

Учитывая, что
$$X/X = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 8 & 11 & \dots & 12 \\ 5 & 8 & \dots & 7 \end{pmatrix} \begin{pmatrix} 1 & 8 & 5 \\ 1 & 11 & 8 \\ \dots & \dots & \dots \\ 1 & 12 & 7 \end{pmatrix} = \begin{pmatrix} 10 & 94 & 63 \\ 94 & 908 & 606 \\ 63 & 603 & 417 \end{pmatrix},$$

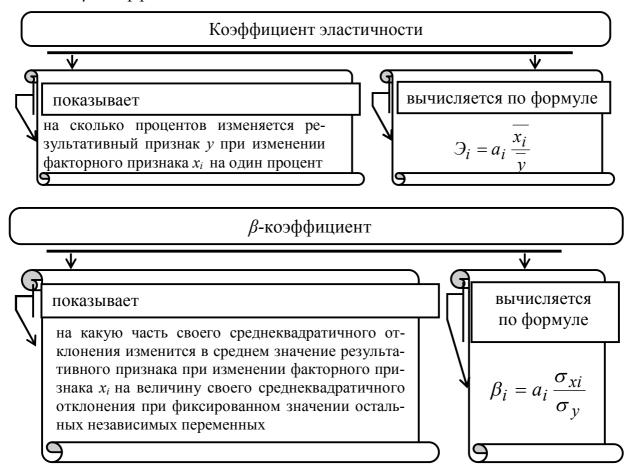
$$\begin{pmatrix} X/X \end{pmatrix}^{-1} = \frac{1}{3738} \begin{pmatrix} 15027 & -1209 & -522 \\ -1209 & 201 & -108 \\ -522 & -108 & 244 \end{pmatrix} \quad \text{и} \quad X/Y = \begin{pmatrix} 68 \\ 664 \\ 445 \end{pmatrix} \text{получим}$$

$$A = \frac{1}{3738} \begin{pmatrix} -13230 \\ 3192 \\ 1372 \end{pmatrix} = \begin{pmatrix} -3,54 \\ 0,85 \\ 0.37 \end{pmatrix}.$$

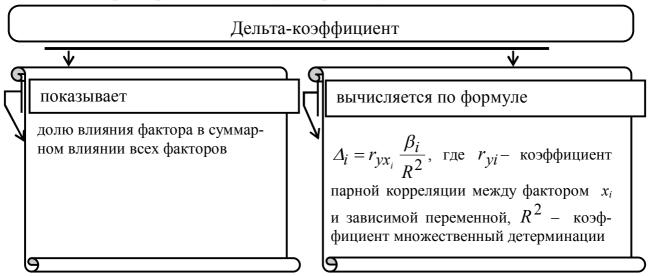
Уравнение регрессии примет вид $\hat{y}_x = -3.54 + 0.85x_1 + 0.37x_2$.

Данное уравнение показывает, что при увеличении только количества времени X_1 , затраченного на подготовку обучающегося к контрольной работе (при неизменном X_2) на 1 ч, количество решенных задач на одного обучающегося увеличится в среднем на 0,85; а при увеличении только уровня использования информационных технологий в процессе подготовки к контрольной работе X_2 (при неизменном X_1) - в среднем на 0,37.

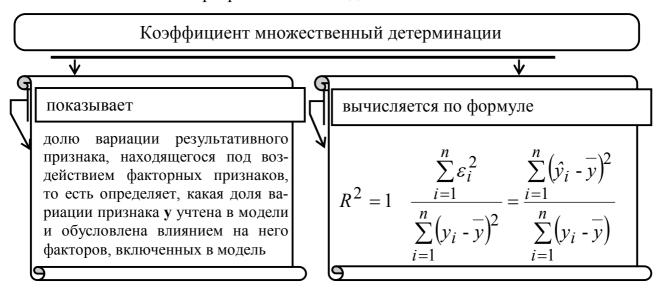
Для определения значимости каждого из коэффициентов уравнения регрессии составим вспомогательную таблицу.


No	1	2	3	4	5	6	7	8	9	10	Σ
x_{i1}	8	11	12	9	8	8	9	9	8	12	_
x_{i2}	5	8	8	5	7	8	6	4	5	7	_
y_i	5	10	10	7	5	6	6	5	6	8	_
$\hat{y}_{_{i}}$	5,13	8,79	9,64	5,98	5,86	6,23	6,35	5,61	5,13	9,28	_
ε_i^2	0,016	1,464	1,127	1,038	0,741	0,052	0,121	0,377	0,762	1,631	7,329

$$t_{pac_0} = \frac{-3.54}{7.329\sqrt{15027}} \approx -0.004; \quad t_{pac_1} = \frac{0.85}{7.329\sqrt{201}} \approx 0.008; \quad t_{pac_2} = \frac{0.37}{7.329\sqrt{244}} \approx 0.003.$$


Расчетные значения t-критерия сравним с табличным значением $t_{\alpha,\gamma}=2,365$ при условии, что df=10-2-1=7 и уровень значимости $\alpha=0,05$. Расчетные значение t-критерия

меньше, чем его табличное значение $t_{\alpha,\gamma}$, поэтому параметры признаются незначимыми, то есть найденные значения параметров обусловлены случайными совпадениями. Сделанные выводы о взаимосвязи факторных переменных и результативного признака несостоятельны.

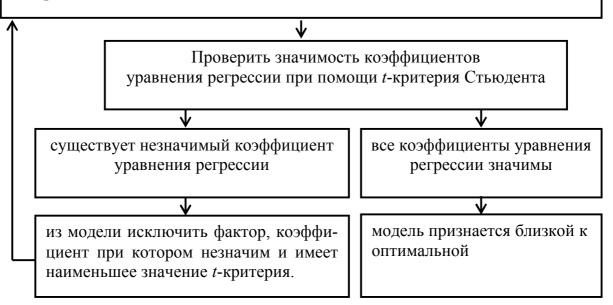

Из-за различия единиц измерения исследуемых показателей и разной степени колеблемости нельзя сопоставить факторные признаки по степени их влияния на зависимую переменную. Для это используют коэффициент эластичности или β-коэффициент.

Указанные коэффициенты позволяют проранжировать факторы по степени влияния факторов на зависимую переменную.

Коэффициент множественный детерминации используют для оценки качества множественных регрессионных моделей.

Чем ближе R^2 к 1, тем выше качество модели.

При добавлении независимых переменных значение \mathbf{R}^2 увеличивается, поэтому коэффициент \mathbf{R}^2 должен быть скорректирован с учетом числа независимых переменных по формуле: $R_{\kappa op}^2 = 1 - \left(1 - R^2\right) \cdot \frac{n-1}{n-k-1}$.


	Определение значимости уравнения регрессии в целом						
	<i>F</i> -критерий Фишера						
1	Сформулировать гипотезы:						
	\mathcal{H}_0 Уравнение регрессии в целом незначимо.						
	\mathcal{H}_1 Уравнение регрессии в целом значимо.						
2	В случае множественной линейной регрессии значимость модели определя-						
	ется по формуле: $F_{pacu} = \frac{R^2}{1 - R^2} \cdot \frac{(n - k - 1)}{k}$.						
3	Определить критические значения $F_{I\kappa p}$ и $F_{2\kappa p}$, которые отвечают уровням значимости в 5% и 1% по таблице № 23 приложения при $df_1 = k$ и $df_2 = n - k - 1$.						
4	Расположить значения критерия F_{pacq} , критические значения $F_{1\kappa p}$ и $F_{2\kappa p}$ на оси значимости.						
5	Если F_{pacq} находится в зоне незначимости, то принимается гипотеза \mathcal{H}_0 об отсутствии значимости уравнения регрессии. Если F_{pacq} находится в зоне значимости, то гипотеза об отсутствии значимости уравнения регресии \mathcal{H}_0 отклоняется и принимается гипотеза \mathcal{H}_1 о наличии значимости уравнения регрессии. Если F_{pacq} находится в зоне неопределенности, то существует вероятность принятия ложного решения.						

Метод уменьшения (устранения) мультиколлинеарности

Построить множественную линейную регрессию, включая все факторы, с помощью программы «Анализ данных в EXCEL», инструмента «Регрессия».

Построить множественную линейную регрессию, используя оставшиеся факторы, с помощью программы «Анализ данных в EXCEL», инструмент «Регрессия».

Пример. Была обследована выборка из 10 респондентов по степени владения тремя важнейшими коммуникативными навыками. Измерения проводились по 10-балльной шкале и представлены в таблице:

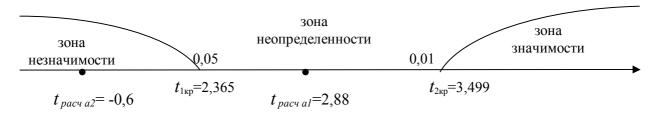
No	Активное слушание	Снижение эмоционального напряжения	Аргументация
1	6	5	5
2	3	1	2
3	4	4	5
4	4	4	5
5	5	4	4
6	6	4	3
7	4	3	2
8	6	5	4
9	5	3	4
10	5	5	3

Построение множественной линейной регрессии, оценивание ее параметров и их значимости выполним с помощью программы «**Анализ данных в EXCEL**», инструмент «**Perpeccus**» (при заполнении значений факторных переменных необходимо указать не один столбец, а все столбцы, содержащие значения данных переменных).

ВЫВОД ИТОГОВ					
Регрессионная статист	ика	значения регрессионной статистики			
Множественный R 0,766552		коэффициент множественной корреляции			
R-квадрат 0,587602		коэффициент детерминации			
Нормированный R-квадрат	0,469775	скорректированный коэффициент детерминации с поправкой на число степеней свободы			
Стандартная ошибка	0,752046	стандартная ошибка регрессии			
Наблюдения	10	число наблюдений			

	число степеней свободы	сумма квадратов отклонения	дисперсия $MS = \frac{SS}{df}$	$oldsymbol{F}_{ extit{pac4}}$
	df	SS	MS	F
Регрессия	df=k		факторная	
	2	5,640984	2,820492	4,986957
Остаток	df=n-k-1			
	7	3,959016	0,565574	
Итого	df=n-1			
	9	9,6		

	Коэффициенты		Стандартная ошибка	t-статистика	Р-Значение	Нижние 95%	Верхние 95%
Υ	a ₀	2,655738	0,918545	2,891244	0,023275	0,483724	4,827751
X 1	a ₁	0,718579	0,249653	2,878316	0,023709	0,128245	1,308914
X 2	a ₂	-0,15847	0,264675	-0,59873	0,568211	-0,78433	0,467387

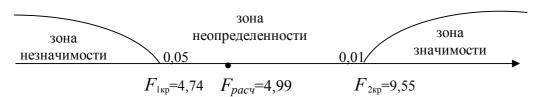

«Нижние 95%» и «Верхние 95%» - нижние и верхние границы 95% доверительных интервалов для коэффициентов теоретического уравнения регрессии.

Регрессионная модель имеет вид: $\hat{y}(x) = 2,66 + 0,72x_1 - 0,16x_2$.

Значимость отдельных коэффициентов уравнения регрессии оценим при помощи t-критерия Стьюдента по формулам: $t_{pacu\ a_1}=2,\!88\,,\ t_{pacu\ a_2}=-0,\!6\,.$

По таблице № 22 приложения определим $t_{1\kappa p}$ и $t_{2\kappa p}$ для df=n-k-1=7:

$$t_{\kappa p} \, = egin{cases} 2,365 \ , \, \partial \text{ля} & p \leq 0,05 \ ; \ 3,499 \ , \, \partial \text{ля} & p \leq 0,01 \ . \end{cases}$$


 $t_{\it pacu\,a_1}$ находится в зоне неопределенности, поэтому есть вероятность принятия ложного решения. Однако при доверительной вероятности 0,95 уравнение можно признать значимым.

 $t_{\it pacu\,a_2}$ находится в зоне незначимости, поэтому ${f a}_2$ незначим, и из модели можно исключить факторный признак ${f x}_2$.

Проверка значимости уравнения регрессии осуществляется на основе F-критерия Фишера: $F_{pacu}=4,99$.

По таблице № 23 приложения определим $F_{1\kappa p}$ и $F_{2\kappa p}$ для $df_1 = 2$ и $df_2 = 7$:

$$F_{\kappa p} = egin{cases} 4,74, & \partial \mathrm{ЛЯ} & p \leq 0.05; \ 9,55, & \partial \mathrm{ЛЯ} & p \leq 0.01. \end{cases}$$

 $F_{\it pacu}$ находится в зоне неопределенности, следовательно, есть вероятность принятия ложного решения. Однако при доверительной вероятности 0,95 уравнение можно признать адекватным.

Множественный коэффициент корреляции R, равный 0,766552, свидетельствует о сильной связи между признаками.

Множественный коэффициент детерминации R^2 , равный 0,587602, показывает, что около 59% вариации зависимой переменной (активное слушание) учтено в модели и обусловлено влиянием включенных объясняющих факторов (снижением эмоционального напряжения и аугментаций) и на 41% — другими факторами, не учтенными в регрессионной модели.

Определим коэффициент эластичности, β- и дельта коэффициенты. Для этого составим вспомогательную таблицу:

Nº	Активное слушание		Снижение эмоционального напряжения		Аргументация	
	у	y^2	x_I	x_1^2	x_1	x_{2}^{2}
1	6	36	5	25	5	25
2	3	9	1	1	2	4
3	4	16	4	16	5	25
4	4	16	4	16	5	25
5	5	25	4	16	4	16
6	6	36	4	16	3	9
7	4	16	3	9	2	4
8	6	36	5	25	4	16
9	5	25	3	9	4	16
10	5	25	5	25	3	9
Σ	48	240	38	158	37	149
Среднее значение	4,8	24	3,8	15,8	3,7	14,9

Определим коэффициент эластичности, β- и дельта-коэффициенты.

$$9_1 = a_1 \frac{\overline{x_1}}{\overline{y}} = 0,72 \cdot \frac{3.8}{4.8} = 0,57$$
 — повышение среднего уровня снижения эмоцио-

нального напряжения на 1% приводит к росту среднего уровня активного слушания на 0.57%.

$$3_2 = a_2 \frac{\overline{x_2}}{\overline{y}} = -0.16 \cdot \frac{3.7}{4.8} = -0.12$$
 — повышение степени аргументации на 1%

приводит к спаду среднего уровня активного слушания на 0,12%.

По абсолютному приросту наибольшее влияние на средний уровень активного слушания оказывает фактор \boldsymbol{x}_1 — снижение эмоционального напряжения.

Для расчета β-коэффициентов предварительно вычислим среднеквадратические от-

клонения:
$$\beta_1 = a_1 \frac{\sigma_{x_1}}{\sigma_y} = 0.72 \frac{\sqrt{15.8 - 3.8^2}}{\sqrt{24 - 4.8^2}} = 0.86$$
;

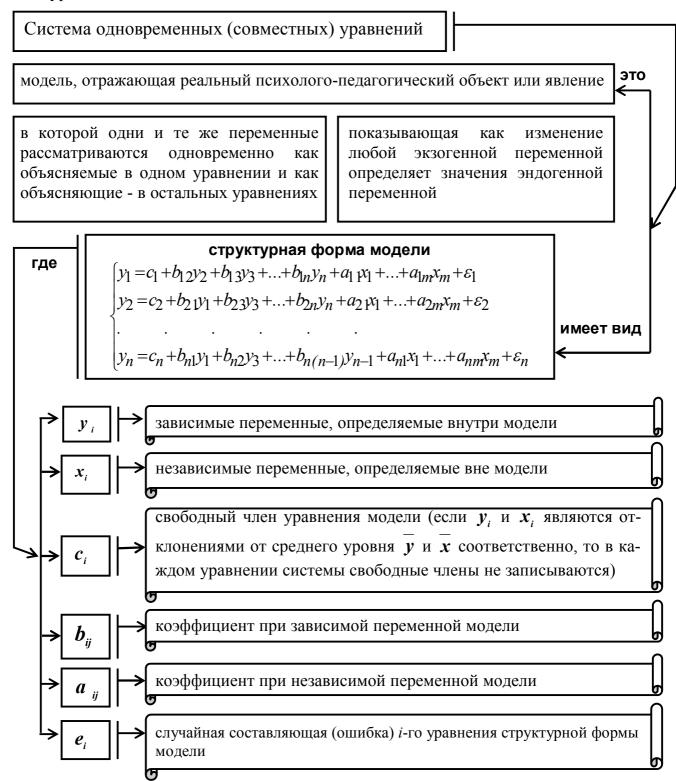
$$\beta_2 = a_2 \frac{\sigma_{x_2}}{\sigma_y} = -0.16 \frac{\sqrt{14.9 - 3.7^2}}{\sqrt{24 - 4.8^2}} = -0.18.$$

Для расчета дельта-коэффициентов, определим парные коэффициенты корреляции, используя программу «Анализ данных в EXCEL», инструмент «Корреляция».

	у	\boldsymbol{x}_1	\boldsymbol{x}_2
y	1		
x_{I}	0,752651	1	
x_2	0,315465	0,576859	1

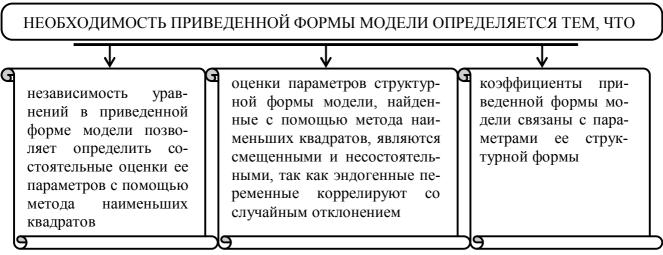
Вычислим дельта-коэффициенты:

$$\Delta_1 = r_{yx_1} \frac{\beta_1}{R^2} = 0.75 \frac{0.86}{0.59} = 1.09 ;$$

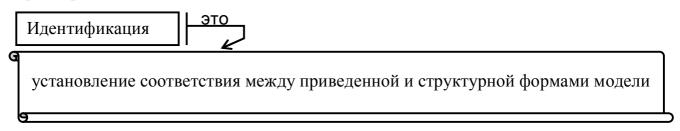

$$\Delta_2 = r_{yx_2} \frac{\beta_2}{R^2} = 0.32 \frac{-0.18}{0.59} = -0.098$$
.

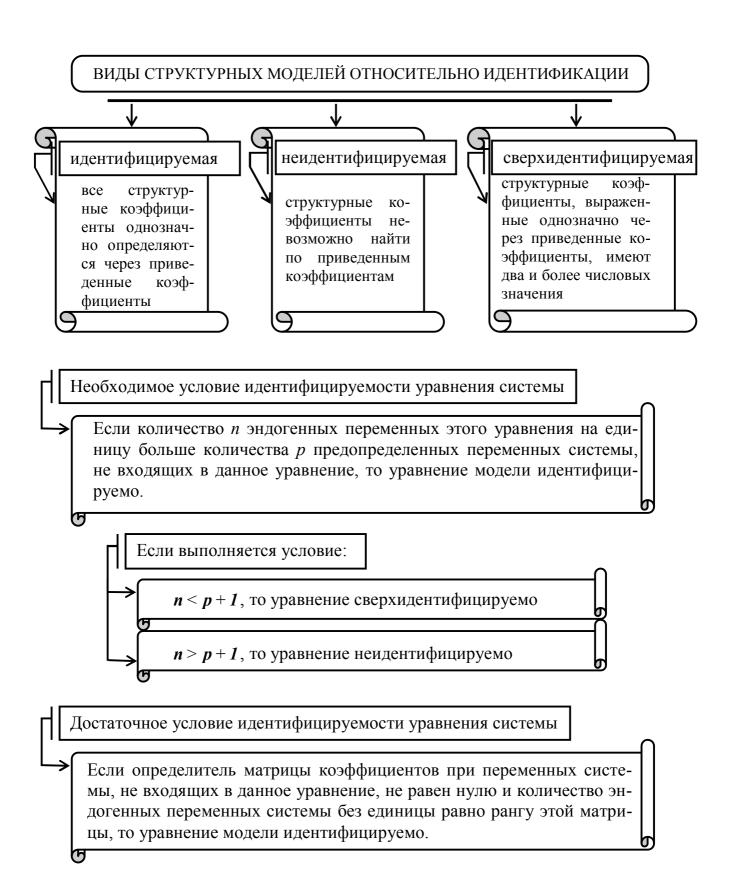
На уровень активного слушания наибольшее влияние из двух исследуемых факторов оказывает фактор x_1 — снижение эмоционального напряжения, так как этому фактору соответствуют наибольшие по абсолютной величине значения коэффициентов.

Учитывая вышеприведенный анализ, из модели можно исключить фактор x_2 и построить уравнение линейной регрессии с помощью программы «Анализ данных в EXCEL», инструмента «Регрессия»: $\hat{y}(x) = 2.4 + 0.63x_1$.


5.4. СИСТЕМА ОДНОВРЕМЕННЫХ УРАВНЕНИЙ

Для изучения комплексных психолого-педагогических явлений, как правило, используют не отдельные уравнения регрессии, а системы одновременных уравнений.




Структурная форма модели может быть преобразована в приведенную форму.

Установить степень возможности оценки коэффициентов структурных уравнений по коэффициентам приведенных уравнений позволяет проверка структурной модели на идентифицируемость.

Пример. Была обследована выборка из 10 респондентов по шести признакам. Необходимо построить структурную форму модели на основе данных, приведенных в таблице, приняв в качестве зависимых переменных, определяемых внутри модели, активное слушание и количество ошибок.

№	Активное слушание	Количество ошибок	Снижение эмоционального напряжения	Аргументация	Показатель вербального интеллекта	Показатель невербального интеллекта
1	6	29	5	5	131	106
2	3	54	1	2	132	90
3	4	13	4	5	121	95
4	4	8	4	5	127	116
5	5	14	4	4	136	127
6	6	26	4	3	124	107
7	4	9	3	2	134	104
8	6	20	5	4	136	102
9	5	2	3	4	132	111
10	5	17	5	3	136	99

Для построения каждого уравнения системы одновременных (совместных) уравнений можно воспользоваться программой «Анализ данных в EXCEL», инструментом «Регрессия»:

а) В качестве зависимой переменной рассмотрим значения переменной, отражающей «активное слушание», все остальные переменные рассмотрим как факторные.

Регрессионная ст	атистика
Множественный R	0,811344
R-квадрат	0,658279
Нормированный R-квадрат	0,231129
Стандартная ошибка	0,90561
Наблюдения	10

	Коэффициенты	Стандартная ошибка	t-статистика
Ү-пересечение	0,547303	9,031524	0,060599
Переменная У 2	0,019509	0,026117	0,746991
Переменная Х 1	0,774483	0,33161	2,335523
Переменная Х 2	-0,20867	0,397594	-0,52483
Переменная Х 3	-0,01063	0,070718	-0,15036
Переменная Х 4	0,029319	0,037088	0,79054

Регрессионное уравнение: $y_1 = 0.55 + 0.02y_2 + 0.77x_1 - 0.21x_2 - 0.01x_3 + 0.03x_4$.

Множественный коэффициент детерминации R^2 , равный 0,658279, показывает, что около 66% вариации зависимой переменной (активное слушание) учтено в модели и обусловлено влиянием включенных объясняющих факторов и на 36 % — другими факторами, не учтенными в регрессионной модели.

Значимость отдельных коэффициентов уравнения регрессии оценим при помощи t-критерия Стьюдента. По таблице \mathcal{N}_{2} 22 приложения определим $t_{1\kappa p}$ и $t_{2\kappa p}$ для df=n-k-1=4: $t_{\kappa p}=\begin{cases} 2,776$, ∂ ля $p\leq0,05$; 4,604 , ∂ ля $p\leq0,01$.

Все коэффициенты уравнения регрессии находятся в зоне незнаимости, поэтому данное уравнение необходимо преобразовать, исключив из уравнения признак с наименьшим значением $t_{pacq\ x_2}=-0.52$.

Регрессионная статистика	
Множественный R	0,796711
R-квадрат	0,634748
Нормированный R-квадрат	0,342547
Стандартная ошибка	0,837427
Наблюдения	10

	Коэффициенты	Стандартная ошибка	t-статистика
Ү-пересечение	-1,83408	7,221017	-0,25399
Переменная У 2	0,019849	0,024143	0,822126
Переменная Х 1	0,674798	0,251359	2,684601
Переменная Х 3	0,009886	0,05449	0,181432
Переменная Х 4	0,022655	0,032223	0,703078

Регрессионное уравнение: $y_1 = -1.83 + 0.02y_2 + 0.67x_1 - 0.01x_3 + 0.02x_4$.

Множественный коэффициент детерминации R^2 , равный 0,634748, меньше множественного коэффициента детерминации R^2 (0,658279) предыдущей модели, поэтому информативность в полученном уравнении снижается. Возможно, для оптимизации регрессионной модели необходимо было увеличить выборку, а затем уже исключать из уравнения признак с наименьшим значением «t-статистики».

Значимость отдельных коэффициентов полученного уравнения регрессии оценим при помощи t-критерия Стьюдента. По таблице N 22 приложения определим $t_{I\kappa p}$ и $t_{2\kappa p}$ для

$$df = n - k - 1 = 5$$
: $t_{KP} = egin{cases} 2,571 \text{, для } p \leq 0,05 \text{;} \\ 4,032 \text{, для } p \leq 0,01 \text{.} \end{cases}$

На уровне значимости 95% коэффициент при x_1 принимается значимым. Данное уравнение можно преобразовать, исключив из уравнения признак с наименьшим значением $t_{pacu}|_{x_3}=0.7$.

а) В качестве зависимой переменной рассмотрим переменную, отражающую «Количество ошибок», все остальные переменные рассмотрим как факторные.

Регрессионная статистика	
Множественный R	0,677325
R-квадрат	0,45877
Нормированный R-квадрат	-0,21777
Стандартная ошибка	16,24179
Наблюдения	10

	Коэффициенты	Стандартная ошибка	t-статистика
Ү-пересечение	50,81747	160,0471	0,317516
Переменная У 1	6,275107	8,400509	0,746991
Переменная Х 1	-7,75551	8,280519	-0,9366
Переменная Х 2	0,978408	7,355881	0,13301
Переменная Х 3	0,336886	1,260679	0,267226
Переменная Х 4	-0,75672	0,606958	-1,24675

Регрессионное уравнение: $y_2 = 50.82 + 6.28y_1 - 7.76x_1 + 0.98x_2 + 0.34x_3 + 0.76x_4$.

Множественный коэффициент детерминации R^2 , равный 0,45877, показывает, что около 46% вариации зависимой переменной (количество ошибок) учтено в модели и обусловлено влиянием включенных объясняющих факторов и на 54% — другими факторами, не учтенными в регрессионной модели (для построения адекватной модели необходимо ввести факторы, влияющие на изменение показателя зависимой переменной).

На основе имеющихся данных, система одновременных уравнений примет вид:

$$\begin{cases} y_1 = -1.83 + 0.02 \, y_2 + 0.67 \, x_1 - 0.01 \, x_3 + 0.02 \, x_4 & \left(R^2 = 0.66 \right); \\ y_2 = 50.82 + 6.28 \, y_1 - 7.76 \, x_1 + 0.98 \, x_2 + 0.34 \, x_3 + 0.76 \, x_4 & \left(R^2 = 0.46 \right). \end{cases}$$

ПРИЛОЖЕНИЕ

Таблица № 1 Критические значения критерия Q – Розенбаума для уровня статистической значимости $p{\le}0{,}05$ и $p{\le}0{,}01$

n	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
							p	= 0,0)5							
11	6															
12	6	6														
13	6	6	6													
14	7	7	6	6												
15	7	7	6	6	6											
16	7	7	7	7	6	6										
17	7	7	7	7	7	7	7									
18	7	7	7	7	7	7	7	7								
19	7	7	7	7	7	7	7	7	7							
20	7	7	7	7	7	7	7	7	7	7						
21	8	7	7	7	7	7	7	7	7	7	7					
22	8	7	7	7	7	7	7	7	7	7	7	7				
23	8	8	7	7	7	7	7	7	7	7	7	7	7			
24	8	8	8	8	8	8	8	8	8	8	7	7	7	7		
25	8	8	8	8	8	8	8	8	8	8	7	7	7	7	7	
26	8	8	8	8	8	8	8	8	8	8	7	7	7	7	7	7
							p	= 0,0)1							
11	9															
12	9	9														
13	9	9	9													
14	9	9	9	9												
15	9	9	9	9	9											
16	9	9	9	9	9	9										
17	10	9	9	9	9	9	9									
18	10	10	9	9	9	9	9	9								
19	10	10	10	9	9	9	9	9	9							
20	10	10	10	10	9	9	9	9	9	9						
21	11	10	10	10	10	9	9	9	9	9	9					
22	11	10	10	10	10	10	9	9	9	9	9	9				
23	11	11	10	10	10	10	10	9	9	9	9	9	9			
24	12	11	11	10	10	10	10	10	9	9	9	9	9	9		
25	12	11	11	10	10	10	10	10	10	9	9	9	9	9	9	
26	12	12	11	11	10	10	10	10	10	10	9	9	9	9	9	9

Таблица № 2

Критические значения критерия U — Манна-Уитни для уровня статистической значимости $p \le 0.05$ и $p \le 0.01$

	_	_	1	_		7	0									17						22	2.4	2.5	26	27	20	20	20
n_I	2	3	4	5	6	7	8	9	10	11	12	13	14	15			18	19	20	21	22	23	24	25	26	27	28	29	30
n_2														p	= 0,0	05													
3	-	0																											
4	-	0	1																										
5	0	1	2	4																									
6	0	2	3	5	7																								
7	0	2	4	6	8	11																							
8	1	3	5	8	10	13	15																						
9	1	4	6	9	12	15	18	21																					
10	1	4	7	11	14	17	20	24	27																				
11	1	5	8	12	16	19	23	27	31	34																			
12	2	5	9	13	17	21	26	30	34	38	42																		
13	2	6	10	15	19	24	28	33	37	42	47	51																	
14	3	7	11	16	21	26	31	36	41	46	51	56	61																
15	3	7	12	18	23	28	33	39	44	50	55	61	66	72															
16	3	8	14	19	25	30	36	42	48	54	60	65	71	77	83														
17	3	9	15	20	26	33	39	45	51	57	64	70	77	83	89	96													
18	4	9	16	22	28	35	41	48	55	61	68	75	82	88	95	102	109												
19	4	10	17	23	30	37	44	51	58	65	72	80	87	94	101	109	116	123											
20	4	11	18	25	32	39	47	54	62	69	77	84	92	100	107	115	123	130	138										
21	-	-	19	26	34	41	49	57	65	73	81	89	97	105	113	121	130	138	146	154									
22	-	-	20	28	36	44	52	60	69	77	85	94	102	111	119	128	136	145	154	162	171								
23	-	-	21	29	37	46	55	63	72	81	90	99	107	116	125	134	143	152	161	170	180	189							
24	-	-	22	31	39	48	57	66	75	85	94	103	113	122	131	141	150	160	169	179	188	198	207						
25	-	-	23	32	41	50	60	69	79	89	98	108	118	128	137	147	157	167	177	187	197	207	217	227					
26	-	-	24	33	43	53	62	72	82	93	103	113	123		143		164	174		195	206	216	266		247				
27	-	-	25	35	45	55	65	75	86	96	107	118	128	139	150	160	171	182	193	203	213	225	236	247	258	268			
28	-	-	26	36	47	57	68	79	89	100	111	122	133	144	156	167	178	189	200	212	223	234	245	257	268	279	291		
29	-	-	27	38	48	59	70	82	93	104	116	127		150		173	185	196		220	232	243	255		278		302	314	
30	-	-	28	39	50	62	73	85	96	108	120	132	144	156	168	180	192	204	216	228	240	252	265	277	289	301	313	326	338

$\setminus n_I$	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
n_2													Ľ	0 = 0	,05													
31	29	41	52	64	76	88	100	112	124	137	149	161	174	186	199	211	224	263	249	261	274	287	299	312	325	337	350	363
32	30	42	54	66	78	91	103	116	129	141	154	167	180	193	206	219	232	245	258	271	284	297	310	323	336	349	362	375
33	31	43	56	68	81	94	107	120	133	146	159	173	186	199	213	226	239	253	266	280	293	307	320	334	347	361	374	388
34	32	45	58	71	84	97	110	124	137	151	164	178	192	206	219	233	247	261	275	289	303	317	331	345	359	373	387	401
35	33	46	59	73	86	100	114	128	142	156	170	184	198	212	226	241	255	269	284	298	312	327	341	356	370	385	399	413
36	35	48	61	75	89	103	117	132	146	160	175	189	204	219	233	248	263	278	292	307	322	337	352	367	381	396	411	426
37	36	49	63	77	92	106	121	135	150	165	180	195	210	225	240	255	271	286	301	316	332	347	362	378	393	408	424	439
38	37	51	65	79	94	109	124	139	155	170	185	201	216	232	247	263	278	294	310	325	341	357	373	388	404	420	436	452
39	38	52	67	82	97	112	128	143	159	175	190	206	222	238	254	270	286	302	318	335	351	367	383	399	416	432	448	464
40	39	53	69	84	100	115	131	147	163	179	196	212	228	245	261	278	294	331	327	344	360	377	394	410	427	444	460	477
41	40	55	70	86	102	118	135	151	168	184	201	218	234	251	268	285	302	319	336	353	370	387	404	421	438	456	473	490
42	41	56	72	88	105	121	138	155	172	189	206	223	240	258	275	292	310	327	345	362	380	397	415	432	450	467	485	503
43	42	58	74	91	107	124	142	159	176	194	211	229	247	264	282	300	318	335	353	371	389	407	425	443	461	479	497	515
44	43	59	76	93	110	128	145	163	181	199	216	235	253	271	289	307	325	344	362	380	399	417	436	454	473	491	510	528
45	44	61	78	95	113	131	149	167	185	203	222	240	259	277	296	315	333	352	371	390	408	427	446	465	484	503	522	541
46	45	62	80	97	115	134	152	171	189	208	227	246	265	284	303	322	341	360	380	399	418	437	457	476	495	515	534	554
47	46	64	81	100	118	137	156	175	194	213	232	251	271	290	310	329	349	369	388	408	428	447	467	487	507	527	547	566
48	47	65	83	102	121	140	159	178	198	218	237	257	277	297	317	337	357	377	397	417	437	458	478	498	518	539	559	579
49	48	66	85	104	123	143	163	182	202	222	243	263	283	303	324	344	365	385	406	426	447	468	488	509	530	550	571	592
50	49	68	87	106	126	146	166	186	207	227	248	268	289	310	331	352	372	393	414	435	457	478	499	520	541	562	583	605
51	50	69	89	109	129	149	170	190	211	232	253	274		316	338	359	380	402	423	445	466	488	509	531	553	574	596	618
52	51	71	91	111	131	152	173	194	215	237	258	280	301	323	345	366	388	410	432	454	476	408	520	542	564	586	608	630
53	52	72	92	113	134	155	177	198	220	341	263	285	307	329	352	374	396	418	441	463	485	508	530	553	575	598	620	643
54	53	74	94	115	137	158	180	202	224	246	269		313	336	359	381	404	427	449	472	495	518	541	564	587	610	633	656
55	54	75	96	118	139	161	184	206	228	251	274		319	342	365	389	412	435	458	481	505	528	551	575	598	622	645	669
56	55	76	98	120	142	164	187	210	233	256	279	302	326	349	372	396	420	443		491	514	538	562	586	610	634	657	681
57	57	78	100	122	145	167	191	214	237	261	284	308	332	355	379	403	427	451	476	500	524	548	572	597	621	645	670	694
58	58	79	102	124	147	171	194	218	241	265	289	314	338	362	386	411	435	460	484	509	534	558	583	608	633	657	682	707
59	59	81	103	127	150	174	198	222	246	270	295	319	344	369	393	418	443	468	493	518	543	568	594	619	644	669	694	720
60	60	82	105	129	153	177	201	225	250	275	300	325	530	375	400	426	451	476	502	527	553	578	604	630	655	681	707	733

n_I	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
2														r	0 = 0	05	<u> </u>	l l						l l	<u> </u>				
32	389													P	- U,	03													
33	402	415																											
34	415	429	443																										
35	428	442	457	471																									
36	441	456	471	486	501																								
37	454	470	485	501	516	531																							
38	467	483	499	515	531	547	563																						
39	481	497	513	530	546	562	579	595																					
40	494	511	527	544	561	578	594	611	628																				
41	507	524	541	559	576	593	610	628	645	662																			
42	520	538	556	573	591	609	626	644	662	679	697																		
43	533	552	570	588	606	624	642	660	679	697	715	733																	
44	547	565	584	602	621	640	658	677	695	714	733	751	770																
45	560	579	598	617	636	655	674	693	712	731	750	769	789	808															
46	573	593	612	631	651	670	690	709	729	749	768	788	807	827	846														
47	586	606	626	646	666	686	706	726	746	766	786	806	826	846	866	886													
48	600	620	640	661	681	701	722	742	763	783	840	824	845	865	886	906	927	0.60										 	
49	613	634	654	675	696	717	738	759	780	800	821	842	863	884	905	926	947		1010										
50	626	647	669	690	711	732	754	775	796	818	839	861	882	903	925	946	968		1010	1074									
51	639	661	683	704	726 741	748	770 786	791	813	835 852	857	879	901	922 942	944	966	988		1032	1054	1000								
52 53	652 666	675 688	697 711	719 734	756	763 779	802	808 824	830 847	870	875 893	897 915	919 938	942	964 984	986 1006	1009 1029			1076 1098		1143						 	
54	679	702	725	748	771	794	818	841	864	887	910	934	957	980		1026	1029			1119			1189						
55	692	716	739	763	786	810	834	857	881	904	928	952	975	999		1046	1070					1189	1213	1236					
56	705	729	753	777	801	825	850	874	898	922	946	970	944	1018	1042			1115		1163				1260	1284				
57	719	743	768	792	816	841	865	890	915	939	964	988	1013	1037	1062			1136					1259			1333			
58	732	757	782	807	832	856	881	906	931	956	981		1032		1082		1132				1232		1282				1383		
59	745	770	796	821	847	872	897	923	948	974	999		1050					1178					1306			1383	1408	1434	
60	758	784	810	836	862	888	913	939	965	991	1017	1043	1069	1095				1199											1486

$\setminus n_I$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
n_2			I	ı	I	ı				I			ı	p	= 0,	01	ı	I		I	L		I						<u> </u>
5	-	-	0	1										_															
6	-	-	1	2	3																								
7	-	0	1	3	4	6																							
8	-	0	2	4	6	7	9																						
9	-	1	3	5	7	9	11	14																					
10	-	1	3	6	8	11	13	16	19																				
11	-	1	4	7	9	12	15	18	22	25																			
12	-	2	5	8	11	14	17	21	24	28	31																		
13	0	2	5	9	12	16	20	23	27	31	35	39																	
14	0	2	6	10	13	17	22	26	30	34	38	43	47																
15	0	3	7	11	15	19	24	28	33	37	42	47	51	56															
16	0	3	7	12	16	21	26	31	36	41	46	51	56	61	66														
17	0	4	8	13	18	23	28	33	38	44	49	55	60	66	71	77													
18	0	4	9	14	19	24	30	36	41	47	53	59	65	70	76	82	88												
19	1	4	9	15	20	26	32	38	44	50	56	63	69	75	82	88	94	101											
20	1	5	10	16	22	28	34	40	47	53	60	67	73	80	87	93	100	107	114										
21	-	-	10	16	22	29	35	42	49	56	63	70	77	84	91	98	105	113	120	127									
22	-	-	10	17	23	30	37	45	52	59	66	74	81	89	96	104	111	119			142								
23	-	-	11	18	25	32	39	47	55	62	70	78	86	94	102	109	117	125	133	141	150	158							
24	-	-	12	19	26	34	42	49	57	66	74	82	90	98	107	115	123	132		149	154	166	174						
25	-	-	12	20	27	35	44	52	60	69	77	86	95	103	112	121	130	138	147	156	165	174	183	192					
26	-	-	13	21	29	37	46	54	63	72	81	90	99	108	117	126	136		154	163	173	182			210				
27	-	-	14	22	30	39	48	57	66	75	85	94	103	113	122	132	142	151		171	180	190	200	209	219				
28	-	-	14	23	32	41	50	59	69	78	88	98	108		128	138	148	158	ļ	178	188	198	208	218		239	249		
29	-	-	15	24	33	42	52	62	72	82	92	102	112	123	133	143	154	164	175	185	196	206	217	227	238	249		270	
30	-	-	15	25	34	44	54	64	75	85	95	106	117	127	138	169	160	171	182	192	203	214	225	236	247	258	270	281	292

$\setminus n_I$	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
n_2														p =	0,01				I					1	1	1		
31	16	26	36	46	56	67	77	88	99	110	121	132	143	155	166	177	188	200	211	223	234	245	257	268	280	291	303	314
32	17	27	37	47	58	69	80	91	103	114	126	137	149	160	172	184	195	207	219	231	242	254	266	278	290	302	314	326
33	17	28	38	49	60	72	83	95	106	118	130	142	154	166	178	190	202	214	227	239	251	263	276	288	300	313	325	337
34	18	29	40	51	62	74	86	98	110	122	134	147	159	172	184	197	209	222	234	247	260	272	285	298	311	323	336	349
35	19	30	41	53	64	77	89	101	114	126	139	152	164	177	190	203	216	229	242	255	268	281	294	308	321	334	347	360
36	19	31	42	54	67	79	92	104	117	130	143	156	170	183	196	210	223	236	250	263	277	290	304	318	331	345	358	372
37	20	32	44	56	69	81	95	108	121	134	148	161	175	189	202	216	230	244	258	271	285	299	313	327	341	355	370	384
38	21	33	45	58	71	84	97	111	125	138	152	166	180	194	208	223	237	251	265	280	294	308	323	337	352	366	381	395
39	21	34	46	59	73	86	100	114	128	142	157	171	185	200	214	229	244	258	273	288	303	317	332	347	362	377	392	407
40	22	35	48	61	75	89	103	117	132	146	161	176	191	206	221	236	251	266	281	296	311	326	342	357	372	388	403	418
41	23	36	49	63	77	91	106	121	136	151	166	181	196	211	227	242	258	273	289	304	320	336	351	367	383	398	414	430
42	23	37	50	65	79	94	109	124	139	155	170	186	201	217	233	249	265	280	296	312	328	345	361	377	393	409	425	442
43	24	38	52	66	81	96	112	127	143	159	175		207	223	239	255	271	288	304	321	337	354	370	387	403	420	437	453
44	25	39	53	68	83	99	115	130	146	163	179		212	228	245	262	278	295	312	329	346	363	380	397	414	431	448	465
45	25	40	54	70	85	101	117	134	150	167	183	200	217	234	251	268	285	303	320	337	354	372	389	407	424	441	459	476
46	26	41	56	71	87	104	120	137	154	171	188	205	222	240	257	275	292	310	328	345	363	381	399	416	434	452	470	488
47	27	42	57	73	90	106	123	140	157	175	192	210	228	245	263	281	299	317	335	353	372	390	408	426	445	463	481	500
48	27	43	58	75	92	109	126	143	161	179	197	215	233	251	269	288	306	325	343	362	380	399	418	436	455	474	492	511
49	28	44	60	77	94	111	129	147	165	183	201	220	238	257	276	294	313	332	351	370	389	408	427	446	465	484	504	523
50	29	45	61	78	96	114	132	150	168	187	206	225	244	263	282	301	320	339	359	378	398	417	437	456	476	495	515	535
51	29	46	63	80	98	116	135	153	172	191	210	229	249	268	288	307	327	347	366	386	406	526	446	466	486	506	526	546
52	30	47	64	82	100	119	137	157	176	195	215	234	254	274	294	314	334	354	374	395	415	435	456	476	496	517	537	558
53	31	48	65	83	102	121	140	160	179	199	219	239	259	280	300	320	341	361	382	403	423	444	465	486	507	528	549	570
54	31	49	67	85	104	114	143	163	183	203	224	244	265	285	306	327	348	369	390	411	432	453	475	496	517	538	560	581
55	32	50	68	87	106	126	146	166	187	207	228		270	291	312	333	355	376	398	419	441	462	484	506	527	549	571	593
56	33	51	69	89	108	129	149	177	190	211	233	254	275	297	318	340	362	384	405	427	449	471	494	516	538	560	582	605
57	33	52	71	90	111	131	152	173	194	215	237	259	281	302	324	347	369	391	413	436	458	481	503	526	548	571	593	616
58	34	53	72	92	113	133	155	176	198	220	242	264	286	308	331	353	376	398	421	444	467	490	513	536	559	582	605	628
59	34	54	73	94	115	136	158	179	201	224	246	268	291	314	337	360	383	406	429	452	475	499	522	545	569	592	616	640
60	35	55	75	96	117	138	160	183	205	228	250	273	296	320	343	366	390	413	437	460	484	508	532	555	579	603	627	651

n_I	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
2													•	ľ	o = 0	,01					•		•	•					
32	338																												
33	350	362																											
34	362	375	387																										
35	374	387	400	413																									
36	386	399	413	427	440																								
37	398	412	426	440	454	468																							
38	410	424	439	453	468	482	497																						
39	422	437	452	467	482	497	512	527																					
40	434	449	465	480	495	511	526	542	557																				
41	446	462	477	493	509	525	541	557	573	589																			
42	458	474	490	507	523	539	556	572	588	605	621																		
43	470	487	503	520	537	553	570	587	604	621	637	654																	
44	482	499	516	533	550	568	585	602	619	636	654	671	688																
45	494	511	529	547	564	582	599	617	635	652	670	688	706	723															
46	506	524	542	560	578	596	614	632	650	668	687	705	723	741	759														
47	518	536	555	573	592	610	629	647	666	684	703	722	740	759	777	796												ļ	
48	530	549	568	587	606	625	643	662	681	700	719	738	757	776	795	814	834											ļ	
49	542	561	581	600	619	639	658	678	697	716	736	755	775	794	814	835	853											<u> </u>	
50	554	574	594	613	633	653	673	693	713	732	752	772	792	812	832	852	872	892	912	0.50								ļ———	
51	566	587	607	627	647	667	688	708	728	748	769	789	809	830	850	870	891	911	932	952	002								
52	578	599	620	640	661	682	702	723	744	764	785	806	827	847	868	889	910	931	951	972	993	1025							\vdash
53	591	612	633	654	675	696	717	738	759	780	802	823	844	865	886	908	929	950	971	993	1014		1070						\vdash
54	603	624	646	667	689	710	732	753	775	796	818	840	861	883	905	926	948	970	991		1035		1078	1122					
55	615	637	659	680	702	724	746	768	790	812	834	857	879	901	923	945	967	989	1011		1056		1100		1167				\vdash
56	627	649	671	694	716	738	761	784	806	828	851	873	896	919	941	964	986	1009	1031			1099	1122			1012			
57	639	662	684	707	730	753	776	799	822	844	867	890	913	936	959	985	1005	1028	1051		1098			1167		1213	1260		
58	651	674	697	721	744	767	790	814	837	861	884	907	931	954	978		1024	1048	1071		1118			1189			1260	1207	\vdash
59	663	687	710	734	758	781	805	829	853	877	900	924	948	972	996		1044	1068	1091		1139			1211			1283		1256
60	675	699	723	747	772	796	820	844	868	893	917	941	965	990	1014	1038	1063	108/	1111	1136	1160	1185	1209	1234	1258	1282	1307	1331	1356

Таблица № 3 Критические значения критерия H — Крускала-Уолиса для сочетаний $n_1, n_2, n_3 \leq 5$

n_1	n_2	n_3	Н	р	n_1	n_2	n_3	H	р	n_1	n_2	n_3	Н	р
2	1	1	2,7000	0,500	4	4	1	4,8667	0,054	5	4	1	4,8600	0,056
2	2	1	3,6000	0,200				4,1667	0,082				3,9873	0,098
2	2	2	4,5714	0,067				4,0667	0,102				3,9600	0,102
3	1	1	3,2000	0,300	4	4	2	7,0364	0,006	5	4	2	7,2045	0,009
3	2	1	4,2857	0,100				6,8727	0,011				7,1182	0,010
			3,8571	0,133				5,4545	0,046				5,2727	0,049
3	2	2	5,3272	0,029				5,2364	0,052				5,2682	0,050
			4,7143	0,048				4,5545	0,098				4,5409	0,098
			4,5000	0,067				4,4455	0,103				4,5182	0,101
			4,4643	0,105	4	4	3	7,6538	0,008	5	4	3	7,4449	0,010
3	3	1	5,1429	0,043				7,5385	0,011				7,3949	0,011
			4,5714	0,100				5,6923	0,049				5,6564	0,049
			4.0000	0,129				5,6538	0,054				5,6308	0,050
3	3	2	6,2500	0,011				4,6539	0,097				4,5487	0,099
			5,3611	0,032	4			4,5001	0,104	-	4		4,5231	0,103
			5,1389	0,061	4	4	4	7,6538	0,008	5	4	4	7,7604	0,009
			4,5556 4,2500	0,100 0,121				7,5385 5,6923	0,011				7,7440 5,6571	0,011
3	3	3	7,2000	0,121				5,6538	0,049				5,6176	0,049
3	3	3	6,4889	0,004				4,6539	0,034				4,6187	0,030
			5,6889	0,011				4,5001	0,097				4,5527	0,100
			5,6000	0,050	5	1	1	3,8571	0,143	5	5	1	7,1091	0,009
			5,0667	0,086	5	2	1	5,2500	0,036		3	1	6,8364	0,011
			4,6222	0,100		_	•	5,0000	0,048				5,1273	0,046
4	1	1	3,5714	0,200				4,4500	0,071				4,9091	0,053
4	2	1	4,8214	0,057				4,2000	0,095				4,1091	0,086
			4,5000	0,076				4,0500	0,119				4,0364	0,105
			4,0179	0,114	5	2	2	6,5333	0,008	5	5	2	7,3385	0,010
4	2	2	6,0000	0,014				6,1333	0,013				7,2692	0,010
			5,3333	0,033				5,1600	0,034				5,3385	0,047
			5.1250	0,052				5,0400	0,056				5,2462	0,051
			4,4583	0,100				4,3733	0,090				4,6231	0,097
			4,1667	0,105				4,2933	0,122	_			4,5077	0,100
4	3	1	5,8333	0,021	5	3	1	6,4000	0,012	5	5	3	7,5780	0,010
			5,2083	0,050				4,9600	0,048				7,5429	0,010
			5,0000	0,057				4,8711	0,052				5,7055	0,046
			4,0556 3,8889	0,093				4,0178 3,8400	0,095				5,6264 4,5451	0,051 0,100
4	3	1	6,4444	0,129	5	3	2	6,9091	0,123				4,5363	0,100
-		1	6,3000	0,011	3	3	2	6,8218	0,010	5	5	4	7,8229	0,010
			5,4444	0,046				5,2509	0,049		3	7	7,7914	0,010
			5,4000	0,051				5,1055	0,052				5,6657	0,049
			4,5111	0,098				4,6509	0,091				5,6429	0,050
			4,4444	0,102				4,4945	0,101				4,5229	0,099
4	3	3	6,7455	0,010	5	3	3	7,0788	0,009				4,5200	0,101
			6,7091	0,013				6,9818	0,011	5	5	5	8,0000	0,009
			5,7909	0,046				5,6485	0,049				7,9800	0,010
			5,7273	0,050				5,5152	0,051				5,7800	0,049
			4,7091	0,092				4,5333	0,097				5,6600	0,051
			4,7000	0,101				4,4121	0,109				4,5600	0,100
4	4	1	6,6667	0,010	5	4	1	6,9545	0,008				4,5000	0,102
			6,1667	0,022				6,8400	0,011					
			4,9667	0,048				4,9855	0,044					

Таблица № 4 Критические значения критерия χ^2 для уровня статистической значимости $p \le 0.05$ и $p \le 0.01$ при различном числе степеней свободы v

	$p \ge 0,0$	<i>у</i> з и <i>р</i> ≤0,01	при Г	азличном	числе степ	ІСНСИ С	воооды и	
v	1)	ν	1)	ν	1)
	0,05	0,01		0,05	0,01		0,05	0,01
1	3,841	6,635	35	49,802	57,342	69	89,391	99,227
2	5,991	9,210	36	50,998	58,619	70	90,631	100,425
3	7,815	11,345	37	52,192	59,892	71	91,670	101,621
4	9,488	13,277	38	53,384	61,162	72	92,808	102,816
5	11,070	15,086	39	54,572	62,428	73	93,945	104,010
6	12,592	16,812	40	55,758	63,691	74	95,081	105,202
7	14,067	18,475	41	56,942	64,950	75	96,217	106,393
8	15,507	20,090	42	58,124	66,206	76	97,351	107,582
9	16,919	21,666	43	59,304	67,459	77	98,484	108,771
10	18,307	23,209	44	60,481	68,709	78	99,617	109,958
11	19,675	24,725	45	61,656	69,957	79	100,749	111,144
12	21,026	26,217	46	62,830	71,201	80	101,879	112,329
13	22,362	27,688	47	64,001	72,443	81	103,010	113,512
14	23,685	29,141	48	65,171	73,683	82	104,139	114,695
15	24,996	30,578	49	66,339	74,919	83	105,267	115,876
16	26,296	32,000	50	67,505	76,154	84	106,395	117,057
17	27,587	33,409	51	68,669	77,386	85	107,522	118,236
18	28,869	34,805	52	69,832	78,616	86	108,648	119,414
19	30,144	36,191	53	70,993	79,843	87	109,773	120,591
20	31,410	37,566	54	72,153	81,069	88	110,898	121,767
21	32,671	38,932	55	73,311	82,292	89	112,022	122,942
22	33,924	40,289	56	74,468	83,513	90	113,145	124,116
23	35,172	41,638	57	75,624	84,733	91	114,268	125,289
24	36,415	42,980	58	76,778	85,950	92	115,390	126,462
25	37,652	44,314	59	77,931	87,166	93	116,511	127,633
26	38,885	45,642	60	79,082	88,379	94	117,632	128,803
27	40,113	46,963	61	80,232	89,591	95	118,752	129,973
28	41,337	48,278	62	81,381	90,802	96	119,871	131.141
29	42,557	49,588	63	82,529	92,010	97	120,990	132,309
30	43,773	50,892	64	83,675	93,217	98	122,108	133,476
31	44,985	52,191	65	84,821	94,422	99	123,225	134,642
32	46,194	53,486	66	85,965	95,626	100	124,342	135,807
33	47,400	54,776	67	87,108	96,828			
34	48,602	56,061	68	88,250	98,028			

Таблица № 5 Критические значения критерия S — тенденций Джонкира для количества групп (c) от 3 до 6 и количества испытуемых (n) в каждой группе от 2 до 10

c					N				
	2	3	4	5	6	7	8	9	10
				p =	0,05				
3	10	17	24	33	42	53	64	76	88
4	14	26	38	51	66	82	100	118	138
5	20	34	51	71	92	115	140	166	194
6	26	44	67	93	121	151	184	219	256
				p =	0,01				
3	-	25	32	45	99	74	90	106	124
4	20	34	50	71	92	115	140	167	195
5	26	48	72	99	129	162	197	234	274
6	34	62	94	130	170	213	260	309	361

Таблица № 6 Критические значения критерия Т — Вилкоксона

n	1)	n	1	ŋ
	0,05	0,01		0,05	0,01
5	0	_	28	130	101
6	2	_	29	140	110
7	3	0	30	151	120
8	5	1	31	163	130
9	8	3	32	175	140
10	10	5	33	187	151
11	13	7	34	200	162
12	17	9	35	213	173
13	21	12	36	227	185
14	25	15	37	241	198
15	30	19	38	256	211
16	35	23	39	271	224
17	41	27	40	286	238
18	47	32	41	302	252
19	53	37	42	319	266
20	60	43	43	336	281
21	67	49	44	353	296
22	75	55	45	371	312
23	83	62	46	389	328
24	92	69	47	407	345
25	100	76	48	426	362
26	110	84	49	446	379
27	119	92	50	466	397

Таблица № 7 Критические значения критерия Макнамары для $n \le 25$

Тэмп	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
5 n	0,031	0,188	0,500	0,812	0,969	≈ 1										
	0,031	0,109	0,344	0,656	0,891	≈ 1 984	1									
6							≈1 0.002	1								
7	0,008	0,062	0,227	0,500	0,773	0,938	0,992	≈1								
8	0,004	0,035	0,145	0,363	0,637	0,855	0,965	0,996	≈1							
9	0,002	0,020	0,090	0,254	0,500	0,746	0,910	0,980	0,998	≈1						
10	0,001	0,011	0,055	0,172	0,377	0,623	0,828	0,945	0,989	0,998	≈ 1					
11		0,006	0,033	0,113	0,274	0,500	0,726	0,887	0,967	0,994	≈ 1	≈ 1				
12		0,003	0,019	0,073	0,194	0,387	0,613	0,806	0,927	0,981	0,997	≈1	≈1			
13		0,002	0,011	0,046	0,133	0,291	0,500	0,709	0,867	0,954	0,989	0,998	≈ 1	≈1		
14		0,001	0,006	0,029	0,090	0,212	0,395	0,605	0,788	0,910	0,971	0,994	0,999	≈1	≈1	
15			0,004	0,018	0,059	0,151	0,304	0,500	0,696	0,849	0,941	0,982	0,996	≈1	≈1	≈1
16			0,002	0,011	0,038	0,105	0,227	0,402	0,598	0,773	0,896	0,962	0,989	0,998	≈1	≈ 1
17			0,001	0,06	0,025	0,072	0,166	0,315	0,500	0,685	0,834	0,928	0,975	0,994	0,999	≈1
18			0,001	0,004	0,015	0,048	0,119	0,240	0,407	0,593	0,760	0,881	0,952	0.985	0,996	0,999
19				0,002	0,010	0,032	0,084	0,180	0,324	0,500	0,676	0,820	0,916	0,968	0,990	0,998
20				0,001	0,006	0,021	0,058	0,132	0,252	0,412	0,588	0,748	0,868	0,942	0,979	0,994
21				0,001	0,004	0,013	0,039	0,095	0,192	0,332	0,500	0,668	0,808	0,905	0,961	0,987
22					0,002	0,008	0,026	0,067	0,143	0,262	0,416	0,584	0,738	0,857	0,933	0,974
23					0,001	0,005	0,017	0,047	0,105	0,202	0,339	0,500	0,661	0,798	0,895	0,953
24					0,001	0,003	0,011	0,032	0,076	0,154	0,271	0,419	0,581	0,729	0,846	0,924
25						0,002	0,007	0,022	0,054	0,115	0,212	0,345	0,500	0,655	0,788	0,885

Таблица № 8 Критические значения критерия G — знаков (двусторонний критерий и односторонний критерий когда $x_i > y_i^*$)

n	1)	n	1)	n	1)
	0,05	0,01		0,05	0,01		0,05	0,01
5	0	-	37	13	10	69	26	25
6	0	-	38	13	11	70	27	25
7	0	0	39	13	11	71	27	26
8	1	0	40	14	12	72	28	26
9	1	0	41	14	12	73	28	27
10	1	0	42	15	13	74	29	27
11	2	1	43	15	13	75	29	27
12	2	1	44	16	13	76	29	28
13	3	1	45	16	14	77	30	28
14	3	2	46	16	14	78	30	29
15	3	2	47	17	15	79	31	29
16	4	2	48	17	15	80	31	30
17	4	3	49	18	15	81	32	30
18	5	3	50	18	16	82	32	31
19	5	4	51	19	17	83	33	31
20	5	4	52	19	17	84	33	31
21	6	4	53	20	18	85	33	32
22	6	5	54	20	19	86	34	32
23	7	5	55	20	19	87	34	33
24	7	5	56	21	19	88	35	33
25	7	6	57	21	20	89	35	34
26	8	6	58	22	20	90	36	34
27	8	7	59	22	21	91	36	34
28	8	7	60	22	21	92	37	35
29	9	7	61	23	21	93	37	35
30	10	8	62	23	22	94	38	36
31	10	8	63	24	22	95	38	36
32	10	8	64	24	23	96	38	37
33	11	9	65	25	23	97	39	37
34	11	9	66	25	24	98	39	38
35	12	10	67	26	24	99	40	38
36	12	10	68	26	24	100	40	38

^{*} переменная x_i характеризует состояние некоторого свойства при первичном измерении данного свойства; случайная переменная y_i характеризует состояние этого же свойства при вторичном измерении.

Таблица № 9 Критические значения критерия χ_r^2 — Фридмана для 3 выборок численностью $2 \le k \le 9$

k=3k=2k=4k=5 χ_r^2 χ_r^2 χ_r^2 χ_r^2 p p p p 0,000 0,0 1,000 1.000 1,000 0,0 0 1.000 0,833 0,5 0.667 0.944 0,931 0,4 0.954 0,500 2,000 0,528 1,5 0,653 1,2 0,691 2,0 4 0,167 2,667 0,361 0,431 1,6 0,522 4,667 0,194 3,5 0,273 2,8 0,367 6,000 0,028 4,5 0,125 0,182 3,6 6,0 0,069 4,8 0,124 0,042 0,093 6,5 5,2 8,0 0.0046 6,4 0,039 7,6 0,024 0,0085 8,4 10,0 0,00077 k=6k=7k=8k=9 χ_r^2 χ_r^2 χ_r^2 χ_r^2 p p p p 0,00 1,000 0,000 1,000 0,00 1,000 0,000 1,000 0,33 0,956 0,286 0,964 0,25 0,967 0.222 0,971 1,00 0,740 0,857 0,768 0,75 0,794 0,667 0,814 1,33 0,570 0,620 0,654 0,889 1,143 1,00 0,865 2,33 0,430 2,000 0,486 1,75 0,531 1,556 0,569 3,00 0,252 2,571 0,305 2,25 0,355 2,000 0,398 0,285 0,328 4,00 0,184 3,429 0,237 3,00 2,667 3,714 3,25 0,278 4,33 0,142 0,192 0,236 2,889 5,33 0.072 4,571 0,112 4,00 0,149 3,556 0.187 0,052 5,429 0,085 4,75 4,222 0,154 6,33 0,120 7,00 0,029 6,000 0,052 5,25 0,079 4,667 0,107 8,33 0,012 7,143 0,027 6,25 0,047 5,556 0,069 9,00 0,0081 7,714 0,021 6,75 0,038 6,000 0,057 9,33 0,0055 8,000 0,016 7,00 0,030 6,222 0,048 10,33 8,857 7,75 6,889 0,0017 0,0084 0.018 0,031 9,00 12,00 0,00013 10,286 0,0036 0,0099 8,000 0,019 10,571 0,0027 9,25 0,0080 8,222 0,016 11,143 0,0012 9,75 0.0048 8,667 0.010 10,75 12,286 0.0003 0.0024 9,556 0.0060 14,000 0.000021 0,0011 0,0035 12,00 10,667 12,25 0,00086 10,889 0,0029 13,00 0,00026 11,556 0,0013 14,25 0,000061 12,667 0,00066 16,00 0,0000036 13,556 0,00035 14,000 0,00020 14,222 0,000097 14,889 0,000054 16,222 0.0000011 18,000 0,0000006

Таблица № 10 Критические значения критерия χ^2_r — Фридмана для 4 выборок численностью $2 \le k \le 4$

k=	=2	k:	=3		k=	=4	
χ_r^2	p	χ_r^2	p	χ_r^2	p	χ_r^2	p
0,0	1,000	0,0	1,000	0,0	1,000	5,7	0,141
0,6	0,958	0,6	0,958	0,3	0,992	6,0	0,105
1,2	0,834	1,0	0,910	0,6	0,928	6,3	0,094
1,8	0,792	1,8	0,727	0,9	0,900	6,6	0,077
2,4	0,625	2,2	0,608	1,2	0,800	6,9	0,068
3,0	0,542	2,6	0,524	1,5	0,75	7,2	0,054
3,6	0,458	3,4	0,446	1,8	0,677	7,5	0,052
4,2	0,375	3,8	0,342	2,1	0,649	7,8	0,036
4,8	0,208	4,2	0,300	2,4	0,524	8,1	0,033
5,4	0,167	5,0	0,207	2,7	0,508	8,4	0,019
6,0	0,042	5,4	0,175	3,0	0,432	8,7	0,014
		5,8	0,148	3,3	0,389	9,3	0,012
		6,6	0,075	3,6	0,355	9,6	0,0069
		7,0	0,054	3,9	0,324	9,9	0,0062
		7,4	0,033	4,5	0,242	10,2	0,0027
		8,2	0,017	4,8	0,200	10,8	0,0016
		9,0	0,0017	5,1	0,190	11,1	0,00094
				5,4	0,158	12,0	0,000072

Таблица № 11 Критические значения критерия тенденций L Пейджа для количества условий от трех до шести $(3 \le k \le 6)$ и количества испытуемых от двух до двенадцати $(2 \ge n \ge 12)$

N		k (количест	во условий)		p
11	3	4	5	6	_
	-	-	109	178	0.001
2	-	60	106	173	0.01
	28	58	103	166	0.05
	-	89	160	260	0.001
3	42	87	155	252	0.01
	41	84	150	244	0.05
	56	117	210	341	0.001
4	55	114	204	331	0.01
	54	111	197	321	0.05
	70	145	259	420	0.001
5	68	141	251	409	0.01
	66	137	244	397	0.05
	83	172	307	499	0.001
6	81	167	299	486	0.01
	79	163	291	474	0.05
	96	198	355	577	0.001
7	93	193	346	563	0.01
	91	189	338	550	0.05
	109	225	403	655	0.001
8	106	220	393	640	0.01
	104	214	384	625	0.05
	121	252	451	733	0.001
9	119	246	441	717	0.01
	116	240	431	701	0.05
	134	278	499	811	0.001
10	131	272	487	793	0.01
	128	266	477	777	0.05
	147	305	546	888	0.001
11	144	298	534	869	0.01
	141	292	523	852	0.05
	160	331	593	965	0.001
12	156	324	581	946	0.01
	153	217	570	928	0.05

Таблица № 12

Значения функции
$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{\frac{-x^2}{2}} dx$$

Целые и					Сотые	доли х				
десятые	0	1	2	3	4	5	6	7	8	9
доли х										
0,0	0,0000	0,0080	0,0160	0,0239	0,0319	0,0399	0,0478	0,0558	0,0638	0,0717
0,1	0,0797	0,0876	0,0955	0,1034	0,1113	0,1192	0,1271	0,1350	0,1428	0,1507
0,2	0,1585	0,1663	0,1741	0,1819	0,1897	0,1974	0,2051	0,2128	0,2205	0,2282
0,3	0,2358	0,2434	0,2510	0,2585	0,2661	0,2737	0,2812	0,2886	0,2360	0,3035
0,4	0,3108	0,3182	0,3255	0,3328	0,3401	0,3473	0,3545	0,3616	0,3688	0,3759
0,5	0,3829	0,3899	0,3969	0,4039	0,4108	0,4177	0,4245	0,4313	0,4381	0,4448
0,6	0,4515	0,4581	0,4647	0,4713	0,4778	0,4843	0,4907	0,4971	0,5035	0,5098
0,7	0,5161	0,5223	0,5285	0,5346	0,5407	0,5467	0,5527	0,5587	0,5646	0,5705
0,8	0,5763	0,5821	0,5878	0,5935	0,5991	0,6047	0,6102	0,6157	0,6211	0,6265
0,9	0,6319	0,6372	0,6424	0,6476	0,6528	0,6579	0,6629	0,6579	0,6729	0,6778
1,0	0,6827	0,6875	0,6923	0,6970	0,7017	0,7053	0,7109	0,7154	0,7199	0,7243
1,1	0,7287	0,7330	0,7373	0,7415	0,7457	0,7499	0,7540	0,7580	0,7620	0,7660
1,2	0,7699	0,7737	0,7775	0,7813	0,7850	0,7887	0,7923	0,7959	0,7984	0,8029
1,3	0,8054	0,8098	0,8132	0,8165	0,8198	0,8230	0,8262	0,8293	0,8324	0,8355
1,4	0,8385	0,8415	0,8444	0,8473	0,8501	0,8529	0,8557	0,8584	0,8611	0,8638
1,5	0,8664	0,8690	0,8715	0,8740	0,8764	0,8789	0,8812	0,8836	0,8859	0,8882
1,6	0,8904	0,8926	0,8948	0,8969	0,8990	0,9011	0,9031	0,9051	0,9070	0,9090
1,7	0,9109	0,9127	0,9146	0,9164	0,9181	0,9199	0,9216	0,9233	0,9249	0,9265
1,8	0,9281	0,9297	0,9312	0,9327	0,9342	0,9357	0,9371	0,9385	0,9392	0,9412
1,9	0,9426	0,9439	0,9451	0,9464	0,9476	0,9488	0,9500	0,9512	0,9523	0,9533
2,0	0,9545	0,9556	0,9566	0,9576	0,9586	0,9596	0,9606	0,9616	0,9625	0,9634
2,1	0,9543	0,9651	0,9660	0,9668	0,9576	0,9684	0,9692	0,9700	0,9707	0,9715
2,2	0,9722	0,9729	0,9736	0,9743	0,9749	0,9756	0,9762	0,9768	0,9774	0,9780
2,3	0,9786	0,9791	0,9797	0,9802	0,9807	0,9812	0,9817	0,9822	0,9827	0,9832
2,4	0,9836	0,9841	0,9845	0,9849	0,9853	0,9857	0,9861	0,9865	0,9869	0,9872
2,5	0,9876	0,9879	0,9883	0,9886	0,9889	0,9892	0,9895	0,9898	0,9901	0,9904
2,6	0,9907	0,9910	0,9912	0,9915	0,9917	0,9920	0,9922	0,9924	0,9926	0,9000
2,7	0,9931	0,9933	0,9935	0,9937	0,9939	0,9940	0,9942	0,9944	0,9946	0,9947
2,8	0,9949	0,9951	0,9952	0,9953	0,9955	0,9956	0,9958	0,9959	0,9960	0,9961
2,9	0,9963	0,9964	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972
3,0	0,9973	0,9974	0,9975	0,9976	0,9976	0,9977	0,9978	0,9979	0,9979	0,9980
3,1	0,9981	0,9981	0,9982	0,9980	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986
3,2	0,9985	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,3	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,4	0,9993	0,9994	0,9994	0,9991	0,9994	0,9994	0,9995	0,9995	0,9995	0,9995
3,5	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997	0,9997
3,6	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998	0,9998	0,9998
3,7	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998
3,8	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,9	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
4,0	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999

Таблица № 13 Критические значения критерия λ - Колмогорова-Смирнова для двух выборок разных объемов n_1 и n_2

	1 2					, ,	, ,													
	n_1		•	7			•	•		6	•						5	•	•	
	n_2	28	14	10	9	8	24	18	12	10	9	8	7	20	15	10	9	8	7	6
	0,80	3	3	33	31	27	11	4	1	1	1	1	23	1	8	1	5	11	4	3
		7	7	70	63	56	24	9	$\overline{2}$	$\overline{2}$	$\overline{2}$	$\overline{2}$	42	$\overline{2}$	15	$\overline{2}$	9	20	7	5
	0,90	13	1	39	5	33	1	5	7	17	5	7	4	11	3	3	3	5	23	2
кр		$\overline{28}$	$\overline{2}$	$\overline{70}$	9	56	$\frac{}{2}$	9	12	30	9	12	7	$\overline{20}$	5	5	5	$\frac{}{8}$	25	$\overline{3}$
ите	0,95	15	4	43	40	5	7	11	7	19	2	2	29	3	2	7	31	27	5	2
ерий		$\overline{28}$	$\frac{-}{7}$	$\overline{70}$	63	$\frac{-}{8}$	$\overline{12}$	18	$\overline{12}$	30	$\frac{}{3}$	$\frac{}{3}$	42	5	$\frac{}{3}$	10	45	$\overline{40}$	$\frac{}{7}$	$\frac{}{3}$
: 	0,98	17	9	7	5	41	5	2	2	7	13	3	5	7	11	7	7	4	29	5
α		$\overline{28}$	$\frac{1}{14}$	10	7	56	$\frac{-}{8}$	$\frac{}{3}$	$\frac{}{3}$	$\overline{10}$	18	$\frac{-}{4}$	7	10	15	$\frac{10}{10}$	9	5	35	$\frac{-}{6}$
	0,99	9	5	5	47	3	2	13	3	11	7	3	5	3	11	4	4	4	6	5
		14	$\frac{-}{7}$	7	63	$\frac{-}{4}$	$\frac{}{3}$	18	$\frac{-}{4}$	<u>15</u>	9	$\frac{}{4}$	6	$\frac{}{4}$	<u>15</u>	5	5	5	$\frac{}{7}$	6

		8					9				10				12		15	16	приближенное	n_1	
9	10	12	16	32	10	12	15	18	36	15	20	40	15	16	18	20	20	20	значение для больших выборок	n_2	
4	19	11	7	13	7	4	19	7	13	2	2	7	23	7	13	11	7	27	$n_1 + n_2$	0,80	
9	40	24	16	32	15	9	45	18	36	5	5	20	60	$\frac{-}{8}$	36	30	$\overline{20}$	80	$1,07\sqrt{\frac{n_1+n_2}{n_1+n_2}}$		
13	21	1	1	7	1	1	22	4	5	7	9	2	9	7	5	5	2	31	$1,22 \sqrt{\frac{n_1 + n_2}{n_1 + n_2}}$	0,90] _
24	40	2	2	16	2	2	45	9	12	15	20	5	20	16	12	12	5	80	$\sqrt{n_1 \cdot n_2}$		νри
5	23	7	9	1	26	5	8	1	17	1	1	9	1	23	<u>17</u>	7	13	17	$1,36 \sqrt{\frac{n_1 + n_2}{n_1 + n_2}}$	0,95	критерий
8	40	12	16	2	45	9	15	2	36	2	2	20	2	48	36	15	30	40	$\sqrt{n_1 \cdot n_2}$		ий:
2	27	5	5	9	2	11	3	5	19	17	11	1	11	13	19	31	29	19	$0.152 \sqrt{\frac{n_1 + n_2}{n_1 + n_2}}$	0,98	1-α
3	40	8	8	16	3	18	5	9	36	30	20	2	20	24	36	60	60	40	$\sqrt{n_1 \cdot n_2}$		
3	7	2	5	19	31	2	<u>29</u>	11	5	19	3		7	7	5	17	31	41	$1,63 \sqrt{\frac{n_1 + n_2}{n_1 + n_2}}$	0,99	
4	10	3	8	32	45	3	45	18	9	30	5		<u>12</u>	12	9	30	60	80	$\sqrt{n_1 \cdot n_2}$		

Таблица № 14 Критические значения критерия λ - Колмогорова-Смирнова для двух выборок одинакового объема n

3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		n
$\frac{2}{3}$	3	3	3	4	4	4	4	5	5	5	5	5	6	6	6	6	6	6	0,80	
3	$\frac{-}{4}$	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		
$\frac{2}{3}$	3	3	4	4	4	5	5	5	5	6	6	6	6	7	7	7	7	7	0,90	
3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		ите
	3	4	4	5	5	5	6	6	6	6	7	7	7	7	8	8	8	8	0,95	итерий:
	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		ή: 1-α
		4	5	5	5	6	6	7	7	7	7	8	8	8	9	9	9	9	0,98	ģ
		5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	$\overline{20}$	$\overline{21}$		
		4	5	5	6	6	7	7	7	8	8	8	9	9	9	9	10	10	0,99	
		5	6	7	$\frac{-}{8}$	$\frac{\overline{9}}{}$	10	$\overline{11}$	$\overline{12}$	13	$\overline{14}$	15	16	17	18	$\frac{\overline{19}}{19}$	$\overline{20}$	$\frac{\overline{21}}{21}$		
				•		•												l		
22	23	24	25	26	27	28	29	30	31	32	34	36	38	40	при		іное зна			n
				26											при	для пб	ольше 4		0.00	n
7	7	7	7	7	7	8	8	8	8	8	8	9	9	9	при	для пб <u>I</u>	ольше ² ,52_		0,80	
$\frac{7}{22}$	$\frac{7}{23}$	$\frac{7}{24}$	$\frac{7}{25}$	$\frac{7}{26}$	$\frac{7}{27}$	$\frac{8}{28}$	$\frac{8}{29}$	$\frac{8}{30}$	$\frac{8}{31}$	$\frac{8}{32}$	$\frac{8}{34}$	$\frac{9}{36}$	$\frac{9}{38}$	$\frac{9}{40}$	при	для пб <u>І</u>	ольше $\frac{\sqrt{52}}{\sqrt{n}}$			
$\begin{array}{c} 7\\ \hline 22\\ \hline 8 \end{array}$	$\frac{7}{23}$	7 24 8	$\frac{7}{25}$	7 26 8	$\begin{array}{ c c }\hline 7\\\hline 27\\\hline 8\\\hline \end{array}$	8	8	8	8	8	$\begin{array}{c} 8\\ \hline 34\\ \hline 10\\ \end{array}$	$\frac{9}{36}$ 10	$\frac{9}{38}$ $\underline{10}$	$\frac{9}{40}$ $\frac{10}{40}$	при	для пб	ольше $\frac{\sqrt{52}}{\sqrt{n}}$		0,80	
$\frac{7}{22}$ $\frac{8}{22}$	$ \begin{array}{c} \frac{7}{23} \\ \frac{8}{23} \\ 9 \end{array} $	$ \begin{array}{c c} 7\\ \hline 24\\ \hline 8\\ \hline 24\\ 9 \end{array} $	$\frac{7}{25}$	$\frac{7}{26}$	$\frac{7}{27}$	$ \begin{array}{r} 8 \\ \hline 28 \\ \hline 9 \\ \hline 28 \\ \hline 10 \end{array} $	$\frac{8}{29}$	$\frac{8}{30}$	$ \begin{array}{r} 8 \\ \hline 31 \\ \hline 9 \\ \hline 31 \\ \hline 10 \end{array} $	$\begin{array}{c c} 8\\ \hline 32\\ \hline 9\\ \end{array}$	$ \begin{array}{r} 8 \\ \hline 34 \\ \hline 10 \\ \hline 34 \end{array} $	$\frac{9}{36}$ $\frac{10}{36}$	$\frac{9}{38}$ $\frac{10}{38}$	$\frac{9}{40}$ $\frac{10}{40}$	при	для пб	ольше $\frac{\sqrt{52}}{\sqrt{n}}$ $\frac{\sqrt{73}}{\sqrt{n}}$			
$\begin{array}{c} 7\\ \hline 22\\ \hline 8 \end{array}$	$\frac{7}{23}$ $\frac{8}{23}$	$ \begin{array}{c} 7 \\ 24 \\ \hline 8 \\ 24 \end{array} $	$\frac{7}{25}$ $\frac{8}{25}$	$\frac{7}{26}$ $\frac{8}{26}$	$\frac{7}{27}$ $\frac{8}{27}$	$\frac{8}{28}$ $\frac{9}{28}$	$\frac{8}{29}$ $\frac{9}{29}$	$\frac{8}{30}$ $\frac{9}{30}$	$\frac{8}{31}$ $\frac{9}{31}$	$\begin{array}{c} \frac{8}{32} \\ \frac{9}{32} \end{array}$	$\begin{array}{c} 8\\ \hline 34\\ \hline 10\\ \end{array}$	$\frac{9}{36}$ 10	$\frac{9}{38}$ $\underline{10}$	$\frac{9}{40}$ $\frac{10}{40}$	при	для nб	ольше $\frac{\sqrt{52}}{\sqrt{n}}$		0,90	
$ \begin{array}{r} 7\\ \hline 22\\ \hline 8\\ \hline 22\\ \hline 8 \end{array} $	$ \begin{array}{c} 7 \\ 23 \\ \hline 8 \\ 23 \\ \hline 9 \end{array} $	$ \begin{array}{c} 7 \\ 24 \\ 8 \\ 24 \\ 9 \end{array} $	$ \begin{array}{r} 7 \\ \hline 25 \\ 8 \\ \hline 25 \\ 9 \end{array} $	$ \begin{array}{c} \frac{7}{26} \\ \frac{8}{26} \\ \underline{9} \end{array} $	$ \begin{array}{c c} \hline \hline \hline \hline \hline \hline \hline \hline \hline $	$ \begin{array}{r} 8 \\ \hline 28 \\ \hline 9 \\ \hline 28 \\ \hline 10 \end{array} $	$ \begin{array}{r} 8 \\ \hline 29 \\ \hline 9 \\ \hline 29 \\ \hline 10 \end{array} $	$ \begin{array}{r} 8 \\ \hline 30 \\ \hline 9 \\ \hline 30 \\ \hline 10 \end{array} $	$ \begin{array}{c} 8 \\ \hline 31 \\ 9 \\ \hline 31 \\ \underline{10} \end{array} $	$ \begin{array}{r} 8 \\ \hline 32 \\ \hline 9 \\ \hline 32 \\ \hline 10 \\ \end{array} $	$ \begin{array}{r} 8 \\ \hline 34 \\ \hline 10 \\ \hline 34 \\ \hline 11 \end{array} $	$ \begin{array}{r} \frac{9}{36} \\ \hline 10 \\ \hline 36 \\ \hline 11 $	$ \begin{array}{r} \frac{9}{38} \\ \frac{10}{38} \\ \underline{11} \end{array} $	$ \begin{array}{r} \frac{9}{40} \\ \frac{10}{40} \\ \underline{12} \end{array} $	при	для пб	ольше $\frac{\sqrt{52}}{\sqrt{n}}$ $\frac{\sqrt{73}}{\sqrt{n}}$ $\frac{\sqrt{92}}{\sqrt{n}}$ $\frac{\sqrt{15}}{\sqrt{15}}$		0,90	
$ \begin{array}{r} \frac{7}{22} \\ \frac{8}{22} \\ \hline \frac{8}{22} \end{array} $	$ \begin{array}{r} \frac{7}{23} \\ \hline \frac{8}{23} \\ \hline \frac{9}{23} \end{array} $	$ \begin{array}{r} 7 \\ 24 \\ 8 \\ 24 \\ \hline 9 \\ 24 \end{array} $	$ \begin{array}{r} 7\\ \hline 25\\ 8\\ \hline 25\\ \hline 9\\ \hline 25 \end{array} $	$ \frac{7}{26} $ $ \frac{8}{26} $ $ \frac{9}{26} $	$ \begin{array}{r} \frac{7}{27} \\ \frac{8}{27} \\ \frac{9}{27} \end{array} $	$ \begin{array}{r} 8 \\ \hline 28 \\ \hline 9 \\ 28 \\ \hline 10 \\ \hline 28 \\ \end{array} $	$ \begin{array}{r} 8 \\ \hline 29 \\ \hline 9 \\ 29 \\ \hline 10 \\ \hline 29 \end{array} $	$ \begin{array}{r} 8 \\ \hline 30 \\ \hline 9 \\ \hline 30 \\ \hline 10 \\ \hline 30 \\ \end{array} $	$ \begin{array}{r} 8 \\ \hline 31 \\ \hline 9 \\ \hline 31 \\ \hline 10 \\ \hline 31 \end{array} $	$ \begin{array}{r} 8 \\ \hline 32 \\ \hline 9 \\ \hline 32 \\ \hline 10 \\ \hline 32 \\ \end{array} $	$ \begin{array}{r} 8 \\ \hline 34 \\ \hline 10 \\ \hline 34 \\ \hline 11 \\ \hline 34 \\ \end{array} $	$\frac{9}{36}$ $\frac{10}{36}$ $\frac{11}{36}$	$ \begin{array}{r} $		при	для пб	ольше $\frac{\sqrt{52}}{\sqrt{n}}$ $\frac{\sqrt{73}}{\sqrt{n}}$ $\frac{\sqrt{92}}{\sqrt{n}}$		0,90	
$ \begin{array}{r} 7 \\ \hline 22 \\ \hline 8 \\ \hline 22 \\ \hline 8 \\ \hline 22 \\ \hline 10 \\ \end{array} $	$ \begin{array}{r} 7 \\ 23 \\ \hline 8 \\ 23 \\ \hline 9 \\ 23 \\ \hline 10 \end{array} $			$ \begin{array}{r} 7 \\ \hline 26 \\ \hline 8 \\ \hline 26 \\ \hline 9 \\ \hline 26 \\ \hline 10 \\ \end{array} $	$ \begin{array}{r} \frac{7}{27} \\ \frac{8}{27} \\ \frac{9}{27} \\ \underline{11} \end{array} $	$ \begin{array}{r} \frac{8}{28} \\ \frac{9}{28} \\ \hline \frac{10}{28} \\ \hline 11 \end{array} $		$ \begin{array}{r} 8 \\ \hline 30 \\ \hline 9 \\ \hline 30 \\ \hline 10 \\ \hline 30 \\ \hline 11 \\ \hline \end{array} $	$ \begin{array}{r} 8 \\ \hline 31 \\ \hline 9 \\ \hline 31 \\ \hline 10 \\ \hline 31 \\ \hline 11 \end{array} $	$ \begin{array}{r} 8 \\ \hline 32 \\ \hline 9 \\ \hline 32 \\ \hline 10 \\ \hline 32 \\ \hline 12 \end{array} $	$ \begin{array}{r} \frac{8}{34} \\ \hline \frac{10}{34} \\ \hline \frac{11}{34} \\ \hline \underline{12} \end{array} $	$\frac{9}{36}$ $\frac{10}{36}$ $\frac{11}{36}$ $\frac{12}{36}$		$ \begin{array}{r} \frac{9}{40} \\ \hline \frac{10}{40} \\ \hline \frac{12}{40} \\ \hline 13 \end{array} $	при	для пб 1 1 1 2 2	ольше $\frac{\sqrt{52}}{\sqrt{n}}$ $\frac{\sqrt{73}}{\sqrt{n}}$ $\frac{\sqrt{92}}{\sqrt{n}}$ $\frac{\sqrt{15}}{\sqrt{15}}$		0,90	двусторонний критерий: 1-а

Таблица № 15 Величина угла φ (в радианах) для разных процентных долей: $\varphi = 2arc\sin\sqrt{p}$

%				%,посл	едний де	есятичні	ый знак			
доля	0	1	2	3	4	5	6	7	8	9
				Значе	ения ϕ =	= 2 arg si	$n\sqrt{p}$			
0,0	0,000	0,020	0,028	0,035	0,040	0,045	0,049	0,053	0,057	0,060
0,1	0,063	0,066	0,069	0,072	0,075	0,077	0,080	0,082	0,085	0,087
0,2	0,089	0,092	0,094	0,096	0,098	0,100	0,102	0,104	0,106	0,108
0,3	0,110	0,111	0,113	0,115	0,117	0,118	0,120	0,122	0,123	0,125
0,4	0,127	0,128	0,130	0,131	0,133	0,134	0,136	0,137	0,139	0,140
0,5	0,142	0,143	0,144	0,146	0,147	0,148	0,150	0,151	0,153	0,154
0,6	0,155	0,156	0,158	0,159	0,160	0,161	0,163	0,164	0,165	0,166
0,7	0,168	0,169	0,170	0,171	0,172	0,173	0,175	0,176	0,177	0,178
0,8	0,179	0,180	0,182	0,183	0,184	0,185	0,186	0,187	0,188	0,189
0,9	0,190	0,191	0,192	0,193	0,194	0,195	0,196	0,197	0,198	0,199
1	0,200	0,210	0,220	0,229	0,237	0,246	0,254	0,262	0,269	0,277
2	0,284	0,291	0,298	0,304	0,311	0,318	0,324	0,330	0,336	0,342
3	0,348	0,354	0,360	0,365	0,371	0,376	0,382	0,387	0,392	0,398
4	0,403	0,408	0,413	0,418	0,423	0,428	0,432	0,437	0,442	0,446
5	0,451	0,456	0,460	0,465	0,469	0,473	0,478	0,482	0,486	0,491
6	0,495	0,499	0,503	0,507	0,512	0,516	0,520	0,524	0,528	0,532
7	0,536	0,539	0,543	0,547	0,551	0,555	0,559	0,562	0,566	0,570
8	0,574	0,577	0,581	0,584	0,588	0,592	0,595	0,599	0,602	0,606
9	0,609	0,613	0,616	0,620	0,623	0,627	0,630	0,633	0,637	0,640
10	0,644	0,647	0,650	0,653	0,657	0,660	0,663	0,666	0,670	0,673
11	0,676	0,679	0,682	0,686	0,689	0,692	0,695	0,698	0,701	0,704
12	0,707	0,711	0,714	0,717	0,720	0,723	0,726	0,729	0,732	0,735
13	0,738	0,741	0,744	0,747	0,750	0,752	0,755	0,785	0,761	0,764
14	0,767	0,770	0,773	0,776	0,778	0,781	0,784	0,787	0,790	0,793
15	0,795	0,798	0,801	0,804	0,807	0,809	0,812	0,815	0,818	0,820
16 17	0,823	0,826	0,828	0,831	0,834	0,837	0,839	0,842	0,845	0,847
18	0,850 0,876	0,853	0,855 0,881	0,858	0,861 0,887	0,863	0,866	0,868	0,871 0,897	0,874 0,900
19	0,902	0,905	0,907	0,910	0,887	0,885	0,872	0,824	0,827	0,925
20	0,927	0,930	0,932	0,935	0,937	0,940	0,942	0,945	0,947	0,950
21	0,952	0,955	0,957	0,959	0,962	0,964	0,967	0,969	0,972	0,974
22	0,976	0,979	0,981	0,984	0,986	0,988	0,991	0,993	0,996	0,998
23	1,000	1,003	1,005	1,007	1,010	1,012	1,015	1,017	1,019	1,022
24	1,024	1,026	1,029	1,031	1,033	1,036	1,038	1,040	1,043	1,045
25	1,047	1,050	1,052	1,054	1,056	1,059	1,061	1,063	1,066	1,068
26	1,070	1,072	1,075	1,077	1,079	1,082	1,084	1,086	1,088	1,091
27	1,093	1,095	1,097	1,100	1,102	1,104	1,106	1,109	1,111	1,113
28	1,115	1,117	1,120	1,122	1,124	1,126	1,129	1,131	1,133	1,135
29	1,137	1,140	1,142	1,144	1,146	1,148	1,151	1,153	1,155	1,157
30	1,159	1,161	1,164	1,166	1,168	1,170	1,172	1,174	1,177	1,179
31	1,182	1,183	1,185	1,187	1,190	1,192	1,194	1,196	1,198	1,200
32	1,203	1,205	1,207	1,209	1,211	1,213	1,215	1,217	1,220	1,222
33	1,224	1,226	1,228	1,230	1,232	1,234	1,237	1,239	1,241	1,243
34	1,245	1,247	1,249	1,251	1,254	1,256	1,258	1,260	1,262	1,264

%				%,посл	едний до	есятичні	ый знак			
доля	0	1	2	3	4	5	6	7	8	9
				Знач	іения φ	$= 2arc \sin \theta$	$1\sqrt{p}$			
35	1,266	1,268	1,270	1,272	1,274	1,277	1,279	1,281	1,283	1,285
36	1,287	1,289	1,291	1,293	1,295	1,297	1,299	1,302	1,304	1,306
37	1,308	1,310	1,312	1,314	1,316	1,318	1,320	1,322	1,324	1,326
38	1,328	1,330	1,333	1,335	1,337	1,339	1,341	1,343	1,345	1,347
99,0	2,941	2,942	2,943	2,944	2,945	2,946	2,948	2,949	2,950	2,951
99,1	2,952	2,953	2,954	2,955	2,956	2,957	2,958	2,959	2,960	2,961
99,2	2,963	2,964	2,965	2,966	2,967	2,968	2,969	2,971	2,972	2,973
99,3	2,974	2,975	2,976	2,978	2,979	2,980	2,981	2,983	2,984	2,985
99,4	2,987	2,988	2,989	2,990	2,992	2,993	2,995	2,996	2,997	2,999
99,5	3,000	3,002	3,003	3,004	3,006	3,007	3,009	3,010	3,012	3,013
99,6	3,015	3,017	3,018	3,020	3,022	3,023	3,025	3,027	3,028	3,030
99,7	3,032	3,034	3,036	3,038	3,040	3,041	3,044	3,046	3,048	3,050
99,8	3,052	3,054	3,057	3,059	3,062	3,064	3,067	3,069	3,072	3,075
99,9	3,078	3,082	3,085	3,089	3,093	3,097	3,101	3,107	3,113	3,122
100	3,142	_	_	_	_	_	_	_	_	_

Таблица № 16 Уровни статистической значимости разных значений φ – критерия Фишера

P		2,31 2,28 2,25 2,22 2,19 2,16 2,14 2,11 2,09 2,07 2,05 2,03 2,01 1,99 1,97 1,96 1,94 1,92 1,91 1,89												
равно или меньше	0	1	2	3	4	5	6	7	8	9				
0,00	2,91	2,81	2,70	2,62	2,55	2,49	2,44	2,39	2,35	_				
0,01	2,31	2,28	2,25	2,22	2,19	2,16	2,14	2,11	2,09	2,07				
0,02	2,05	2,03	2,01	1,99	1,97	1,96	1,94	1,92	1,91	1,89				
0,03	1,88	1,86	1,85	1,84	1,82	1,81	1,80	1,79	1,77	1,76				
0,04	1,75	1,74	1,73	1,72	1,71	1,70	1,68	1,67	1,66	1,65				
0,05	1,64	1,64	1,63	1,62	1,61	1,60	1,59	1,58	1,57	1,56				
0,06	1,56	1,55	1,54	1,53	1,52	1,52	1,51	1,50	1,49	1,48				
0,07	1,48	1,47	1,46	1,46	1,45	1,44	1,43	1,43	1,42	1,41				
0,08	1,41	1,40	1,39	1,39	1,38	1,37	1,37	1,36	1,36	1,35				
0,09	1,34	1,34	1,33	1,32	1,32	1,31	1,31	1,30	1,30	1,29				
0,10	1,29	_	_	_	_	_	_	_	_	_				

Таблица № 18 Критические значения коэффициента корреляции рангов Спирмена

n	1)	n	I)
	0,05	0,01		0,05	0,01
5	0,94	_	23	0,42	0,53
6	0,85	_	24	0,41	0,52
7	0,78	0,94	25	0,49	0,51
8	0,72	0,88	26	0,39	0,50
9	0,68	0,83	27	0,38	0,49
10	0,64	0,79	28	0,38	0,48
11	0,61	0,76	29	0,37	0,48
12	0,58	0,73	30	0,36	0,47
13	0,56	0,70	31	0,36	0,46
14	0,54	0,68	32	0,36	0,45
15	0,52	0,66	33	0,34	0,45
16	0,50	0,64	34	0,34	0,44
17	0,48	0,62	35	0,33	0,43
18	0,47	0,60	36	0,33	0,43
19	0,46	0,58	37	0,33	0,43
20	0,45	0,57	38	0,32	0,41
21	0,44	0,56	39	0,32	0,41
22	0,43	0,54	40	0,31	0,40

Таблица № 19 Значение площади S под кривой единичного нормального распределения, находящегося справа от Z.

		-			\$	S				
	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641
0,1	0,4602	0,4562	0,4522	0,4483	0,4404	0,4404	0,4364	0,4325	0,4286	0,4247
0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
0,3	0,3821	0,3789	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3483
0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148
0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
1,1	01357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823
1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0721	0,0708	0,0694	0,0681
1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455
1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
1,8	0,0359	0,0351	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,0233
2,0	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183
2,1	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0,0150	0,0146	0,0143
2,2	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,0110
2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
2,4	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064
2,5	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048
2,6	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040	0,0038	0,0038	0,0037	0,0036
2,7	0,0035	0,0034	0,0033	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,0026
2,8	0,0026	0,0025	0,0024	0,0023	0,0023	0,0022	0,0021	0,0021	0,0020	0,0019
2,9	0,0019	0,0018	0,0018	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014
3,0	0,0013	0,0013	0,0013	0,0012	0,0012	0,0011	0,0011	0,0011	0,0010	0,0010
3,1	0,0010	0,0009	0,0009	0,0009	0,0008	0,0008	0,0008	0,0008	0,0007	0,0007
3,2	0,0007	_	_	_	_	_	_	_	_	_
3,3	0,0005	_	_	_	_	_	_	_	_	_
3,4	0,0003		_	_	_	_	_	_	_	_
3,5	0,00023	_	_	_	_	_	_	_	_	_
3,6	0,00016	_	_	_	_	_	_	_	_	_
3,7	0,00011	_	_	_	_	_	_	_	_	_
3,8	0,00007	_	_	_	_	_	_	_	_	_
3,9	0,00005	_	_	_	_	_	_	_	_	_
4,0	0,00003	_	_	_	_	_	_	_	_	_

Таблица № 20 Критические значения коэффициента линейной корреляции **r**-Пирсона

df = n-2		p	df = n-2		p
	0,05	0,01		0,05	0,01
5	0,75	0,87	37	0,32	0,41
6	0,71	0,83	38	0,31	0,40
7	0,67	0,80	39	0,31	0,40
8	0,63	0,77	40	0,30	0,39
9	0,60	0,74	41	0,30	0,39
10	0,58	0,71	42	0,30	0,38
11	0,55	0,68	43	0,29	0,38
12	0,53	0,66	44	0,29	0,37
13	0,51	0,64	45	0,29	0,37
14	0,50	0,62	46	0,29	0,37
15	0,48	0,61	47	0,28	0,27
16	0,47	0,59	48	0,28	0,36
17	0,46	0,58	49	0,28	0,35
18	0,44	0,56	50	0,27	0,35
19	0,43	0,55	55	0,26	0,34
20	0,42	0,54	60	0,25	0,33
21	0,41	0,53	65	0,24	0,31
22	0,40	0,52	70	0,23	0,30
23	0,40	0,51	80	0,22	0,28
24	0,39	0,50	90	0,21	0,27
25	0,38	0,49	100	0,20	0,25
26	0,37	0,48	125	0,17	0,23
27	0,37	0,47	150	0,16	0,21
28	0,36	0,46	200	0,14	0,18
29	0,36	0,46	300	0,11	0,15
30	0,35	0,45	400	0,10	0,13
31	0,34	0,44	500	0,09	0,12
32	0,34	0,44	700	0,07	0,10
33	0,33	0,43	900	0,06	0,09
34	0,33	0,42	1000	0,06	0,09
35	0,33	0,42	_	_	_
36	0,32	0,41			

$$_{3$$
начения функции $\varphi\left(x\right)=rac{1}{\sqrt{2\,\pi}}e^{-rac{x^{\,2}}{2}}$ (Ординаты нормальной кривой)

	Сотые доли х											
X	0	1	2	3	4	5	6	7	8	9		
0,0	0,3989	3989	3989	3988	3986	3984	3982	3980	3977	3973		
0,1	3970	3965	3961	3956	3951	3945	3939	3932	3925	3918		
0,2	3910	3902	3894	3885	3876	3867	3857	3847	3836	3825		
0,3	3814	3802	3790	3778	3765	3752	3739	3726	3712	3697		
0,4	3683	3668	3653	3637	3621	3605	3589	3572	3555	3538		
0,5	3521	3503	3485	3467	3448	3429	3410	3391	3372	3352		
0,6	3332	3312	3292	3271	3251	3230	3209	3187	3166	3144		
0,7	3123	3101	3079	3056	3034	3011	2989	2966	2943	2920		
0,8	2897	2874	2850	2827	2803	2780	2756	2732	2709	2685		
0,9	2661	2637	2613	2589	2565	2541	2516	2492	2468	2444		
1,0	0,2420	2396	2371	2347	2323	2299	2275	2251	2227	2203		
1,1	2179	2155	2131	2107	2083	2059	2036	2012	1989	1965		
1,2	1942	1919	1895	1872	1849	1826	1804	1781	1758	1736		
1,3	1714	1691	1669	1647	1626	1604	1582	1561	1539	1518		
1,4	1497	1476	1456	1435	1415	1394	1374	1354	1334	1315		
1,5	1295	1276	1257	1238	1219	1200	1182	1163	1145	1127		
1,6	1109	1092	1074	1057	1040	1023	1006	0989	0973	0957		
1,7	0940	0925	0909	0893	0878	0863	0848	0833	0818	0804		
1,8	0790	0775	0761	0748	0734	0721	0707	0694	0681	0669		
1,9	0656	0644	0632	0620	0608	0596	0584	0573	0562	0551		
2,0	0,0540	0529	0519	0508	0498	0488	0478	0468	0459	0449		
2,1	0440	0431	0422	0413	0404	0396	0387	0379	0371	0363		
2,2	0355	030347	0339	0332	0325	0317	0310	0303	0297	0290		
2,3	0283	0277	0270	0264	0258	0252	0246	0241	0235	0229		
2,4	0224	0219	0213	0208	0203	0198	0194	0189	0184	0180		
2,5	0175	0171	0167	0163	0158	0154	0151	0147	0143	0139		
2,6	0136	0132	0129	0126	0122	0119	0116	0113	0140	0107		
2,7	0104	0101	0099	0096	0093	0091	0088	0086	0084	0081		
2,8	0079	0077	0075	0073	0071	0069	0067	0065	0063	0061		
2,9	0060	0058	0056	0055	0053	0051	0050	0048	0047	0046		
3,0	0,0044	0043	0042	0040	0039	0038	0037	0036	0035	0034		
3,1	0033	0032	0031	0030	0029	0028	0027	0026	0025	0025		
3,2	0024	0023	0022	0022	0021	0020	0020	0019	0018	0018		
3,3	0017	0017	0016	0016	0015	0015	0014	0014	0013	0013		
3,4	0012	0012	0012	0011	0011	0010	0010	0010	0009	0009		
3,5	0009	0008	0008	0008	0008	0007	0007	0007	0007	0006		
3,6	0006	0006	0006	0005	0005	0005	0005	0005	0005	0004		
3,7	0004	0004	0004	0004	0004	0004	0003	0003	0003	0003		
3,8	0003	0003	0003	0003	0003	0002	0002	0002	0002	0002		
3,9	0002	0002	0002	0002	0002	0002	0002	0002	0001	0001		
4,0	0001	0001	0001	0001	0001	0001	0001	0001	0001	0001		

Критические значения критерия t — Стьюдента

Таблица № 22

1.0				трити	TCCKPIC 31	ачения к			дента				
df	0.0	0.0	0.7	0.6	0.5		ероятност		0.1	0.05	0.02	0.01	0.001
	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1	0,05	0,02	0,01	0,001
1	0,158	0,325	0,510	0,727	1,000	1,376	1,963	3,078	6,314	12,706	31,821	63,657	636,619
2	0,142	0,289	0,445	0,617	0,816	1,061	1,386	1,886	2,920	4,303	6,965	9,925	31,598
3	0,137	0,277	0,424	0,584	0,765	0,978	1,250	1,638	2,353	3,182	4,541	5,841	12,941
4	0,134	0,271	0,414	0,569	0,741	0,941	1,190	1,533	2,132	2,776	3,747	4,604	8,610
5	0,132	0,267	0,408	0,559	0,727	0,920	1,156	1,476	2,015	2,571	3,365	4,032	6,859
6	0,131	0,265	0,404	0,553	0,718	0,906	1,134	1,440	1,943	2,447	3,143	3,707	5,959
7	0,130	0,263	0,402	0,549	0,711	0,896	1,119	1,415	1,895	2,365	2,998	3,499	5,405
8	0,130	0,262	0,399	0,546	0,706	0,889	1,108	1,397	1,860	2,306	2,896	3,355	5,041
9	0,129	0,261	0,398	0,543	0,703	0,883	1,100	1,383	1,833	2,262	2,821	3,250	4,781
10	0,129	0,260	0,327	0,542	0,700	0,879	1,093	1,372	1,812	2,228	2,764	3,169	4,583
11	0,129	0,260	0,396	0,540	0,697	0,876	1,088	1,363	1,796	2,201	2,718	3,106	4,437
12	0,128	0,259	0,395	0,539	0,695	0,873	1,083	1,356	1,782	2,179	2,681	3,055	4,318
13	0,128	0,259	0,394	0,538	0,694	0,870	1,079	1,350	1,771	2,160	2,650	3,012	4,221
14	0,128	0,258	0,393	0,537	0,692	0,868	1,076	1,345	1,761	2,145	2,624	2,977	4,140
15	0,128	0,258	0,393	0,536	0,691	0,866	1,074	1,341	1,753	2,131	2,602	2,947	4,073
16	0,128	0,258	0,392	0,535	0,690	0,865	1,071	1,337	1,746	2,120	2,583	2,921	4,015
17	0,128	0,257	0,392	0,534	0,689	0,863	1,069	1,333	1,740	2,110	2,567	2,898	3,965
18	0,127	0,257	0,392	0,534	0,688	0,862	1,067	1,330	1,734	2,101	2,552	2,878	3,922
19	0,127	0,257	0,391	0,533	0,688	0,861	1,066	1,328	1,729	2,093	2,539	2,861	3,833
20	0,127	0,257	0,391	0,533	0,687	0,860	1,064	1,325	1,725	2,086	2,528	2,845	3,850

продолжение таблицы № 22 Критические значения критерия t — Стьюдента

df						В	ероятност	Ъ					
	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1	0,05	0,02	0,01	0,001
21	0,127	0,257	0,391	0,532	0,686	0,859	1,063	1,323	1,721	2,080	2,518	2,831	3,819
22	0,127	0,256	0,390	0,532	0,686	0,858	1,061	1,321	1,717	2,074	2,508	2,819	3,792
23	0,127	0,256	0,390	0,532	0,685	0,868	1,060	1,319	1,714	2,069	2,500	2,807	3,767
24	0,127	0,256	0,390	0,531	0,685	0,857	1,059	1,318	1,711	2,064	2,402	2,797	3,745
25	0,127	0,256	0,390	0,531	0,684	0,856	1,058	1,316	1,708	2,060	2,485	2,787	3,725
26	0,127	0,256	0,390	0,531	0,684	0,856	1,058	1,315	1,706	2,056	2,479	2,779	3,707
27	0,127	0,256	0,389	0,531	0,684	0,855	1,057	1,314	1,703	2,052	2,473	2,771	3,690
28	0,127	0,256	0,389	0,530	0,683	0,855	1,056	1,313	1,701	2,048	2,467	2,763	3,674
29	0,127	0,256	0,389	0,530	0,683	0,854	1,055	1,311	1,699	2,045	2,462	2,756	3,659
30	0,127	0,256	0,389	0,530	0,683	0,854	1,055	1,310	1,697	2,042	2,457	2,750	3,646
40	0,126	0,255	0,388	0,529	0,681	0,851	1,050	1,303	1,684	2,021	2,423	2,704	3,551
60	0,126	0,254	0,387	0,527	0,679	0,848	1,046	1,296	1,671	2,000	2,390	2,660	3,460
120	0,126	0,254	0,386	0,526	0,677	0,845	1,041	1,289	1,658	1,980	2,358	2,617	3,373
∞	0,126	0,253	0,385	0,524	0,674	0,842	1,036	1,282	1,645	1,960	2,326	2,576	3,291

Таблица № 23 Критические значения критерия F— Фишера-Снедекора Значение $F_{maбл}$, удовлетворяющее условию $P(F > F_{maбл})$. Первое значение соответствует вероятности 0,05; второе —

Значение $F_{ma\delta n}$, удовлетворяющее условию $P(F > F_{ma\delta n})$. Первое значение соответствует вероятности 0,05; второе – вероятности 0,01 и третье – вероятности 0,001; df_1 – число степеней свободы числителя; df_2 – знаменателя.

df_1 df_2	1	2	3	4	5	6	8	12	24	∞	t
	161,4	199,5	215,7	224,6	230,2	234,0	238,9	243,9	249,0	253,3	12,71
1	4052	4999	5403	5625	5764	5859	5981	6106	6234	6366	63,66
	406523	500016	536700	562527	576449	585953	598149	610598	623432	636535	636,2
	18,51	19,00	19,16	19,25	19,30	19,33	19,37	19,41	19,45	19,50	4,30
2	98,49	99,01	99,17	99,25	99,30	99,13	99,36	99,42	99,46	99,50	9,92
	998,46	999,00	999,20	999,20	999,20	999,20	999,40	999,60	999,40	999,40	31,00
	10,13	9,55	9,28	9,12	9,01	8,94	8,84	8,74	8,64	8,53	3,18
3	34,12	30,81	29,46	28,71	28,24	27,91	27,49	27,05	26,60	26,12	5,84
	67,47	148,51	141,10	137,10	134,60	132,90	130,60	128,30	125,9	123,50	12,94
	7,71	6,94	6,59	6,39	6,26	6,16	6,04	5,91	5,77	5,63	2,78
4	21,20	18,00	16,69	15,98	15,52	15,21	14,80	14,37	13,93	13,46	4,60
	74,13	61,24	56,18	5343	51,71	50,52	49,00	47,41	45,77	44,05	8,61
	6,61	5,79	5,41	5,19	5,05	4,95	4,82	4,68	4,53	4,36	2,57
5	16,26	13,27	12,06	11,39	10,97	10,67	10,27	9,89	9,47	9,02	4,03
	47,04	36,61	33,20	31,09	20,75	28,83	27,64	26,42	25,14	23,78	6,86
	5,99	5,14	4,76	4,53	4,39	4,28	4,15	4,00	3,84	3,67	2,45
6	13,74	10,92	9,78	9,15	8,75	8,47	8,10	7,72	7,31	6,88	3,71
	35,51	26,99	23,70	21,90	20,81	20,03	19,03	17,99	16,89	15,75	5,96

	5,59	4,74	4,35	4,12	3,97	3,87	3,73	3,57	3,41	3,23	2,36
7	12,25	9,55	8,45	7,85	7,46	7,19	6,84	6,47	6,07	5,65	•
	29,22	21,69	18,77	17,19	16,21	15,52	14,63	13,71	12,73	11,70	5,40
	5,32	4,46	4,07	3,84	3,69	3,58	3,44	3,28	3,12	2,99	2,31
8	11,26	8,65	7,59	7,10	6,63	6,37	6,03	5,67	5,28	4,86	3,36
	25,42	18,49	15,83	14,39	13,49	12,86	12,04	11,19	10,30	9,35	5,04
	5,12	4,26	3,86	3,63	3,48	3,37	3,23	3,07	2,90	2,71	2,26
9	10,56	8,02	6,99	6,42	6,06	5,80	5,47	5,11	4,73	4,31	3,25
	22,86	16,39	13,90	12,56	11,71	11,13	10,37	9,57	8,72	7,81	55 3,50 70 5,40 69 2,31 36 3,36 35 5,04 71 2,26 31 3,25 31 4,78 54 2,23 21 3,17 77 4,59 40 2,20 50 3,11 90 4,49 30 2,18 36 3,06 42 4,32 21 2,16 30 2,18 30 2,18 36 3,01 37 4,12 3 2,14 30 2,98 50 4,14 37 2,13 37 2,95
	4,96	4,10	3,71	3,48	3,33	3,22	3,07	2,91	2,74	2,54	2,23
10	10,04	7,56	6,55	5,99	5,64	5,39	5,06	4,71	4,33	3,91	3,17
	21,04	14,91	12,55	11,28	10,48	9,92	9,20	8,45	7,64	6,77	4,59
	4,84	3,98	3,59	3,36	3,20	3,09	2,95	2,79	2,61	2,40	2,20
11	9,65	7,20	6,22	5,67	5,32	5,07	4,74	4,40	4,02	3,60	3,11
	19,69	13,81	11,56	10,35	9,58	9,05	8,35	7,62	6,85	6,00	4,49
	4,75	3,88	3,49	3,26	3,11	3,00	2,85	2,69	2,50	2,30	2,18
12	9,33	6,93	5,95	5,41	5,06	4,82	4,50	4,16	3,78	3,36	3,06
	18,64	12,98	10,81	9,63	8,89	8,38	7,71	7,00	6,25	5,42	4,32
	4,67	3,80	3,41	3,18	3,02	2,92	2,77	2,60	2,42	2,21	2,16
13	9,07	6,70	5,74	5,20	4,86	4,62	4,30	3,96	3,59	3,16	3,01
	17,81	12,31	10,21	9,07	8,35	7,86	7,21	6,52	5,78	4,97	4,12
	4,60	3,74	3,34	3,11	2,96	2,85	2,70	2,53	2,35	2,13	2,14
14	8,86	6,51	5,56	5,03	4,69	4,46	4,14	3,80	3,43	3,00	2,98
	17,14	11,78	9,73	8,62	7,92	7,44	6,80	6,13	5,41	4,60	4,14
	4,45	3,68	3,29	3,06	2,90	2,79	2,64	2,48	2,29	2,07	2,13
15	8,68	6,36	5,42	4,89	4,56	4,32	4,00	3,67	3,29	2,87	2,95
	16,59	11,34	9,34	8,25	7,57	7,09	6,47	5,81	5,10	4,31	4,07

	4,41	3,63	3,24	3,01	2,85	2,74	2,59	2,42	2,24	2,01	2,12
16	8,53	6,23	5,29	4,77	4,44	4,20	3,89	3,55	3,18	2,75	2,92
	16,12	10,97	9,01	7,94	7,27	6,80	6,20	5,55	4,85	4,06	4,02
17	4,45	3,59	3,20	2,96	2,81	2,70	2,55	2,38	2,19	1,96	2,11
	8,40	6,11	5,18	4,67	4,34	4,10	3,79	3,45	3,08	2,65	2,90
	15,72	10,66	8,73	7,68	7,02	6,56	5,96	5,32	4,63	3,85	3,96
	4,41	3,55	3,16	2,93	2,77	2,66	2,51	2,34	2,15	1,92	2,10
18	8,28	6,01	5,09	4,58	4,25	4,01	3,71	3,37	3,01	2,57	2,88
	15,38	10,39	8,49	7,46	6,81	6,35	5,76	5,13	4,45	3,67	3,92
	4,38	3,52	3,13	2,90	2,74	2,63	2,48	2,31	2,11	1,88	2,09
19	8,18	5,93	5,01	4,50	4,17	3,94	3,63	3,30	2,92	2,49	2,86
	15,08	10,16	8,28	7,26	6,61	6,18	5,59	4,97	4,29	3,52	3,88
	4,35	3,49	3,10	2,87	2,71	2,60	2,45	2,28	2,08	1,84	2,09
20	8,10	5,85	4,94	4,43	4,10	3,87	3,56	3,23	2,86	2,42	2,84
	14,82	9,95	8,10	7,10	6,46	6,02	5,44	4,82	4,15	3,38	3,85
	4,32	3,47	3,07	2,84	2,68	2,57	2,42	2,25	2,05	1,82	2,08
21	8,02	5,78	4,87	4,37	4,04	3,81	3,51	3,17	2,80	2,36	2,83
	14,62	9,77	7,94	6,95	6,32	5,88	5,31	4,70	4,03	3,26	3,82
	4,30	3,44	3,05	2,82	2,66	2,55	2,40	2,23	2,03	1,78	2,07
22	7,94	5,72	4,82	4,31	3,99	3,75	3,45	3,12	2,75	2,30	2,82
	14,38	9,61	7,80	6,87	6,19	5,76	5,19	4,58	3,92	3,15	3,79
	4,28	3,42	3,03	2,80	2,64	2,53	2,38	2,20	2,00	1,76	2,07
23	7,88	5,66	4,76	4,26	3,94	3,71	3,41	3,07	2,70	2,26	2,81
	14,19	9,46	7,67	6,70	6,08	5,65	5,09	4,48	3,82	3,05	3,77
	4,26	3,40	3,01	2,78	2,62	2,51	2,36	2,18	1,98	1,73	2,06
24	7,82	5,61	4,72	4,22	3,90	3,67	3,36	3,03	2,66	2,21	2,80
	14,03	9,34	7,55	6,59	5,98	5,55	4,99	4,39	3,84	2,97	3,75

	4,24	3,38	2,99	2,76	2,60	2,49	2,34	2,16	1,96	1,71	2,06
25	7,77	5,57	4,68	4,18	3,86	3,63	3,32	2,99	2,62	2,17	2,79
	13,88	9,22	7,45	6,49	5,89	5,46	4,91	4,31	3,66	2,89	3,72
	4,22	3,37	2,98	2,74	2,59	2,47	2,32	2,15	1,95	1,69	2,06
26	7,72	5,53	4,64	4,14	3,82	3,59	3,29	2,96	2,58	2,13	2,78
	13,74	9,12	7,36	6,41	5,80	5,38	4,83	4,24	3,59	2,82	3,71
	4,21	3,35	2,96	2,73	2,57	2,46	2,30	2,13	1,93	1,67	2,05
27	7,68	5,49	4,60	4,11	3,78	3,56	3,26	2,93	2,55	2,10	2,77
	13,61	9,02	7,27	6,33	5,73	5,31	4,76	4,17	3,52	2,76	3,69
	4,19	3,34	2,95	2,71	2,56	2,44	2,29	2,12	1,91	1,65	2,05
28	7,64	5,45	4,57	4,07	3,75	3,53	3,23	2,90	2,52	2,06	2,76
	13,50	8,93	7,18	6,25	5,66	5,24	4,69	4,11	3,46	2,70	3,67
	4,18	3,33	2,93	2,70	2,54	2,43	2,28	2,10	1,90	1,64	2,05
29	7,60	5,42	4,54	4,04	3,73	3,50	3,20	2,87	2,49	2,03	2,76
	13,39	8,85	7,12	6,19	5,59	5,18	4,65	4,05	3,41	2,64	3,66
	4,17	3,32	2,92	2,69	2,53	2,42	2,27	2,09	1,89	1,62	2,04
30	7,56	5,39	4,51	4,02	3,70	3,47	3,17	2,84	2,47	2,01	2,75
	13,29	8,77	7,05	6,12	5,53	5,12	4,58	4,00	3,36	2,59	3,64
	4,00	3,15	2,76	2,52	2,37	2,25	2,10	1,92	1,70	1,39	2,00
60	7,08	4,98	4,13	3,65	3,34	3,12	2,82	2,50	2,12	1,60	2,66
	11,97	7,76	6,17	5,31	4,76	4,37	3,87	3,31	2,76	1,90	3,36
	3,84	2,99	2,60	2,37	2,21	2,09	1,94	1,57	1,52	1,03	1,96
∞	6,64	4,60	3,78	3,32	3,02	2,80	2,51	2,18	1,79	1,04	2,58
	10,83	6,91	5,42	4,62	4,10	3,74	3,27	2,74	2,13	1,05	3,29

Таблица № 24 d–критерий Дарбина-Уотсона: d_L и d_U , уровни значимости в 5%

10	k=	=1	k=	=2	k=	=3	k=	=4	k=	=5	k=	=6	k=	=7
n	d_L	d_U	d_L	d_U	d_L	d_U	d_L	d_U	d_L	d_U	d_L	d_U	d_L	d_U
6	_	_	0.61018	1.40015	1	_	_	_	_	_	_	_	_	_
7	_	_	0.69955	1.35635	0.46723	1.89636	-	-	_	-	_	_	-	_
8	_	_	0.76290	1.33238	0.55907	1.77711	0.36744	2.28664	_	1	-	-	1	_
9	_	_	0.82428	1.31988	0.62910	1.69926	0.45476	2.12816	0.29571	2.58810	_	_	ı	_
10	_	_	0.87913	1.31971	0.69715	1.64134	0.52534	2.01632	0.37602	2.41365	0.24269	2.82165	-	_
11	_	_	0.92733	1.32409	0.75798	1.60439	0.59477	1.92802	0.44406	2.28327	0.31549	2.64456	0.20253	3.00447
12	_	_	0.97076	1.33137	0.81221	1.57935	0.65765	1.86397	0.51198	2.17662	0.37956	2.50609	0.26813	2.83196
13	_	_	1.00973	1.34040	0.86124	1.56212	0.71465	1.81593	0.57446	2.09428	0.44448	2.38967	0.32775	2.69204
14	_	_	1.04495	1.35027	0.90544	1.55066	0.76666	1.77882	0.63206	2.02955	0.50516	2.29593	0.38897	2.57158
15	1,08	1,36	1.07697	1.36054	0.94554	1.54318	0.81396	1.75014	0.68519	1.97735	0.56197	2.21981	0.44707	2.47148
16	1,10	1,37	1.10617	1.37092	0.98204	1.53860	0.85718	1.72773	0.73400	1.93506	0.61495	2.15672	0.50223	2.38813
17	1,13	1,38	1.13295	1.38122	1.01543	1.53614	0.89675	1.71009	0.77898	1.90047	0.66414	2.10414	0.55423	2.31755
18	1,16	1,39	1.15759	1.39133	1.04607	1.53525	0.93310	1.69614	0.82044	1.87189	0.70984	2.06000	0.60301	2.25750
19	1,18	1,40	1.18037	1.40118	1.07430	1.53553	0.96659	1.68509	0.85876	1.84815	0.75231	2.02262	0.64870	2.20614
20	1,20	1,41	1.20149	1.41073	1.10040	1.53668	0.99755	1.67634	0.89425	1.82828	0.79179	1.99079	0.69146	2.16189
21	1,22	1,42	1.22115	1.41997	1.12461	1.53849	1.02624	1.66942	0.92719	1.81157	0.82856	1.96350	0.73149	2.12355
22	1,24	1,53	1.23949	1.42888	1.14713	1.54079	1.05292	1.66398	0.95783	1.79744	0.86285	1.93996	0.76898	2.09015
23	1,26	1,44	1.25665	1.43747	1.16815	1.54346	1.07778	1.65974	0.98639	1.78546	0.89488	1.91958	0.80410	2.06093
24	1,27	1,45	1.27276	1.44575	1.18781	1.54639	1.10100	1.65649	1.01309	1.77526	0.92486	1.90184	0.83706	2.03522
25	1,29	1,45	1.28791	1.45371	1.20625	1.54954	1.12276	1.65403	1.03811	1.76655	0.95297	1.88634	0.86803	2.01252
26	1,30	1,46	1.30219	1.46139	1.22358	1.55281	1.14319	1.65225	1.06158	1.75911	0.97937	1.87274	0.89717	1.99240
27	1,32	1,47	1.31568	1.46878	1.23991	1.55620	1.16239	1.65101	1.08364	1.75274	1.00421	1.86079	0.92463	1.97449
28	1,33	1,48	1.32844	1.47589	1.25534	1.55964	1.18051	1.65025	1.10444	1.74728	1.02762	1.85022	0.95052	1.95851
29	1,34	1,48	1.34054	1.48275	1.26992	1.56312	1.19762	1.64987	1.12407	1.74260	1.04971	1.84088	0.97499	1.94420
30	1,35	1,49	1.35204	1.48936	1.28373	1.56661	1.21380	1.64981	1.14262	1.73860	1.07060	1.83259	0.99815	1.93133

10	k=	=1	k=	=2	k=	=3	k=	=4	k=	=5	k=	=6	k=	=7
n	d_L	d_U	d_L	d_U	d_L	d_U	d_L	d_U	d_L	d_U	d_L	d_U	d_L	d_U
32	1,37	1,50	1.37340	1.50190	1.30932	1.57358	1.24371	1.65046	1.17688	1.73226	1.10916	1.81867	1.04088	1.90931
33	1,38	1,39	1.38335	1.50784	1.32119	1.57703	1.25756	1.65110	1.19272	1.72978	1.12698	1.81282	1.06065	1.89986
34	1,39	1,51	1.39285	1.51358	1.33251	1.58045	1.27074	1.65189	1.20779	1.72770	1.14393	1.80758	1.07944	1.89129
35	1,40	1,52	1.40194	1.51914	1.34332	1.58382	1.28330	1.65282	1.22214	1.72593	1.16007	1.80292	1.09735	1.88351
40	1,44	1,54	1.44214	1.54436	1.39083	1.59999	1.33835	1.65889	1.28484	1.72092	1.23047	1.78594	1.17541	1.85378
45	1,48	1,57	1.47538	1.56602	1.42980	1.61482	1.38320	1.66618	1.33571	1.71999	1.28744	1.77618	1.23849	1.83462
50	1,50	1,59	1.50345	1.58486	1.46246	1.62833	1.42059	1.67385	1.37793	1.72135	1.33457	1.77077	1.29059	1.82203
55	1,53	1,60	1.52755	1.60144	1.49031	1.64062	1.45232	1.68149	1.41362	1.72399	1.37431	1.76807	1.33442	1.81368
60	1,55	1,62	1.54853	1.61617	1.51442	1.65184	1.47965	1.68891	1.44427	1.72735	1.40832	1.76711	1.37186	1.80817
65	1,57	1,63	1.56699	1.62936	1.53553	1.66210	1.50349	1.69602	1.47092	1.73110	1.43782	1.76731	1.40426	1.80462
70	1,58	1,64	1.58341	1.64127	1.55422	1.67152	1.52452	1.70278	1.49434	1.73505	1.46369	1.76827	1.43262	1.80245
75	1,60	1,65	1.59813	1.65209	1.57091	1.68020	1.54323	1.70920	1.51511	1.73904	1.48659	1.76975	1.45767	1.80127
80	1,61	1,66	1.61143	1.66197	1.58592	1.68823	1.56001	1.71526	1.53370	1.74304	1.50703	1.77156	1.47999	1.80081
85	1,62	1,67	1.61393	1.66385	1.58875	1.68976	1.56316	1.71643	1.53719	1.74384	1.51085	1.77196	1.48417	1.80079
90	1,63	1,68	1.63454	1.67942	1.61190	1.70262	1.58893	1.72642	1.56564	1.75082	1.54202	1.77580	1.51812	1.80135
95	1,64	1,69	1.64469	1.68717	1.62325	1.70910	1.60152	1.73156	1.57948	1.75455	1.55715	1.77807	1.53456	1.80210
100	1,65	1,69	1.65404	1.69439	1.63369	1.71517	1.61306	1.73643	1.59216	1.75818	1.57100	1.78039	1.54958	1.80306
110	_	ı	1.67076	1.70741	1.65228	1.72623	1.63357	1.74545	1.61462	1.76506	1.59545	1.78506	1.57606	1.80543
120	_	ı	1.68531	1.71889	1.66839	1.73608	1.65126	1.75361	1.63394	1.77146	1.61642	1.78964	1.59872	1.80815
130	_	-	1.69811	1.72909	1.68250	1.74492	1.66672	1.76103	1.65076	1.77743	1.63464	1.79409	1.61836	1.81103
140	_	ı	1.70950	1.73824	1.69501	1.75291	1.68038	1.76782	1.66559	1.78297	1.65066	1.79836	1.63557	1.81397
150	_	ı	1.71970	1.74652	1.70619	1.76018	1.69255	1.77406	1.67877	1.78814	1.66486	1.80242	1.65082	1.81690
160	_	-	1.72890	1.75405	1.71625	1.76683	1.70348	1.77980	1.69058	1.79296	1.67756	1.80629	1.66444	1.81980
170	_	-	1.73728	1.76093	1.72537	1.77295	1.71336	1.78512	1.70124	1.79747	1.68902	1.80997	1.67669	1.82262
180	_	_	1.74493	1.76726	1.73369	1.77860	1.72236	1.79007	1.71092	1.80170	1.69940	1.81346	1.68779	1.82536
190	_	_	1.75196	1.77311	1.74132	1.78383	1.73059	1.79468	1.71977	1.80567	1.70887	1.81678	1.69789	1.82801
200	_	_	1.75844	1.77852	1.74833	1.78871	1.73815	1.79901	1.72789	1.80942	1.71755	1.81994	1.70713	1.83057
210	_	-	1.76445	1.78358	1.75483	1.79326	1.74513	1.80305	1.73537	1.81295	1.72554	1.82294	1.71563	1.83305

10	k=	=1	k=	=2	k=	=3	k=	=4	k=	=5	k=	=6	k=	=7
n	d_L	d_U	d_L	d_U	d_L	d_U	d_L	d_U	d_L	d_U	d_L	d_U	d_L	d_U
220	_	-	1.77003	1.78829	1.76086	1.79753	1.75161	1.80686	1.74229	1.81628	1.73292	1.82581	1.72348	1.83543
230	_	_	1.77525	1.79270	1.76647	1.80154	1.75763	1.81045	1.74873	1.81945	1.73977	1.82854	1.73075	1.83771
240	_	-	1.78012	1.79685	1.77171	1.80530	1.76325	1.81384	1.75473	1.82246	1.74616	1.83115	1.73752	1.83992
250	_	ı	1.78469	1.80075	1.77662	1.80887	1.76851	1.81706	1.76033	1.82531	1.75211	1.83364	1.74383	1.84204
260	-	-	1.78900	1.80444	1.78125	1.81223	1.77344	1.82010	1.76558	1.82803	1.75768	1.83603	1.74973	1.84409
270	_	-	1.79306	1.80792	1.78560	1.81543	1.77808	1.82300	1.77052	1.83062	1.76292	1.83831	1.75528	1.84606
280	_	-	1.79690	1.81123	1.78970	1.81846	1.78245	1.82575	1.77517	1.83309	1.76784	1.84051	1.76048	1.84797
290	_	ı	1.80053	1.81436	1.79358	1.82134	1.78660	1.82838	1.77956	1.83546	1.77250	1.84261	1.76539	1.84980
300	_	-	1.80398	1.81735	1.79726	1.82410	1.79051	1.83088	1.78371	1.83773	1.77689	1.84463	1.77003	1.85157
310	_	_	1.80725	1.82019	1.80076	1.82672	1.79422	1.83329	1.78766	1.83991	1.78105	1.84657	1.77441	1.85328
320	_	-	1.81037	1.82291	1.80408	1.82922	1.79775	1.83559	1.79139	1.84199	1.78500	1.84844	1.77857	1.85494
330	_	-	1.81335	1.82550	1.80724	1.83162	1.80111	1.83779	1.79495	1.84400	1.78876	1.85024	1.78252	1.85653
340	_	-	1.81618	1.82799	1.81026	1.83392	1.80432	1.83990	1.79834	1.84592	1.79233	1.85198	1.78629	1.85808
350	_	-	1.81890	1.83036	1.81315	1.83613	1.80737	1.84193	1.80157	1.84778	1.79573	1.85366	1.78987	1.85957
360	_	-	1.82150	1.83264	1.81591	1.83825	1.81029	1.84389	1.80465	1.84957	1.79898	1.85527	1.79328	1.86102
370	_	-	1.82399	1.83483	1.81855	1.84029	1.81309	1.84577	1.80760	1.85129	1.80209	1.85685	1.79655	1.86242
380	_	-	1.82639	1.83694	1.82109	1.84225	1.81577	1.84758	1.81043	1.85296	1.80506	1.85836	1.79967	1.86379
390	_	_	1.82868	1.83896	1.82352	1.84413	1.81834	1.84933	1.81314	1.85457	1.80791	1.85982	1.80266	1.86512
400	_	_	1.83089	1.84091	1.82586	1.84596	1.82081	1.85103	1.81574	1.85612	1.81064	1.86124	1.80553	1.86640
410	_	_	1.83301	1.84279	1.82811	1.84771	1.82318	1.85265	1.81824	1.85763	1.81327	1.86263	1.80828	1.86765
420	_	_	1.83507	1.84461	1.83028	1.84941	1.82546	1.85423	1.82064	1.85908	1.81579	1.86396	1.81093	1.86886
430	_	_	1.83704	1.84636	1.83236	1.85105	1.82767	1.85576	1.82296	1.86050	1.81823	1.86525	1.81348	1.87004
440	_	_	1.83895	1.84805	1.83438	1.85264	1.82979	1.85724	1.82518	1.86187	1.82056	1.86651	1.81592	1.87119
450	-	_	1.84079	1.84970	1.83632	1.85418	1.83184	1.85867	1.82734	1.86320	1.82282	1.86774	1.81828	1.87230
460	_	_	1.84257	1.85128	1.83820	1.85567	1.83381	1.86007	1.82941	1.86449	1.82499	1.86893	1.82056	1.87339
470	_	_	1.84429	1.85282	1.84002	1.85711	1.83572	1.86141	1.83142	1.86574	1.82709	1.87009	1.82275	1.87445
480	_	_	1.84596	1.85431	1.84177	1.85851	1.83757	1.86272	1.83336	1.86695	1.82912	1.87121	1.82488	1.87548
490	_	_	1.84758	1.85576	1.84348	1.85987	1.83937	1.86399	1.83523	1.86814	1.83109	1.87231	1.82693	1.87649
500	-	_	1.84914	1.85716	1.84513	1.86119	1.84110	1.86523	1.83705	1.86929	1.83298	1.87337	1.82892	1.87747

10	k=	=8	k=	=9	k=	:10	k=	:13	k=	:12	k=	:13	k=	:14
n	d_L	d_U												
12	0.17144	3.14940	_	_	_	_	_	_	_	_	_	_	_	_
13	0.23049	2.98506	0.14693	3.26577	_	_	_	_	_	_	_	-	_	_
14	0.28559	2.84769	0.20013	3.11121	0.12726	3.36038	_	_	_	_	_	-	_	_
15	0.34290	2.72698	0.25090	2.97866	0.17531	3.21604	0.11127	3.43819	_	_	_	_	_	_
16	0.39805	2.62409	0.30433	2.86009	0.22206	3.08954	0.15479	3.30391	0.09809	3.50287	_	_	_	_
17	0.45107	2.53660	0.35639	2.75688	0.27177	2.97455	0.19784	3.18400	0.13763	3.37817	0.08711	3.55716	_	_
18	0.50158	2.46122	0.40702	2.66753	0.32076	2.87268	0.24405	3.07345	0.17732	3.26497	0.12315	3.44141	0.07786	3.60315
19	0.54938	2.39602	0.45571	2.58939	0.36889	2.78312	0.29008	2.97399	0.22029	3.15930	0.15979	3.33481	0.11082	3.49566
20	0.59454	2.33937	0.50220	2.52082	0.41559	2.70374	0.33571	2.88535	0.26349	3.06292	0.19978	3.23417	0.14472	3.39540
21	0.63710	2.28988	0.54645	2.46051	0.46055	2.63324	0.38035	2.80588	0.30669	2.97600	0.24033	3.14129	0.18198	3.29979
22	0.67719	2.24646	0.58843	2.40718	0.50363	2.57051	0.42363	2.73452	0.34926	2.89726	0.28119	3.05662	0.22003	3.21061
23	0.71493	2.20816	0.62821	2.35988	0.54478	2.51449	0.46541	2.67038	0.39083	2.82585	0.32172	2.97919	0.25866	3.12852
24	0.75048	2.17427	0.66589	2.31774	0.58400	2.46431	0.50554	2.61260	0.43119	2.76111	0.36156	2.90835	0.29723	3.05282
25	0.78400	2.14412	0.70154	2.28007	0.62133	2.41924	0.54401	2.56041	0.47019	2.70229	0.40046	2.84360	0.33536	2.98300
26	0.81561	2.11722	0.73529	2.24629	0.65683	2.37862	0.58079	2.51315	0.50775	2.64877	0.43825	2.78436	0.37279	2.91872
27	0.84546	2.09313	0.76726	2.21588	0.69057	2.34190	0.61593	2.47026	0.54385	2.59997	0.47482	2.73007	0.40933	2.85950
28	0.87366	2.07148	0.79754	2.18844	0.72265	2.30862	0.64947	2.43122	0.57848	2.55540	0.51013	2.68025	0.44486	2.80489
29	0.90036	2.05196	0.82626	2.16358	0.75316	2.27837	0.68148	2.39562	0.61166	2.51459	0.54413	2.63447	0.47929	2.75449
30	0.92564	2.03432	0.85351	2.14102	0.78217	2.25080	0.71202	2.36307	0.64345	2.47714	0.57685	2.59233	0.51259	2.70793
31	0.94962	2.01834	0.87940	2.12046	0.80979	2.22562	0.74115	2.33323	0.67387	2.44273	0.60828	2.55347	0.54474	2.66484
32	0.97239	2.00381	0.90401	2.10171	0.83609	2.20255	0.76897	2.30583	0.70299	2.41102	0.63847	2.51758	0.57573	2.62493
33	0.99402	1.99057	0.92743	2.08455	0.86115	2.18137	0.79554	2.28061	0.73086	2.38177	0.66745	2.48437	0.60559	2.58789
34	1.01462	1.97849	0.94973	2.06882	0.88506	2.16190	0.82091	2.25735	0.75755	2.35473	0.69527	2.45359	0.63433	2.55348
35	1.03424	1.96743	0.97099	2.05436	0.90788	2.14395	0.84516	2.23585	0.78311	2.32966	0.72197	2.42501	0.66200	2.52146
40	1.11983	1.92426	1.06391	1.99717	1.00782	2.07233	0.95174	2.14950	0.89585	2.22843	0.84035	2.30888	0.78539	2.39060
45	1.18899	1.89520	1.13907	1.95778	1.08886	2.02222	1.03846	2.08839	0.98802	2.15611	0.93765	2.22524	0.88750	2.29558
50	1.24607	1.87504	1.20110	1.92972	1.15579	1.98597	1.11021	2.04368	1.06445	2.10276	1.01862	2.16307	0.97280	2.22452

10	k=	=8	k=	=9	k=	:10	k=	:11	k=	:12	k=	:13	k=	:14
n	d_L	d_U												
55	1.29403	1.86074	1.25319	1.90921	1.21199	1.95902	1.17049	2.01008	1.12875	2.06233	1.08685	2.11568	1.04485	2.17003
60	1.33493	1.85045	1.29758	1.89393	1.25987	1.93856	1.22183	1.98427	1.18354	2.03101	1.14505	2.07873	1.10640	2.12734
65	1.37027	1.84298	1.33589	1.88238	1.30115	1.92276	1.26611	1.96408	1.23080	2.00631	1.19525	2.04939	1.15952	2.09329
70	1.40115	1.83754	1.36932	1.87353	1.33716	1.91037	1.30469	1.94805	1.27196	1.98652	1.23899	2.02574	1.20582	2.06569
75	1.42840	1.83360	1.39877	1.86670	1.36884	1.90057	1.33863	1.93516	1.30815	1.97046	1.27744	2.00643	1.24652	2.04304
80	1.45262	1.83077	1.42495	1.86142	1.39698	1.89272	1.36873	1.92469	1.34024	1.95727	1.31151	1.99046	1.28259	2.02423
85	1.45715	1.83031	1.42984	1.86051	1.40223	1.89135	1.37434	1.92282	1.34622	1.95492	1.31787	1.98760	1.28931	2.02085
90	1.49393	1.82745	1.46947	1.85411	1.44476	1.88129	1.41982	1.90900	1.39464	1.93721	1.36926	1.96592	1.34368	1.99510
95	1.51171	1.82663	1.48861	1.85164	1.46527	1.87715	1.44171	1.90311	1.41793	1.92954	1.39395	1.95642	1.36980	1.98372
100	1.52793	1.82619	1.50604	1.84976	1.48394	1.87377	1.46162	1.89820	1.43910	1.92305	1.41639	1.94830	1.39350	1.97394
110	1.55647	1.82618	1.53667	1.84730	1.51668	1.86878	1.49651	1.89061	1.47617	1.91279	1.45564	1.93531	1.43496	1.95815
120	1.58083	1.82696	1.56276	1.84608	1.54454	1.86551	1.52615	1.88523	1.50759	1.90525	1.48889	1.92556	1.47004	1.94614
130	1.60191	1.82823	1.58531	1.84569	1.56856	1.86343	1.55166	1.88140	1.53462	1.89965	1.51745	1.91812	1.50015	1.93685
140	1.62036	1.82981	1.60500	1.84589	1.58951	1.86219	1.57389	1.87871	1.55815	1.89545	1.54228	1.91240	1.52629	1.92956
150	1.63666	1.83159	1.62238	1.84648	1.60799	1.86156	1.59346	1.87684	1.57883	1.89229	1.56409	1.90795	1.54925	1.92378
160	1.65121	1.83348	1.63786	1.84734	1.62441	1.86138	1.61084	1.87558	1.59718	1.88994	1.58343	1.90448	1.56957	1.91918
170	1.66427	1.83543	1.65174	1.84839	1.63912	1.86151	1.62641	1.87478	1.61359	1.88820	1.60069	1.90176	1.58770	1.91546
180	1.67608	1.83740	1.66428	1.84959	1.65239	1.86190	1.64043	1.87435	1.62837	1.88692	1.61623	1.89964	1.60401	1.91248
190	1.68682	1.83937	1.67567	1.85086	1.66444	1.86246	1.65313	1.87418	1.64175	1.88602	1.63028	1.89798	1.61875	1.91007
200	1.69663	1.84133	1.68607	1.85219	1.67543	1.86316	1.66471	1.87423	1.65394	1.88541	1.64308	1.89671	1.63216	1.90810
210	1.70566	1.84325	1.69561	1.85355	1.68550	1.86394	1.67532	1.87445	1.66508	1.88505	1.65478	1.89574	1.64441	1.90653
220	1.71398	1.84513	1.70441	1.85492	1.69477	1.86482	1.68509	1.87479	1.67533	1.88486	1.66552	1.89502	1.65566	1.90526
230	1.72168	1.84697	1.71254	1.85632	1.70335	1.86574	1.69410	1.87524	1.68479	1.88483	1.67544	1.89450	1.66602	1.90424
240	1.72883	1.84876	1.72009	1.85769	1.71129	1.86669	1.70245	1.87576	1.69356	1.88492	1.68460	1.89415	1.67561	1.90345
250	1.73550	1.85051	1.72713	1.85906	1.71870	1.86768	1.71022	1.87636	1.70170	1.88511	1.69312	1.89393	1.68451	1.90282
260	1.74173	1.85222	1.73369	1.86041	1.72561	1.86867	1.71747	1.87699	1.70928	1.88538	1.70107	1.89383	1.69280	1.90234
270	1.74758	1.85387	1.73984	1.86174	1.73207	1.86967	1.72425	1.87767	1.71638	1.88572	1.70849	1.89382	1.70054	1.90200
280	1.75307	1.85549	1.74563	1.86305	1.73814	1.87068	1.73061	1.87837	1.72304	1.88611	1.71543	1.89390	1.70778	1.90175

10	k=	=8	k=	=9	k=	10	k=	11	k=	:12	k=	:13	k=	:14
n	d_L	d_U												
290	1.75825	1.85704	1.75106	1.86434	1.74384	1.87169	1.73659	1.87909	1.72929	1.88655	1.72196	1.89405	1.71459	1.90161
300	1.76313	1.85856	1.75619	1.86560	1.74921	1.87269	1.74222	1.87983	1.73518	1.88702	1.72810	1.89425	1.72099	1.90152
310	1.76774	1.86003	1.76104	1.86683	1.75430	1.87368	1.74753	1.88058	1.74072	1.88751	1.73389	1.89449	1.72703	1.90152
320	1.77211	1.86147	1.76563	1.86804	1.75911	1.87466	1.75256	1.88133	1.74598	1.88804	1.73937	1.89478	1.73272	1.90156
330	1.77627	1.86286	1.76999	1.86923	1.76367	1.87563	1.75733	1.88209	1.75095	1.88857	1.74455	1.89510	1.73812	1.90167
340	1.78022	1.86420	1.77413	1.87038	1.76800	1.87659	1.76185	1.88284	1.75567	1.88913	1.74947	1.89545	1.74323	1.90180
350	1.78398	1.86553	1.77806	1.87151	1.77211	1.87753	1.76615	1.88359	1.76015	1.88969	1.75414	1.89581	1.74808	1.90198
360	1.78756	1.86681	1.78182	1.87261	1.77604	1.87846	1.77025	1.88434	1.76442	1.89026	1.75858	1.89620	1.75270	1.90218
370	1.79098	1.86805	1.78540	1.87369	1.77978	1.87938	1.77415	1.88509	1.76849	1.89083	1.76281	1.89660	1.75711	1.90241
380	1.79426	1.86925	1.78883	1.87475	1.78336	1.88027	1.77788	1.88582	1.77238	1.89141	1.76685	1.89702	1.76130	1.90266
390	1.79739	1.87043	1.79210	1.87578	1.78678	1.88115	1.78145	1.88656	1.77609	1.89200	1.77071	1.89746	1.76532	1.90294
400	1.80039	1.87158	1.79524	1.87678	1.79006	1.88202	1.78486	1.88728	1.77964	1.89258	1.77440	1.89789	1.76915	1.90323
410	1.80327	1.87269	1.79825	1.87777	1.79320	1.88287	1.78814	1.88800	1.78305	1.89315	1.77794	1.89833	1.77281	1.90354
420	1.80604	1.87379	1.80114	1.87874	1.79621	1.88371	1.79127	1.88871	1.78631	1.89373	1.78133	1.89878	1.77633	1.90385
430	1.80871	1.87484	1.80392	1.87967	1.79911	1.88453	1.79429	1.88941	1.78944	1.89431	1.78458	1.89923	1.77971	1.90417
440	1.81126	1.87588	1.80659	1.88060	1.80189	1.88533	1.79718	1.89010	1.79245	1.89488	1.78770	1.89968	1.78295	1.90451
450	1.81373	1.87688	1.80916	1.88150	1.80457	1.88612	1.79997	1.89077	1.79535	1.89545	1.79071	1.90014	1.78607	1.90485
460	1.81611	1.87787	1.81163	1.88238	1.80716	1.88690	1.80265	1.89144	1.79813	1.89601	1.79361	1.90060	1.78906	1.90520
470	1.81840	1.87883	1.81403	1.88324	1.80964	1.88767	1.80524	1.89211	1.80083	1.89657	1.79640	1.90105	1.79195	1.90556
480	1.82061	1.87977	1.81634	1.88408	1.81205	1.88841	1.80774	1.89276	1.80341	1.89712	1.79908	1.90151	1.79473	1.90591
490	1.82275	1.88069	1.81857	1.88491	1.81437	1.88915	1.81015	1.89340	1.80592	1.89767	1.80167	1.90197	1.79741	1.90628
500	1.82482	1.88158	1.82072	1.88572	1.81661	1.88986	1.81247	1.89403	1.80834	1.89821	1.80417	1.90242	1.80001	1.90663

10	k=	:15	k=	:16	k=	:17	k=	18	k=	:19	k=	20	k=	-21
n	d_L	d_U												
19	0.07001	3.64241	_	_	_	_	_	_	_	_	_	_	_	_
20	0.10024	3.54250	0.06327	3.67619	_	_	_	_	_	_	_	_	_	_
21	0.13166	3.44827	0.09111	3.58322	0.05747	3.70544	_	_	-	_	_	-	_	_
22	0.16642	3.35756	0.12028	3.49463	0.08315	3.61880	0.05242	3.73092	-	_	_	-	_	_
23	0.20216	3.27216	0.15274	3.40865	0.11029	3.53549	0.07619	3.65007	0.04801	3.75327	_	-	_	_
24	0.23869	3.19285	0.18635	3.32700	0.14066	3.45402	0.10150	3.57167	0.07006	3.67769	0.04413	3.77297	-	_
25	0.27536	3.11913	0.22090	3.25058	0.17231	3.37604	0.12995	3.49447	0.09371	3.60384	0.06465	3.70220	0.04070	3.79041
26	0.31182	3.05067	0.25578	3.17904	0.20499	3.30253	0.15977	3.42006	0.12041	3.53067	0.08677	3.63257	0.05983	3.72404
27	0.34780	2.98721	0.29062	3.11215	0.23816	3.23327	0.19072	3.34944	0.14853	3.45967	0.11188	3.56318	0.08057	3.65833
28	0.38308	2.92838	0.32517	3.04976	0.27146	3.16812	0.22228	3.28249	0.17787	3.39189	0.13843	3.49546	0.10421	3.59248
29	0.41753	2.87381	0.35918	2.99160	0.30461	3.10700	0.25409	3.21917	0.20790	3.32728	0.16625	3.43042	0.12931	3.52786
30	0.45105	2.82319	0.39255	2.93738	0.33740	3.04971	0.28590	3.15946	0.23830	3.26584	0.19485	3.36811	0.15572	3.46549
31	0.48358	2.77618	0.42513	2.88680	0.36966	2.99604	0.31748	3.10322	0.26882	3.20762	0.22392	3.30859	0.18298	3.40545
32	0.51510	2.73248	0.45685	2.83963	0.40129	2.94576	0.34866	3.05028	0.29923	3.15253	0.25319	3.25193	0.21078	3.34784
33	0.54558	2.69181	0.48769	2.79558	0.43219	2.89865	0.37933	3.00046	0.32935	3.10046	0.28246	3.19808	0.23887	3.29275
34	0.57503	2.65392	0.51760	2.75442	0.46231	2.85449	0.40939	2.95361	0.35907	3.05127	0.31155	3.14697	0.26704	3.24020
35	0.60346	2.61858	0.54659	2.71593	0.49162	2.81306	0.43878	2.90951	0.38829	3.00481	0.34034	3.09851	0.29513	3.19013
40	0.73115	2.47330	0.67782	2.55672	0.62556	2.64056	0.57454	2.72455	0.52492	2.80836	0.47687	2.89172	0.43054	2.97431
45	0.83769	2.36698	0.78833	2.43924	0.73955	2.51218	0.69149	2.58559	0.64427	2.65929	0.59801	2.73306	0.55282	2.80672
50	0.92709	2.28698	0.88159	2.35032	0.83638	2.41440	0.79156	2.47910	0.74723	2.54428	0.70348	2.60978	0.66040	2.67548
55	1.00284	2.22532	0.96087	2.28146	0.91902	2.33833	0.87736	2.39585	0.83597	2.45392	0.79492	2.51244	0.75427	2.57131
60	1.06764	2.17681	1.02885	2.22705	0.99007	2.27800	0.95135	2.32958	0.91276	2.38173	0.87435	2.43437	0.83616	2.48742
65	1.12364	2.13795	1.08767	2.18331	1.05165	2.22934	1.01560	2.27597	0.97960	2.32315	0.94367	2.37083	0.90785	2.41894
70	1.17249	2.10634	1.13902	2.14762	1.10544	2.18951	1.07182	2.23197	1.03816	2.27495	1.00451	2.31840	0.97091	2.36230
75	1.21542	2.08028	1.18418	2.11811	1.15281	2.15649	1.12135	2.19540	1.08982	2.23480	1.05825	2.27465	1.02668	2.31492
80	1.25348	2.05857	1.22422	2.09343	1.19481	2.12881	1.16529	2.16467	1.13568	2.20099	1.10600	2.23772	1.07628	2.27487
85	1.26058	2.05466	1.23168	2.08898	1.20264	2.12381	1.17348	2.15911	1.14424	2.19486	1.11491	2.23103	1.08555	2.26760

n	k=	15	k=	:16	k=	:17	k=	18	k=	:19	k=	:20	k=	21
n	d_L	d_U												
90	1.31792	2.02474	1.29200	2.05483	1.26594	2.08533	1.23974	2.11626	1.21344	2.14756	1.18703	2.17925	1.16053	2.21129
95	1.34546	2.01144	1.32096	2.03957	1.29632	2.06808	1.27155	2.09699	1.24666	2.12624	1.22166	2.15585	1.19657	2.18579
100	1.37045	1.99997	1.34724	2.02636	1.32390	2.05313	1.30041	2.08024	1.27680	2.10767	1.25310	2.13544	1.22928	2.16352
110	1.41412	1.98133	1.39315	2.00481	1.37203	2.02861	1.35079	2.05270	1.32943	2.07709	1.30796	2.10175	1.28639	2.12668
120	1.45106	1.96701	1.43193	1.98814	1.41269	2.00954	1.39332	2.03119	1.37385	2.05310	1.35425	2.07524	1.33457	2.09762
130	1.48272	1.95580	1.46516	1.97500	1.44750	1.99442	1.42972	2.01407	1.41184	2.03393	1.39386	2.05401	1.37577	2.07430
140	1.51020	1.94693	1.49399	1.96449	1.47767	1.98227	1.46125	2.00024	1.44473	2.01840	1.42813	2.03675	1.41143	2.05528
150	1.53430	1.93980	1.51925	1.95600	1.50410	1.97237	1.48885	1.98891	1.47352	2.00563	1.45809	2.02251	1.44259	2.03955
160	1.55562	1.93403	1.54158	1.94904	1.52744	1.96422	1.51322	1.97954	1.49892	1.99502	1.48452	2.01064	1.47006	2.02642
170	1.57464	1.92932	1.56147	1.94331	1.54823	1.95744	1.53491	1.97171	1.52151	1.98612	1.50803	2.00065	1.49449	2.01531
180	1.59171	1.92545	1.57934	1.93855	1.56688	1.95177	1.55436	1.96511	1.54176	1.97858	1.52910	1.99217	1.51636	2.00587
190	1.60714	1.92226	1.59547	1.93456	1.58372	1.94699	1.57190	1.95952	1.56001	1.97216	1.54807	1.98490	1.53605	1.99776
200	1.62117	1.91961	1.61011	1.93122	1.59900	1.94292	1.58781	1.95473	1.57657	1.96665	1.56527	1.97865	1.55390	1.99075
210	1.63398	1.91742	1.62348	1.92839	1.61293	1.93947	1.60232	1.95063	1.59165	1.96188	1.58094	1.97323	1.57015	1.98467
220	1.64573	1.91559	1.63575	1.92601	1.62571	1.93651	1.61562	1.94710	1.60547	1.95776	1.59527	1.96852	1.58503	1.97935
230	1.65655	1.91407	1.64703	1.92398	1.63746	1.93397	1.62784	1.94403	1.61816	1.95417	1.60844	1.96439	1.59868	1.97467
240	1.66656	1.91282	1.65746	1.92226	1.64832	1.93178	1.63913	1.94137	1.62988	1.95102	1.62060	1.96075	1.61128	1.97055
250	1.67584	1.91178	1.66714	1.92080	1.65838	1.92989	1.64959	1.93904	1.64074	1.94827	1.63186	1.95755	1.62293	1.96690
260	1.68449	1.91092	1.67613	1.91956	1.66774	1.92826	1.65930	1.93702	1.65082	1.94583	1.64231	1.95471	1.63375	1.96366
270	1.69256	1.91023	1.68453	1.91851	1.67647	1.92684	1.66836	1.93524	1.66022	1.94369	1.65204	1.95220	1.64382	1.96077
280	1.70011	1.90965	1.69238	1.91761	1.68463	1.92562	1.67682	1.93368	1.66900	1.94180	1.66113	1.94996	1.65323	1.95819

n	k=	:15	k=	:16	k=	:17	k=	:18	k=	:19	k=	=20	k=	21
	d_L	d_U												
290	1.70718	1.90921	1.69975	1.91686	1.69227	1.92456	1.68477	1.93232	1.67722	1.94012	1.66964	1.94798	1.66204	1.95587
300	1.71385	1.90885	1.70667	1.91623	1.69946	1.92365	1.69221	1.93111	1.68494	1.93863	1.67764	1.94619	1.67030	1.95379
310	1.72012	1.90859	1.71319	1.91571	1.70622	1.92286	1.69923	1.93006	1.69221	1.93731	1.68516	1.94459	1.67807	1.95192
320	1.72605	1.90840	1.71935	1.91527	1.71262	1.92218	1.70585	1.92913	1.69906	1.93613	1.69225	1.94316	1.68540	1.95024
330	1.73165	1.90827	1.72517	1.91492	1.71865	1.92159	1.71210	1.92832	1.70554	1.93507	1.69893	1.94187	1.69231	1.94870
340	1.73697	1.90819	1.73068	1.91463	1.72437	1.92109	1.71803	1.92760	1.71166	1.93414	1.70527	1.94072	1.69885	1.94732
350	1.74201	1.90818	1.73592	1.91441	1.72979	1.92068	1.72364	1.92698	1.71747	1.93331	1.71127	1.93967	1.70505	1.94608
360	1.74681	1.90819	1.74089	1.91424	1.73494	1.92032	1.72898	1.92643	1.72299	1.93257	1.71697	1.93874	1.71094	1.94494
370	1.75137	1.90825	1.74562	1.91412	1.73985	1.92002	1.73406	1.92595	1.72824	1.93191	1.72240	1.93789	1.71653	1.94392
380	1.75573	1.90834	1.75014	1.91404	1.74452	1.91977	1.73889	1.92553	1.73323	1.93132	1.72755	1.93714	1.72186	1.94298
390	1.75989	1.90846	1.75445	1.91401	1.74898	1.91957	1.74351	1.92517	1.73800	1.93080	1.73248	1.93646	1.72693	1.94213
400	1.76387	1.90860	1.75856	1.91400	1.75324	1.91942	1.74791	1.92486	1.74255	1.93034	1.73717	1.93584	1.73177	1.94136
410	1.76767	1.90877	1.76250	1.91401	1.75732	1.91930	1.75212	1.92460	1.74690	1.92993	1.74166	1.93528	1.73640	1.94066
420	1.77132	1.90895	1.76628	1.91407	1.76122	1.91922	1.75615	1.92438	1.75107	1.92957	1.74596	1.93478	1.74083	1.94003
430	1.77481	1.90915	1.76990	1.91414	1.76497	1.91915	1.76002	1.92420	1.75506	1.92925	1.75007	1.93433	1.74508	1.93944
440	1.77817	1.90937	1.77337	1.91424	1.76856	1.91913	1.76373	1.92404	1.75888	1.92898	1.75403	1.93393	1.74914	1.93891
450	1.78139	1.90959	1.77671	1.91434	1.77201	1.91912	1.76730	1.92392	1.76256	1.92874	1.75781	1.93358	1.75305	1.93844
460	1.78450	1.90983	1.77992	1.91447	1.77532	1.91914	1.77072	1.92382	1.76610	1.92853	1.76145	1.93325	1.75680	1.93800
470	1.78749	1.91008	1.78301	1.91461	1.77852	1.91918	1.77401	1.92376	1.76949	1.92835	1.76496	1.93296	1.76041	1.93760
480	1.79036	1.91034	1.78599	1.91477	1.78159	1.91923	1.77719	1.92371	1.77276	1.92820	1.76833	1.93271	1.76388	1.93725
490	1.79314	1.91059	1.78885	1.91494	1.78456	1.91930	1.78024	1.92368	1.77592	1.92807	1.77157	1.93249	1.76722	1.93692
500	1.79582	1.91087	1.79163	1.91512	1.78742	1.91938	1.78319	1.92368	1.77896	1.92798	1.77471	1.93229	1.77044	1.93663

n	Нижние	границы	Верхние	границы
	0,05	0,10	0,05	0,10
8	2,50	2,59	3,308	3,399
10	2,67	2,76	3,57	3,685
12	2,80	2,90	3,78	3,91
14	2,92	3,02	3,95	4,09
16	3,01	3,12	4,09	4,24
18	3,10	3,21	4,21	4,37
20	3,18	3,29	4,32	4,49
25	3,34	3,45	4,53	4,7
30	3,47	3,59	4,70	4,89
35	3,58	3,70	4,84	5,04
40	3,67	3,79	4,96	5,16
45	3,75	3,88	5,06	5,26
50	3,83	3,95	5,14	5,35

Литература

- 1. Александров, Г.Н. Математические методы в психологии и педагогике: учеб. пососбие / Г.Н. Александров, А.Ю.Белогуров. Владикавказ: Издво Сев.-Осет. Гос. уни-та, 1997. 302 с.
- 2. Аникина, В.Г. Математические методы в психологии: учеб. пососбие для вузов / В.Г.Аникина, Федеральное агенство по образованию. Орел: ОГУ, 2006. 154 с.
- 3. Берднева, Е.В. Математические методы в педагогике/ Е.В. Берднева, Под ред. В.П.Корсунова. Саратов: Изд-во Сарат. ун-та, 2003. 92 с.
- 4. Берестнева О.Г. Математические методы в психологии: Учеб. пособие / О.Г.Берестнева, А.М.Уразаев, Е.А. Муратова [и др.]. Томск: Из-во ТГПУ, 2001. 301 с.
- 5. Глас Дж. Статистические методы в педагогике и психологии / Дж.Гасс, Дж. Стенли. Пер. с англ. Л.И.Хайрусовой. М.: Прогресс, 1976. 494 с.
- 6. Горохова, Р.И. Методы математической статистики в психологопедагогических исследованиях: учеб.-метод. Пососбие/ Р.И.Горохова, Т.В.Чеснокова. – Йошкар-Ола: ИГПИ, 2004. – 66 с.
- 7. Граничина, О.А. Статистические методы психолого-педагогических исследований: учеб. пососбие / О.А.Граничина. СП.: Изд-во РГПУ им А.И.Герцена, 2002. 52 с.
- 8. Гмурман, В.Е. Теория вероятности и математическая статистика: учеб. пособие для вузов. М.: Высш. шк., 1999. 479 с.
- 9. Ермолаев, О.Ю. Математическая статистика для психологов / О.Ю.Ермолаев. М.: МПСИ, 2006. 336 с.
- 10. Климова, Т.Е. Методы корреляционного анализа в педагогике: учеб.метод. Пососбие / Т.Е.Климова. – Магнитогорск: Магнитог. Гос. Ун-т, 2000. – 91 с.
- 11. Лебедева, И.П. Математическое моделирование в педагогическом исследовании / И.П. Лебедева. СПб., Перьмь: ПГПУ, 2003. 122 с.
- 12. Лупандин, В.И. Математические методы в психологии: учеб. пососбие для студентов вузов. Екатеринбуг: Изд-во Урал. Ун-та, 2002. 206 с.
- 13. Марков, В.Н. Математические методы в психологии: учеб. пососбие / В.Н. Марков. М: Изд-во РАГС. 2003. 93 с.
- 14. Михеев, В.И. Моделирование и методы теории измерений в педагогике: науч.-метод. пособие для педагогов-исследователей, математиков, аспирантов и науч. работников, занимающихся вопросами методики пед. исследований. М.: Высш. Шк., 1987. 200 с.
- 15. Наследов, А.Д. Математические методы психологического исследования. Анализ и интерпритация данных: учебное пособие. СПб: Речь, 2006. 392 с.
- 16.Ососков, Г.А. Математические методы, применяемые в психологии: учеб.-метод. пособие. Дубна: Международный ун-т природы, общества и человека «Дубна», 2003. 34 с.
- 17. Романко, В.К. Статистический анализ данных в психологии: учеб. пососбие для студентов вузов, обучающихся по направлению и

- специальностям психологии / В.К.Романенко. М.:Ред.-издат. Центр психологической и пед. лит.: МГППУ, 2006. 207 с.
- 18. Рубцова, Н.Е. Статистические методы в психологии: учеб. пососбие для студентов вузов, обучающихся по направлению и специальностям психологии / Н.Е. Рубцова, С.Л. Леньков. М.: УМК «Психология», 2005. 381 с.
- 19. Сидоренко, Е.В. Методы математической обработки в психологии / Е.В. Сидоренко. СПб: Речь, 2007. 349 с.
- 20.Созонова, М.С. Математические методы в психологии: учеб. пососбие / М.С.Созонова. –Тобольск: ТГПИ, 2006. 172 с.
- 21. Тарасова, С.Г. Математические методы в психологии: учеб.-метод. указания. СПб: Изд-во С-Петерб. Гос ун-та, 1998. 54 с.
- 22. Тимошенко, А.И. Математические методы исследования в психологии: учеб. пососбие / А.И.Тимошенко. Иркутск: Иркут. гос. ун-т., 2006. 207 с.
- 23. Эксперимент и квазиэксперимент в психологии: Учеб. пособие / Под ред. Т.В. Корниловой СПб.: Питер, 2004. 254 с.

Шелехова Людмила Валерьевна

МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ПЕДАГОГИКЕ И ПСИХОЛОГИИ

УЧЕБНОЕ ПОСОБИЕ

Подписано в печать 16.06..2010. Бумага типографская № 1. Формат бумаги 60х84. Гарнитура Times New Roman. Усл.печ.л 13.5. Тираж 200 экз. Заказ 053.

Отпечатано на участке оперативной полиграфии Адыгейского государственного университета: 385000, г.Майкоп, ул.Первомайская, 208.