Торсионные поля и их экспериментальные проявления

Страница: 1 ... 12131415161718192021

7 Торсионная астрофизика

Изложенные в предыдущем разделе методы выделения и обработки торсионной информации позволяют по-новому взглянуть на содержание и возможности астро­физики.

Вся современная наблюдательная астрофизика и астрономия имели возмож­ность работать лишь с видимыми объектами ("видимыми" в широком смысле, включая, например, и радионаблюдения). Учитывая, что от удаленных источ­ников свет идет порой тысячи световых лет и за это время звезды испытывают значительные смещения в пространстве, очевидно, что современная астрономия в действительности является не современной в собственном смысле, а лишь палеоастрономией (мы изучаем то, чего давно уже нет). Примем во внимание сверх­световую скорость торсионных волн и учтем, что все звезды вращаются, т.е. являются торсионными источниками. Регистрируя их торсионные излучения, можно получить истинное распределение звезд на небе, их положение в реаль­ном времени Вселенной. Первые экспериментальные результаты по фиксации звезд в их истинном положении были выполнены Н.А.Козыревым [45], а позже М.М.Лавтентьевым, И.А.Егановой [46] и А.Ф.Пугачем [47].

Второй важной проблемой астрофизики является следующее противоречие. Если исходить из существования лишь двух дальнодействий — электромагнетизма и гравитации, в которых скорость волн не может превышать "с", то время взаимодействия между краями наблюдаемой Вселенной будет соразмерно с вре­менем жизни Вселенной. Тогда нужно признать, что большинство далеко уда­ленных объектов Вселенной практически не взаимодействуют, т.е. Вселенная не может рассматриваться как целостная система внутренне взаимосвязанных объ­ектов (первым на это обстоятельство указал А.А.Силин).

В то же время известно уже много десятилетий, что звезды образуют ячеистую структуру, т.е. есть физическое взаимодействие, которое удерживает Вселенную в виде такой целостной и устойчивой структуры. Возможно, что, имея скорость порядка 109?с именно торсионные поля звезд обеспечивают возникновение и суще­ствование ячеистой структуры в распределении звезд во Вселенной. Не исклю­чена возможность, что проблема "скрытой массы" является в действительности следствием того, что не учитываются торсионные взаимодействия.

В этом предварительном анализе укажем еще на одно важное обстоятельство. Так же как при торсионной обработке космических снимков можно получать изо­бражение внутренней структуры нашей планеты, можно, осуществляя такую об­работку изображений звезд, например, Солнца, получать информацию о их вну­треннем строении и их внутренней динамике. На рис.9 показан снимок Солнца (рис.9А) и результаты его торсионной обработки (рис.9В), на котором видны глобальные неоднородности внутри Солнца. Такой подход открывает принципи­ально новую возможность в наблюдении астрофизических объектов. Наконец, еще одна принципиально новая возможность. В стандартных наблю­дениях за исключением областей туманностей космическое пространство выгля­дит "изотропно пустым". Однако, как и предсказывала теория, через спиновые состояния Физического Вакуума, т.е. через торсионные поля свободного пространства можно получить информацию о крупномасштабной структуре косми­ческого пространства, крупномасштабной структуре Физического Вакуума.

— 17 —
Страница: 1 ... 12131415161718192021