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ВВЕДЕНИЕ 
 
 

Основу этого учебного пособия составляют курсы «Математика 
фракталов» и «Элементы хаотической динамики» для студентов 
специальности «математика» специализации «математический ана-
лиз», а также «Элементы теории фракталов» для обучающихся по 
специальности «математическое обеспечение и администрирование 
информационных систем». 

В последние тридцать лет теория фрактальных множеств стала 
очень активно исследоваться, что в первую очередь обусловлено бур-
ным развитием компьютерных технологий, и применяться в самых раз-
нообразных сферах, например теоретической физике, цифровой обра-
ботке сигналов и изображений, технологиях нефтегазодобычи и др. 

Для успешного усвоения материала курса необходимы глубокие 
знания в области действительного анализа, функционального анализа, 
общей топологии, линейной алгебры, комплексного анализа, теории 
дифференциальных уравнений.  

Главная задача представленного учебного пособия — введение в 
математические аспекты теории фрактальных множеств. 

В первой главе раскрываются основные свойства тополо-
гических и метрических пространств, связь метрик и топологий. 
Особенное внимание уделяется компактам и связности. 

Во второй главе — примеры фрактальных множеств: канторовы 
множества, ковры Серпинского и пространство-заполняющие кривые. 

В третьей — представлены основные числовые характеристики 
фрактальных множеств: метрики Хаусдорфа, топологические раз-
мерности, размерность подобия, мера и размерность Хаусдорфа. 

В четвертой — обсуждаются пространства строк (модельные 
пространства) и некоторые их применения в теории фрактальных 
множеств. 

Текст учебного пособия сопровождается заданиями, которые по-
зволяют осуществлять самоконтроль, а также расширить и углубить 
понимание математики фрактальных множеств. 

Для более глубокого изучения материала курса приводится список 
рекомендованной литературы по математике фракталов. 

Данное учебное пособие является первой книгой серии, второй 
будет «Математика хаоса», третьей — «Математика вейвлетов». 
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Глава 1. ОСНОВНЫЕ ТОПОЛОГИЧЕСКИЕ   
И МЕТРИЧЕСКИЕ ПОНЯТИЯ 

 
 
 

 § 1. Метрические пространства 
 

Определение 1.1.1. Пусть Х — множество. Функция 
:d X X R   такая, что: 

1) для любых x,yX: d(x,y)  0; 
2) d (x,y) = 0  x = y; 
3) для любых x,yX: d(x,y) = d(y,x) (симметричность); 
4) для любых x,y,zX: d(x,z)  d(x,y) + d(y,z) (неравенство 

треугольника) называется метрикой (расстоянием) на Х. 
З а м е ч а н и е :  d (x,y) — расстояние между точками x и y. 
Определение 1.1.2. Множество Х, на котором задана метрика 

d, называется метрическим пространством и обозначается (Х, d). 
З а м е ч а н и е . Если не нужно явно указывать метрику или 

из текста ясно, какая метрика имеется в виду, то мы будем 
вместо (Х,d) писать просто Х. 

Метрические пространства в математике встречаются 
очень часто и позволяют описывать многие важные свойства 
рассматриваемых объектов. 

Рассмотрим некоторые примеры метрических пространств. 
1. Х = R, d (x,y) = x – y : 
1) очевидно, для любых x,yR: x – y  0; 
2) x – y = 0  x = y; 
3) x – y =  y – x ; 
4) x – z  x – y  +  y – z . 
Это стандартные свойства абсолютной величины. 
Таким образом, множество действительных чисел относи-

тельно так определенного расстояния является метрическим 
пространством. 



§ 1. Метрические пространства 

 5 

2. Пусть Х  . Положим 

 








yx,0

yx,1
)y,x(d . 

Очевидно, имеем: 
1) d (x,y) 0; 
2) d (x,y) = 0  x = y; 
3) d (x,y) = d (y,x); 
4) проверим: d (x,z)  d (x,y) + d (y,z). Если x, y, z различ-

ны, то это соотношение верно. Если x, y, z не все различны, то 
это соотношение также верно. 

Таким образом, (X,d) — метрическое пространство. 
3. Пусть Х = R2 и пусть (x1,x2) R2 и (y1,y2) R2, положим  

   222211 yxyx)y,x(d  . Свойства метрики естествен-

ным образом выполняются (смотри курс математического 
анализа). Таким образом, (X,d) — метрическое пространство и 
такая метрика на R2 называется эвклидовой (стандартной). 

4. Пусть [a,b]  R — отрезок. Обозначим C0([a,b]) множе-
ство всех непрерывных числовых функций на [a,b]. Определим 

       Rb,aCb,aC:d 00   

следующим образом:  
 

   xgxfmaxg,fd
b,ax




: 

1) d(f,g)  0; 
2) d(f,g) = 0  f = g; 
3) d(f,g) = d(g,f); 
4) неравенство треугольника следует из того, что 

            xgxhxhxfxgxf   

для всех х[a,b]. Но тогда 

    
 

   
 

   xgxhmaxxhxfmaxxgxf
b,axb,ax




, 

для всех х[a,b]. Поэтому 

 
 

   
 

   
 

   xgxhmaxxhxfmaxxgxfmax
b,axb,axb,ax




. 
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Таким образом, 

 d(f,g)  d(f,h) + d(h,g). 

(C0([a,b]),d) — метрическое пространство. 

5. Рассмотрим C0([a,b]) и положим        
b

a

1 dxxgxfg,fd : 

1) d1(f,g)  0; 
2) d1(f,g) = 0  f = g. Так как если f = g, то d1(f,g) = 0. Если 

же d1(f,g) = 0, то в случае f  g существует отрезок [α,β] [a,b], 
такой, что для всякого х  [α,β]     0xgxf  . Но тогда 

      0g,fddxxgxf 1

b

a

 ; 

3) d1(f,g) = d1(g,f); 
4) неравенство треугольника следует из того, что для всех 

х [a,b] 

            xgxhxhxfxgxf  , 

интегрируя которые, получим неравенство треугольника. Та-
ким образом, (Х,d1) — метрическое пространство. 

Если мы имеем метрическое пространство (Х,d), то можно 
получить новое метрическое пространство  d,X  , например 

    y,xd,1miny,xd   или    
 y,xd1

y,xd
y,xd


 .  

То, что таким образом мы получили метрику на множест-
ве Х, доказать самостоятельно. Во втором случае использо-

вать то, что функция 
z1

z
z


  для z  0 возрастает. Следует 

обратить внимание на то, что для любых x, y  X    1y,xd  ! 

Еще одной важной структурой является векторное нор-
мированное пространство. В основном мы будем рассмат-
ривать векторные пространства над полем действительных 
чисел. 
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Определение 1.1.3. Пусть E — векторное пространство над 
полем действительных чисел. Функция RE:   называется 
нормой на Е, если: 

1) для всех х Е (x)  0; 
2) (x) = 0  x = 0; 
3) для всех х Е и для всех R    xx  ; 

4) для всех х,y Е      yxyx   (неравенство тре-
угольника). 

З а м е ч а н и е :    xx
def

 и называется нормой вектора х. 

Определение 1.1.4. Векторное пространство Е, на котором 
задана норма , называется векторным нормированным про-
странством и обозначается (Е,). 

Примеры векторных нормированных пространств: 
а) множество действительных чисел R и   хx  ; 

б) Rn и        2n2221
1 xxxx   — (Rn, 1)-нормиро-

ванное векторное пространство; 

в) Rn и   n21
2 xxxx   — (Rn, 2)-нормированное 

векторное пространство; 

г) Rn и    n21
3 x,,x,xmaxx  — (Rn, 3)-нормирован-

ное векторное пространство. 
Проверить это самостоятельно. 
В трех последних примерах на одном и том же векторном 

пространстве определены три различные нормы. 
Пусть (Е,) — векторное нормированное пространство, 

положим yx)y,x(d  . Тогда имеем: 

1) для любых x,yX d (x,y)  0; 
2) d (x,y) = 0  x = y; 
3) для любых x, yX  d (x,y) = d (y,x); 
4) для любых x, y, zX  d (x,z)  d (x,y) + d (y,z). 
Таким образом, норма индуцирует метрику на Е, следова-

тельно, всякое нормированное векторное пространство, опре-
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деляя указанным выше способом метрику на нем, может быть 
наделено структурой метрического пространства. 

Определение 1.1.5. Пусть (X,d) — метрическое пространство. 
1. Открытым шаром с центром в точке аЕ и радиусом 

 r > 0 называется множество     rx,ad:ExaBr  . 

2. Замкнутым шаром с центром в точке аЕ и радиусом  

r > 0 называется множество     rx,ad:ExaBr  . 

3. Сферой с центром в точке аЕ и радиусом r > 0 называ-
ется множество     rx,ad:ExaSr  . 

 
Пр и м е р ы :  
 
 
1. (R2, 1) —  0S1 является «обычной» 

окружностью на плоскости. 
 

 
 

 
2. (R2, 2) —  0S1 является «квадратом». 
 

 

  

 
 
 
 
3. (R2, 3) —  0S1 является «ромбом». 
 

  

x1 

  x2

S1(0) 

Рис. 1.1 

x1 

x2 S1(0) 

Рис. 1.3 

S1(0) 

x2 S1(0) 
 

Рис. 1.2 
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Уже эти примеры показывают — насколько «странной» 
может быть «привычная» окружность. 

Еще один пример метрик — это так называемые неархи-
медовые метрики, с их помощью такие метрики «создается»  
р-адический анализ, объектами которого являются р-адичес-
кие числа. Множество р-адических чисел Qp получается как 
пополнение множества рациональных чисел Q по этой новой 
метрике (по аналогии с множеством действительных чисел, 
которое получается пополнением множества рациональных по 
эвклидовой метрике) [1; 2]. 

Мы определим на множестве рациональных чисел метрику с 
очень необычными свойствами. Пусть Q — множество ра-
циональных чисел и р — простое число. Для всякого х Z  Q 
положим xordp {наибольшей степени числа р, на которое де-

лится число х}. Если х Q и х Z, то можно считать, что 
b

a
x  , 

где a,b Z, тогда полагаем xordp bordaord pp  . Очевидно, 

что если 
d

с
x  , то с = u a и d = u b, где uZ. Тогда 

uordaordcord ppp   и uordborddord ppp  . Поэтому 

b

a
ord

d

с
ord pp  , то есть xordp  определено однозначно (не за-

висит от его представления в виде рациональной дроби). 
Определим отображение ν : Q R следующим образом: 

   pord x

1
, если х 0

ν x p

0, если х 0.

  
 

 

З а м е ч а н и е :   
p

def

xх  . 

Очевидно, для всякого х  Q имеем 0x
p
 ; x = 0  

 0x
p
 ; для любых х,yQ имеем 

ppp
yxxy  ; неравен-

ство треугольника требует некоторых усилий. 
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Пусть 
b

a
x   и 

d

с
y  , тогда 

bd

bcad
yx


 . По определению 

 

       
 
  .yord,xordmin

dordcord,bordaordmindordbord

}bcord,adordmin{bdordbcadordyxord

pp

pppppp

ppppp







 

Но тогда 

      
pp

yordxord

yxordp y,xmaxp,pmax
p

1
yx pp

p
 

 . 

Поэтому очевидно, что 
ppp

yxyx  . 

Таким образом, функция р — норма на Q. Кроме того, 

по определению 11
p
  и 

pp
хх  . 

Но эта норма обладает более сильным, чем неравенство 
треугольника, свойством: 

  p p p
x y max x , y .   

Норма, обладающая этим свойством, называется неархимедо-
вой, а само это свойство — сильным неравенством треугольни-
ка. Метрика, определяемая такой нормой, обладает свойством 

      p p pp
x y x z z y max x z , z y ,         

поэтому d(x,y)  max {d(x,z), d(z,y)} — это сильное неравенст-
во треугольника для метрики. Такая метрика также называется 
неархимедовой. 

В этой метрике мы имеем для всякого nN 1n
p
 . По ин-

дукции 11
p
 , пусть 1k

p
 , для всякого k = 1,2,…, n–1, то-

гда     1}1,1nmax{11nn
pppp
 . Кроме того,  

pp
nn  . Но это означает, что замкнутый шар  0B1  в  

р-адической метрике содержит множество Z (множество це-
лых чисел). 
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Следует иметь в виду, что для всякого х Qp p
х может 

принимать значения только из множества Hp = {0}{pn}, где 
nZ. 

Пусть Br(a)  Qp и b Br(a), тогда точка b является центром 
шара Br(a), то есть Br(a) = Br(b). Очень необычно. 

Если даны три точки x, y, x–y  Qp и 
p

х <
p

y , то 

pp
yyх  . Это свойство называется свойством равнобед-

ренного треугольника. 
Эти некоторые свойства неархимедовых метрик показы-

вают, насколько нужно быть осторожным с объектами в об-
щих метрических пространствах, моделями для которых вы-
ступают объекты эвклидовых метрик. 

Кроме того, метрические пространства Qp имеют интерес-
ную связь с очень важным и одним из первых фракталов — 
Канторовым множеством. 

Определение 1.1.6. Пусть (Х,d) — метрическое простран-
ство. Множество U  X называется открытым, если для всяко-
го х U существует шар Br(х)  U. 

Пр и м е р . Шар Br(a)  Х является открытым множеством. 
Действительно, пусть х  Br(a), очевидно, что d(a,x) = s < r. 
Тогда, учитывая неравенство треугольника, шар Bs(x) Br(a). 

Таким образом, во множестве всех подмножеств множест-
ва Х выделяется множество всех открытых подмножеств. Обо-
значим его . Здесь важно то, что открытые множества опре-

деляются метрикой d, а так как на множестве может сущест-
вовать не одна метрика, то другая метрика определяет, вообще 
говоря, другой запас открытых множеств, но у них есть совпа-
дающие свойства. 

Теорема 1.1.1. Пусть (Х,d) — метрическое пространство и 
 — множество всех открытых подмножеств в Х, определяе-

мых метрикой d. Тогда 
1)  и Х ; 
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2) всякое объединение множеств из  принадлежит ; 

3) пересечение конечного числа множеств из  принадле-

жит . 

Доказательство: 1) очевидно; 2) пусть Ui  для всякого I I, 

если 
Ii

iUх


 , то x
0i

U , поэтому существует Br(х)  
Ii

ii UU
0



 ;  

3) пусть Ui , для всякого I I, где I = {1,2,…,k}, если,  

x 
k

1i
iU



, то х Ui  для всякого i  I. Поэтому для всякого  

i I х    ir UxB
i

 . Возьмем r0 = min {r1,r2,…,rk}, тогда 

  
k

1i
ir UxB

0



 . 

Теорема доказана. 
 

Определение 1.1.7. Пусть (Х,d) — метрическое пространст-
во. Всякое множество, в котором содержится открытое множе-
ство, имеющее точку х  Х, называется окрестностью точки х. 

 

З а м е ч а н и е . Открытое множество является окрестно-
стью каждой своей точки! Такие окрестности называются от-
крытыми окрестностями. 

 

Пр и м е р . Шар Br(х) — окрестность каждой своей точки. 
Таким образом, во множестве всех подмножеств множест-

ва Х выделяются подмножества, являющиеся окрестностями. 
Еще один важный класс подмножеств. 
 

Определение 1.1.8. Пусть (Х,d) — метрическое пространство. 
Подмножество V  X называется замкнутым, если V\X  — 
открытое. 

Обозначим множество всех замкнутых подмножеств 

множества Х. Используя законы взаимности, получим сле-
дующую теорему. 



§ 1. Метрические пространства 

 13 

Теорема 1.1.2. Пусть (Х,d) метрическое пространство. 
Тогда 

1)  и Х ; 

2) всякое пересечение множеств из  принадлежит ; 

3) объединение конечного числа множеств из  принадле-

жит . 

Пр и м е р . Замкнутый шар  aBr  является замкнутым мно-

жеством. Если х Х\  aBr , то d(a,x) = r + s, где s > 0. Тогда 

шар Bs(х)  Х\  aBr . 

З а м е ч а н и е . Существуют множества, которые одновре-
менно являются и открытыми, и замкнутыми. Например,  и Х, 
но это тривиальный случай. Вот нетривиальный пример в Qp: 

 
   

   

n

n 1

n
p p p

n 1
p pp

B a x Q : x a p

x Q : x a p B a .


    

    
 

Замкнутый шар  aB np  совпадает с открытым шаром 

 aB 1np  . 

Существуют множества, которые не являются и неоткры-
тыми, и незамкнутыми. Например, в эвклидовой метрике по-
луинтервал [a,b)  R. 

Определение 1.1.9. Пусть (Х,d) — метрическое пространст-
во. Точка х  Х называется точкой прикосновения множества  
А  Х, если всякий шар Br(х) пересекается с множеством А. 
Множество всех точек прикосновения множества А называет-

ся замыканием множества А и обозначается А . 
З а м е ч а н и е . Очевидно, это условие эквивалентно: вся-

кая окрестность точки х пересекается со множеством А. По 

определению АА  . 

Является ли множество А  замкнутым? 
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Лемма 1.1.1. Пусть (Х,d) — метрическое пространство и  

А  Х — замкнутое множество, тогда АА  . 
Доказательство. Пусть А — замкнуто, тогда Х\A — от-

крытое множество являющееcя окрестностью каждой своей 
точки, не пересекающееся с множеством А. Поэтому множе-
ство Х \ A не содержит точек прикосновения множества А, то 

есть АА  . 
Лемма 1.1.1 доказана. 
Лемма 1.1.2. Пусть (Х,d) метрическое пространство и А  Х, 

тогда А  — замкнутое множество. 

Доказательство. Если х  Х\А , тогда точка х не является 
точкой прикосновения множества А. Поэтому существует шар 

Br(х) такой, что Br(х)  А = . Покажем, что Br(х)  А = . 

Если бы существовал y Br(х)  А , тогда точка y А  и шар 
Br(х) был бы ее окрестностью, т. е. Br(х)  А   — противо-

речие. Таким образом, Х\А  — открытое множество, поэтому 

А  — замкнуто. 
Лемма 1.1.2 доказана. 

Следствие 1. АА  . 

Доказательство. По лемме 1.1.2 А  — замкнуто, по лем-

ме 1.1.1 АА  . 
Следствие 2. Для того чтобы А  Х было замкнутым 

множеством, необходимо и достаточно, чтобы АА  . 
Доказательство. Самостоятельно. 
Замыкание открытого шара Br(а) содержится в замкнутом 

шаре )a(Br , но может не совпадать с ним. Привести пример. 
Определение 1.1.10. Пусть (Х,d) — метрическое простран-

ство. Точка х  Х называется граничной точкой множества А 
 Х, если всякая окрестность точки х пересекается как со мно-
жеством А, так и со множеством Х\A. Множество всех гра-
ничных точек множества А называется границей множества А 
и обозначается Gr A. 
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З а м е ч а н и е . Из определения граничной точки следует, 

что если х  Gr A, то х А  и х  A\Х . Но тогда Gr A = 

А A\Х , что означает Gr A — замкнутое множество. 
Пр и м е р ы :  
1. (R2, 1), тогда Gr Br(а) = Sr(a). 
2. В Qp сфера    rax:QxaS

ppr   является откры-

тым множеством. Пусть х  Sr(a), 0 <  < r, где , r  Hp,  рас-
смотрим открытый шар B(х): возьмем y  B(х), тогда по 
свойству равнобедренного треугольника 

  p p p
y a max x a , x y r.      

Таким образом, y Sr(a), то есть B(х)  Sr(a), поэтому Sr(a) — 
открытое множество. Но в любом метрическом пространстве 
сфера — замкнутое множество. Тогда в Qp сфера Sr(a) не явля-
ется границей шара Br(а). Более того, у шара Br(а) нет грани-
цы. Подробности смотри в работах [1; 2]. 

Определение 1.1.11. Пусть (Х,d) — метрическое простран-
ство. Точка х  Х называется внутренней точкой множества  
А  Х, если существует шар (окрестность точки х) Br(х)  А. 

Множество внутренних точек множества А обозначается 
0

А  
(также для обозначения внутренности используется Int A). 

З а м е ч а н и е . Точка х Х является внутренней точкой 
множества А  Х тогда и только тогда, когда множество А — 
ее окрестность. Если множество А открыто, то оно совпадает 

со своей внутренностью. По определению 
0

А А. 
Определение 1.1.12. Пусть (Х,d) — метрическое про-

странство. 
Точка хХ называется внешней точкой множества А  Х, 

если она является внутренней точкой его дополнения. Внеш-
ность множества А  Х — это множество всех его внешних 
точек. 
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Пр и м е р . Рассмотрим на эвклидовой плоскости R2 замк-

нутый круг   1x:RxD 1
22  . Внешностью круга D2 яв-

ляется множество   1x:RxD\R 1
222  . 

Определение 1.1.13. Пусть (Х,d) — метрическое простран-
ство и А  Х — непустое подмножество. Диаметром множест-
ва А называется 

    y,xdsupА
Ay,Ax 

 . 

З а м е ч а н и е . Диаметр множества — действительное по-
ложительное число или же он равен  . 

Пр и м е р . Пусть Br(а) — шар в метрическом пространстве 
(Х,d), тогда    r2aBr  . Доказать самостоятельно, исполь-

зуя неравенство треугольника. 
Пр и м е р . Если L — прямая в R2, то очевидно    L  

(в эвклидовой метрике). 
З а д а н и е . Пусть (Х,d) — метрическое пространство и А, 

B — его непустые подмножества, причем А  B, тогда 
   BА  . 

Определение 1.1.14. Пусть (Х,d) — метрическое простран-
ство и А  Х и В  Х — непустые подмножества. «Расстояни-
ем» между этими множествами называется число 

    y,xdinfB,Аd
By,Ax 

 . 

З а м е ч а н и е . Слово «расстояние» в этом определении 
взято в кавычки, так как определенная величина не является 
расстоянием, которое выше у нас — синоним метрики. 

В дальнейшем мы определим «настоящее» расстояние ме-
жду подмножествами (определенного типа) в метрическом 
пространстве. 

Если множество А = {x} — одноточечное множество, 
то в этом случае мы будем применять обозначение 
   y,xdinfB,xd

By
 . 
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Вот некоторые свойства так определенного «расстояния», 
если АВ  , то у этих множеств есть общая точка и поэтому 
 B,Аd  = 0. Если  B,Аd = 0, то это не означает, что АВ  . 

Пусть  






  0x0x,

x

1
x:Rx,xA 21

1
2221 , а множе-

ство    0x0x:Rx,xB 12221  . Тогда в эвклидовой 

метрике   0B,Аd  , но АВ = ! 

Определение 1.1.15. Пусть (Х,d) — метрическое простран-
ство, непустое подмножество А  Х называется ограничен-
ным, если оно содержится в некотором шаре. 

Это определение эквивалентно тому, что    A .  

Д о к а ж и т е  э т о . 
З а д а н и е . Пусть (Х,d) — метрическое пространство и А,  

B — его непустые ограниченные подмножества, тогда под-
множество АB ограниченно. 

Следует иметь в виду, что ограниченность подмножества 
зависит от метрики, так как если взять (R2, d1), где d1 — эвк-
лидова метрика, то одномерное подпространство L  R2 не-
ограниченно. Если перейти к метрике d на R2, такой, что  
d(x,y) = min {1, d1(x,y)}(смотри выше), то всякое подмножест-
во в R2 будет ограниченно, как, впрочем, и само R2! 

Пусть (Х,d) — метрическое пространство, А  Х — непустое 
подмножество и  > 0, положим       A,xd:XxAV . 

Лемма 1.1.3. 
Aа

)а(B)A(V


  . 

Доказательство. Пусть хV(A), но х
Aа

)а(B


 . Тогда 

для всякого аА, d(x,a)  . Поэтому d(x,А)  . Противоречие. 
Если х

Aа

)а(B


 , то существует B(a), такое, что х  B(a). 

Тогда d(x,a)  , следовательно, d(x,А) < . 
Лемма 1.1.3 доказана. 
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Следствие. V(A) — открытое множество. 
Доказательство. V(A) является объединением открытых 

шаров. 
Множество V(A) называется -окрестностью множества 

А, если А = {a}, то очевидно, что V(A) = B(a). 
Лемма 1.1.4. Пусть (Х,d) — метрическое пространство и А 

 Х — непустое подмножество. Для того чтобы точка хА , 
необходимо и достаточно, чтобы 0)A,x(d  . 

Доказательство. Пусть хА . Возьмем шар B(х), тогда 
существует y А, такой, что 0  d(x,y) <  ( — любое положи-
тельное число). Это означает 0)A,x(d  . 

Если 0)A,x(d  , то для всякого  > 0 существует yA, та-

кой, что d(x,y) < . То есть B(x)A  , поэтому хА . 
Лемма 1.1.4 доказана. 
Лемма 1.1.5. Пусть (Х,d) — метрическое пространство. 

Для того чтобы точка хХ была внешней для множества А  
Х, необходимо и достаточно, чтобы 0)A,x(d  . 

Доказательство. Если точка хХ такая, что r = 0)A,x(d  , 

то для всякого y Br(х): d(x,y) < r, поэтому y  X\A,  это озна-
чает Br(х)  X\A. Таким образом, точка х — внешняя точка 
множества А. 

Если точка х — внешняя точка множества А, то существу-
ет шар Br(х)  X\A. Тогда 0r)A,x(d  . 

Лемма 1.1.5 доказана. 
Определение 1.1.16. Пусть (Х,d) — метрическое простран-

ство. Множество А  Х называется плотным во множестве  
В  Х, если АB . Множество А  Х называется плотным в 
Х (всюду плотным), если ХА  . 

З а м е ч а н и е . Если А плотно в В и хВ, то всякий откры-
тый шар с центром в точке х (всякая открытая окрестность 
точки х) пересекается со множеством А. Если множество А 
плотно в Х, то всякое непустое открытое в Х множество пере-
секается со множеством А. 
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Пр и м е р . Если мы обозначим I множество всех иррацио-

нальных чисел в R, то I плотно в R, так как RI  . 
Определение 1.1.17. Метрическое пространство называет-

ся сепарабельным, если в нем существует не более чем счет-
ное плотное подмножество. 

Пр и м е р . Множество действительных чисел R в эвклидовой 
метрике является сепарабельным метрическим пространством, так 

как множество рациональных чисел Q — счетное и RQ  . 

Определение 1.1.18. Семейство непустых открытых мно-
жеств   IiU  в Х называется базой открытых множеств мет-

рического пространства (Х,d), если каждое непустое открытое 
множество метрического пространства (Х,d) является объеди-
нением некоторых элементов семейства  IiU  . 

Теорема 1.1.3. Для того чтобы метрическое пространство 
было сепарабельным, необходимо и достаточно, чтобы в нем 
существовала не более чем счетная база открытых множеств. 

Доказательство. См., например: [3; 4]. 
Определение 1.1.19. Пусть (Х,d) — метрическое простран-

ство. Множество А  Х называется нигде не плотным, если 

AInt . 

З а д а н и е . Если множество А нигде не плотно, то A\X  
плотно в Х.  Доказать самостоятельно. 

Пр и м е р . Всякая прямая на плоскости R2 в эвклидовой 
метрике является нигде не плотным подмножеством, так как 

если L  R2 прямая, то LL  и на плоскости R2 не существует 
открытого множества, содержащегося в L. 

На рисунке 1.4 иллюстрируется еще одно эквивалентное 
определение нигде не плотного подмножества [4; 5]. 

Определение 1.1.20. Пусть (Х,d) — метрическое простран-
ство, множество А  Х называется нигде не плотным, если во 
всяком открытом множестве U  X существует открытое 
множество V  U, такое, что VA = . 
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Рис. 1.4 
 
З а д а н и е . Доказать эквивалентность определений 1.1.19 

и 1.1.20. 
Пр и м е р . Подмножество целых чисел Z  является нигде не 

плотным подмножеством в R, наделенным эвклидовой метрикой. 
Пусть (Х,d) — метрическое пространство и Y  Х. Обо-

значим 
YYY dd


  сужение отображения d на YY. 

Лемма 1.1.6. Yd — метрика на Y. 

Доказательство следует из того, что YY ХХ. 
Определение 1.1.21. Пара (Y,dY) называется подпростран-

ством метрического пространства (Х,d). 
Здесь следует иметь в виду, что если, например, Х = R2, а 

Y  R2 — это прямоугольник, то шар в Y может отличаться от 
шара в R2. 
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Здесь Br(a) — шар радиуса r на эвклидовой плоскости R2 c 
центром в точке а, являющейся вершиной прямоугольника Y, 
а его заштрихованная часть — шар в прямоугольнике Y, с тем 
же центром и того же радиуса! 

Теорема 1.1.4. Пусть (Y,dY) — подпространство метриче-
ского пространства (Х,d). Для того чтобы V  Y было открыто 
в Y, необходимо и достаточно, чтобы существовало открытое 
в Х множество U, такое, что U  Y = V. 

Доказательство. Пусть U открыто в Х и U  Y = V. Возь-
мем хV. Так как U открыто в Х, то существует шар Br(х) в Х, 
такой, что Br(х) U и Br(х)  Y — шар в Y. Тогда по построению 
Br(х)  Y U  Y, следовательно, множество V вместе с каждой 
своей точкой содержит шар в подпространстве Y с центром в 
этой точке. Таким образом, V — открытое в Y множество. 

Пусть V открыто в Y. Тогда для всякой точки хV сущест-
вует шар   xB xr  в Х (r зависит от х), такой, что шар 

   VYxB xr  . Возьмем 
Vx

)x(r )x(BU


 — открытое в Х мно-

жество. Очевидно,   
Bx

xr YxBV


 = U Y. Таким образом, 

V = U  Y, причем U открыто в Х. 
Теорема доказана. 
З а м е ч а н и е . Эта теорема является «ключом» к понима-

нию «устройства» подпространств метрических пространств. 
Из этой теоремы легко получить: 
Следствие 1. Для того чтобы V  Y было окрестностью 

точки х Y, необходимо и достаточно, чтобы V = U  Y, где 
U — окрестность точки х в Х. 

Доказательство. Самостоятельно. 
Следствие 2. Для того чтобы всякое открытое подмноже-

ство в Y было открыто в X, необходимо и достаточно, чтобы  
Y было открыто в X. 

Доказательство. Пусть всякое открытое в Y подмножество 
открыто в Х. Так как Y открыто в Y, то Y открыто в Х. Пусть  
Y открыто в Х и V открыто в Y, тогда существует W, открытое 
в Х, такое, что V = Y  W. Таким образом, V открыто в Х. 
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Следствие доказано. 
Так как замкнутое множество — это дополнение открыто-

го множества, то, используя свойство «операции» дополнение, 
можно легко доказать следующую теорему. 

Теорема 1.1.5. Пусть (Y,dY) — подпространство метриче-
ского пространства (Х,d). Для того чтобы В  Y было замкну-
то в Y, необходимо и достаточно, чтобы существовало замк-
нутое в Х множество А, такое, что А  Y = В. 

Доказательство. Если В — замкнуто в Y, то Y\В — от-
крыто в Y. Тогда по теореме 1.1.4 существует U, открытое в Х, 
такое, что Y  U = Y\В. Но соотношение Y  U = Y\В легко 
преобразуется в эквивалентное соотношение В = Y  (Х\U) 
(доказать самостоятельно). Полагаем А = Х\U. 

Если В = А  Y, где А — замкнуто в Х, то существует от-
крытое в Х подмножество U, такое, что А = Х\U. Тогда В =  
= Y  (Х\U), поэтому Y\В = Y  U открыто в Y. Таким обра-
зом, В — замкнутое подмножество в Y. 

Теорема доказана. 
Утверждение, аналогичное следствию 2, для замкнутых 

подмножеств сформулировать и доказать самостоятельно. 
Как «ведут» себя замыкания в подпространствах? 
Теорема 1.1.6. Пусть (Y,dY) — подпространство метриче-

ского пространства (Х,d) и В  Y, тогда замыкание множест- 

ва В в подпространстве Y равно YВ , где В  — замыкание 
множества В в пространстве Х. 

Доказательство. Обозначим YB замыкание множества В 

в подпространстве Y. Пусть х  YB и V — ее окрестность в Y, 
тогда B  V   и существует окрестность U точки х в Х, та-

кая, что V = Y  U. Тогда х  В Y. 

Наоборот, если х  В Y, то существует окрестность U 
точки х в Х, такая, что B  U  , кроме того, Y  U — окре-

стность точки х в Y. Тогда х  YB . 
Теорема доказана. 
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§ 2. Топологии и метрики 

 
Определение 1.2.1. Пусть Х — множество. Множество его 

подмножеств  называется топологией на Х, если: 

1)   и Х ; 

2) всякое объединение множеств из  принадлежит ; 

3) пересечение конечного числа элементов из  принадле-

жит . 

Определение 1.2.2. Множество Х, на котором задана топо-
логия , называется топологическим пространством и обозна-

чается (Х, ). 

Когда мы рассматривали метрические пространства, то, 
используя метрику, мы выделили в нем множество подмно-
жеств, которое обозначили , а его элементы назвали откры-

тыми множествами. Свойства элементов , согласно теоре- 

ме 1.1.1, совпадают со свойствами множества подмножеств  

из определения 1.2.1. Поэтому  определяет в метрическом 

пространстве топологию! Но эта топология задается метрикой, 
поэтому является вторичным понятием. Если (Х,d) — метри-
ческое пространство, то оно естественным образом определяет 
топологическое пространство (Х,)! Очень важным долгое 

время в топологии был вопрос: при каких условиях топология 
на Х определяется некоторой метрикой на Х? Это так назы-
ваемая проблема метризации. 

Некоторые объекты в метрических пространствах задают-
ся индуцированной топологией, следовательно, они могут 
быть определены в топологических пространствах! 

Понятия окрестностей, открытых и замкнутых множеств, 
замыкания, границы, плотных подмножеств, связности, непре-
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рывности и некоторые другие определяются только топологи-
ей рассматриваемого метрического пространства. 

Определение 1.2.3. Пусть (Х, ) — топологическое про-

странство. Подмножество U  X называется открытым тогда и 
только тогда, когда U  . 

Определение 1.2.4. Пусть (Х, )  — топологическое про-

странство. Подмножество V  X называется замкнутым, если 
Х\V открыто. 

Определение 1.2.5. Пусть (Х, )  — топологическое про-

странство. Подмножество U  X называется окрестностью 
точки хХ, если существует открытое множество W, содер-
жащее точку х, такое, что W  U. 

Аналогично § 1 в топологических пространствах опреде-
ляются внутренние точки, точки прикосновения, внешние точ-
ки, граничные точки, плотные подмножества. 

Определение 1.2.6. Пусть (Х1,1) и (Х2, 2) — топологиче-

ские пространства. Отображение f: X1X2 называется непре-
рывным в точке аХ1, если для всякой окрестности V точки 
f(a) в Х2 существует такая окрестность U точки а в Х1, что  
f(U) V. 

Если отображение f: X1X2 непрерывно в каждой точке 
топологического пространства X1, то оно называется непре-
рывным. 

Определение 1.2.7. Пусть (Х1,1) и (Х2, 2) — топологиче-

ские пространства. Отображение f: X1X2 называется непре-
рывным в точке аХ1, если для всякой окрестности V точки 
f(a) ее полный прообраз f–1(V) является окрестностью точки а. 

З а д а н и е . Доказать эквивалентность этих определений. 
Определение 1.2.8. Пусть (Х1,d1) и (Х2,d2) — метрические 

пространства. Отображение f: X1X2 называется непрерыв-
ным в точке аХ1, если для всякого  > 0 существует  > 0 та-
кие, что если d1(a,x) < , то d2(f(a),f(x)) < . 
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З а м е ч а н и е . Очевидно, что определение 1.2.8 эквива-
лентно тому, что для всякого шара   afB  в Х2 существует 

шар  аB в Х1, такой, что f (  аB )   afB . 
Лемма 1.2.1. Пусть (Х1,d1) и (Х2,d2) — метрические про-

странства, тогда определения 1.2.6 и 1.2.8 эквивалентны. 
Доказательство. Пусть а  Х1. Условие d1(a,x) <  экви-

валентно х  аB  (здесь  аB  — шар в Х1), а условие 

d2(f(a),f(x)) <  эквивалентно f(x)   afB  (здесь   afB  — 
шар в Х2). 

Окрестность точки в метрическом пространстве — это 
множество, содержащее шар с центром в этой точке. 

Лемма 1.2.1  доказана. 
Теорема 1.2.1. Пусть (Х1,1) и (Х2, 2) — топологические 

пространства и отображение f: X1X2, тогда эквивалентны 
следующие условия: 

1) отображение f непрерывно; 
2) прообраз всякого открытого в Х2 множества относи-

тельно отображения f  открыт в Х1; 
3) прообраз всякого замкнутого в Х2 множества относи-

тельно отображения f  замкнут в Х1; 

4) для всякого W  X1,    WfWf  . 
Доказательство. Смотри работу [7]. 
Лемма 1.2.2. Пусть (Х1,1), (Х2, 2), (Х3,3) — топологиче-

ские пространства f: X1X2, g: X2X3 — непрерывные ото-
бражения, тогда отображение 31 XX:fg   непрерывно. 

Доказательство. Пусть W открыто в Х3, тогда  Wg 1 от-
крыто в Х2, так как g непрерывно. Но отображение f также не-

прерывно, поэтому       WfgWgf 111     открыто в Х1. 
Лемма 1.2.2 доказана. 
Определение 1.2.9. Пусть (Х1,1) и (Х2, 2) — топологиче-

ские пространства. Отображение f: X1X2 называется гомео-
морфизмом, если: 
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1) отображение f — биекция; 
2) отображения f и f–1 непрерывны; 
 

З а м е ч а н и е . Гомеоморфизм — топологическое понятие. 
Свойства топологических пространств, сохраняющихся при 
гомеоморфизмах, называются топологическими. 

Пр и м е р ы :   
1. Отображение  1,1R:f   такое, что для всякого хR 

 
x1

x
xf


  является биекцией, обратное отображение — 

 
x1

x
xf 1


 , очевидно, оба эти отображения непрерывны. 

Здесь R и  1,1  рассматриваются в эвклидовой метрике. 

Таким образом, отображение  1,1R:f   — гомеоморфизм 

и как топологические пространства R и  1,1  неразличимы. 

2. Пусть Х = (0,+)  R в эвклидовой метрике и XX:f   

такое, что для всякого хХ  
x

1
xf  . Очевидно, что это ото-

бражение гомеоморфизм. Если А = (0,1)  Х, то А — ограни-
ченное множество, но f(A) = (1,+) не является ограниченным 
множеством. Таким образом, ограниченность — не топологи-
ческое свойство. Имеются и другие свойства метрических про-
странств, не сохраняющихся при гомеоморфизмах. 

Определение 1.2.10. Пусть (Х1,d1) и (Х2,d2) — метрические 
пространства. Биективное отображение f: X1X2 называется изо-
метрией, если для любых (x,y)X1  X1        y,xdyf,xfd 12  . 

З а м е ч а н и е . Очевидно, изометрия — метрическое поня-
тие. Свойства метрических пространств, сохраняющихся при 
изометриях, называются метрическими. 

Если f — изометрия, то f 
–1: X2X1 — биекция. Тогда для 

любых (u,v)X2 X2 имеем 

              v,udyff,uffdvf,ufd 2
11

2
11

1   . 
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Таким образом, в этом случае отображение f 
–1: X2X1 — изо-

метрия! 
Кроме того, изометрия метрических пространств (Х1,d1) и 

(Х2,d2) является гомеоморфизмом топологических пространств 

(Х1, 1) и (Х2, 2). Доказать самостоятельно. 

Пусть на множестве Х заданы две метрики — d1 и d2, тогда 

они определяют на множестве Х две топологии — 1 и 2, ко-

торые в общем случае  различны. Но как известно [7], любые 
две нормы на Rn определяют одну и ту же топологию! 

Обозначим Х1 множество Х, наделенное метрикой d1, а Х2 

множество Х, наделенное метрикой d2. 
Определение 1.2.11. Если тождественное отображение 

21X XX:1   является гомеоморфизмом, то метрики d1 и d2 на-

зываются топологически эквивалентными. 
З а м е ч а н и е . Важно то, что тождественное отображение 

— гомеоморфизм, а не только непрерывное отображение (при-
вести пример, когда тождественное отображение только не-
прерывно). Если метрики d1 и d2 топологически эквивалентны, то 

1 = 2. Отношение топологической эквивалентности является 

отношением эквивалентности (проверить самостоятельно). 
В метрических пространствах существует очень важный 

класс отображений (см. также равномерные структуры). 
Определение 1.2.12. Пусть (Х1,d1) и (Х2,d2) — метрические 

пространства. Отображение f: X1X2 называется равномерно 
непрерывным, если для всякого  > 0 существует  > 0 такое, 
что если d1(x,y) < , то d2(f(x),f(у)) < . 

Легко заметить, что если f: X1X2 — равномерно непре-
рывное отображение, то оно непрерывно (доказать самостоя-
тельно). Но не наоборот. Например, если f: RR такое, что для 
всех хR f(x) = x2 и на R задана эвклидова метрика, то для фик-
сированного h > 0 будем иметь     hx2hxfhxf    эту 

величину нельзя сделать меньше заданного  > 0, для всех х  R. 
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Пр и м е р . Пусть (Х,d) — метрическое пространство и А  
Х. В § 1 мы определили отображение RX:DA   такое, что для 

всякого х Х  xDA = d(x,A) — расстояние от точки х до мно-

жества А. Пусть x,y X и zA, тогда    z,ydy,xd)z,x(d  ,  
переходя к инфимуму, получим 

      yDy,xdxD AA   и      xDy,xdyD AA  . 

Поэтому 

      y,xdyDxD AA  . 

Пусть  > 0, тогда, взяв  = , получим, что если  y,xd < , то 

   yDxD AA   < . Таким образом, отображение RX:DA   

равномерно непрерывно. 
Во множестве всех метрик на множестве Х существует 

еще одно важное отношение эквивалентности. 
Определение 1.2.13. Метрики d1 и d2 на множестве Х назы-

ваются эквивалентными, если существуют положительные 
числа  > 0 и  > 0, такие, что для всяких x,y  X 

      y,xdy,xdy,xd 121  . 

Очевидно, что это отношение эквивалентности (проверить 
самостоятельно). 

Лемма 1.2.3. Если на множестве Х метрики d1 и d2 эквива-
лентны, то они топологически эквивалентны. 

Доказательство. Пусть  > 0, возьмем 



 , тогда если 

  y,xd1 , то   y,xd2 . Таким образом, тождественное 

отображение 21X XX:1   равномерно непрерывно. Анало-

гично, если   y,xd2 , то   y,xd1 , что означает равно-

мерную непрерывность отображения 12X XX:1  . Но равно-
мерно непрерывное непрерывно, поэтому тождественное ото-
бражение 21X XX:1  — гомеоморфизм. 

Лемма 1.2.3 доказана. 
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Пусть даны два метрических пространства (Х1,d1) и (Х2,d2). 
Рассмотрим декартово произведение 21 ХХ  . Можно ли есте-
ственным образом наделить его метрикой, используя метрики 
сомножителей? 

З а д а н и е . Доказать, что  y,xd  — метрики на 21 ХХ  : 

       222111 y,xd,y,xdmaxy,xd  ; 

      222111 y,xdy,xdy,xd  ; 

        2222
2

111 y,xdy,xdy,xd  . 

Здесь  21 x,xx   и  21 y,yy  . 
Поэтому естественным образом наделить произведение 

21 ХХ   метрикой, используя метрики сомножителей, нельзя! 
Очевидно, что эти метрики эквивалентны, так как 

     222111 y,xd,y,xdmax    222111 y,xdy,xd    

 и      222111 y,xdy,xd     222111 y,xd,y,xdmax2 . 

Оставшееся соотношение получить самостоятельно. 
В дальнейшем, если мы имеем два метрических пространст-

ва (Х1,d1) и (Х2,d2), будем считать, что декартово произведение 

21 ХХ   наделено метрикой       222111 y,xd,y,xdmaxy,xd  , 

которую будем называть «стандартной» метрикой произведе-
ния метрических пространств. Таким образом, мы имеем но-
вое метрическое пространство ( 21 ХХ  , d) — произведение 

метрических пространств (Х1,d1) и (Х2,d2). Конструкцию про-
изведения метрических пространств легко распространить на 
произведение конечного числа метрических пространств. 

Такой выбор метрики на 21 ХХ   конечно субъективен, но 
есть некоторые свойства этой метрики, которые делают ее бо-
лее «удобной». 

Лемма 1.2.4. Пусть даны метрические пространства (Х1,d1) 
и (Х2,d2). Тогда 
      2r1rr aBaBaB  , 
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где  aBr — шар в ( 21 ХХ  , d),   2121 XXa,aa  ,  1r aB — 

шар в (Х1,d1) и  2r aB  — шар в (Х2,d2). 

Доказательство. Пусть х = (х1, х2)  aBr , тогда   rx,ad 111   

и   rx,ad 222  , то есть х = (х1, х2)    2r1r aBaB  . Аналогич-

но в обратную сторону. 
Лемма 1.2.4 доказана. 
З а д а н и е . Что представляет собой шар в R2 R2 в метри-

ке произведения эвклидовых метрик на R2. 
Используя лемму 1.2.4, легко получить следующую лемму. 
Лемма 1.2.5. Пусть U1 открыто в X1, U2 открыто в X2, то-

гда их произведение U1  U2  открыто в 21 ХХ  . 

Доказательство. Самостоятельно.  
З а м е ч а н и е . Пусть U  21 ХХ  . По определению мно-

жество U открыто в 21 ХХ  , если для всякого х = (х1, х2)  U 

существует шар   UхBr  , то есть     UхBхB 2r1r  . Но 

шар  1r хB  — окрестность точки х1 в Х1, аналогично шар 

 2r хB  — окрестность точки х2 в Х2. С учетом этого можно 

сказать, что множество U является открытым в 21 ХХ  , если 

для всякого х = (х1, х2)  U существуют окрестности U1 точки 
х1 и  U2 точки х2, такие, что UUU 21  . 

Лемма 1.2.6. Пусть А1  X1 и А2  X2, тогда 

2121 AAAA  . 

Доказательство. Самостоятельно. 
Следствие. Для того чтобы А1  А2  21 ХХ   было замк-

нуто, необходимо и достаточно, чтобы А1 было замкнуто в Х1 
и А2 было замкнуто в Х2. 

Если мы имеем произведение 21 ХХ  , то возникают кано-

нические (естественные) проекции 1211 XXX:   и  

2212 XXX:  , такие, что для всех (х1, х2) 21 ХХ  , 

  1211 xx,x   и   2212 xx,x  . 



§ 2. Топологии и метрики 

 31

Лемма 1.2.7. Отображения 1211 XXX:   и 

2212 XXX:    непрерывны. 
Доказательство. Для отображения 1 пусть U1 открыто в 

Х1, тогда   211
1

1 XUU  , но Х2 открыто в Х2, поэтому 

21 XU   открыто в 21 ХХ  . 
Лемма 1.2.7 доказана. 
Следующая теорема описывает одно «характеристическое» 

свойство топологии произведения метрических пространств. 
Теорема 1.2.2. Пусть даны метрические пространства (Y, ), 

( 21 ХХ  , d). Для того чтобы отображение 21 XXY:f  было 
непрерывно необходимо и достаточно, чтобы были непрерыв-
ны, отображения 11 XY:f    и 22 XY:f   . 

Доказательство. Имеем  21 f,ff  , где ff 11   и 

ff 22  . Если отображение 21 XXY:f   непрерывно, то 

непрерывны отображения ff 11  и ff 22  , так как 1 и 
2 непрерывны и композиция непрерывных отображений не-
прерывна. 

Очевидно (cм. выше), что для непрерывности отображения 

21 XXY:f   достаточно доказать открытость множеств ви-

да  21
1 UUf  , где U1 открыто в Х1 и U2 открыто в Х2. Имеем  

     2
1

21
1

121
1 UfUfUUf   . Если 1f  и 2f  непрерывны, то 

 1
1

1 Uf   и  2
1

2 Uf  открыты в Y, это означает, что   21
1 UUf    

открыто в Y. 
Теорема 1.2.2 доказана. 
Теорема 1.2.3. Пусть даны метрические пространства (Y, ), 

( 21 ХХ  , d). Для того чтобы отображение 21 XXY:f   бы-
ло равномерно непрерывным, необходимо и достаточно, что-
бы были равномерно непрерывны отображения 11 XY:f    

и 22 XY:f   . 
Доказательство. Самостоятельно. 
По определению метрика на множестве Х — это отобра-

жение RXX:d  . Таким образом, мы здесь имеем отобра-
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жение произведения метрических пространств XX , каждое 
из которых наделено метрикой d в метрическое пространство 
R, наделенное эвклидовой метрикой. 

Лемма 1.2.8. Отображение RXX:d  равномерно не-
прерывно. 

Доказательство. Используя неравенство треугольника, 
получим 
        v,udy,xdv,udy,xd  , 

но метрика    v,udy,xd   на XX  эквивалентна стандарт-
ной метрике на XX . 

Лемма 1.2.8 доказана. 
Следствие 1.2.1. Отображение RXX:d   непрерывно. 
Следствие 1.2.2. Отображения 1211 XXX:   и 

2212 XXX:   равномерно непрерывны. 
Доказательство. Тождественное отображение 

 2121XX ХXXX:id
21

  

непрерывно, поэтому отображения 
21 XX1 id    и  

21 XX2 id    

равномерно непрерывны (теорема 1.1.3). Но очевидно, что 

 1XX1 21
id    и 

1 22 X X 2π id π  . 

Следствие доказано. 
 
 

§ 3. Некоторые типы метрических  
 и топологических пространств 

 
1. Последовательности 

 
Важную роль в изучении метрических пространств играют 

последовательности. 
Определение 1.3.1. Пусть (Х,d) — метрическое простран-

ство. Отображение XN:  , где N — множество натураль-
ных чисел, называется последовательностью в Х. 
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З а м е ч а н и е .  nx
def

n  . Отображение определяет гра-
фик, и наоборот. Поэтому последовательность мы будем так-
же обозначать   Nnnx  . 

Определение 1.3.2. Пусть   Nnnx   — последовательность 

в (Х,d). Точка a  X называется пределом последовательности, 
если для всякого  > 0 существует n0, такое, что для всех n > n0 
имеет место   nx,ad . 

З а м е ч а н и е . Легко видеть, что условие определения 
1.3.2 эквивалентно   0x,adlim n

n



, где  nx,ad  — числовая 

последовательность). Кроме того, очевидна эквивалентность 
   aBxx,ad nn  , поэтому можно дать следующее оп-

ределение: 
Определение 1.3.3. Пусть   Nnnx   — последовательность 

в (Х,d). Точка a  X называется пределом последовательности, 
если для всякого шара  aB  существует n0, такое, что для 

всех n > n0 имеет место  aBxn  . 

З а м е ч а н и е . Так как U(a)  Х — окрестность точки а и 
существует шар    aUaB  , являющейся окрестностью точ-
ки а, то очевидно следующее определение. 

Определение 1.3.4. Пусть   Nnnx   — последовательность 

в (Х,d). Точка a  X называется пределом последовательности, 
если для всякой окрестности U(a) точки а существует n0, та-
кое, что для всех n > n0 имеет место  aUxn  . 

Определение 1.3.5. Пусть   Nnnx   — последовательность 

в (Х,d). a  X называется пределом последовательности, если 
во всякой окрестности U(a) точки а содержатся все члены 
последовательности, за исключением их конечного числа. 

З а д а н и е . Доказать, что это определение эквивалентно 
определению 1.3.4. 

Определение 1.3.6. Последовательность   Nnnx   в (Х,d), 
которая имеет предел, называется сходящейся. В противном 
случае она называется расходящейся. 
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З а м е ч а н и е . Если последовательность   Nnnx   в (Х,d) 

имеет предел а, то это обозначается n
n

xlimа


 , или  nlimа
n




. 

Определение 1.3.7. Последовательность XN:   в (Х,d) 

называется ограниченной последовательностью, если ограни-
ченно множество X)N(  . 

Лемма 1.3.1. Всякая сходящаяся последовательность в 
метрическом пространстве является ограниченной. 

Доказательство. Пусть последовательность XN:   в 

(Х,d), является сходящейся. Тогда для всякого  > 0 существует 
n0, такое, что для всех n > n0 имеет место    )n(,ad . Пред-

ставим множество N в виде N = N1N2, где N1 = {1,2,…,n0},  
N2 = N\N1. Тогда )N()N()N( 21  . Множество )N( 1  

ограниченно, так как оно конечное множество. Множество 
)a(B)N( 2  , поэтому также ограниченно, значит, множест-

во )N(  ограниченно. 

Лемма 1.3.1 доказана. 
Лемма 1.3.2 (свойство Хаусдорфа). Пусть даны метриче-

ское пространство (Х,d) и две его различные точки а1 и а2, то-
гда существуют их окрестности U(a1) и U(a2), такие, что 

 )a(U  )U(a 21 . 

Доказательство. Так как а1  а2, то 0r)a,a(d 21  . Возь-

мем шары  12r aB и  22r aB , тогда      22r12r aBaB . 

Лемма 1.3.2 доказана. 
Определение 1.3.8. Топологическое пространство называ-

ется хаусдорфовым (отделимым), если для любых двух его 
различных точек существуют их непересекающиеся окрест-
ности. 

З а м е ч а н и е . Для топологических пространств свойство 
Хаусдорфа может выполнять, но может и не выполняться. 

Лемма 1.3.3. В метрическом пространстве всякая сходя-
щаяся последовательность имеет единственный предел. 
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Доказательство. Пусть последовательность   Nnnx   в 
(Х,d) имеет два предела, которые мы обозначим а1 и а2. Возь-
мем их непересекающиеся окрестности U(a1) и U(a2), тогда в 
окрестности U(a1) должны содержаться все члены последова-
тельности   Nnnx  , за исключением их конечного числа, по-
этому в окрестности U(a2) может содержаться лишь конечное 
число членов последовательности   Nnnx  , что противоречит 
определению предела последовательности. 

Лемма 1.3.3 доказана. 
Определение 1.3.9. Пусть XN:   — последователь-

ность в (Х,d) и NN:  — возрастающее отображение, тогда 
отображение XN:   называется подпоследовательно-
стью последовательности XN:  . 

З а м е ч а н и е . Обычно   knk  , поэтому подпоследова-

тельность обозначают  Nknk
x  . 

Очевидно, если аxlim n
n




, то и аxlim
kn

k



 для любой 

подпоследовательности   Nknk
x   последовательности 

  Nnnx  , но не наоборот! 
Пусть даны метрические пространства (Х1,d1) и (Х2,d2) и  

сходящаяся последовательность 1XN:  , причем известно, 

что  nlimа
n




. Кроме того, дано непрерывное отображение 

21 XX:f  . Kак действуют непрерывные отображения на 
сходящиеся последовательности? 

Очевидно, что 2XN:f   — последовательность в Х2. 
Будет ли она сходящейся, а если это так, то каков ее предел? 

Лемма 1.3.4. Пусть даны метрические пространства (Х1,d1) 
и (Х2,d2) и сходящаяся последовательность 1XN:  , причем 

известно, что   аnlim
n




. Кроме того, дано непрерывное ото-

бражение 21 XX:f  . Тогда 2XN:f   — сходящаяся по-

следовательность в Х2 и     аfnflim
n




. 
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Доказательство. Пусть V(f(a)) — окрестность точки f(a), 
так как отображение f непрерывно, то существует окрестность 
U(a) точки а, такая, что      afVaUf  . По условию 

  аnlim
n




, тогда существует n0, такое, что для всех n > n0 

   aUn  , то есть для всех таких n      afVnf  , что 

означает     аfnflim
n




. 

Лемма 1.3.4 доказана. 
З а м е ч а н и е . Таким образом, непрерывные отображения 

переводят сходящиеся последовательности в сходящиеся по-
следовательности. Кроме того, доказано важное свойство: 

        )xlim(fafnflimxflim n
nn

n
n 

 . 

Таким образом, для непрерывных отображений «опера-
ции» f и lim перестановочны (по условиям леммы 1.3.4). 

В метрических пространствах при помощи последователь-
ностей легко описать замыкание множества. 

Лемма 1.3.5. Пусть (Х,d) — метрическое пространство,  

А  Х и (А  ). Для того чтобы Aa , необходимо и доста-
точно, чтобы во множестве А существовала последователь-
ность   Nnnx  , такая, что n

n
xlimа


 . 

Доказательство. Пусть Aa , тогда для всякого шара 
)a(B n1  в Х имеем A)a(B n1 . Построим последователь-

ность   Nnnx   в А, где xn — произвольный элемент из 

A)a(B n1  . По определению предела последовательности 

n
n

xlimа


 . 

Пусть   Nnnx   — последовательность в А, если n
n

xlimа


 , 

то какую бы окрестность U(a) точки а мы бы не взяли, она пе-

ресечется с множеством А. Таким образом, Aa . 
Лемма 1.3.5 доказана. 
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2. Полные метрические пространства 
 
Определение 1.3.10. Пусть (Х,d) — метрическое простран-

ство. Последовательность   Nnnx   в Х называется последова-
тельностью Коши (фундаментальной последовательностью), 
если для всякого  > 0 существует такой номер n0, что для всех 
m > n0 и n > n0 d(xm, xn) < . 

З а м е ч а н и е . Здесь важно то, что свойство последователь-
ности «быть фундаментальной» не является топологическим! 

Пр и м е р . Пусть Х = (0, +) наделено эвклидовой метри-
кой, тогда последовательность   Nnn n1x   — последова-
тельность Коши в Х. Отображение XX:f   такое, что для 
всякого х Х   x1xf  , т. е. очевидно, что это отображение 

— гомеоморфизм. Последовательность   Nnn n)x(f   не яв-

ляется последовательностью Коши в Х! 
Лемма 1.3.6. Всякая сходящаяся последовательность в 

метрическом пространстве — последовательность Коши. 
Доказательство. Пусть последовательность   Nnnx   в 

(Х,d) сходящаяся и n
n

xlimа


 . Возьмем  > 0. Используя нера-

венство треугольника, имеем 

 )a,x(d)a,x(d)x,x(d nmnm  . 

Существует номер n0, такой, что для всех m > n0 и n > n0 
будем иметь 2)a,x(d m   и 2)a,x(d n  , но тогда d(xm, xn) < , 
это означает, что последовательность   Nnnx   в Х — последо-
вательность Коши. 

Лемма 1.3.6 доказана. 
З а м е ч а н и е . Последовательность Коши не обязательно 

сходящаяся. Последовательность   Nnn n1x   является по-

следовательностью Коши во множестве Х = (0, +), наделен-
ном эвклидовой метрикой, но не является сходящейся в Х. Так 
как в R 0n1lim

n



, но 0  Х. 
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Определение 1.3.11. Метрическое пространство называет-
ся полным метрическим пространством, если всякая последо-
вательность Коши из элементов этого пространства в нем схо-
дящаяся. 

З а м е ч а н и е . В полных метрических пространствах для 
определения сходимости последовательности достаточно изу-
чать саму последовательность, в то время как в общих метри-
ческих пространствах в этом случае требуется привлекать 
объект, внешний по отношению к самой последовательности, 
сам предел. 

Полные метрические пространства обладают и многими 
другими замечательными свойствами. 

Пр и м е р . Множество действительных чисел в эвклидо-
вой метрике является полным метрическим пространством. 

Объединяя лемму 1.3.5 и определение 1.3.10, получим кри-
терий Коши. 

Критерий Коши. Для того чтобы последовательность в пол-
ном метрическом пространстве была сходящейся, необходимо и 
достаточно, чтобы она была последовательностью Коши. 

Лемма 1.3.7. Всякая последовательность Коши — ограни-
ченная последовательность. 

Доказательство. Пусть XN:   в (Х,d) — последователь-

ность Коши, тогда для всякого  > 0 существует n0, такое, что для 
всех n > n0 и всех m > n0 имеет место    )n(),m(d . Предста-

вим множество N в виде N = N1N2, где N1 =  {1,2,…,n0},  
N2 = N\N1. Тогда )N()N()N( 21  . Множество )N( 1  ог-

раниченно, так как оно конечное. Множество )N( 2 имеет ко-

нечный диаметр, так как    )N( 2 , поэтому также ограни-

ченно, значит, множество )N(  ограниченно. 
Лемма 1.3.7 доказана. 
Определение 1.3.12. Пусть (Х,d) — метрическое простран-

ство. Подмножество А  Х называется полным метрическим 
подпространством, если как подпространство (в индуцированной 
метрике) оно является полным метрическим пространством. 
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З а м е ч а н и е . Множество Q  R, где R наделено эвклидовой 
метрикой, не является полным метрическим подпространством. 

Лемма 1.3.8. Пусть (Х,d) — метрическое пространство и  
А  Х — полное подпространство в Х, тогда А замкнуто в Х. 

Доказательство. Пусть Aa , тогда существует последова-
тельность   Nnnx   в A такая, что n

n
xlimа


 (лемма 1.3.5), но А 

— полное метрическое пространство, поэтому Аa . Тогда 

AA  , следовательно, А  замкнуто. 
Лемма 1.3.8 доказана. 
Лемма 1.3.9. Всякое замкнутое подмножество полного 

метрического пространства — полное метрическое подпро-
странство. 

Доказательство. Пусть (Х,d) — полное метрическое про-
странство и А  Х — его замкнутое подмножество. Возьмем 
последовательность Коши   Nnnx   в А, тогда она является по-
следовательностью Коши и в Х, следовательно, сходится в Х. 
Таким образом, если n

n
xlimа


 , то Аa , то есть А  замкнуто. 

Лемма 1.3.9 доказана. 
Пусть на множестве Х заданы две метрики — d1 и d2. Обо-

значим X1 метрическое пространство (Х,d1), а X2 метрическое 
пространство (Х,d2). Кроме того, пусть — множество всех 

последовательностей Коши в Х1, 2 — множество всех по-

следовательностей Коши в Х2. 
Лемма 1.3.10. Если метрики d1 и d2 эквивалентны, то 

=2. 

Доказательство. Если метрики d1 и d2 на множестве Х эк-
вивалентны, тогда существуют  > 0 и  > 0, такие, что 

      y,xdy,xdy,xd 121   

для всех x,yX. Пусть последовательность   Nnnx  , то-

гда имеем    nm1nm2 x,xdx,xd   для любых xm,xnX. Возь-

мем  > 0, так как   Nnnx   — последовательность Коши в Х1, 
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то существует n0, такое, что для всех n > n0 и всех m > n0 имеет 
место   nm1 x,xd . Тогда   nm2 x,xd  для всех n > n0 и 

всех m > n0. Таким образом,   Nnnx  2,   2. 

Обратно — доказать самостоятельно. 
Лемма 1.3.10 доказана. 
Последовательность может иметь сходящуюся подпосле-

довательность, но не быть сходящейся. Например, последова-

тельность    Nn
n1   в R (в эвклидовой метрике). 

Лемма 1.3.11. Если последовательность Коши имеет схо-
дящуюся подпоследовательность, то сама последовательность 
сходится. 

Доказательство. Самостоятельно [3]. 
Лемма 1.3.12. Пусть (Х1,d1) и (Х2,d2) — полные метриче-

ские пространства, тогда их произведение ),ХХ( 21  — пол-

ное метрическое пространство. 
Доказательство. Пусть    Nnnn y,x   — последователь-

ность Коши в 21 ХХ  . Тогда для всякого  > 0 существует n0, 

такое, что для всех n > n0 и всех m > n0 имеет место 
      nnmm y,x,y,x . Таким образом, для этих же n, m бу-

дем иметь   nm1 x,xd  и   nm2 y,yd . Это означает, что  

последовательности   Nnnx   в Х1 и   Nnny   в Х2 являются по-

следовательностями Коши. По условию (Х1,d1) и (Х2,d2) — 
полные метрические пространства, тогда последовательности 
  Nnnx   в Х1 и   Nnny   в Х2 являются сходящимися. Пусть 

n
n

1 xlimа


 и n
n

2 ylimа


 , тогда если  > 0, то существует n0, та-

кое, что для всех n > n0 будем иметь   n11 x,ad  и 

  n22 y,ad . Тогда для всех таких n       nn21 y,x,a,a , 

это означает, что последовательность    Nnnn y,x   сходится. 

Кроме того,   )a,a(y,xlim 21nn
n




. 

Лемма 1.3.12 доказана. 
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Определение 1.3.13. Пусть (Х,d) — метрическое простран-
ство. Отображение XX:f  называется сжимающим, если 
существует 0 < r < 1, такое, что для любых x,y  X 

 d(f(x),f(y))  r  d(x,y). 

З а м е ч а н и е . Легко увидеть, что всякое сжимающее ото-
бражение является равномерно непрерывным и, следователь-
но, непрерывным. 

Определение 1.3.14. Точка a  X называется неподвижной 
точкой отображения XX:f  , если f(a) = a. 

Теорема 1.3.1. Всякое сжимающее отображение полного 
метрического пространства в себя имеет единственную непод-
вижную точку. 

Доказательство. Пусть (Х,d) — полное метрическое про-
странство и XX:f   — сжимающее отображение. Возьмем 
произвольную точку x0  X (обратить внимание на то, что 
точка произвольная). Образуем последовательность 

 0 1 0 2 1 k 1 kx , x f (x ),x f (x ),..., x f (x )...    

Используя неравенство треугольника, показать (само-
стоятельно), что полученная последовательность является 
последовательностью Коши и, следовательно, сходится.  

Обозначим k
k

xlima


 . Так как отображение XX:f   

сжимающее, то оно непрерывно, поэтому 

 )a(f))x(lim(f)x(flimxlima k
k

k
k

1k
k




. 

Таким образом, точка a действительно является неподвиж-
ной точкой отображения XX:f  . 

Докажем единственность полученной неподвижной точки. 
Если неподвижных точек две —  a1, a2 (a1  a2), то 

 )a,a(d)a,a(d))a(f),a(f(d 212121   —  

противоречие. 
Теорема 1.3.1 доказана [3; 4]. 
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3. Компакты 
 
Определение 1.3.15. Семейство 

IiiU


 подмножеств мно-

жества Х называется покрытием множества Х, если 


Ii

iUХ


 . Покрытие топологического пространства называ-

ется открытым (замкнутым) покрытием, если для всякого iI Ui 
является его открытым (замкнутым) подмножеством. По-
крытие топологического пространства называется конечным, 
если множество I — конечное множество. 

Определение 1.3.16. Пусть  
IiiU


 — покрытие топологи-

ческого пространства (Х, ) и H  I. Подсемейство 

 
HiiU


называется подпокрытием покрытия  

IiiU


, если оно 

является покрытием Х. Подпокрытие называется конечным, 
если оно конечное покрытие. 

Определение 1.3.17. Топологическое пространство называ-
ется компактным топологическим пространством (компак-
том), если оно хаусдорфово и всякое его открытое покрытие 
имеет конечное подпокрытие. 

Пр и м е р . Отрезок [a,b]  R в эвклидовой топологии яв-
ляется компактным топологическим пространством. 

Пр и м е р . Для вещественной прямой R в эвклидовой топо-
логии возьмем  n,nUn  . Тогда семейство 

NnnU


 — по-

крытие топологического пространства R, но это семейство не 
содержит конечного подсемейства, являющего покрытием R. 
Таким образом, множество действительных чисел в эвклидовой 
топологии не есть компактное топологическое пространство. 

Определение 1.3.18. Топологическое пространство называ-
ется компактным топологическим пространством (компак-
том), если оно хаусдорфово и всякое семейство его замкнутых 
подмножеств, имеющих пустое пересечение, содержит конеч-
ное подсемейство с пустым пересечением. 
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Эквивалентность этих определений легко следует из 
свойств взаимности. 

Лемма 1.3.13. Пусть V1V2…V n… — убывающая по-
следовательность замкнутых подмножеств компактного топо-
логического пространства, имеющая пустое пересечение, то-
гда существует элемент этой последовательности Vp, такой,  
что Vp = . 

Доказательство. В семействе   NiiV  содержится конеч-
ное подсемейство, имеющее пустое пересечение, тогда один 
из элементов этого подсемейства пуст. 

Лемма 1.3.13 доказана. 
З а м е ч а н и е . Для вещественной прямой R в эвклидовой 

топологии возьмем   ,nVn . Тогда V1,V2,…,Vn… — убы-
вающая последовательность непустых замкнутых подмно-
жеств, пересечение которых пусто, но не один из элементов 
этого семейства не пуст. Множество действительных чисел в 
эвклидовой топологии не является компактным топологиче-
ским пространством. 

Лемма 1.3.14. Пусть V1V2…V n… — убывающая по-
следовательность замкнутых подмножеств компактного топо-
логического пространства, ни одно из которых не пусто, тогда 
пересечение всех элементов этой последовательности не пусто. 

Доказательство. Если бы это пересечение было пусто, то 
из леммы 1.3.13 следует, что один из элементов этой последо-
вательности был бы пуст, но это противоречит условию. 

Лемма 1.3.14 доказана. 
Определение 1.3.19. Пусть   Nnnx   — последовательность 

в топологическом пространстве (Х, ). Точка bХ называется 

точкой сгущения (предельной точкой) последовательности, 
если для всякой окрестности U точки b существует бесконеч-
ное подмножество P  N такое, что Uxn   для всякого nP. 

З а м е ч а н и е . Если точка bХ является точкой сгущения 
последовательности, то в последовательности существует под-
последовательность, сходящаяся к b. Кроме того, очевидно, 
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что если последовательность   Nnnx  в топологическом про-

странстве сходится и n
n

xlima


 , то a — единственная точка  

сгущения последовательности   Nnnx  . 
Теорема 1.3.2. Всякая последовательность в компактном 

топологическом пространстве имеет предельную точку. 
Доказательство. Пусть  Nnnx   — последовательность в 

компактном топологическом пространстве (Х, ). Рассмотрим 

множества  ...x,...,x,xA pn1nnn  , где nN. Тогда, переходя к 

замыканиям, получим убывающую последовательность непус-
тых замкнутых подмножеств компактного топологического 

пространства (Х, ): ...A...AA n21  . По лемме 1.3.14 

существует b  


1n

nA , следовательно, всякая окрестность V 

точки b пересекается со всеми множествами Аn. Таким обра-
зом, в окрестности V содержится бесконечное число членов 
последовательности   Nnnx  , что означает b — предельная 
точка этой последовательности. 

Теорема 1.3.2 доказана. 
Определение 1.3.20. Подмножество топологического про-

странства называется компактом, если в индуцированной то-
пологии оно является компактным топологическим простран-
ством. 

З а м е ч а н и е . Очевидно, что если (Х,) — топологиче-

ское пространство и А  Х, то А будет компактом в Х, если 
всякое его покрытие открытыми в Х множествами содержит 
конечное подпокрытие, что следует из определения индуциро-
ванной топологии. 

Теорема 1.3.3. Всякое замкнутое подмножество компакт-
ного топологического пространства является компактом. 

Доказательство. Пусть (Х,) — компактное топологиче-

ское пространство и А  Х его замкнутое подмножество. 
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Возьмем семейство   IiiV   замкнутых в А подмножеств с пус-

тым пересечением. Так как А замкнуто в Х, то   IiiV   — се-
мейство замкнутых в Х подмножеств с пустым пересечением, 
но Х — компакт, поэтому это семейство содержит конечное 
подсемейство с пустым пересечением. 

Теорема 1.3.3 доказана. 
Теорема 1.3.4. Всякое компактное подмножество тополо-

гического пространства является замкнутым подмножеством. 
Доказательство. Пусть (Х,) — топологическое про-

странство и K  Х — его компактное подмножество. Пока-
жем, что Х\K открыто в Х. Если y  Х\K, то yK. По условию 
Х — хаусдорфово, поэтому для всякого хK существуют от-
крытые в Х окрестности U(x) (точки х) и V(x) (точки y), кото-
рые не пересекаются. Семейство    XxxU   является откры-
тым покрытием компакта K, поэтому существует конечное 
число элементов этого покрытия —      p21 xU,...,xU,xU , по-

крывающих K. Им соответствуют окрестности 
     p21 xV,...,xV,xV  точки y, причем      ii xVxU  для  

i = 1,2,…,p. Тогда открытое множество  
p

1i
ixVV



  не пере-

секается со множеством K, то есть V  Х\K, следовательно, 
множество Х\K  открыто. 

Теорема 1.3.4 доказана. 
Теорема 1.3.5. Пусть (Х1, 1) и (Х2, 2) — топологические 

пространства, причем Х2 — хаусдорфово. А  Х1 — компакт, 

21 XX:f  — непрерывное отображение. Тогда f(A)  X2 — 
компакт в Х2. 

Доказательство. Обозначим B = f(A). Пусть   IiiV   — от-

крытое покрытие множества B. Тогда    Iii
1 Vf 
  — открытое 

покрытие множества А. Так как А — компакт, то существует 

конечное множество P  I, такое, что    Pii
1 Vf 
  — покрытие 
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множества А. Но тогда B  
Pi

iV


, таким образом, множества 

B — компакт. 
Теорема 1.3.5 доказана. 
Теорема 1.3.6. Пусть (Х1, 1) и (Х2, 2) — топологические 

пространства, причем пространство Х1 — компактно, а Х2 — 
хаусдорфово и 21 XX:f   — непрерывное инъективное ото-

бражение. Тогда отображение  11 XfX:f   — гомеомор-
физм. 

Доказательство. Отображение  11 XfX:f   — непре-

рывная биекция. Так как Х1 компакт, то  1Xf  — компакт в Х2 
и, следовательно, является замкнутым подмножеством в Х2. 
Пусть V замкнуто в Х1, тогда V — компакт в Х1, следователь-
но,    1XfVf   — компакт в Х2, являющийся в нем замкну-

тым подмножеством, тогда      1XfVfVf   замкнуто в 

 1Xf . Таким образом, отображение   11
1 XXf:f  непре-

рывно, а отображение  11 XfX:f   — гомеоморфизм. 
Теорема 1.3.6 доказана. 
Определение 1.3.21. Метрическое пространство называет-

ся компактным пространством, если оно является (в индуци-
рованной топологии) компактным топологическим простран-
ством. 

З а м е ч а н и е . Подмножество метрического пространства 
называется компактом, если оно компактное топологическое 
подпространство. 

Теорема 1.3.7. Всякое компактное метрическое простран-
ство является полным метрическим пространством. 

Доказательство. Если   Nnnx   — последовательность Ко-
ши в компактном метрическом пространстве (Х, d), то она имеет 
предельную точку, но это означает, что последовательность 
  Nnnx   имеет сходящуюся подпоследовательность. Последова-
тельность Коши, имеющая сходящуюся подпоследовательность, 
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сама является сходящейся. Таким образом, метрическое про-
странство (Х, d) — полное метрическое пространство. 

Теорема 1.3.7 доказана. 
З а м е ч а н и е . Из теоремы 1.3.2 следует, что всякая по-

следовательность в компактном метрическом пространстве 
имеет точку сгущения. 

Определение 1.3.22. Метрическое пространство называет-
ся вполне ограниченным, если его можно покрыть конечным 
числом множеств диаметра меньше , где  — любое положи-
тельное число. 

З а м е ч а н и е . Всякое вполне ограниченное метрическое 
пространство является ограниченным как объединение конеч-
ного числа ограниченных множеств, но не наоборот: если мет-
рическое пространство ограниченно, то это не означает что 
оно вполне ограниченно! 

Пр и м е р . Рассмотрим метрическое пространство (R2,d), 
где d — эвклидова метрика. Перейдем от этой метрики к мет-
рике d  на R2, определенной следующим образом: для любых x,y 

 R2   y,xd,1min)y,x(d  , тогда )d,R( 2   — ограниченное 

метрическое пространство, но оно не является вполне ограни-
ченным! 

Теорема 1.3.8. Пусть (Х, d) — метрическое пространство, 
тогда эквивалентны следующие условия: 

1) Х — компактное пространство; 
2) всякая бесконечная последовательность в Х имеет схо-

дящуюся подпоследовательность; 
3) Х является полным и вполне ограниченным метриче-

ским пространством. 
Доказательство. См. главу 2 и работу [8]. 
З а м е ч а н и е . Теорема, аналогичная этой для подмно-

жеств в Rn, более проста. 
Теорема 1.3.9. Пусть (Rn, d) — метрическое пространство 

(d — эвклидова метрика) и А  Rn, тогда эквивалентны сле-
дующие условия: 
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1) А — компакт; 
2) всякая последовательность в А имеет сходящуюся в А 

подпоследовательность; 
3) множество А замкнуто и ограниченно. 
Доказательство. См. работу [7]. 
Из теоремы 1.3.5 следуют: 
Следствие 1. Пусть (Х, d) — метрическое пространство и 

А — компакт в Х. Отображение RX:f  непрерывно, тогда 
f(A) — компакт в R. 

Следствие 2. Пусть (Х, d) — метрическое пространство и 
А — компакт в Х. Отображение RX:f  непрерывно, тогда 
существуют точки a,b A, такие, что 

    xfinfaf
Ax

 и    xfsupbf
Ax

 . 

Доказательство. f(A)  R замкнуто и ограниченно. Тогда 
существуют inf f(A) и sup f(A) и они принадлежат множеству 
f(A). 

Следствие 2 доказано. 
Лемма 1.3.15. Пусть (Х, d) — метрическое пространство и 

А — компакт в Х. Тогда для всякой открытой окрестности U 
множества А существует вещественное число r > 0, такое, что 

U)A(Vr  . 

Доказательство. Имеем A  U, тогда A  X\U = . 
Функция RА:f   такая, что для всякого х  А f(x) = d(x, X\U) 
непрерывна и положительна. Тогда существует точка х0А, 
такая, что f(x0) =  U\X,xdinf

Ax
, обозначим f(x0) = r > 0. По оп-

ределению   rA,xd:Xx)A(Vr  , тогда U)A(Vr  . 
Лемма 1.3.15 доказана. 
З а м е ч а н и е . В этом случае говорят, что семейство 

  0rr )A(V  образует фундаментальную систему окрестностей 

множества А, а семейство   Nnn1 )a(B   — фундаментальную 

систему окрестностей точки a (конечно, в метрическом про-
странстве). 
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4. Связность 
 
Определение 1.3.23. Топологическое пространство (Х,) 

называется связным, если его нельзя представить в виде 
BAX  , где A и B открыты (замкнуты) в Х, непусты и 
BA . Множества А и B (указанные выше) называются 

разбиением пространство (Х, ). 

З а м е ч а н и е . Очевидно, что это определение эквива-
лентно: топологическое пространство (Х,) называется связ-

ным, если единственными «одновременно» открытыми и 
замкнутыми подмножествами в Х являются Х и . 

Определение 1.3.24. Подмножество топологического про-
странства называется связным, если оно как подпространство 
связное. 

З а м е ч а н и е . Связное топологическое пространство — 
это пространство, которое можно рассматривать как нечто 
«целое». 

Лемма 1.3.16. Пусть X — топологическое пространство и 
Y X — его подпространство. Если существуют непустые 

подмножества А и B в Y такие, что AB = Y, BA и 

AB . Тогда подпространство Y несвязно. 

Доказательство. Если BA , то AA  , поэтому А  

замкнуто в Y,  если AB , то B замкнуто в Y. Таким об-
разом, Y несвязно. Если Y несвязно и A, B — его разбиение, 

то BA и AB . 
Лемма 1.3.16 доказана. 
Теорема 1.3.10. Для того чтобы Х  R (R в эвклидовой то-

пологии) было связно, необходимо и достаточно, чтобы Х бы-
ло открытым, замкнутым или полуоткрытым интервалом. 

Доказательство. Пусть Х — связное множество и a, bX. 
Покажем, что тогда отрезок [a,b]  X. Если бы это было не 
так, то существовала бы точка сХ. Рассмотрим открытые в R 
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множества (–, с) и (с, +). Тогда открытые в Х множества  
(–, с)  Х и Х  (с, +) образуют разбиение Х на два непус-
тых открытых подмножества, объединение которых есть Х, 
что противоречит связности множества Х. Покажем, что из 
этого следует, что Х — промежуток. Обозначим m = inf X и  
M = sup X. Пусть сХ, если m , то для всякого х < c су-
ществует dХ, такое, что d < x. Таким образом, по доказанно-
му выше xХ, следовательно,   Xc,  . Если m — конечное 
число и m < c, то для всякого x, такого, что m < x < c, сущест-
вует yX, такая, что m < y < x и   Xc,m  . Аналогично для М. 

Таким образом, множество Х содержит промежуток с на-
чалом в точке m и концом в точке M. 
Пусть Х — промежуток с началом в точке m и концом в точке 
M. Пусть существуют открытые в Х множества U и V,  такие, 
что X = U  V и U  V= , то, взяв xU и yV (x < y), рас-
смотрим отрезок [x,y]. Обозначим  = sup U[x,y]. Если U, 
то  < y, поэтому существует отрезок [,+]  [x,y], что про-
тиворечит определению числа . Если V, то x < , поэтому 
существует отрезок [– ,]  [x,y]. Мы также получим проти-
воречие. Таким образом, число  не может принадлежать ни U 
ни V, что противоречит [x,y]  X. Таким образом, множество 
Х связно. 

Теорема 1.3.10 доказана. 
Cледствие. Топологическое пространство R связно. 
Лемма 1.3.17. Пусть Х — топологическое пространство, 

если А — его связное подмножество, то всякое подмножество 

В  Х такое, что А В A связно. 
Доказательство. Пусть U,V — открытые в В множества, 

такие, что В = UV и UV=. По условию А плотно в В, по-
этому АU   и АV  , и эти множества открыты в А. 
Кроме того, (АU)(АV) = A и (АU)  (АV) = , но это 
противоречит связности множества А. 

Лемма 1.3.17 доказана. 



§ 3. Некоторые типы метрических  и топологических пространств 

 51

З а д а н и е . Доказать (используя лемму 1.3.16), что если А 

связно в топологическом пространстве Х, тоA связно. 
Лемма 1.3.18. Пусть в топологическом пространстве Х да-

но семейство его связных подмножеств, имеющих непустое 
пересечение, тогда их объединение связно.  

Доказательство. Пусть   IiiA   — семейство связных под-

множеств в Х, таких, что существует 
Ii

iAa


 . Пусть 


Ii

iAA


  и А = UV, причем U,V открыты в А и UV=. Не 

ограничивая общности, будем считать, что аU. По условию 
существует 

0i
A такое, что 

0i
AV . Так как 

0i
AU , 

то 
0i

AV и 
0i

AU  не пусты и открыты в 
0i

A ,  кроме того, их 

объединение есть 
0i

A ,  а их пересечение пусто, что противоре-

чит связности 
0i

A . 

Лемма 1.3.18 доказана. 
Пусть Х — топологическое пространство и аХ. Обозна-

чим С(а) объединение всех связных подмножеств пространст-
ва Х, содержащих точку а. По лемме 1.3.17 множество С(а) 
связно и является наибольшим (объяснить почему наиболь-
шим) связным множеством, содержащим точку а. 

Определение 1.3.25. Множество С(а) называется компо-
нентой связности точки аХ. 

З а д а н и е . Доказать, если bС(а), то С(b) = С(а), если b 
С(а), то С(b)  С(а) = . 

Лемма 1.3.19. Пусть Х — топологическое пространство и 
аХ, тогда компонента связности С(а) замкнута. 

Доказательство. Из леммы 1.3.16 следует, что C(a)  связ-

но, а из определения 1.3.25 следует, что  aCC(a)  . 

Лемма 1.3.19 доказана. 
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Определение 1.3.26. Пусть А  Х, где Х — топологическое 
пространство. Компоненты связности точек подпространства 
А называются компонентами связности множества А. 

Определение 1.3.27. Пусть Х — топологическое простран-
ство. Подпространство А  Х называется вполне несвязным, 
если всякая его компонента связности состоит из одной точки. 

Пр и м е р ы .  Всякое дискретное пространство вполне не-
связно, но не наоборот. Вполне несвязно и Qp в метрике …p  [1]! 

Множество рациональных (иррациональных) чисел вполне 
несвязно, так как всякий промежуток   Rb,a  (ab) содержит 

как рациональные, так и иррациональные числа. 
Определение 1.3.28. Топологическое пространство называ-

ется локально связным, если всякая его точка имеет фунда-
ментальную систему связных окрестностей. 

З а м е ч а н и е .  Топологическое пространство может быть 
связным, но не локально связным. Привести пример. 

Топологическое пространство может быть локально связ-
ным но неcвязным. Привести пример. 

З а д а н и е .  Доказать, что множество R, наделенное эвк-
лидовой топологией, связно (использовать теорему 1.3.10). 

Лемма 1.3.20. Топологическое пространство локально 
связно тогда и только тогда, когда у всякого открытого в нем 
подмножества его компоненты связности открыты. 

Доказательство. Пусть каждая точка топологического про-
странства Х имеет фундаментальную систему связных окрестно-
стей. Возьмем открытое в Х множество U, и пусть С(а) (аU) — 
его компонента связности. Тогда для всякого хС(а) существует 
ее связная окрестность VU, и поэтому VC(a). Таким образом, 
множество С(а) вместе со всякой своей точкой содержит и неко-
торую ее окрестность, поэтому С(а) открыто в U. 

Пусть U — открытая в Х окрестность точки аХ. По усло-
вию его компоненты связности открыты в U, то есть С(а) — 
открытая связная окрестность точки аХ и С(а)  U. 

Лемма 1.3.20 доказана. 
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З а м е ч а н и е . Если Х — локально связное топологическое 
пространство, оно само является открытым, поэтому каждая его 
компонента связности — открыто-замкнутое подмножество в 
Х. Таким образом, компоненты связности локально связного 
топологического пространства образуют его разбиение. 

Лемма 1.3.21. Всякое открытое подмножество в R являет-
ся объединением не более чем счетного множества открытых в 
R попарно не пересекающихся промежутков. 

Доказательство. Пусть U открыто в R, тогда (см. выше) 
компонентами связности множества U являются открытые 
промежутки. Так, множество рациональных чисел Q счетное и 
оно плотно в R, то каждая компонента связности множества U 
пересекается со множеством Q. Отображение, которое каждо-
му числу из QU ставит в соответствие компоненту связности 
множества U, содержащую эту точку, очевидно, является 
сюръективным, поэтому множество компонент связности 
множества U счетное. 

Лемма 1.3.21 доказана. 
Лемма 1.3.22. Пусть А — подмножество топологического 

пространства Х и S — такое связное подмножество в Х, что 
множества SA  и   SA\X   не пусты, тогда GrAS  . 

Доказательство. Если GrA = A\XA  = , то множест-

ва A и A\X  образуют разбиение пространства Х и являются 

замкнутыми в Х. Тогда множества SA и SA\X   образует 
разбиение множества S, что противоречит его связности. 

Лемма 1.3.22 доказана. 
Следствие. Если топологическое пространство Х связно и А 

— его подмножество, такое, что А   и А  Х, тогда Gr A  . 
Доказательство. Самостоятельно [8]. 
Теорема 1.3.11. Пусть YX:f   — непрерывное отображе-

ние, где X,Y — топологические пространства. Тогда f(X)  Y  
связно. 

Доказательство. Пусть U,V — открытые в Y подмноже-
ства, такие, что f (X)  U и f (X)  V — разбиение подпро-
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странства f (X). Так как отображение f непрерывно, то  Uf 1  

и  Vf 1  открыты в Х и образуют разбиение пространства Х, 
что противоречит его связности. 

Теорема 1.3.11 доказана. 
З а м е ч а н и е . Если YX:f   — гомеоморфизм, то X 

связно эквивалентно, а Y— связно. 
Теорема 1.3.12. Пусть RX:f   — непрерывное отобра-

жение, причем X — связное топологическое пространство и а1, 
а2f(X) (а1< а2). Тогда для любого числа a  R, удовлетворяю-
щего условию а1< a< а2, существует такое xX, что f(x) = a. 

Доказательство. Так как f — непрерывное отображение, 
то f(X) — связное подмножество в R, и потому [a1, a2]  f(X). 

Теорема 1.3.11 доказана. 
Теорема 1.3.13. Пусть Х,Y — связные топологические 

пространства, тогда ХY в топологии произведения является 
связным топологическим пространством. 

Доказательство. Фиксируем точку (a0,b0)ХY и пусть 
(a,b) ХY. Тогда (a0,b) X{b}{a0}Y. Кроме того, подпро-
странства X{b} и {a0}Y связны, так как Х гомеоморфно 
X{b} и Y гомеоморфно {a0}Y, поэтому (лемма 1.3.18) под-
пространство X{b}{a0}Y является компонентой связности 
точки (a0,b) и содержит точку (a,b). То есть С((a0,b) = ХY. 

Теорема 1.3.13 доказана. 
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§ 1. Канторово множество 
 
 
«Первоначально построенные для чисто абстрактных це-

лей, канторовы множества впоследствии превратились в почти 
идеальные модели для огромного числа явлений реального 
мира — от странных аттракторов в нелинейных динамических 
системах до распределения галактик во Вселенной» [28]. 

 

«Это замечательное множество (канторово множество) 
представляет интерес значительно больший, чем интерес от-
дельного примера. Оно имеет большое принципиальное зна-
чение и постоянно применяется всюду, где вообще применя-
ется теория множеств» [5]. 

 
Рассмотрим отрезок [0,1] и обозначим его С0. Удалим из от-

резка [0,1] интервал (1/3,2/3) и обозначим С1 = [0,1/3][2/3,1]. 
Из каждого отрезков [0,1/3], [2/3,1] удалим их «средние тре-
ти». Обозначим С2 = [0,1/9][2/9,1/3][2/3,7/9][8/9,1] и так 
далее. 

Таким образом, мы получим последовательность вложен-
ных друг в друга непустых компактов — C0  C1  C2 …, то-

гда по лемме 1.3.14 множество C = 


0k
kC  является непустым 

замкнутым подмножеством в R и, следовательно, в C0. Мно-
жество С0\C — открытое в C множество, представляющее со-
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бой объединение всех удаленных «средних третей», аналогич-
но множество R\ C — объединение всех удаленных «средних 

третей» и открытого множества )0,(  ),1(  . 

На рисунке 2.1 изображено несколько этапов построения 
Канторова множества. 

 

 
 

Рис. 2.1 
 

Определение 2.1.1. Множество C называется Канторовым  

(Канторовой пылью, Канторовым троичным множеством, 
Канторовым дисконтинуум). 

Лемма 2.1.1. Множество C является компактом в R. 

Доказательство. Следует из леммы 1.3.14. 
Определение 2.1.2. Множество Х  R называется совер-

шенным, если оно замкнуто и не содержит изолированных точек. 
З а м е ч а н и е . Точка хХ называется изолированной, если 

существует ее окрестность U(x) в R, которая не содержит дру-
гих точек множества Х, отличных от х. 

Лемма 2.1.2. Множество C является совершенным. 

Доказательство. Множество C — компакт, следователь-

но, замкнуто в R. Пусть х C и пусть U(x) = (а,b). Покажем, 

что U(x)  C  {x}. Так как х C, то х Сn для всякого n  N. 

По построению множество Сn состоит из 2
n замкнутых отрез-

ков k
nI  (каждый из которых имеет длину 1/3n) и k = 1,2,…,2n. 

Обозначим  xIk
n  тот из отрезков k

nI , который содержит точку 

х. Выберем n N таким, что  xIk
n  (а,b). Пусть хn  х — один 



§ 1. Канторово множество 

 57

из концов отрезка  xIk
n , тогда хn  (а,b). Таким образом, для 

всякого х C всякая ее окрестность U(x) имеет точки множе-

ства C, отличные от самой точки х. Во множестве C нет  изо-

лированных точек. 
З а м е ч а н и е . Поэтому Канторово множество иногда на-

зывают Канторовым совершенным множеством. 
Лемма 2.1.2 доказана. 
Лемма 2.1.3. Множество C является вполне несвязным. 

Доказательство. Связные множества в R — это проме-
жутки (см. теорему 1.3.10). Пусть х C и x   ,  (промежу-

ток). Возьмем  xIk
n  (см. выше), так, чтобы  xIk

n   , . По 

построению множества C при переходе от Сn к Сn+1 из отрезка 

 xIk
n  удаляется «средняя треть», тогда х принадлежит одному 

из оставшихся отрезков. Удаленную треть обозначим Jn. По 
построению Jn   , . Поэтому промежуток  ,  не содер-

жится в C. Следовательно, компонента связности точки х — 

одноточечное множество {x}. Таким образом, множество C — 

вполне несвязное. 
Лемма 2.1.3 доказана. 
З а м е ч а н и е . Следует иметь в виду, что если x,yC и x  

y, то существует Сn, такое, что точка x принадлежит 1k
nI , а точ-

ка y принадлежит 2k
nI (k1≠ k2). 

Лемма 2.1.4. Множество C является нигде неплотным в R. 

Доказательство. Так как CC  , то нужно доказать, что 
множество R\ C плотно в R. Пусть х C и )x(B =   x,x  

— ее окрестность в R. Возьмем nN таким, что 1/3n < . Так 

как х C, то хСn, поэтому  xIx k
n . По построению 

 xIk
n   x,x  при переходе от Сn к Сn+1 из отрезка  xIk

n  
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удаляется «средняя треть», которая содержится во множестве 
R\ C. Поэтому   x,x  R\ C  , это означает, что мно-

жество R\ C плотно в R. 

Лемма 2.1.4 доказана. 
З а м е ч а н и е . Из изложенного выше следует, что Канто-

рово множество не содержит внутри себя интервала! 
Существует одно (очень полезное) описание Канторова 

множества. Для этого используем обозначения, отличные от 
введенных выше: 

 I0 = [0,1/3]; I1 = [2/3,1]; I00 = [0,1/9]; I01 =[2/9,3/9]; I10 = [6/9,7/9]; 
 I11 = [8/9,1]… 

Кроме того, обозначим полученные при построении Кан-
торова множества «средние трети» следующим образом:  

 J = (1/3,2/3), J0 = (1/9,2/9), J1 = (7/9,8/9), J00 = (1/27,2/27),  
 J01 = (7/27,8/27), J10 = (19/27,20/27), J11 = (25/27,26/27)… 

Таким образом, мы получили в отрезке [0,1] множества двух 
видов: 

k21 i,...,i,iI  и 
1 2 ki ,i ,...,iJ ,  где  i1, i2,…, ik = 0,1. 

Если х C, то существуют единственный 
1i

I ,  такой, что 

х
1i

I ,  и единственный 
1 2i ,iI ,  такой, что х

1 2i ,iI ,  и так далее. 

Так мы получили убывающую последовательность отрезков: 

 
1i

I 
21 i,iI …

k21 i,...,i,iI …  

Поставим точке х  C в соответствие последовательность 

индексов  i1, i2,…, ik,  определяемых последовательностью 

1i
I 

21 i,iI …
k21 i,...,i,iI … (каждое ik равно 0 или 1), — эта по-

следовательность точкой х определяется однозначно. 
И наоборот, каждой последовательности индексов i1, i2,…, 

ik… соответствует убывающая последовательность вида 

1i
I 

21 i,iI …
k21 i,...,i,iI …, которая определяет единственную 

точку х, принадлежащую всем членам последовательности 

1i
I 

21 i,iI …
k21 i,...,i,iI … [5]. 
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Таким образом, мы получили биекцию Канторова множе-
ства C на множество бесконечных двоичных дробей: 

 0,i1, i2,.., ik… (каждое ik равно 0 или 1). 
Лемма 2.1.5. Канторово множество имеет мощность кон-

тинуума. 
Доказательство. Мощность множества бесконечных дво-

ичных дробей — континуум [5]. 
Лемма 2.1.5 доказана. 
Это утверждение можно доказать, используя диагональ-

ный процесс, следующим образом. Предположим, что множе-
ство C счетное, и занумеруем (используя троичные дроби) его 

элементы: 
x1 = 0,a11a12…a1k… 
x2 = 0,a21a22…a2k… 
……………………… 
xn = 0,an1an2…ank… 
………………………. 

 

Рассмотрим точку z = 0,z1 z2… zn… Здесь z1 = {0,2}\ a11,  
z2 = {0,2}\ a22,…, zn = {0,2}\ ann… По построению z  C, но не 

совпадает ни с одной из точек x1, x2, …, xn… Таким образом, 
множество C несчетно. 

Очевидно, две различные «средние трети» не пересекают-
ся. Множество, состоящее из всех удаленных «средних тре-
тей», естественным образом упорядочено: если J  и J   (обо-
значение временное) — две удаленных «средних трети», то мы 
будем считать, что J  < J   тогда и только тогда, когда для вся-
кого х1 J и для всякого Jx2  , x1 < x2. 

Лемма 2.1.6. Во множестве всех «средних третей» нет ни 
наименьшего, ни наибольшего элемента. 

Доказательство. Пусть интервал (,) является наимень-
шей «средней третью» (относительно введенного выше поряд-
ка), тогда  C. Покажем, что  ≠ 0. Если бы  = 0, тогда 

наименьшей «средней третью» была бы интервал (0,) и точка 
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0 было бы изолированной точкой Канторова множества, что 
невозможно. Поэтому найдется точка C, такая, что  < . 

Так как множество C нигде не плотно в R, то (, )  R\ C ≠ . 

Пусть х  (, )  R\ C, тогда эта точка принадлежит некото-

рой «средней трети» J  (, ). Тогда J < (,). 
Лемма 2.1.6 доказана. 
Лемма 2.1.7. Пусть JиJ   — «средние трети», тогда суще-

ствует «средняя треть» J, такая, что JJJ   (или JJJ  ). 

Доказательство. Пусть ),(J  , ),(J    и JJ  . 

Тогда   . Так как множество C нигде не плотно в R, то 

существует х  ,  R\ C. Поэтому существует «средняя 

треть» J, такая, что J    , . Тогда JJJ  . 

Лемма 2.1.7 доказана. 
Определение 2.1.3. Биекция YX:f  , где X,Y — упоря-

доченные множества, называется изоморфизмом, если x1 x2 
эквивалентно f(x1)  f(x2). 

Лемма 2.1.8. Упорядоченное (относительно определенного 
выше порядка) множество всех удаленных «средних третей» 
изоморфно множеству всех двоично-рациональных чисел ин-
тервала (0,1). 

Доказательство. «Средней трети» 
k21 i,...,i,iJ  поставим в со-

ответствие конечную двоичную дробь: 0,i1,i2,…, ik,1 = 

= 
k1k

k
2
21

2

1

2

i
...

2

i

2

i
  . 

Тогда J получает номер 1/2, J0 — номер 1/4, J1 — номер  
3/4, J00 — номер 1/8, J01 — номер 3/8, J10 — номер 5/8, J11 — 
номер 7/8 … 

Построенное отображение, очевидно, является биекцией, 
сохраняющей порядок. Например, J0 < J10 и 1/4 < 5/8. В общем 
случае доказать самостоятельно [5]. 

Лемма 2.1.8 доказана. 
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Так как C = 


0k
kC , то точки Канторова множества разде-

ляются на два класса: в первый класс отнесем все точки, яв-
ляющиеся концевыми точками отрезков 

k21 i,...,i,iI , — такие точ-

ки образуют счетное множество. Во второй класс — все ос-
тальные точки, они образуют несчетное множество. 

Если точка х — левый конец некоторой «средней трети» 

k21 i,...,i,iJ , то х  0,i,...,i,i k21
I , х  1,0,i,...,i,i k21

I , х  1,1,0,i,...,i,i k21
I  … 

А если точка х — правый конец «средней трети» 
k21 i,...,i,iJ , 

то х  1,i,...,i,i k21
I , х  0,1,i,...,i,i k21

I , х  0,0,1,i,...,i,i k21
I … 

Последовательность индексов у таких отрезков стабилизи-
руется. Полученные точки являются точками первого класса, 
им соответствуют двоично-рациональные числа. 

Оставшиеся точки Канторова множества обладают тем 
свойством, что если х — такая точка, то существует последо-
вательность 
 

1i
I 

21 i,iI …
k21 i,...,i,iI …, 

такая, что точка х принадлежит всем отрезкам этой последова-
тельности, причем последовательность индексов у таких от-
резков не стабилизируется. 

Канторово множество может быть определено при помощи 
троичных дробей как множество всех тех точек отрезка [0,1] в 
разложении которых в троичную дробь есть только цифры 0 и  
2 [5;10]. Точки «средней трети» (1/3, 2/3) характеризуются тем, 
что первый знак их разложения в троичную дробь — 1. Следует 
учитывать, что концы этого интервала имеют по два разложе-
ния: 0,10000… = 0,02222… и 0,20000 = 0,12222…, но среди этих 
разложений есть разложения, в которых присутствуют только 
цифры 0 и 2! Аналогично для концевых точек других «средних 
третей» — в их разложениях в троичную дробь имеются разло-
жения, не содержащие цифры 1. Таким образом, 

 C =








 


1n
nn

n 2,0a,
3

a
x:]1,0[x . 
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З а м е ч а н и е . Поэтому Канторово множество C иногда 

называют Канторовым троичным множеством. 
З а д а н и е . Доказать, что 1/4C, но 1/5C. Будет ли 1/4 

граничной точкой некоторого из отрезков k
nI . 

З а д а н и е . Верно ли утверждение 2/2 C. 

Теорема А. [–1,1]  C–C. 

Доказательство. Имеем C = 


0k
kC  и C0  C1  C2 … 

Пусть C0  C0 = [0,1]  [0,1]  C1  C1  C2  C2  …, тогда 







0k
kk CC  C  C. Рассмотрим квадрат K0 = [0,1]  [0,1] и 

прямую, определяемую уравнением y = x + a, где а  [–1,1].  
Множество C1  C1 состоит из четырех квадратов K1,K2,K3,K4, 
расположенных в углах квадрата K0. Прямая y = x + a пересе-
чет по крайней мере один из этих квадратов (объяснить поче-
му). Возьмем один из таких квадратов, который обозначим 

1i
K . Множество C2  C2 состоит из шестнадцати равных квад-

ратов. Выберем из них четыре квадрата, расположенных в уг-
лах квадрата 

1i
K . Прямая y = x + a также пересечет один из 

них, обозначим его 
21iiK  (i1,i2 = 1,2,3,4), и т. д. Получим после-

довательность вложенных друг в друга компактов (квадратов): 
...K...KKK

k21211 i...iiiii0  , каждый из которых пересе-

кает прямая y = x + a. Тогда по лемме 1.3.14 и так как диаметр 

k21 i...iiK  стремится к нулю, существует единственная точка  

(x0, y0)  


 1
i...ii

ki,...,2i,1i

k21
K . По построению x0Ck и y0 Ck для вся-

кого k = 0,1,2,…, то есть x0  C и y0  C, кроме того,  

a = y0 – x0 (рис. 2.2) [9]. 
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Рис. 2.2 
 
Теорема А доказана. 
З а д а н и е . Доказать, что [–1,1]  C- C. 

З а м е ч а н и е . Среди вещественных чисел есть те, которые 

называются числа Лиувилля. Пусть L  R — множество всех чи-

сел Лиувилля [13]. Для чисел Лиувилля справедливо L – L = R. 

Кроме того, L — множество второй категории, а C — м-

ножество первой категории [13]. 
В теореме А было использовано множество C  C. 

З а д а н и е . Построить СИФ для C  C, доказать, что dimT C  C 

= 0 и dimH C  C = 2 log2/log3. 

З а д а н и е . Доказать, что множество C  C является впол-

не несвязным. 
Лемма 2.1.9. Лебегова мера Канторова множества C равна 

нулю. 
Доказательство. Так как C  Сn для всякого натурального 

n, то 2n отрезков k
nI (k = 1,2,..,2n), входящих в Сn, образуют по-
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крытие, которое назовем покрытием n-го ранга множества C. 

Обозначим k
nI  длину отрезка k

nI , тогда 
n

k
n

3

1
I  . Отрезков по-

крытия n-го ранга 2n, тогда их общая длина равна 
n

3

2








. Так 

как 0
3

2
lim

n

n










, то мера Лебега Канторова множества C рав-

на нулю! 
Лемма 2.1.9 доказана. 
З а м е ч а н и е . Мощность Канторова множества C — кон-

тинуум! 
Множество C (Канторово множество) является одним из 

первых примеров фрактала, широко используемого в самых 
разных разделах современной математики. 

Одна из важнейших характеристик топологического про-
странства — его размерность [12]. Размерности топологиче-
ского пространства определяются разными способами, неко-
торые из них мы рассмотрим в дальнейшем. 

Обозначим dimTX топологическую размерность (малая ин-
дуктивная размерность или размерность по покрытиям) сепа-
рабельного метрического пространства Х. 

Лемма2.1.10. dimT C = 0. 

Доказательство. См. далее. 
Для характеристики фракталов широко применяется размер-

ность Хаусдорфа. Хаусдорфову размерность топологического Х 
(ее еще называют фрактальной размерностью) обозначают  
dimH X. Существуют и другие фрактальные размерности. 

Лемма 2.1.11. dimH C = log2/log3. 

Доказательство. См. далее. 
Размерность Хаусдорфа может быть не целой! Следует об-

ратить внимание на то, что dimT C < dimH C. 
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Одно из определений фрактала: это непустое компакт-
ное подмножество А сепарабельного метрического про-
странства Х, для которого dimT А < dimH А. 

Рассмотрим два отображения: ]1,0[]1,0[:f1  , такое, что 

f1(x) = x/3 для всякого х[0,1], и ]1,0[]1,0[:f2  , такое, что 

f2(x) = x/3 + 2/3, для всякого х[0,1]. Используя эти отображе-

ния, получим отображение F: K [0,1] K [0,1] (здесь K[0,1] 

множество всех компактных подмножеств множества [0,1]), оп-
ределенное следующим образом: если Х  [0,1] — компактное 
подмножество, то F(X) = f1(X)f2 (X). Кроме того, мы получим 

семейство отображений {Fn}nN, где  
n

n F...FFF   — n-я ите-

рация отображения F. Как будет показано в дальнейшем, по-
следовательность Fn([0,1]) сходится ко множеству Кантора, 
смысл которого будет объяснен ниже. 

Теорема 2.1.1. F(C) = C. 

Доказательство. Пусть х C, тогда хСk для всякого kN. 

Так как Сk+1 = f1(Ck)f2(Ck), то х  f1(Ck) или х  f2(Ck). Если  

х  f1(Ck), то 3х Ck, следовательно, 3х 


0k
kC , но f1(3х) = х, поэто-

му х  f1(


0k
kC ) = f1(C). Если х  f2(Ck), то 3х – 2  Сk, следова-

тельно 3х – 2


0k
kC , но f2(3х – 2) = х, поэтому х  f2(



0k
kC ) = f2(C). 

Пусть х F(C), тогда х  f1(C)f2(C). Если х  f1(C), то су-

ществует y  Сk для всякого k  N, такой, что f1(y) = x, но то-

гда х  Сk+1 для всякого k  N. Таким образом, х  


1k
kC  = C. 

Случай х  f2(C) — доказать самостоятельно. 

Теорема 2.1.1 доказана. 
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З а м е ч а н и е . F(C) = C означает, что множество C — не-

подвижная точка отображения F (аттрактор), которая, как бу-
дет показано ниже, является пределом последовательности С0, 
F(С0), F

2(С0),…, Fn(С0), …, но для этого нам понадобится мет-
рика Хаусдорфа. F(C) = C означает, что множество C — само-

подобное. Самоподобность — важное свойство фрактала. 
Некоторые авторы фракталом называют непустое ком-

пактное самоподобное множество. 
Для множества Кантора dimS C = log2/log3, где dimS ... — раз-

мерность подобия (см. ниже). Таким образом, dimH C = dimS C. 

Используя множество Кантора, можно получить интерес-
ный объект. Рассмотрим 

 С0  С0  С1  С0  С2  С0 … Сk  С0 … 

Тогда 



0

1k
k CC  C  [0,1]. Множество C  [0,1] называется 

гребнем Кантора. Вот несколько шагов его построения. 

 
Рис. 2.3 

 
Вот еще один очень интересный объект, он называется 

Канторовой лестницей (это график функции, которая называ-
ется Канторовой). 

Функция Кантора c: [0,1]  [0,1] строится следующим об-

разом (см. доказательство леммы 8). Если х  J или является 
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его граничной точкой, то k(x) = 1/2, если х  J0 или является 

его граничной точкой, то k(x) = 1/4, если х  J1 или является 

его граничной точкой, то k(x) = 3/4, если х  J00 или является 

его граничной точкой, то k(x) = 1/8, если х  J01 или является 

его граничной точкой, то k(x) = 3/8, если х  J10 или является 

его граничной точкой, то k(x) = 5/8, если х  J11 или является 

его граничной точкой, то k(x) = 7/8 и так далее. 

Таким образом, мы определили 
функцию c на множестве, являю-

щемся объединением всех замыка-

ний вида k21 i,...,i,iJ (рис. 2.4). 
Пусть теперь x не принадлежит 

никакому множеству вида k21 i,...,i,iJ . 
Произведем «сечение» во множе-
стве всех «средних третей». В пер-
вый класс отнесем все «средние 
трети» левее точки х, во второй — 
все «средние трети» правее точки 
х. 

Тогда, используя лемму 8, мы 
получим сечение во множестве всех двоично-рациональных 
чисел интервала (0,1). 

Если «средняя треть» 
k21 i,...,i,iJ находится левее точки 1/2, то 

ее номер 0,i1i2…ik1 больше, чем любое число из 
k21 i,...,i,iJ . Если 

«средняя треть» 
k21 i,...,i,iJ находится правее точки ½, то ее номер 

0,i1i2…ik1 меньше, чем любое число из 
k21 i,...,i,iJ . 

Положим c (x) равен двоичной дроби, производящей по-

строенное сечение. Кроме того, положим c (0) = 0 и c (1) = 1. 

Графически функцию Кантора можно изобразить следующим 
образом: 

 
 

Рис. 2.4 
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Рис. 2.5 
 
Теорема 2.1.2. Функция c: [0,1]  [0,1] является не убы-

вающей. 
Доказательство. Пусть х1, х2  [0,1] и х1 < х2, такие, что 
1) х1 

1r
J  и х2 

2r
J (здесь r1 и r2 — номера соответствую-

щих «средних третей»), тогда 
1r

J  
2r

J , поэтому c(х1)  c (х2); 

2) х1 принадлежит «средней трети» 
1r

J , а х2 является гра-

ничной точкой «средней трети» 
2r

J . Если 
1r

J = 
2r

J , тогда  

c (х1) = c (x2), в случае 
1r

J < 
2r

J  c (х1) < c (x2); 

3) х1 является граничной точкой «средней трети» 
1r

J и х2 — 

граничной точкой «средней трети» 
2r

J . Если 
1r

J = 
2r

J , то  

c (х1) = c (x2), в случае 
1r

J < 
2r

J  c (х1) < c (x2); 

4) х1 и х2 не принадлежат никакому множеству вида .J r  
Тогда r1 = c (х1) = inf {r: rJ — «средняя треть», Jr лежит правее 

точки х1} и r2 = c (х2) = sup {r: rJ — «средняя треть», Jr лежит 

левее точки х2}. Пусть 
1r

J — «средняя треть», лежащая правее 

точки х1, и 
2r

J — «средняя треть», лежащая левее точки х2, та-
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кие, что 
1r

J < 
2r

J . Тогда c (х1) < r1 < r2 < c (x2). Нерассмот-

ренные случаи — доказать самостоятельно. 
Теорема 2.1.2 доказана. 
Теорема 2.1.3. Канторова функция c: [0,1]  [0,1] являет-

ся непрерывной. 
Доказательство. (см. теорему 2.1.2). 
1. Пусть х0 принадлежит некоторой «средней трети», то по 

построению функция c: [0,1]  [0,1] постоянна на этой «сред-

ней трети», поэтому непрерывна в точке х0. 
2. Пусть х0 — граничная точка некоторой «средней трети», 

которую мы обозначим
0r

J . Здесь r0 — номер «средней трети» 

0r
J  (для определенности точка х0 — левая граница 

0r
J ). По по-

строению c (х0) = r0. Для всякого  > 0 существует двоично-ра-

циональная дробь 0rr  , такая, что  rr0 . Возьмем «сред-

нею треть» rJ , тогда rJ < 
0r

J . Обозначим x  одну из гранич-

ных точек «средней трети» rJ , пусть она будет правой гра-
ничной точкой (объяснить, почему можно взять и левую). 
Пусть x   — правая граничная точка «средней трети» 

0r
J . 

Интервал ( x , x  ) содержит точку х0, и поэтому является ее 
окрестностью. Если x0  х < x  , то c (x) < c (x0) + . Если 

x< x < x0, то r = c ( x )  c (x)  c (x0) = r0. Таким образом,  

c (x0) –   c (x) < r0. 

3. Пусть х0  C. Возьмем две двоично — рациональные 

дроби r  и r  , такие, что r  < c (х0) < r  и r  – r< . Обозна-
чим x  правую граничную точку «средней трети» rJ   (можно 

левую — почему?), x   левую граничную точку «средней тре-
ти» rJ   (можно правую — почему?). Тогда x< x0 < x  . Если х 

произвольная точка интервала ( x , x  ), то r  < c (х) < r  . Та-

ким образом,  )x()x( 0cc . 

Теорема 2.1.3 доказана [5]. 
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Следует обратить внимание на то, что канторова функция 
c: [0,1]  [0,1] возрастает от 0 до 1, но на «средних третях» 

она постоянна! Таким образом, все «возрастание» происходит 
на канторовом множестве C. 

Следствие. c (C) = [0,1]. 

Доказательство. Граничные точки удаленных «средних 
третей» принадлежат канторовому множеству C. 

Следствие доказано. 
З а м е ч а н и е . Образ вполне несвязного множества (кан-

торова множества) относительно непрерывного отображения 
является связным множеством (отрезком [0,1]). Кроме того, 
dimТ C = 0, но dimТ c (C) = 1. Таким образом, непрерывное ото-

бражения c «увеличило» топологическую размерность. 

Функция c: [0,1]  [0,1], называемая канторовой лестни-

цей, имеет много интересных свойств. 
Рассмотрим систему аффинных отображений: 
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Если c  — график канторовой лестницы, то мы, очевидно, 
имеем 

 )(2f)(1f)(0f cccc  . 

Таким образом, множество c  — самоподобное (аттрак-
тор) относительно СИФ определяемой (f0, f1, f2). 

Тогда dimS c  является решением уравнения 

 1

s

3

1
s

2

1
2  
















. 
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Так как c  — график непрерывного отображения, то 

dimT c = 1. 

Кроме того, функция c: [0,1]  [0,1] обладает свойством 

самоаффинности: 2c (x) = c (3x), если x[0,1/3]; c (x) = 1/2, ес-

ли x[1/3,2/3]; 2c (x) = c (3x – 2) + 1, если x[2/3,1]. 

Пример изображения Канторовой лестницы представлен 
на рисунке 2.6. 

 

 
 

Рис. 2.6 
 
 
Вот еще один пример использования множества Кантора. 

Пусть 

 S = C  [0,1][0,1] C  R2. 

З а д а н и е . Доказать, что двухмерная Лебегова мера мно-
жества S равна нулю. 

Множество S обладает одним интересным свойством. 

Пусть даны два числа a,b  R, такие, что 0 < a  1 и 0 < b  1. 
Рассмотрим прямоугольник со сторонами a и b, тогда множе-
ство S содержит его границу, так как [–1,1]  C — C. Сам 

прямоугольник, конечно, не содержится во множестве S. 
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Конструкцию множества S мож-

но понять из рисунка 2.7. 
Как уже отмечалось в первой 

главе, существуют интересные связи 
между р — адическими числами и 
канторовом множеством. 

Рассмотрим множество целых  
2-адических чисел, которое обозна-
чается Z2 [1]. По определению имеем 

          Z2 = 













1,0a:pa k
0k

k
k . 

Пусть x,y  Z2 такие, что n
2

p/1yx  , тогда в 2-адичес-

ком разложении числа x – y первый отличный от нуля член 
встретится на n + 1-м месте [1]. Множество Z2  Q2, и поэтому 
оно естественным образом наделяется топологией индуциро-
ванной 2-адической метрикой на Q2. Множество C  R, и по-

этому оно наделяется топологией индуцированной эвклидовой 
метрикой на R. 

Теорема В. Топологическое пространство Z2 гомеоморфно 
топологическому пространству C. 

Доказательство. Рассмотрим отображение : Z2  C, та-

кое, что 



















0k

1k
k

0k

k
k 3/a2pa . Это отображение является 

биекцией, так как используемые нами представления чисел из 
Z2 и C единственны. 

Покажем, что отображения  и  –1
 непрерывны. Пусть x0 

 Z2 и  > 0, возьмем n0 таким, что 0n3/1 <  и  = 0n2/1 . Тогда 

для всякого х  Z2, такого, что 0n

p0 2/1xx  , первые n-чле-

ны в 2-адическом представлении чисел x и x0 совпадают. 

 
Рис. 2.7 
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Тогда (х), (х0) C и в указанном выше разложении в 

троичную дробь имеют совпадающие первые n-члены, что оз-

начает (х), (х0) k
nI  Cn (для некоторого k = 1,2,..,2n), и по-

этому      0n
0 3/1xx . Таким образом, отображение  

 непрерывно. 
Непрерывность отображения  –1

 доказать самостоятельно. 
Теорема В доказана. 
Имеют место следующие теоремы. 
Теорема С. Всякое сепарабельное метрическое простран-

ство является непрерывным образом некоторого подмножест-
ва канторова множества. 

Теорема D. Всякое компактное метрическое пространство 
является непрерывным образом канторова множества. 

Теорема E. Всякое компактное вполне несвязное совер-
шенное метрическое пространство гомеоморфно канторову 
множеству. 

Доказательство см. в работе [5]. 
Следствие. Топологические пространства Z2 и Zp (в топо-

логиях индуцированных соответствующими метриками) го-
меоморфны. 

Доказательство. Самостоятельно. 
Интересным множеством на плоскости является множест-

во, конструкцию которого легко понять из рисунка 2.8. 
 

 
 

Рис. 2.8 
 
Обозначим Q0 первое слева множество на рисунке 2.8,  

Q1  второе слева множество, Q2 третье слева множество,  
Q3 четвертое слева множество и т. д. Положим 
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 





1n

nQQ . 

По построению 

 Q0 = K0, Q1 = 3
1

2
1

1
1 KKK  , Q2 = 9

2
3
2

2
2

1
2 K...KKK  , 

 Q3 = 27
33

2
3

1
3 K...KKK  … 

Здесь i
nK — соответствующий квадрат в квадрате Qn (рис. 2.8). 

Если а Q, то а K0, а 1i
1K , а 2i

2K …, а ni
nK … Причем 

по построению 
 K0  1i

1K  2i
2K … ni

nK … 

Тогда   





0i

i
n
nKa . 

Множество Q  непусто. Множество Q — компакт. 

Так как Q  Qn (для всякого натурального n), то Лебегова 

мера множества Q равна нулю. 

З а д а н и е . Доказать, что множество Q вполне несвязно. 

З а д а н и е . Доказать, что dimT Q = 0. 

Так как Q = f1(Q)f2(Q)f3(Q), где 

1

x x / 3 1/ 3
f

y y / 3 0

     
      

     
, 

2

x x / 3 2 / 3
f

y y / 3 1/ 3

     
      

     
, 3

x x /3 0
f

y y/3 2/3

     
      

     
, 

то множество Q самоподобное (аттрактор) и размерность по-

добия множества Q равна 1(dimS Q = 1). 

Таким образом, множество Q — фрактал. 
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Вот еще один из примеров плоского Канторового множест-
ва (фрактала). 

Несколько этапов его построения изображено на рисунке 2.9. 
 

 
Рис. 2.9 

 

З а д а н и е . Описать его свойства (см. свойства множества Q). 

 
 

§ 2. Ковер Серпинского 
 
Ковер Серпинского — еще один из простейших фракталов. 
Возьмем на плоскости R2 равносторонний треугольник, 

длина стороны которого равна 1 (первая слева фигура на ри-
сунке 2.10 обозначим ее S0), на его сторонах возьмем середин-
ные точки и соединим их прямолинейными отрезками. Таким 
образом, треугольник S0 разобьется на четыре равных тре-
угольника. Удалим внутренность центрального треугольника. 
Полученную фигуру (на рисунке 2.10 она вторая слева) обо-
значим S1. Продолжая этот процесс (несколько шагов которо-
го изображены на рисунке 2.10), мы получим последователь-
ность S0  S1 S2  …Sn … (рис. 2.10). 

 

 
 

Рис. 2.10 
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Определение 2.2.1. Множество S = 


0i
nS называется ков-

ром Серпинского. 
З а м е ч а н и е . Фигура Sn состоит из 3n замкнутых равносто-

ронних треугольников. Таким образом Sn = 
n3

1i

i
nT



, где каждый тре-

угольник i
nT  — «уменьшенный» в 2n раз исходный треугольник S0. 

Лемма 2.2.1. Множество S является компактом. 

Доказательство. Каждое множество Sn замкнуто, поэтому 
их пересечение замкнуто, но оно и ограниченно. Таким обра-

зом, множество S — компакт. 

Лемма 2.2.1 доказана. 

Лемма 2.2.2. Множество S является совершенным. 

Доказательство. Пусть точка aS  является изолирован-

ной, тогда существует шар  aB , такой, что  aB  S = {a}. 

Возьмем натуральное число n, такое, что 1/2n < . По построе-
нию a Sn, и поэтому a 0i

nT , причем 0i
nT   aB . Таким обра-

зом, мы получим  aB  S\{a}   — противоречие. 

Лемма 2.2.2 доказана. 
Лемма 2.2.3. Мера Лебега (двумерная) ковра Серпинского 

равна нулю. 
Доказательство. Фигура Sn состоит из 3n треугольников, 

длина стороны каждого из которых равна 1/2n. Таким образом, 

площадь Sn равна 
n

3 3

4 4
   
 

. По определению S  Sn для вся-

кого натурального n и 
n

n

3 3
lim 0

4 4

   
 

. 
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Лемма 2.2.3 доказана. 
Рассмотрим СИФ, определяющую ковер Серпинского (§1 

главы 3), это три отображения fi: R
2  R2 (i = 1,2,3), такие, что 

 1

x x / 2 0
f

y y / 2 0

     
      

     
, 2

x x / 2 1/ 2
f

y y / 2 0

     
      

     
, 

 3

1/ 2x x / 2
f

y y / 2 3 / 4

    
             

. 

Тогда S = f1(S)f2(S)f3(S), и поэтому S — аттрактор 

этой СИФ. 

Лемма 2.2.4. Множество S связно. 

Доказательство. Множества f1(S), f2(S), f3(S) образуют 

цепь (§1 главы 3), поэтому множество связно. 
Лемма 2.2.4 доказана. 
Канторово множество является вполне несвязным (совер-

шенным) компактом — дисконтинуумом. Ковер Серпинского 
— связный компакт — континуум. 

Определение J. Множество J  Rn называется жордановой 
кривой, если существует непрерывное отображение 

  nR1,0:f  , такое, что   J)1,0(f  . 

З а м е ч а н и е . Так как отрезок  1,0  — связное и компакт-
ное множество, то J — континуум, который будем также на-
зывать жордановым континуумом. 

Какие континуумы являются жордановыми? 
Один из ответов на этот вопрос дает теорема Хана — Ма-

зуркевича. 
Теорема H — M. Для того чтобы континуум был жордано-

вым, необходимо и достаточно, чтобы он был локально связным. 
Доказательство. См. работу  [11]. 
Теорема Серпинского дает возможность определить, когда 

континуум является локально связным. 
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Теорема S. Для того чтобы континуум был локально свя-
зен, необходимо и достаточно, чтобы для всякого 0  его 
можно было представить в виде объединения конечного числа 
континуумов, каждый из которых имеет диаметр меньше . 

Доказательство. См. работу [11]. 
Построенный выше ковер Серпинского называют первым 

континуумом Серпинского. 
Легко увидеть, что континуум Серпинского является ло-

кально связным, следовательно, он — жордановый континуум. 
Для того чтобы найти непрерывное отображение 

  2R1,0:f S , для которого    SS 1,0f , мы возьмем другую 

СИФ:  
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f3 . 

Очевидно, что аттрактором этой СИФ также будет первый 
континуум Серпинского. Доказать! 

Но используя эту СИФ, мы можем определить непрерыв-

ное отображение   2R1,0:f S , для которого   SS )1,0(f . 
Кроме того, эта СИФ удовлетворяет условию открытого 

множества (см. далее). Поэтому dimS S = dimH S. 

По определению размерности подобия dimS S = 2log/3log , 

тогда его размерность Хаусдорфа — dimH S = 2log/3log . 

Из рисунка 2.11 видно, а в дальнейшем будет доказано, что 

dimТ S = 1. 
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Рис. 2.11 

 

Таким образом, S — фрактал. 

Хотя построенное нами множество и называется ковром 
Серпинского, собственно ковром Серпинского является дру-
гое множество (второй континуум Серпинского). 

Вот как оно строится: единичный квадрат G0 делим на де-
вять равных частей (уменьшенных в три раза квадратов) и 
удаляем внутренность центрального квадрата. Получаем фи-
гуру G1 (на рисунке 2.12 она слева). 

 

 
 

Рис. 2.12 
 

Каждый из восьми квадратов входящих в фигуру G1, делим 
на девять равных частей и из каждой части удаляем внутрен-
ность центрального квадрата. Получаем фигуру G2 (на рисун-
ке 2.12 она в центре). 

Каждый из шестидесяти четырех квадратов, входящих в 
фигуру G2, делим на девять равных частей и из каждой части 
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удаляем внутренность центрального квадрата. Получаем фи-
гуру G3 (на рисунке 2.12 она справа). И так далее. 

Продолжая этот процесс (несколько шагов которого изо-
бражено на рисунке 2.11), мы получим последовательность 
G0  G1 G2  … Gn … 

Определение 2.2.2. Множество G = 


0i
nG называется ков-

ром Серпинского. 

Описать его свойства (см. свойства множества S  ). 
Множества S и  G  нигде не плотны в R2. 

Множества S и  G  являются плоскими континуумами и на-

зываются канторовыми кривыми [5; 9]. 
Следует иметь в виду, что множества на плоскости могут 

быть гомеоморфны, но одно из них нигде не плотно в R2, а 
другое всюду плотно в R2. Привести пример. 

Пусть f: [0,1]  R2 — непрерывное отображение. Так как 
отрезок [0,1] — связный компакт, то и f([0,1])  R2 — связный 
компакт (континуум). Более точно, континуумы в R2, являю-
щиеся непрерывными образами отрезка [0,1], называются 
жордановыми кривыми. 
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Жордановы кривые могут сильно не соответствовать на-

шим интуитивным представлениям о кривых. 
Первую жордановую кривую с очень необычными свойст-

вами построил известный итальянский математик Дж. Пеано 
(1890 г.). 

Он показал, что существует непрерывное отображение  
f: [0,1]  R2, такое, что f([0,1]) является единичным квадратом 
на плоскости, таким образом, квадрат — жордановая кривая. 
Вот как строится такое отображение. 
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Пусть k(ti) = 2 – ti, где ti = 0,1,2. Положим 

      ...tktkt,0)t(f 5
tt

3
t

1
1
p

422  ,         ...tktk,0)t(f 4
tt

2
t2

p
311  . 

Конечно, следует сравнить это отображение с отображе-
нием Кантора отрезка [0,1] в квадрат [0,1]  [0,1], которое яв-
ляется сюръекцией, но не непрерывным отображением [23]. 

Подробно рассмотрим более поздний геометрический ва-
риант построения кривой Пеано. 

Рассмотрим на плоскости квадрат Q = [0,1]  [0,1]. Возь-
мем отображение f1: [0,1]  Q таким, что для всякого t [0,1] 
будем иметь f1 (t) = (t,t). Разобьем отрезок I = [0,1] на девять рав-
ных частей: I1 = [0,1/9], I2 = [1/9,2/9], I3 = [2/9,3/9], I4 = [3/9,4/9],  
I5 = [4/9,5/9], I6 = [5/9,6/9], I7 = [6/9,7/9], I8 = [7/9,8/9], I9 = [8/9,1]. 
Соответственно, разобьем квадрат Q на девять равных квад-
ратов: 

 Q1 = [0,1/3]  [0,1/3], Q2 = [0,1/3] [1/3,2/3], 

 Q3 = [0,1/3] [2/3,1], Q4 = [1/3,2/3] [2/3,1], 

 Q5 = [1/3,2/3] [1/3,2/3], Q6 = [1/3,2/3] [0,1/3], 

 Q7 = [2/3,1] [0,1/3], Q8 = [2/3,1] [1/3,2/3], 

 Q9 = [2/3,1] [2/3,1]. 

Определим отображение f2: [0,1]  Q следующим образом: 

 2

(3t,3t), t [0, 1/ 9]

(2 / 3 3t,3t), t [1/ 9, 2 / 9]

(3t 2 / 3,3t), t [2/9,3/9]

(3t 2 / 3,2 3t), t [3/9,4/9]

f (t) (2 3t,2 3t), t [4/9,5/9]

(3t 4 / 3,2 3t), t [5 / 9, 6 / 9]

(3t 4 / 3,3t 2), t [6 / 9, 7 / 9]

(10 / 3 3t,3t 2), t [7 / 9, 8 / 9]

(3t 2,3


 

 
  

   
  
  
  
 t 2), t [8 / 9, 1]













  

 

На рисунке 2.13 построены f 1 (I) и f2 (I). 
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Рис. 2.13 
 
На f1 (I) и f2 (I) не указано направление движения. Чтобы 

направление движения было понятно, мы «немножко иска-
зим» f 2 (I) и f3 (I) и получим изображения, на которых направ-
ление движения уже понятно. 

 
 

 
 

Рис. 2.14 

 
Далее делим каждый из отрезков I1, I2,…, I9 на девять рав-

ных отрезков, которые обозначаем I11, I12,…, I19, I21, I22,…, 
I29,…, I91, I92,…, I99, и каждый из девяти квадратов Q1, Q2,…, Q9 
делим на девять равных квадратов Q11, Q12,…, Q19, Q21, Q22,…, 
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Q29,…, Q91, Q92,…, Q99 (следить за нумерацией) и аналогично, 
как мы определяли отображение f2: [0,1]  Q, определяем 
отображение f3: [0,1]  Q. 

Продолжая таким образом, мы получим последователь-
ность отображений {fn: [0,1]  Q}n N. Каждое отображение  
fn: [0,1]  Q является непрерывным. (Почему?) 

Рассмотрим множество С0(I) (множество всех непрерыв-
ных функций на отрезке [0,1]), причем множество Q наделено 

метрикой, определяемой нормой    21
3 x,xmaxx   (см. 

§1 главы 1). На множестве С0(I) зададим топологию равномер-
ной сходимости. В полном метрическом пространстве С0(I) мы 
имеем последовательность {fn: [0,1]  Q}n N. 

Лемма 2.3.1. Последовательность {fn: [0,1]  Q}n N явля-
ется последовательностью Коши в С0(I). 

Доказательство. Рассмотрим члены последовательно-

сти fn и fn+1. Пусть t[0,1], тогда     n
1nn 3/1tftf   , по-

лучим 

 
           

    .3/13/1...3/13/1tftf

...tftftftftftf

1n1pn1nn
pn1pn

2n1n1nnpnn









 

Лемма 2.3.1 доказана. 
Так как метрическое пространство С0(I) является полным, 

то последовательность {fn: [0,1]  Q}n N сходится к непре-
рывной функции f: [0,1]  Q (f С0(I)). 

Лемма 2.3.2. f(I) = Q. 
Доказательство. Пусть х0Q и  > 0. Возьмем nN таким, 

что 1/3n < /2. Очевидно, что  

    0 0 nx f t x f t      tftfn  . 

По построению точка х0 принадлежит одному из 9n квад-
ратов. 
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Тогда существует tI такое, что   n
n0 3/1tfx  , кроме 

того,     n
n 3/1tftf   для всех tI и достаточно больших n. 

Таким образом, множество f(I) плотно в Q, т. е.   QIf  . 

Но, очевидно,    IfIf  . 
Лемма 2.3.2 доказана. 
Построенное отображение f: [0,1]  Q не является инъек-

цией, так как тогда оно было бы непрерывной биекцией. Но 
это невозможно. (Почему?) Существуют кратные точки. 

З а д а н и е . Пусть X — компактное топологическое про-
странство, Y — хаусдорфово топологическое пространство. 
Доказать, что если f: X  Y — непрерывная биекция, тогда 
это отображение является гомеоморфизмом. 

График построенного отображения f: [0,1]  R2, являясь 
подмножеством в R3, будет «обычной» кривой. А вот его проек-
цией на плоскость (x1,x2) вдоль оси t будет квадрат [0,1]  [0,1]! 

Кроме того, отображение f: [0,1]  Q является нигде не 
дифференцируемым [9; 20]. 

На рисунках 2.15 и 2.16 изображены графики координат-
ных функций для отображений f2 и f3 соответственно. 

 

 
 

Рис. 2.15 
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Рис. 2.16 
 

З а д а н и е . Найти проекцию Гf (график функции Пеано) 
на плоскость (t,x1) вдоль оси x2 и проекцию Гf на плоскость 
(t,x2) вдоль оси x1. 

Существуют и другие отображения f: [0,1]  Q, которые 
называются кривыми Пеано [9; 23]. 

Следует иметь в виду [11; 23], что если континуум ло-
кально связан, то он — жордановая кривая [11]. Ковер Сер-
пинского является локально связным континуум, поэтому он 
— жордановая кривая! 

Кривая Пеано — пространство-заполняющая кривая. 
Определение 2.3.1. Непрерывное отображение f: [0,1]  Rn 

называется пространство-заполняющей кривой, если в Rn су-
ществует n-мерный шар, содержащийся в f ([0,1]). 

Сам Дж. Пеано строил свою кривую как отображение не 
на квадрат, а на треугольник.  

Такие кривые изучали многие математики. Пример про-
странство-заполняющей кривой дал Д. Гильберт (1891 г.). На 
рисунке 2.17 приведена первая страница статьи Д. Гильберта, 
в которой он дал описание построения кривой, заполняющей 
квадрат. Эта кривая носит его имя. 
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Рис. 2.17 
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Построим кривую Гильберта. Рассмотрим отрезок I = [0,1] 
и квадрат K = [0,1] [0,1]. 

Разобьем отрезок I = [0,1] на четыре 
равных отрезка, которые обозначим I0, I1, 
I2, I3 соответственно и назовем их отрез-
ками первого ранга. Аналогично, разделим 
квадрат K на четыре равных квадрата, ко-
торые обозначим K0, K1, K2, K3 соот-
ветственно и назовем их квадратами пер-
вого ранга (рис. 2.18). 

Каждый из отрезков I0, I1, I2, I3 ра-
зобьем на четыре равных отрезка, ко-
торые обозначим I00, I01, I02, I03, I10, I11, 
I12, I13, I20, I21, I22, I23, I30, I31, I32, I33 соот-
ветственно и назовем их отрезками 
второго ранга. Каждый из квадратов 
K0, K1, K2, K3 разобьем на четыре рав-
ных квадрата, которые обозначим K00, 
K01, K02, K03, K10, K11, K12, K13, K20, K21, 
K22, K23, K30, K31, K32, K33 соответст-
венно и назовем их квадратами второго ранга (рис. 2.19). 

З а д а н и е . Построить разбиение квадрата K квадратами 
третьего ранга и указать их нумерацию. 

Из построения следует, что если отрезки 
k21 i,...,i,iI и 

k21 j,...,j,jI  

имеют общий конец, то квадраты 
k21 i,...,i,iK  и 

k21 j,...,j,jK  имеют об-

щую сторону [5]. Кроме того,   0Ilim
k21 i,...,ii

k



 и   0Klim

k21 i,,...,ii
k




. 

Если tI, тогда для всякого натурального k существует 
единственный отрезок 

k21 i,...,i,iI  ранга k, содержащий точку t, 

или существуют два отрезка 
k21 i,...,i,iI , 

k21 j,...,j,jI  ранга k, для ко-

торых точка t является их общим концом. 
В первом случае возьмем квадрат 

k21 i,...,i,iK ранга k, во втором 

— любой из соответствующих квадратов 
k21 i,...,i,iK , 

k21 j,...,j,jK . 

Таким образом, будем иметь две последовательности: 

 

3

21

KK

KK

0

 

 
Рис. 2.18 
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Рис. 2.19 
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 ...I...III
k21321211 i,...,i,ii,i,ii,ii   

 ...K...KKK
k21321211 i,...,i,ii,i,ii,ii  . 

По построению tI
1k

i,...,i,i k21





  и 



1k
i,...,i,i k21

K состоит из единст-

венной точки, которую обозначим x. 
Таким образом, каждой точке t[0,1] единственным обра-

зом соответствует точка x [0,1] [0,1] (проверить са-
мостоятельно). 

Полученное отображение обозначим 

 fH: [0,1]  [0,1] [0,1] 

и назовем кривой Гильберта. 
Пример построения кривой Гильберта представлен на ри-

сунках 2.20 и 2.21. 
Верхняя часть рисунка 2.21 — аппроксимации образа ото-

бражения fH в квадрате. Нижняя часть рисунка 2.21 — аппрок-

симация трехмерного графика fH  в кубе. 
 

 
 

 
 

Рис. 2.20 



§ 3. Пространство-заполняющие кривые 

 89

 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
Рис. 2.21 
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Лемма 2.3.3. Отображение fH: [0,1]  [0,1] [0,1] является 

сюръекцией. 
Доказательство. Пусть x [0,1] [0,1], тогда существует 

последовательность 

 ...K...KKK
k21321211 i,...,i,ii,i,ii,ii   

такая, что 





1k

i,...,i,i k21
Kx . Этой последовательности соответ-

ствует последовательность 

 ...I...III
k21321211 i,...,i,ii,i,ii,ii  , 

для которой tI
1k

i,...,i,i k21





 . Тогда fH (t) = x. 

Лемма 2.3.3 доказана. 

З а м е ч а н и е . Таким образом, fH ([0,1]) = [0,1] [0,1] и кри-

вая Гильберта является пространство — заполняющей кривой. 
 

Теорема 2.3.1. Отображение fH: [0,1]  [0,1] [0,1] явля-

ется непрерывным. 

Доказательство. Пусть t0[0,1], fH (t0) = x0 и  > 0. Возь-

мем n таким, что  0i,...,i,i xBK
n21  , если точка t0 принадлежит 

одному отрезку 
n21 i,...,i,iI . Если точка t0 принадлежит двум 

смежным отрезкам — 
n21 i,...,i,iI  и 

n21 i,...,i,iJ , то выберем n так, что-

бы  0j,...,j,ji,...,i,i xBKK
n21n21  . Если t

n21 i,...,i,iI , то fH (t)   0xB . 

Если 
n21n21 j,...,j,ji,...,i,i IIt  , то fH (t)   0xB . 

Теорема 2.3.1 доказана. 
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З а м е ч а н и е . Отображение fH: [0,1]  [0,1] [0,1] явля-

ется непрерывным и сюръективным, но оно не может быть 
инъективным! 

Теорема 2.3.2. Отображение fH: [0,1]  [0,1] [0,1] явля-

ется нигде недифференцируемым. 
Доказательство. Пусть t[0,1], по-

строим последовательность {tn}nN в 
[0,1] так, что ttlim n

n



. Причем 

n
n 416tt   и fH (t), fH (tn) были рас-

положены так, как показано на рисун-
ке 2.22. 

В этом случае     n
n

11 2tftf  HH , 

но тогда 

 
      4nnn

n

n
11

2416/2
tt

tftf
 



 HH
, 

поэтому 
n

lim
   

n

n
11

tt

tftf



 HH
= . 

Таким образом, отображение fH: [0,1]  [0,1] [0,1] явля-

ется нигде недифференцируемым [23]. 
Теорема 2.3.2 доказана. 

З а д а н и е . Для функции 2fH  доказать, что 

 
n

lim
   

n

n
22

tt

tftf



 HH
= . 

Таким образом, функции 1fH  и 2fH  нигде недифференци-

руемы. 

 

 




tf

tf n

 
Рис. 2.22 



Глава 2. Примеры фракталов 

 

Графики аппроксимаций координатных функций отобра-

жения fH  представлены на рисунке 2.23. 

 

 
 

Рис. 2.23 
 

У этих пространство-заполняющих кривых есть важное 
общее свойство — наличие кратных точек! Вот что об этом 
сказал Н. Н. Лузин: «…предложение (иметь кратные точки) 
имеет огромную принципиальную важность для геометрии, 
так как оно показывает, в чем именно кроется самая геометри-
ческая сущность различия числа измерений плоскости и пря-
мой» [25]. 
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Глава 3. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ ФРАКТАЛОВ 
 
 
 

§ 1. Метрика Хаусдорфа 
 
 

Пусть (Х,d) — метрическое пространство, обозначим K (X) 

множество всех непустых компактных подмножеств метриче-
ского пространства Х. 

Определение 3.1.1. dH (A,B) = inf { > 0: AU (B) и BU (A)} 

(A,B  K (X)) называется расстоянием между множествами  

A и B. 
З а м е ч а н и е . Здесь U (A) — -окрестность множества А. 
З а д а н и е . Пусть А  Rn и А  . Доказать, что для любых 

r,s > 0 имеет место Us (Ur (A)) = Ur+s (A) (метрика эвклидова). 
Таким образом мы определили функцию 

 dH: K (X)  K (X)  R. 

Теорема 3.1.1. Функция dH: K (X)  K (X)  R является 

метрикой на K (X). 

Доказательство. dH (A,B)  0 для любых A,B  K (X), так 

как A,B — компакты, то dH (A,B) < +, что следует из опреде-
ления 3.1.1. 
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Если A = B, то AU (B) и BU (A) для всякого r > 0. Та-
ким образом, dH (A,B) = 0. Пусть dH (A,B) = 0. Если хB, тогда 
x Ur (A) для всякого r > 0, но А замкнуто, поэтому хА. По-
этому B  A. Аналогично получим A  B. Таким образом, A = B. 

Очевидно, что dH (A,B) = dH (B,A). 

Пусть A,B,C  K (X) и  > 0. Если хА, тогда существуют 

yB, для которого d (x,y) < dH (A,B) + , и z  C, для которого 
d (y,z) < dH (B,C) + . Таким образом, для всякого хА сущест-
вует z  C, причем d (x,z) < dH (A,B) + dH (B,C) + 2, то есть  
A  Ur (С), где r = dH (A,B) + dH (B,C) + 2. Аналогично C  Ur 
(A), где r = dH (A,B) + dH (B,C) + 2, поэтому dH (A,C) < dH 
(A,B) + dH (B,C) + 2. Это означает, ввиду произвольности  
 > 0, что dH (A,C)  dH (A,B) + dH (B,C). 

Теорема 3.1.1 доказана [21; 17]. 

З а м е ч а н и е . На множестве K (X) мы получили «настоя-

щую» метрику и, следовательно, метрическое пространство 

(K (X),dH). 

Сравнить с определением 1.1.14, где «расстоянием» меж-
ду множествами A,B называется число    y,xdinfB,Аd

By,Ax 
 . 

З а д а н и е . Пусть a,b  Rn, где Rn снабжена эвклидовой 
метрикой, A = {a} и B = {b}. Найти dH (A,B). 

Используя задание, получим следующее утверждение: 

пусть h: Rn  K (Rn)  такое, что для всякого a  Rn, h(a) = {a}. 

Тогда h — изометрия между Rn и h (Rn)  K (Rn) . 
Как обычно, мы будем писать n

n
AlimA


  и в случае мет-

рического пространства (K (X),dH). Как всякое метрическое 

пространство, (K (X),dH) — пространство Хаусдорфа. 
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Вот полезная теорема. 
Теорема 3.1.2. Пусть n

n
AlimA


  в метрическом простран-

стве (K (X),dH), тогда  nnn
n

Axиxlimx:XxA 


. 

Доказательство. Пусть n
n

AlimA


 , тогда для всякого  > 

0 существует n0 такое, что A  U (An) и An  U (A) для всех n 
 n0. Пусть xA и k = 1/k, тогда существует nk такое, что A  
U1/k(An) для всех n  nk. Возьмем 

11 nn Ax  ,
22 nn Ax  ,…, 

kk nn Ax  ,…, (n1 < n2 <…< nk < …) так, чтобы d(x, 
knx ) < 1/k. 

Очевидно, что xxlim
kn

k



. Построим последовательность 

  Nnnx  , в которой хnAn и xxlim n
n




. Члены х1A1, х2A2,…, 

1n1n 11
Ax    последовательности   Nnnx   выбираем произ-

вольно. Выберем члены 1n1n 11
Ax   ,..., 1n1n 22

Ax    последова-

тельности   Nnnx   так, чтобы   1x,xd 1n1
 ,…,   1x,xd 1n2

 . 

Члены 1n1n 22
Ax   ,..., 1n1n 33

Ax    последовательности   Nnnx   

выберем так, чтобы   2/1x,xd 1n2
 ,…,   2/1x,xd 1n3

 . Продол-

жая, получим последовательность   Nnnx  , в которой хnAn и 

xxlim n
n




, что означает A  B, где B = n n n
n

x X: x limx и x A


   . 

Обратно, пусть n
n

xlimx


  (xB), тогда для всякого  > 0 су-

ществует 0n  такое, что An  U/2 (A) для всех n  0n  и сущест-

вует 0n   такое, что d(x,xn) < /2 для всех n  0n  . Пусть n  0n и 

n  0n  , тогда d(x,xn) < /2 и существует aA такой, что  

d(xn,a) < /2 поэтому d(x,a) < , то есть B  U (A). 
Таким образом, A  B и B  U (A) и тогда dH(A,B) < , но 

ввиду произвольности  > 0 получим dH(A,B) = 0. Следова-
тельно, A= B. 

Теорема 3.1.2 доказана. 
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З а м е ч а н и е . A  B можно доказать проще. Пусть хA и 
пусть dH(A,An) = rn ( 0rlim n

n



), тогда для всякого n = 1,2,…, 

будем иметь A  )A(U nn/1rn
, и существует xnAn, для кото-

рого d(x,xn) < rn + 1/n, но тогда n
n

xlimx


 , и поэтому xB. Та-

ким образом, A  B. 
Вот еще одно полезное свойство предела в метрике Хаус-

дорфа. 
Теорема 3.1.3. Пусть   NnnA   — последовательность в 

(K (X),dH), такая, что A1  A2  …  Ak  … (конечно в Х!). 

Тогда в метрике Хаусдорфа AAlim n
n




, где 





1k

kAA . 

Доказательство. Пусть  > 0. Рассмотрим семейство от-
крытых в Х подмножеств   NnnA\X  и добавим к нему откры-

тое подмножество U (A), получим открытое покрытие про-
странства Х и, следовательно, компакта A1. (Почему?) 

Построенное открытое покрытие имеет конечное подпо-
крытие. Таким образом, существует n0 такое, что для всех n  
n0 будем иметь A1   nA\X U (A). (X\A1 X\A2  …  

 X\Ak…). Тогда An  U (A) для всех n  n0. 
По условию A  An для всех nN, поэтому A  U (An) для 

всех nN и, следовательно, для всякого  > 0 существует n0 
такое, что dH (A,An) <  для всех n  n0, и поэтому AAlim n

n



. 

Теорема 3.1.3 доказана. 
З а м е ч а н и е . При построении множества Кантора мы по-

лучили последовательность компактов С0  С1  …  Сk  … 
Тогда по теореме 3.1.3 C

 n
n

Clim  в метрическом простран-

стве (K (R),dH), где C = 


0k
kC . 
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Какие свойства метрического пространства (X,d) «насле-

дует» метрическое пространство(K (X),dH)? 

Теорема 3.1.4. Пусть (X,d) — полное метрическое про-

странство, тогда метрическое пространство (K (X),dH) является 

полным. 
Доказательство. Так как критерии компактности в Rn яв-

ляются более простыми, то мы проведем доказательство для  

X = Rn. Пусть   NnnA   — последовательность Коши в K (X) 

(здесь An — элемент пространства K (X) и компакт в Х). Тогда 

для всякого  > 0 существует n0 такое, что для всех m,n  n0 име-
ем dH (Am,An) < /2. Пусть A =  nnn

n
Axиxlimx:Xx 


. 

Покажем, что AAlim n
n




. Если хA, то для достаточно 

большого k и такого, что k  n0, будем иметь d(x,xk) < /2 и  
dH (Ak,An) < /2 (n  n0). Это означает, что существует xnAn, 
для которого d(xk,xn) < /2, поэтому d(x,xn) <  и, следователь-
но, A  U (An) для всех n  n0. 

Пусть yAn (n  n0, отбрасывание конечного числа членов 
несущественно). Рассмотрим последовательность   Np

p2/  : 

для 12/  существует k1 = n такой, что для всех m,n  k1 имеем 
dH (Am,An) < /2. Поэтому   2/A,Ad mkH 1

 для всех m  k1. 

Для 22/  существует k2 (k1< k2) такой, что для всех m,n  k2 

имеем dH (Am,An) < /22. Поэтому   2
mkH 2/A,Ad

2
 для всех m 

 k2, …, для p2/  существует kp ( p1p kk  ) такой, что для всех 

m,n  kp имеем dH (Am,An) < /2p. Поэтому   p
mkH 2/A,Ad

p
  

для всех m  kp и т. д. Это позволяет определить последова-
тельность {yk}kN, такую, что ykAk (см. доказательство тео-
ремы 3.1.1). Для всех k < n члены yk выбираем произвольно,  
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yn = y. Если k1< k < k2, то (используя   2/A,Ad mkH 1
  для 

всех m  k1) выбираем yk так, чтобы   2/y,yd kk1
 . Если  

k2 < k < k3, то (используя   2
mkH 2/A,Ad

2
  для всех m  k2) 

выбираем yk так, чтобы   2
kk 2/y,yd

2
 , …, если kp–1 < k < kp, 

то (используя   p
mkH 2/A,Ad

p
  для всех m  kp) выбираем yk 

так, чтобы   p
kk 2/y,yd

p
 , и т. д. 

Мы получили последовательность {yk}kN, такую, что 
ykAk. По построению для всякого p2/  существует kp такой, 

что для всех m,n  kp   p
nm 2/y,yd  . Таким образом, после-

довательность {yk}kN — фундаментальная последова-
тельность в полном метрическом пространстве Х, и поэтому 
она сходится. Пусть k

k
ylimx


 , тогда хA. Очевидно, 

       p
kkkkk 2/2/y,ydy,ydy,yd

pp1
 (

1ky = yn = y и 

kp фиксировано,  
p1 kk y,yd  < /2, kp > k1). Метрика d(x,y) — не-

прерывная функция, поэтому     
 k

k
y,ydlimx,yd . Таким 

образом, An  U (A). Кроме того, A   (следует из того, что 
для всякого yAn существует хA, причем d(y,x) < ). 

Так как An — компакт, то An вполне ограниченно и, следо-
вательно, является ограниченным подмножеством в Х. Под-
множество U (An) также ограниченно, и поэтому A — ограни-
ченное подмножество в Х 

Докажем, что A замкнуто. Если Ax , то существует по-
следовательность {yn}nN в A такая, что d(x,yn) < 1/2n, и для 
всякого n  N существует xn  An: d(xn,yn) < dH(An,A)+ 1/2n. 
Тогда 

 d(xn,x)  d(xn,yn) + d(yn,x) < dH(An,A) + 1/2n + 1/2n, 

что означает   0x,xdlim n
n




, поэтому хA, т. е. AA  . Таким 

образом мы доказали, что подмножество A ограниченно и 
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замкнуто. Для случая X = Rn это означает, что A — компакт, 

поэтому AAlim n
n




в метрическом пространстве (K (X),dH). 

В общем случае нужно доказать вполне ограниченность 
множества A. Пусть  > 0, возьмем n таким, что dH(An,A) < /3. 
Так как An — компакт, у него существует /3-сеть {y1, y2,…, yp}. 
Возьмем подмножество {x1, x2,…, xp} A, причем d(yi,xi) < /3. 
Покажем, что {x1, x2,…, xp} A является -сеть. Если xA, так 
как A  U/3 (An), то существуют y An такой, что d(x, y) < /3, 
yi  An такой, что d(y, yi) < /3, и xi такой, что d(yi, xi) < /3. То-
гда d(x, xi) < , и поэтому {x1, x2,…, xp} A — -сеть. Мы дока-
зали, что подмножество A вполне ограниченно, а также, что 
множество A замкнуто в полном метрическом пространстве 
Х и, следовательно, само является полным метрическим про-
странством. Это доказывает, что подмножество A — компакт 
в Х. 

Теорема 3.1.4 доказана. 
В изучении фракталов эта теорема играет важную роль, 

так как многие фракталы являются неподвижными точками 

для сжимающих отображений вида F: K (X) K (X), и в этом 

случае полнота пространства K (X) выступает на первый план. 

Уже на примере Канторова множества, ковра Серпинского 
и некоторых других фракталов видно, что отображения вида 

F: K (X)  K (X) строятся специальным образом. 

Если f: X  X, где (Х,d) — метрическое пространство, 
сжимающее отображение, то существует 0 < r <1 такое, что 

 d(f(x),f(y))  rd(x,y) 

для всех x,y  X. 
Если (Х,d) — полное метрическое пространство и f: X  X 

— сжимающее отображение, то по теореме о неподвижной 
точке существует единственная неподвижная точка отображе-
ния f, которую мы обозначим F(f). 
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Лемма 3.1.1. Пусть fi: X  X ((Х,d) — метрическое про-
странство, i = 1,2,…,m) — cемейство сжимающих отображе-
ний, тогда F(A) = f1(A)f2(A)…fm(A) — компакт в Х для 
всякого компакта А в Х. 

Доказательство. Всякое сжимающее отображение явля-
ется непрерывным, поэтому f1(A), f2(A), …, fm(A) — компакты 
в Х. Тогда F(A) = f1(A)f2(A)…fm(A) — компакт в Х. 

Лемма 3.1.1 доказана. 
Теорема 3.1.5. Пусть fi: X  X ((Х,d) — метрическое про-

странство, i = 1,2,…,m) — cемейство сжимающих отображе-
ний и r1,r2,..,rm — соответствующие коэффициенты сжатия. То-

гда отображение F: K (X)  K (X) будет сжимающим с коэф-

фициентом сжатия r = max { r1,r2,..,rm }. 

Доказательство. Корректность отображения F: K (X)  

K (X) следует из леммы 1. Пусть A,B,C,D K (X). 

1. s = dH(A,B) и  > 0. Если x  A, тогда существует y  B 
такой, что d (x,y) < s + , и поэтому d (fi (x), fi (y)) < ri (s + ). 
Тогда fi (A)    ))B(f(U isri  . Аналогично получим fi (B)  

   ))A(f(U isri  . Таким образом, dH(fi (A), fi (B))  ri dH(A,B). 

2. p = dH(A,C), q = dH(B,D) и  > 0. Имеем A  Up+ (C) и  
B  Uq+ (D), тогда AB  Up+ (C)Uq+ (D)  Ut (CD). Ана-
логично получим CD  Up+ (A)Uq+(B)  Ut (AB), где  
t = max {p + ,q + }. Таким образом, dH(AB,CD)   

 max { dH(A,C), dH(B,D)}. Для любых А, B  K (X) по индук-

ции будем иметь 

 dH(F(A),F(B)) < dH    










m

1i
i

m

1i
i Bf,Af       Bf,Afdmax iiH

mi1 
. 

Но из вышеприведенного пункта 1 следует, что 
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      Bf,Afdmax iiH
mi1 

  max { r1,r2,..,rm } dH(A,B). 

Объединяя эти формулы, получим 

 dH(F(A),F(B))  r dH(A,B). 

Таким образом, отображение F: K (X)  K (X) является сжи-

мающим отображением с коэффициентом сжатия r. 
Теорема 3.1.5 доказана. 
З а м е ч а н и е . Таким образом, неподвижная точка сжи-

мающего отображения F: K (X)  K (X) может быть получена 

как предел последовательности K,F(K),F2(K),…,Fn(K) … (где 
K — произвольный компакт в Х) в метрическом пространстве 

(K (X),dH). 

З а м е ч а н и е . Для множества Кантора мы построили ото-

бражение F: K ([0,1])  K ([0,1]) такое, что F(A) = f1(A)f2(A) 

для всякого компакта А  [0,1], где f1(x) = x/3 и f2(х) = x/3 + 
2/3 для всякого x  [0,1]. Отображения f1 и f2 являются сжи-
мающими с коэффициентом 1/3. Поэтому по теореме 3.1.5 

отображение F: K ([0,1])  K ([0,1]) является сжимающим с 

коэффициентом 1/3 и, следовательно, имеет единственную не-
подвижную точку — множество Кантора. 

Определение 3.1.2. Пусть fi: X  X ((Х,d) — метрическое 
пространство, i = 1,2,…,m) — cемейство сжимающих отобра-
жений, тогда F = {f1,f2,..,fm} называется системой итерирован-
ных функций (СИФ), или отображением Хатчинсона [14]. 

Определение 3.1.3. Пусть (Х,d) — метрическое простран-
ство, отображение f: X  X называется подобием, если суще-
ствует такое r > 0, что для всех x,yX: d(f(x),f(y)) = rd(x,y). 
Число r называется коэффициентом подобия. Если r < 1, то 
подобие будем называть сжатием. 
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З а м е ч а н и е . Каждая из функций f1(x) = x/3 и f2(х) = x/3 + 
2/3 является сжатием с коэффициентом 1/3. 

Определение 3.1.4. Пусть (Х1,d1), (Х2,d2) — метрические 
пространства. Отображение f: X1  X2 называется отображе-
нием ограниченного возрастания (Липшициевым), если суще-
ствует такое s > 0, что для всех x,y X1: d2(f(x),f(y))  sd1(x,y). 
Число s называется коэффициентом (постоянной) Липшица. 

Определение 3.1.5. Пусть (Х1,d1), (Х2,d2) — метрические 
пространства. Отображение f: X1  X2 называется отображе-
нием ограниченного убывания, если существует такое r > 0, 
что для всех x,y X1: d2(f(x),f(y))  rd1(x,y). 

Определение 3.1.6. Пусть (Х1,d1), (Х2,d2) — метрические 
пространства. Отображение f: X1  X2 называется отображе-
нием ограниченного искажения, если существуют такие r,s > 0, 
что для всех x,y X1: rd1(x,y)  d2(f(x),f(y))  sd1(x,y). 

З а м е ч а н и е . Если f: X1  X2 является отображением огра-
ниченного убывания при x,y X1, таких, что x  y, то f(x)  f(y). 
Таким образом, отображение f: X1  X2 является инъекцией. 

Определение 3.1.7. Пусть (Х1,d1), (Х2,d2) — метрические 
пространства. Биективное отображение f: X1  X2 называется 
билипшициевым (липеоморфизмом), если существуют такие 
r,s > 0, что для всех x,y X1: rd1(x,y)  d2(f(x),f(y))  sd1(x,y). 

З а м е ч а н и е . Липеоморфизм еще называют метрическим 
изоморфизмом. Если отображение f: X1  X2 — липеомор-
физм, то f: X1  X2 и f –1: X2  X1 являются отображениями 
Липшица, и поэтому они оба равномерно непрерывные и, сле-
довательно, непрерывные. Тогда f: X1  X2 — гомеоморфизм. 

Пусть f: X1  X2 — отображение Липшица. Обозначим K 
множество всех его констант Липшица. Если r0 = inf K, тогда 
существует последовательность {rk }kN в K такая, что 




k
0n rrlim . Будем иметь d2(f(x),f(y))  rk d1(x,y) для всех  

x,y X1. Тогда d2(f(x),f(y))  r0d1(x,y) для всех x,y X1. Таким 
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образом, r0  K и является наименьшим элементом множества 

K. Его обозначим L(f). Очевидно, что L(f) > 0. 

З а д а н и е . Доказать, что L(f) = 
    
 y,xd

yf,xfd
sup

1

2

yx
. 

Если (X1,d1) = (X2,d2) и L(f) < 1, тогда f: X1  X2 — сжи-

мающее отображение. Отображения подобия являются Лип-
шициевыми отображениями. 

Определение 3.1.8. Пусть fi: X  X ((Х,d) — метрическое 
пространство, i = 1,2,…,m и m > 1), cемейство подобий и 
r1,r2,..,rm — соответствующие коэффициенты подобия, причем 
r1< 1, r2 < 1,.., rm < 1. Непустое компактное подмножество А  Х 

называется самоподобным, если 
m

1i
i )A(fA



 . 

З а д а н и е . Доказать, что F(f1), F(f2),…, F(fm)  A. 

З а д а н и е . Найти систему итерированных функций 
(СИФ) для единичного квадрата на плоскости. 

З а м е ч а н и е . Самоподобное множество — неподвижная 

точка отображения (Хатчинсона) F: K (X)  K (X), соответст-

вующего системе итерированных функций F = { f1,f2,..,fm}. 
Примеры самоподобных множеств: множество Кантора, 

ковер Серпинского, снежинка Коха и многие другие. 
З а м е ч а н и е . Самоподобное множество состоит из «ми-

ниатюрных» самих себя. Следует иметь в виду, что множество  
Х может быть самоподобным относительно разных СИФ. 

Пр и м е р . Х = [0,1]. СИФ состоит из двух функций —  
f1(x) = x/2 и f2(x) = x/2 + 1/2. Тогда Х = f1(Х)f2(Х). 

Но можно в качестве СИФ взять три функции — f1(x) = x/3, 
f2(x) = x/3 + 1/3 и f3(x) = x/3 + 2/3. Тогда Х = f1(Х)f2(Х)f3(Х). 

Во многих приложениях вопрос о связности самоподобного 
множества очень важен. Мы ограничимся случаем X = Rn. 
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Определение 3.1.9. Множество {A1,A2,…,Am} подмно-
жеств в Rn называется цепью, если для любых двух его эле-

ментов Aj, Ak существует 








p21 iii A,...,A,A  {A1,A2,…,Am} та-

кое, что все множества 
1ij AA  , 

21 ii AA  ,…, 
pp i1i AA  , 

ki AA
p
  не пусты. В этом случае будем говорить, что множе-

ства Aj, Ak соединяются цепью [5]. 
Определение 3.1.10. Множество А  Rn называется -цепью, 

если для любых x,y  A существует {a1,a2,…,am}  A такое, что 
 1ax ,  21 aa ,…,  m1m aa ,  yam . 

Лемма 3.1.2. Если множество {A1,A2,…,Am} — цепь и ка-
ждый его элемент — -цепь, то A1A2…Am — -цепь. 

Доказательство. Пусть A = A1A2…Am. Если x,y  A, 
то либо x,y  Ai, которое является -цепью, либо x  Aj и y  Ak. 

По условию {A1,A2,…,Am} — цепь, поэтому существует 









p21 iii A,...,A,A  {A1,A2,…,Am} такое, что все множества 

1ij AA  , 
21 ii AA  ,…, 

pp i1i AA  , ki AA
p
  не пусты. Это ус-

ловие позволяет построить {a1,a2,…,am}  A такое, 
что  1ax ,  21 aa ,…,  m1m aa ,  yam . Та-

ким образом, множество А — -цепь. 
Лемма 3.1.2 доказана. 
Лемма 3.1.3. Если А  Rn — -цепь и f: Rn Rn — сжатие 

с коэффициентом s, то f(A) — s-цепью. 
Доказательство. Пусть f(x),f(y) f(A). По условию А яв-

ляется -цепью, поэтому существует {a1,a2,…,am}  A такое, 
что  1ax ,  21 aa ,…,  m1m aa ,  yam . То-

гда   saxsaf)x(f 11  ,   saasaf)a(f 2121  , 

…,   syasyf)a(f mm  . Таким образом, множество 

f(А) — s-цепь. 
Лемма 3.1.3 доказана. 
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Теорема 3.1.6. Пусть А — самоподобное множество, оп-
ределяемое системой итерированных функций F = {f1,f2,..,fm}, 
тогда эквивалентны следующие условия: 

1) множество А связно; 
2) множество {f1(A),f2(A),…, fm(A)} является цепью. 
Доказательство. Пусть множество А связно. Так как А — 

самоподобное множество, определяемое системой итериро-
ванных функций F = {f1,f2,..,fm}, тогда f1(A)f2(A)…fm(A) = А. 
Отображения f1,f2,..,fm — сжатия, и поэтому они непрерывны. 
Тогда множества f1(A), f2(A), …, fm(A) связны и компактны. 
Предположим, что множества f1(A), f2(A), …, fm(A) не образу-
ют цепь, тогда существуют два множества — fj(A) и fk(A), ко-
торые нельзя соединить цепью. Это позволяет построить раз-
биение связного множества А на два замкнутых непе-
ресекающихся множества, что противоречит связности мно-
жества А. 

Пусть {f1(A),f2(A), …, fm(A)} — цепь. Покажем, что тогда 
самоподобное множество А = f1(A)f2(A)…fm(A) является 
связным. Если А несвязно, то существуют два непустых ком-
пактных подмножества — U,V  A, таких, что UV= A и 
UV= . Возьмем yxmin

Vy,Ux



> 0. Пусть 0 <  <  и 

пусть r — наибольшее из коэффициентов r1, r2,…, rm. Множе-
ство А, очевидно, — (А)-цепь. По лемме 3.1.2 каждое из мно-
жеств f1(A),f2(A), …, fm(A) — r(А)-цепь. По лемме 3.1.1 мно-
жество А = f1(A)f2(A)…fm(A) — r(А)-цепь. Используя 
самоподобие, легко получить, что множество А — rp(А)-цепь 
для любого натурального числа p, и поэтому число rp(А) 
можно сделать таким, что rp(А) < . Противоречие. 

Теорема 3.1.6 доказана. 
Пр и м е р . Множество Кантора. Его СИФ состоит из двух 

функций f1(x) = x/3 и f2(х) = x/3 + 2/3. Тогда f1(C)  [0,1/3], но 

f2(C)  [2/3,1], поэтому множество C несвязно. 

Конечно, в общем случае проверить, является ли семей-
ство f1(A),f2(A),…, fm(A) цепью, очень трудно. Существует 
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один эффективный способ проверить это. Для этого нужно ис-
пользовать формулу Вильямса. 

Теорема 3.1.7. Пусть А — самоподобное множество, оп-
ределяемое системой итерированных функций F = {f1,f2,..,fm}, 
тогда 

   
 i,i,i

iii

k21

k21
f...ffA



 F , 

где  
k21 iii f...ff F  — неподвижная точка отображения 

k21 iii f...ff  . 

Доказательство. Самостоятельно. 
З а м е ч а н и е . Настоятельно рекомендуем провести дока-

зательство, так как, на наш взгляд, оно позволяет глубже 
взглянуть на то, как устроены самоподобные множества [17]. 

Вот простой пример того, как, используя эту формулу, 
можно доказать связность самоподобного множества. Рас-
смотрим СИФ, определяющую ковер Серпинского: это три 
отображения fi: R

2  R2 (i = 1,2,3), такие, что 

 
















2/y

2/x

y

x
f1 , 







 









2/y

2/12/x

y

x
f2 , 



















4/32/y

4/12/x

y

x
f3 . 

Для ковра Серпинского S = f1(S)f2(S)f3(S). Очевидно, 

что F(f1) = 







0

0
, F(f2) = 








0

1
, F(f3) = 








2/3

2/1
. Тогда из фор-

мулы Вильямса следует, что, во-первых, F(f1), F(f2), F(f3) S. 

Во-вторых, f2(F(f1)) S2, f1(F(f2)) S1; f2(F(f3)) S2, f3(F(f2)) S3. 

Но по построению f2(F(f1)) = f1(F(f2)) и f2(F(f3)) = f3(F(f2)). Та-

ким образом,  S1  S2   и  S2   S3  , тогда по теореме 

3.1.6 множество S связно. Конечно, это простой пример, но он 
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показывает, что, зная только СИФ, можно определить, связно 
ли самоподобное множество, определяемое этой СИФ. 

Определение 3.1.11. Пусть fi: X  X ((Х,d) — метрическое 
пространство, i = 1,2,…,m и m > 1) — cемейство сжатий 
(СИФ) с коэффициентами r1,r2,..,rm. Вещественное число d на-
зывается размерностью подобия самоподобного множества А, 
определяемого этой СИФ, если оно является решением урав-
нения 

 1r
m

1i

d
i 



 

и обозначается dimS А. 
Лемма 3.1.4. Число dimS А определено однозначно. 

Доказательство. Рассмотрим функцию (x) = 


m

1i

x
ir (x > 0). 

Имеем (+ 0) = m  2 и   0xlim
x




. Ее производная 

  



m

1i
i

x
i rlogrx < 0, поэтому функция (x) монотонно убы-

вает. Тогда по теореме о промежуточном значении существует 
единственное значение d, такое, что (d) = 1 [8]. 

Лемма 3.1.4 доказана. 
Пр и м е р . Для множества Кантора СИФ определяется 

двумя сжатиями с коэффициентами 1/3, поэтому dimS C = 

log2/log3. Так как (1/3) d + (1/3) d = 1. Для ковра Серпинского 

— тремя сжатиями с коэффициентами 1/2, поэтому dimS S = 

log3/log2. Так как (1/2) d + (1/2) d + (1/2) d = 1. Для кривой Коха 

— двумя сжатиями с коэффициентами 3/1 , поэтому dimS K = 

log4/log3. Так как     13/13/1
dd
 . 

З а д а н и е . Для отрезка [0,1] существует СИФ с двумя 
сжатиями с коэффициентами 2/3. Найти dimS [0,1] для такой 
СИФ. 
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З а м е ч а н и е . Как было указано выше, для отрезка [0,1] 
существуют и другие СИФ. Поэтому, вычисляя dimS [0,1], мы 
получим разные числа, т. е. dimS Х определяется его СИФ, ко-
торая, конечно, сама определяет множество Х. 

Размерность подобия может быть вычислена только для 
очень узкого класса множеств. 

З а д а н и е . Для отрезка [0,1] найти СИФ с двумя сжатия-
ми, такими, что dimS [0,1] = 2 для такой СИФ. 

Существует важная связь между dimH Х и dimS Х. 
Теорема A. Пусть Х — самоподобное множество (ко-

нечно, определяемое СИФ), тогда dimH Х  dimS Х. 
Доказательство. См. §3. 
Вычисляя dimS [0,1] для различных СИФ и сравнивая ее с 

dimH [0,1], мы видим, что в одних случаях dimH Х  dimS Х, а в 
других — dimH Х = dimS Х! Что выделяет СИФ для случая 
dimH Х = dimS Х. Здесь следует иметь в виду, что в этом случае 
dimH Х определяется самим множеством. 

Определение 3.1.12. Cистема итерированных функций  
F = {f1,f2,..,fm}(СИФ), определенная на евклидовом простран-
стве (Rn,d), удовлетворяет условию открытого множества, если 
существует непустое, открытое и ограниченное множество U  Rn, 
такое, что fi(U)  U (для всякого i = 1, 2,…,m) и fi(U) fj (U) =  
при i  j [21]. 

З а д а н и е . Для отрезка [0,1] найти СИФ, которое удовле-
творяют условию открытого множества. 

Теорема B. Пусть Х — самоподобное множество (ко-
нечно, определяемое СИФ) удовлетворяет условию открытого 
множества, тогда dimH Х = dimS Х. 

Доказательство. См. §3. 
Теорема 3.1.8. Пусть (Х,d) — компактное метрическое 

пространство, тогда (K (X),dH) — компактное метрическое 

пространство. 
Доказательство. Так как Х — компакт, то для всякого  

 > 0 в Х существует конечная -сеть, x1,x2,…,xm. Точки 
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{x1},{x2},…,{xm}  K (X). Рассмотрим всевозможные непус-

тые подмножества множества {x1,x2,…,xm}, то есть множества 
вида {

k21 iii x,...,x,x }, где 1  i1< i2<,…, < ik  m. Все эти множе-

ства являются элементами множества K (X). Покажем, что они 

образуют -сеть в K (X). Пусть А — компакт в Х, тогда суще-

ствует минимальное число шаров  
1i

xB ,  
2i

xB ,…,  
ki

xB , 

покрывающих компакт А. Их объединение — -окрестность 
множества {

k21 iii x,...,x,x }, которую мы обозначим 

U{
k21 iii x,...,x,x }. По построению А  U {

k21 iii x,...,x,x } и 

{
k21 iii x,...,x,x }  U (A). Тогда расстояние в метрике dH между 

множествами А и {
k21 iii x,...,x,x } меньше . 

Так как Х — компакт, то Х — полное метрическое про-

странство. Тогда по теореме 3.1.4 K (X) — полное метриче-

ское пространство, что означает K (X) — компакт. 

Теорема 3.1.8 доказана. 

Таким образом, при переходе от Х к K (X) сохраняется не 

только полнота, но и компактность! 
Пусть f: XY — непрерывное отображение, где X,Y — 

компакты. Определим отображение K (f): K (X)  K (Y) сле-

дующим образом: если АK (X), то (K (f))(A) = f(A). 

Теорема 3.1.9. Пусть f: XY — непрерывное отображение, 

где X,Y — компакты. Тогда отображение K (f): K (X)  K (Y) 

является непрерывным. 
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Доказательство. Докажем непрерывность отображения 

K (f): K (X)  K (Y) в точке А K (X). Отображение f: XY 

равномерно непрерывно. Тогда для всякого  > 0 существует  
 > 0 такое, что если d(x,y) < , то d(f(x),f(y)) < . Если аА, то-
гда для всякого х  Х, такого, что d(a,x) < , будем иметь 
d(f(a),f(x)) < . Рассмотрим -окрестность U (A) множества А. 
Пусть компакт Z в Х такой, что Z  U (A) и A U (Z), тогда 
f(Z)  U (f(A)) и f(A)  U (f(Z)). Таким образом, для всех  

Z  K (X), таких, что dH(A, Z) < , мы получили dH(f(A), f(Z)) < . 

То есть отображение K (f): K (X)  K (Y) непрерывно в точке 

A K (X). 

З а м е ч а н и е . Здесь следует иметь в виду, что A  X — 

компакт и A  K (X). Кроме того, символом dH мы обозначаем 

метрику как в K (X), так и в K (Y). 

Теорема 3.1.9 доказана. 

Пусть MK   — класс всех компактных метрических про-

странств. Для любых X,Y  MK  определим Mor (X,Y) как 

множество всех непрерывных отображений из X в Y. Таким 
образом, мы получили категорию [14; 15]. 

«Переход» от X к K (X) и от f: XY к K (f): K (X)  K (Y) 

определяет функтор из MK  в MK [15; 16]. 

Для метрических пространств непрерывные отображения в 
качестве морфизмов не учитывают структуру метрического 
пространства. 
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Пусть M   — класс всех метрических пространств. Для лю-

бых X,Y  M  определим Mor (X,Y) как множество всех ото-

бражений Липшица из X в Y. 
З а д а н и е . Получим ли мы таким образом категорию? 
Теорема 3.1.10. Пусть (X,dx) и (Y,dY) — метрические про-

странства. Если последовательность {fn}nN сходится к ото-
бражению f в топологии равномерной сходимости на компак-
тах, то для всякого компакта A  X последовательность 

{fn(А)}nN сходится к f(A) в метрике Хаусдорфа на K (Y). 

Доказательство. Как известно [6], множества вида 
         Axвсякогодляxg,xfd:Y,XCgf Y

0
A, U  

для произвольного компакта А и произвольного  > 0 обра-
зуют фундаментальную систему окрестностей отображения f в 
топологии равномерной сходимости на компактах. По усло-
вию существует n0 такое, что dY(f(x),fn(x)) <  для всех n  n0 и 
всех хА. Возьмем U(f(A)) ( — окрестность компакта (f(А)), 
тогда для всех n  n0 будем иметь fn(А)  U(f(A)) и  
f(А)  U(fn(A)). Таким образом, в метрическом пространстве 

(K (Y),dH) последовательность fn(А)}nN сходится к f(A). 

Теорема 3.1.10 доказана. 

З а м е ч а н и е . Последовательность K (fn) сходится к K (f) 
поточечно. 

 

Дополнение. Компактные метрические проcтранства 
 

З а д а н и е . Доказать, что если последовательность Коши 
{xn}nN в метрическом пространстве (X,d) содержит сходя-
щуюся к b подпоследовательность, то сама последователь-
ность {xn}n N сходится к b. 

Теорема 3.1.11. Пусть (X,d) — метрическое пространство, 
тогда эквивалентны следующие условия: 
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1) X компактно; 
2) всякая бесконечная последовательность в Х имеет по 

крайней мере одну предельную точку; 
3) Х является полным и вполне ограниченным. 
Доказательство. Пусть Х — компактное метрическое про-

странство и {xn}n N последовательность его элементов. Поло-

жим Рn= }, x,, x,{x kn1nn   . Покажем, что 





1n
nP . Пусть 

это не так, тогда семейство множеств {Un}n N, где Un = X\Pn, 
образует открытое покрытие метрического пространства Х. В 
силу компактности метрического пространства Х у этого по-
крытия существует конечное подпокрытие 

k21 nnn U,...,U,U . Но 

тогда 
k21 nnn P...PP . Возьмем m = max {n1, n2,…, nk} 

и получим Pm  
k21 nnn P...PP   — противоречие. Таким 

образом, существует a  


1n
nP , она является предельной точ-

кой последовательности {xn}n N. 
Пусть всякая последовательность в Х имеет по крайней 

мере одну предельную точку. Возьмем последовательность 
Коши {xn}n N в Х, тогда она сходится, следовательно, метри-
ческое пространство Х полно. 

Пусть Х не является вполне ограниченным. Тогда сущест-
вует  > 0 такое, что Х нельзя покрыть конечным числом ша-
ров радиуса . Один шар радиуса  с центром в точке х1 не по-
крывает пространство Х, тогда существует точка х2, не при-
надлежащая этому шару, для которой d(х1,x2) . Два шара с 
центрами в точках х1 и х2 радиусов  не покрывают простран-
ство Х, тогда существует точка х3, не принадлежащая объеди-
нению этих шаров, для которой d(х1,x3)   и d(х2,x3)  . По-
ступая аналогично, получим последовательность {xn}n N, для 
которой d(хi,xn)   для i < n. Эта последовательность не мо-
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жет иметь сходящуюся подпоследовательность. (Почему?) 
Противоречие. Таким образом, Х вполне ограниченно. 

Пусть Х полное и вполне ограниченное и {Ui}iN — откры-
тое покрытие пространства Х, такое, что никакое его конечное 
подсемейство не покрывает Х. Тогда существует шар 1B  ра-

диуса 1/2, такой, что никакое конечное подсемейство по-
крытия {Ui}iN не покрывает его. Пусть существует шар Bn–1 

радиуса 1/2n–1, такой, что никакое конечное подсемейство по-
крытия {Ui}iN не покрывает его. Так как Х вполне ограни-
ченно, то возьмем его конечное покрытие (Сk) (1 k  m) ша-
рами радиуса 1/2n. Среди шаров Сk, имеющих не пустое пере-
сечение с Bn–1, найдется по крайней мере один шар Bn =

0kC , 

который не покрывается никаким конечным подсемейством 
покрытия {Ui}iN. Таким образом мы построим последова-
тельность шаров Bn (радиус Bn равен 1/2n) и последователь-
ность {xn} — их центров. 

Пусть хn — центр шара Bn и хn–1 — центр шара Bn–1. Суще-
ствует а  Bn–1

0kC , тогда d(хn–1, хn)  1/2n–1 +1/2n < 1/2n–2. То-

гда для q > p  n получим d(хp, хq)  d(хp, хp+1) +…+ d(хq–1, хq) < 
< 1/2p–1 +…+ 1/2q–2 < 1/2n–2. Таким образом, последователь-
ность {xn}nN является последовательностью Коши в Х, и по-
этому она сходится. 

Пусть axlim n
n




 и 
0i

U — такой элемент покрытия {Ui}iN, 

что a 
0i

U . Существует r > 0 такое, что шар  aBr   
0i

U . Из 

определения точки a следует, что существует хn такой, что  
d(a, хn) < 1/2n < r/2. Тогда Bn   aBr   

0i
U . Противоречие, так 

как никакое конечное подсемейство покрытия {Ui}iN не по-
крывает Bn. 

Теорема 3.1.11 доказана. 
Следует иметь в виду, что всякое вполне ограниченное 

метрическое пространство сепарабельно [8]. 
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§2. Топологические размерности 

 
Размерность топологического пространства — важная его 

характеристика [12]. В дальнейшем под словом «простран-
ство» будет пониматься метрическое пространство со счетным 
базисом. 

Определение 3.2.1. Пространство называется нульмерным, 
если существует базис, состоящий из его открыто-замкнутых 
подмножеств. 

Пр и м е р . Пусть A = {x1,x2,…,xk}  Rn, наделим множест-

во А индуцированной метрикой. Возьмем  = ji
ji

xxmin 


. То-

гда {xi}  i2/ xB и{xi}  i2/ xB . Таким образом, множества 

{xi} — открыто-замкнутые, они образуют базис топологии на А. 
Определение 3.2.1 очевидно эквивалентно тому, что каж-

дая точка пространства имеет фундаментальную систему ок-
рестностей, состоящую из открыто-замкнутых подмножеств. 

Пр и м е р . Множество Q в p-адической топологии — 
нульмерное, так как все шары в Q открыто-замкнуты. 

Пр и м е р . Множество Кантора является нульмерным. 

Пусть хC и х(a,b). Существует n такое, что x k
nI  (a,b), 

поэтому есть интервал (,)  (a,b) и х (,), кроме того, 
(,)  C = . 

З а д а н и е . A  Rn — счетное подмножество (в индуциро-
ванной топологии). Доказать, что A — нульмерное. 

Лемма 3.2.1. Пусть f: XY — гомеоморфизм, причем X 
— нульмерное пространство. Тогда Y также нульмерно. 

Доказательство. Прообраз относительно отображения f 
открытого (замкнутого) множества открыт (замкнут). 

Лемма 1 доказана. 
Теорема 3.2.1. Топологическое пространство R (в эвкли-

довой топологии) не является нульмерным. 
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Доказательство. Пусть A  R, причем А   и А  R. 
Так как R связно, множество А имеет непустую границу, это 
означает, что множество А не открыто-замкнутое. Таким об-
разом, в R единственными открыто-замкнутыми множества-
ми являются только  и R. Следовательно, множество R не 
нульмерное. 

Теорема 3.2.1 доказана. 
Следствие. Отрезок [a,b]  R не является нульмерным. 
Доказательство. Самостоятельно. 
Используя понятие размерности, каждому пространству X 

поставим в соответствие число из множества{–1,0,1,2,…,}, 
которое обозначим ind X. 

Определение 3.2.2. Если Х = , то ind X  1. Если k  0, 
то будем говорить, что ind X  k, если существует (открытый) 
базис {W}, такой, что ind Gr W  k–1. И будем говорить, что 
ind X = k, если ind X  k и ind X  k–1 ложно. Наконец, ind X = , 
если ind X  k ложно для всякого k. 

З а м е ч а н и е . ind X называется малой индуктивной раз-
мерностью пространства Х. 

Теорема 3.2.2. ind R = 1. 
Доказательство. Уже доказано, что ind R > 0. Пусть хR, 

тогда семейство {Br(x)} — фундаментальная система окрест-
ностей точки х. Причем Gr Br(x) = {x – r, x + r}, но это множе-
ство нульмерно. Следовательно, ind R  1. Таким образом,  
ind R = 1. 

Теорема 3.2.2 доказана. 
Теорема 3.2.3. Пусть X,Y — пространства и f: XY — 

гомеоморфизм. Тогда ind X = ind Y. 
Доказательство. Индукцией по размерности. Если ind Х  1, 

то X = . Тогда Y = . 
Пусть теорема справедлива для всех пространств с ind X  n. 

Имеем гомеоморфизм f: XY, причем ind X = n + 1. По оп-
ределению в Х существует базис {W}, такой, что ind Gr W  n. 
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Так как f: XY — гомеоморфизм, то по теореме об инвари-
антности области [12] семейство {f(W)} — базис в Y, кроме 
того, )GrW(fGrW:f GrW   — гомеоморфизм, для всякого ба-

зисного множества W. Так как ind Gr W  n, то по индуктив-
ному предположению ind f(Gr W)  n. Тогда по определению 
малой индуктивной размерности ind Y  n. Случай ind Y  n 
невозможен, так как тогда ind X  n. Таким образом, ind Y = n + 1. 

Теорема 3.2.3 доказана. 
Теорема 3.2.4. Пусть Х — пространство и А — его под-

пространство, тогда ind A  ind X. 
Доказательство. Будем считать, что ind X < . 
Для Х =  теорема очевидно справедлива. Пусть теорема 

справедлива, если ind X  n. Возьмем пространство Х с ind X = 
= n + 1 и его подпространство А. Возьмем точку х  А и ее ок-
рестность U (в А). Тогда AUU  , где U открыто в Х. Так 
как ind X = n + 1 и хU , то существует множество V  из 
фундаментальной системы окрестностей точки х (в Х), такое, 
что UV   и ind VGr   n. Пусть AVV  , тогда V  U и 

Gr V  Gr V  (здесь Gr V — граница множества V в А и Gr V  
— граница множества V  в X). Тогда ind VGr  n, поэтому ind 

А  n. 
Теорема 3.2.4 доказана. 

Пр и м е р . ind S  = 1 (здесь S — ковер Серпинского). По 

построению отрезок [0,1]  S, поэтому ind S  1. Пусть х  S 

и  xBr , тогда существует i
nT   xBr  (x i

nT ) и легко постро-

ить окрестность U(x) точки х, такую, что U(x)   xBr  и  

Gr U(x) пересекается с S только по вершинам треугольника 

i
nT  (рис. 3.1). Следовательно, ind S  1, поэтому ind S = 1. 
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Рис. 3.1 

 
Вот полезное свойство размерности подпространств. 
Лемма 3.2.2. Пусть Y — подпространство пространства X. 

Тогда ind Y  n в том и только в том случае, если для всякой 

хY существует базис B (окрестностей точки  х)  в Х такой, 

что для всякого W  B ind (WY)  n–1. 

Доказательство. См. работу [12]. 
Теорема 3.2.5. Пусть A,B — подмножества в пространстве 

Х. Тогда ind (AB)  1+ ind A + ind B. 
Доказательство. Будем доказывать индукцией по m + n, 

где m = ind A, а n = ind B. 
Если 2nm  , тогда A =  и B = , поэтому получим 

ind (AB) =     1111  . Пусть ind A= m, а ind B = n. Бу-
дем считать, что утверждение верно для одного из двух слу-
чаев: ind A m и ind B  n–1; ind A m–1 и ind B  n. 

Пусть хAB. Не ограничивая общности, будем считать, 
что хA. Пусть U — открытая окрестность точки х в X. Тогда 
существует открытая окрестность V точки х в X такая, что V  U 
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и ind (Gr VA)  m–1. Имеем Gr VB  B и ind (Gr VВ)  n. 
По предположению индукции ind(Gr V (AB))  m+n.  

Таким образом, ind (AB)  1+ ind A + ind B. 
Теорема 3.2.5 доказана. 
Следствие. Пусть Y1, Y2,…, Yn+1 — нульмерные подпро-

странства пространства Х. Тогда, nYind
1n

1i
i 




 . 

Доказательство. Самостоятельно. 
Теорема 3.2.6. Пусть {Cn}n N — семейство замкнутых 

подмножеств в пространстве Х, таких, что ind Cn  k для вся-

кого kN. Тогда kCind
Ni

i 

 . 

Доказательство. Пусть k — конечно. Будем доказывать 
индукцией по k. Если k = 0, тогда утверждение справедливо 
[3; 2; 14]. 

Пусть k 1 и утверждение теоремы справедливо для мень-
ших значений k. Во всяком Tn возьмем базис открытых мно-

жеств Bn такой, что ind Gr U < k для всякого U Bn. Не огра-

ничивая общности, будем считать, что базис Bn счетный (тео-

рема Линделефа). Тогда для всех n и всех U Bn (лемма 3.2.2) 

будем иметь ind Gr U  k–1. Рассмотрим множество 

  
Nn U n

UGrY
 


B

. 

По предположению индукции ind Y  k–1. 
Семейство множеств 

  nn U:Y\U BB   

является базисом открытых множеств в пространстве Zn = Tn \ Y, 
кроме того, множества U\Y открыто-замкнуты в Zn. Следо-

вательно, ind Zn = 0, и поэтому ind 0Z
Nn

n 

 . 
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Очевидно, что множества Zn = Tn \ Y = Tn  Z (Z = 
Nn

nZ


) 

замкнуты в Z. Тогда по теореме 3.2.5 

 ind T = ind (YZ) 1 + (k – 1) + 0 = k. 
Теорема 3.2.6 доказана. 

Теорема 3.2.7. Пусть ind X = k, тогда X = 
1k

1i
iX





, где Xi  X 

и ind Xi = 0 для всякого i = 1,2,…,k+1. 
Доказательство. Самостоятельно. 
Определение 3.2.3 Пространство Х называется нульмер-

ным, если для всякого хХ и всякого замкнутого его подмно-
жества Z, такого, что хZ, существуют открытые окрестности 
U точки х и V множества Z, причем 

1) X = UV; 
2) U  V = . 
З а м е ч а н и е . U,V открыто-замкнуты в Х. 
З а д а н и е . Доказать эквивалентность определений нуль-

мерности пространства. 
Лемма 3.2.3. Пусть Х — компакт и С — замкнутое под-

множество в Х. Если точка хХ может быть отделена от вся-
кой точки yC, то она может быть отделена и от множества С. 

Доказательство. Для всякой пары (x,y), где yC, сущест-
вуют открыто-замкнутые в Х множества  y

xU (окрестность 
точки х) и Vy (окрестность точки y), которые отделяют точки 
x,y. Так как С — компакт, то существует конечное число окре-

стностей 
k21 yyy V,...,V,V , таких, что 

k

1i
yi

VC


 . Рассмотрим 

множества U =  
k

1i

y
x

iU


 и 
k

1i
yi

VV


 . Множества U, V явля-

ются открыто-замкнутыми в Х. Кроме того, хU и C  V. По 
построению U  V = . Следовательно, множества U,V отде-
ляют точку х и множество С. 

Лемма 3.2.3 доказана. 
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Теорема 3.2.8. Если пространство нульмерно, тогда оно 
вполне несвязно. 

Доказательство. Пусть Х нульмерно и хХ. Если С(х) — 
компонента точки х и существует yC(х), такое, что y  x, то-
гда в Х существуют открыто-замкнутые множества U и V, от-
деляющие x,y, такие, что C(х)  U  и C(х)  V  . Что 
противоречит связности множества C(х). Поэтому C(х) = {x}. 

Теорема 3.2.8 доказана. 
Обратное утверждение, вообще говоря, неверно. 
Определение 3.2.4. Конечная последовательность {xi}0  i  n 

в пространстве (Х,d) называется -цепью ( > 0), если 

 d(x0,x1)  , d(x1,x2)  ,…, d(xn–1,xn)  . 
В этом случае говорят, что -цепь {xi}0  i  n соединяет точки х0 
и хn, которые называются соответственно началом и концом  
-цепи {xi}0  i  n. 

З а м е ч а н и е . Сравнить с аналогичными определениями §1. 
Определение 3.2.5. Подмножество А пространства Х назы-

вается -сцепленным, если любые две его точки можно соеди-
нить -цепью из элементов множества А [5]. 

Определение 3.2.6. Подмножество А пространства Х назы-
вается сцепленным, если оно является -сцепленным для вся-
кого  > 0 [5]. 

Определим в пространстве Х отношение R(x,y) — суще-

ствует -цепь, соединяющая точки x и y. 

З а д а н и е . Доказать, что отношение R(x,y) — отношение 

эквивалентности на пространстве Х. 
Пусть Ах, — класс эквивалентности точки хХ по отно-

шению эквивалентности R(x,y). 

Теорема 3.2.9. Всякое связное пространство Х — сцепленное. 
Доказательство. Если пространство Х не является сцеп-

ленным, то существуют две его точки a и b, которые не могут 
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быть при некотором  > 0 соединены никакой -цепью. Рас-
смотрим множество Аa,. Имеем Аa,   и Х\ Аa,  . 

Множество Аa, открыто — если y Аa,, то всякую zB(y) 
можно соединить -цепью с точкой a. 

Множество Аa, замкнуто — если y ,aA , то существует 
точка  yBAz ,a   . 

Таким образом, множества Аa, и Х\ Аa, открыто-замкнуты 
в Х, что противоречит связности пространства Х. 

Теорема 3.2.9 доказана. 
Теорема 3.2.10. Всякое сцепленное компактное простран-

ство связное. 
Доказательство. Пусть сцепленное компактное простран-

ство (Х,d) не является связным. Тогда Х = B1  B2 и B1  B2 =  
(B1 и B2 — компакты в Х). Кроме того, имеем d(B1, B2) = 0 > 0. 
Тогда пространство Х не может быть -сцепленным если  < 0. 

Теорема 3.2.10 доказана. 
Таким образом доказана и следующая теорема. 
Теорема 3.2.11. Для того чтобы компактное пространство 

было связным, необходимо и достаточно, чтобы оно было сце-
пленным. 

Положим 
0

,xx AA


 для всякого хХ. Очевидно, что это 

класс эквивалентности точки х в пространстве Х по отноше-

нию R(x,y): для всякого  > 0 существует -цепь, соединяющая 

точки x и y. 
Лемма 3.2.4. Если Х — компактное пространство, тогда Ax 

— компакт в Х. 
Доказательство. Всякое множество Ax, — компакт в Х. 
Лемма 3.2.4 доказана. 
Следствие. Множество Ax связно. 
Доказательство. Любые две точки a,b Ax могут быть 

соединены -цепью для любого  > 0. 
Следствие доказано. 
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З а д а н и е . Пусть 1 < 2. Верно ли, что 
21 ,x,x AA   ? 

Пусть {n}nN — убывающая последовательность положи-
тельных вещественных чисел. Тогда 

 ...A...AA
n21 ,x,x,x   . 

Лемма 3.2.5. 






 

1n
,x

0
,xx n

AAA . 

Доказательство. Самостоятельно. 
Лемма 3.2.6. Если Х — компактное пространство, тогда  

C(x) = Ax. 
Доказательство. Так как множество Ax, открыто-замк-

нуто в Х, то, очевидно, C(x)  Ax. С другой стороны, множе-
ство Ax связно, и поэтому Ax  C(x). Таким образом, Ax = C(x). 

Лемма 3.2.6 доказана. 
Лемма 3.2.7. Пусть ...A...AA

n21 ,x,x,x    — после-

довательность в компактном пространстве Х. Тогда для всяко-
го  > 0 существует n0, такое, что для всех n  n0 будем иметь 

 xn,x AUA  . 

Доказательство. В метрике Хаусдорфа последователь-
ность ...A...AA

n21 ,x,x,x    сходится к Ax. 

Лемма 3.2.7 доказана. 
Следствие. Во всякой окрестности W множества Ax со-

держится некоторое 
n,xA  . 

Доказательство. Множества    0xAU   образуют фун-

даментальную систему окрестностей компакта Ax [8]. 
Следствие доказано. 
Лемма 3.2.8. Если пространство Х вполне несвязно, то  

Ax ={x} для всякой точки хХ. 
Доказательство следует из леммы 3.2.5. 
Теорема 3.2.12. Если компактное пространство вполне не-

связно, то оно нульмерно. 
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Доказательство. Пусть W — окрестность точки х в ком-
пактном вполне несвязном пространстве Х. По следствию из 
леммы 6 существует открыто-замкнутое WA

n,x  . Следова-

тельно, пространство Х нульмерно. 
Теорема 3.2.12 доказана. 
Таким образом доказана и следующая теорема. 
Теорема 3.2.13. Для того чтобы компактное пространство 

Х было нульмерным, необходимо и достаточно, чтобы оно 
было вполне несвязным. 

Теорема 3.2.14. Пусть пространство Х нульмерно (ind X = 0). 
Тогда для любых его замкнутых непересекающихся под-
множеств A,B существуют открыто-замкнутые подмножества 
U и V в Х, для которых A  U и B V. Кроме того, UV = X и 
U  V = . 

Доказательство. Так как ind X = 0, то существует базис 

B в Х, состоящий из открыто-замкнутых подмножеств. Для 

всякого хХ возьмем U B, такое, что хU (обозначим его 

U(х)), причем A  U(х) =  или B  U(х) =  (объяснить, по-
чему это возможно). Таким образом, семейство    XxxU   яв-

ляется открытым покрытием пространства Х. По теореме 
Линделефа из этого покрытия можно выделить счетное под-
покрытие    NiixU  . Определим 

 V1 = U(x1),...,  

 Vn = U(xn) \ V1V2…Vn–1 =   














1n

1k
kn V\XxU  … 

Все множества Vn открыто-замкнуты в Х. Кроме того, 

 ViVj =  (ij) и 
Ni

i XV


 . 

По построению каждое из множеств Vn или не пересека-
ется с A, или не пересекается с B. 
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Обозначим U объединение всех множеств Vn, которые не 
пересекаются с B. Тогда множество U открыто и UB = . 

Обозначим V объединение всех множеств Vn, которые пе-
ресекаются с B. Очевидно, V = X\U и множество V является 
открытым. Таким образом, множества U,V являются открыто-
замкнутыми. Кроме того, V  A = , поэтому A  U и B  V. 

Теорема 3.2.14 доказана. 
Определение 3.2.7. Пусть A,B — непересекающиеся под-

множества в пространстве Х. Будем говорить, что множество 
S  X отделяет множества A,B, если существуют открытые под-
множества U и V в Х, для которых A  U и B V, U  V =  и  
S = X\ UV. 

Теорема 3.2.11 и определение 3.2.7 показывают, что имеет 
место определение, эквивалентное предыдущим. 

Определение 3.2.8. Пространство Х называется нульмер-
ным, если для любых его замкнутых, непересекающихся под-
множеств A,B существуют открыто-замкнутые подмножества 
U и V в Х, для которых A  U и B  V, такие, что UV = X и 
U  V = . 

Теперь дадим определение большой индуктивной размер-
ности, обозначаемой Ind … 

Определение 3.2.9. Если Х = , то Ind X  1. Если k  0, 
то будем говорить, что Ind X  k, если любые его два замкну-
тых непересекающихся подмножества могут быть разделены 
множеством S, таким, что Ind S  k–1. Ind X = k, если Ind X  k 
и Ind X  k–1 ложно. Мы будем говорить, что Ind X = , если 
Ind X  k ложно для всякого kN+. 

З а м е ч а н и е . Если ind X = 0, тогда любые его два замк-
нутых непересекающихся подмножества могут быть разделе-
ны пустым подмножеством. 

Таким образом, имеет место следующая теорема. 
 

Теорема 3.2.15. ind X = 0 эквивалентно Ind X  0. 
Доказательство. Самостоятельно. 
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Коротко рассмотрим знаменитые теоремы сложения. 
Лемма 3.2.9. Пусть в пространстве Х даны два замкнутых 

непересекающихся подмножества A и B. Если Z  Х такое, 
что Ind Z  0, тогда существует подмножество S, которое раз-
деляет A,B и S  Z = . 

Доказательство. Самостоятельно [12]. 
Теорема 3.2.16. Пусть в пространстве Х дана последо-

вательность {Сn}nN его замкнутых подмножеств, причем  

Ind Сn  0 для всякого kN+. Тогда 0CInd
Nn

n 

 . 

Доказательство. Пусть 



Nn

nCC . Пусть A,B — замкну-

тые непересекающиеся подмножества в С. Тогда существуют 
открыто-замкнутые подмножества L1 и M1 в С1, для которых  
A  С1  L1 и B  С1  M1 (= C1 \L1). Множества A  L1 и  
B  M1 — замкнутые непересекающиеся подмножества. Так 
как пространство Х нормально, то существуют открытые в Х 
множества U1 и V1, такие, что A  L1  U1 а B  M1  V1. Кро-

ме того,  11 VU [27]. В С2 существуют открыто-замкну-

тые подмножества L2 и M2 (= C2\ L2), такие, что 212 LUC  и 

212 MVC  . Множества 12 UL   и 12 VM   замкнутые и 

непересекающиеся. Тогда существуют открытые в Х множест-

ва U2 и V2, такие, что 212 UUL  и 212 VVM  . Кроме то-

го,  22 VU . Продолжая, получим две последовательно-

сти   NnnU и   NnnV . Пусть 



Nn

nUU и 



Nn

nVV . Тогда 

U,V — открытые непересекающиеся подмножества в Х. По 
построению A  U и B  V. Множества U,V открыты и замк-
нуты в С. 

Теорема 3.2.16 доказана. 
Из теоремы 3.2.12 можно вывести следующую теорему: 
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Теорема 3.2.17. Пусть в пространстве Х дана последова-
тельность {Сn}nN его замкнутых подмножеств, причем ind Сn  0 

для всякого kN+. Тогда 0Cind
Nn

n 

 . 

З а м е ч а н и е . Множества рациональных и иррациональ-
ных чисел в R (Эвклидова метрика) имеют малую индуктив-
ную размерность 0, их объединение (множество действитель-
ных чисел) — 1! 

Для сепарабельных метрических пространств малая и 
большая индуктивная размерность совпадают! 

 
 

§3. Размерность Хаусдорфа 

 
Ограничимся рассмотрением пространства Rn, будем обо-

значать X  диаметр множества X  Rn. 

З а м е ч а н и е . yxsupX
Xy,x




. 

Определение 3.3.1. -покрытием множества X называется 
счетное семейство подмножеств  iU  в Rn, таких, что 

 





1i

iUX  и  iU0 . 

З а д а н и е . Доказать, что UU  . 

Пусть   



 

1i

s
i

s UinfXH , где s — неотрицательное дей-

ствительное число и инфимум берется по всем -покрытиям 
множества Х. 

Для фиксированного множества Х  Xs
H  зависит от двух 

переменных — s, , а функция  Xs
H принимает значения в 
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отрезке [0,]. Если фиксировать s, то  Xs
H  будет зависеть 

только от . Очевидно, что если   , то    XX ss
  HH . По-

этому, если не исключать , существует предел 

      XsupXlimX s

0

s

0

s





 HHH . 

Лемма 3.3.1. Функция  XsH  обладает следующими 

свойствами: 

1)   0s H ; 

2)    YX ss HH  , если X  Y; 

3) если   IiiX   — счетное семейство подмножеств в Rn, то 

  











Ii
i

s

Ii
i

s XX HH  . 

Доказательство. Самостоятельно. 

З а м е ч а н и е .  XsH  называется s-мерной внешней Ха-

усдорфовой мерой. 
Если s < t и  iU  — произвольное -покрытие множества 

X, тогда 

 














1i

s
i

1i

stst
i

s
i

1i

t
i UUUU , 

поэтому    XX sstt



  HH . 

Тогда если   XsH , то   0Xt H , если   0Xt H , то 

   XsH . 

Таким образом, график функции  XsH  (как функции s) 

является ступенчатой функцией с не более чем одной точкой 
разрыва (рис. 3.2). 

Здесь t*= dimH X. 
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Рис. 3.2 

 
Определение 3.3.2. Точка разрыва графика t* функции 

 XsH  (как функции s), если она существует, называется Ха-

усдорфовой размерностью пространства Х и обозначается 
dimH X. 

По определению 

  Xdims0если,X H
s H , и    sXdimесли,0X H

sH . 

Кроме того, имеет место 

 dimH X =      0XinfXsup s

s

s

s
 HH . 

З а м е ч а н и е . Если 0 <  XsH < , то мы будем говорить, 

что Х является s-множеством. 
Пр и м е р  1. Пусть Х ={x1,x2,…,xk} Rn (хi ≠ хj). Тогда для s > 0 

   0Xs H , но  XsH = k для s = 0. 

Теорема 3.3.1. Размерность Хаусдорфа s-множества Кан-
тора C log2/log3=0,63092… и s-мерная внешняя Хаусдорфова 

мера   1Cs H . 

Доказательство. Заметим, что Ck является δ-покрытием C 
(C )Сk и Ck есть объединение 2

k подинтервалов длины δ = 3–k. 
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Тогда  Xs
H ≤2k3–sk =1, при этом δ можно сделать сколь угод-

но малой, выбирая достаточно большим k. Следовательно, 

  .1Xs H  

Теперь покажем, что   .1Xs H  Для этого докажем более 

сильное утверждение: для любого покрытия {Ii} множества 
Кантора C замкнутыми интервалами справедливо неравенство 

1I
s

1i
i 





. Это обеспечивает выполнение неравенства 

  .1Xs H  

Допустим, что существует покрытие {Ii} множества Кан-

тора C, для которого 1I
s

1i
i 





. Будем считать, что каждый Ii 

есть открытый интервал. Этого можно достичь, «слегка рас-
ширяя» каждый Ii, сохраняя неравенство. Тогда компактность 
C означает, что можно выделить конечное покрытие, т. е. 

.IC
m

1i i 
 Тогда для достаточно большого k .IC

m

1i ik  
  

Выберем k как наименьшее число, обладающее свойством: 
каждый подинтервал длины 3–k, входящий в покрытие Ck, со-
держится в некотором Ii. Рассмотрим случай, когда каждый Ii 
содержит не менее двух подинтервалов. Множество Ii\Ck — 
подмножество Ii, полученное удалением точек, принадлежа-

щих Ck, есть объединение конечного числа открытых интер-

валов. Обозначим J один из этих интервалов наибольшей дли-
ны. Можно считать, что граничные точки интервала J есть 
внутренние точки Ii, сужая Ii. 

Пусть для простоты JJJI 10i  , где J0 и J1 — полуин-

тервалы, полученные удалением точек J из Ii. Тогда из струк-

туры Ck следует, что JJ,J 10  . Поэтому получаем 
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     .JJ
2

JJ
2JJ

2

3
JJJI

s
1

s
0

s

10
s

10
s

10
s

i 






 







   

Здесь используется выпуклость функции   .xxf s  Эти 
неравенства показывают, что если заменить в покрытии {Ii} 

каждый Ii на JJ 10 , то ,132I
skk

m

1i
i  


  так как можно счи-

тать, что каждый Ii содержит точно один подинтервал длины 3–k. 
Теорема 3.3.1 доказана. 
Лемма 3.3.2. Пусть A — подмножество Rn и ψ: A→ Rn  — 

отображение Липшица, что означает yxc)y()x(   

для некоторой постоянной c и всех x,yA. Тогда для любого 
s ≥  0,  (A)s H  ≤ cs  AsH и dimH (ψ(A)) ≤ dimH (A). 

Доказательство. Пусть  iU  — произвольное δ-покры-

тие A. Тогда   iUA  —  покрытие ψ(A) и 

   


)y()x(
U

supUA
i

Ay,x
i c i

Uy,x
Ucyxsup

i




. 

Следовательно, такое покрытие ψ(A) есть cδ-покрытие. Сле-
довательно, 

      .UcUAA
s

1i
i

s
s

1i
i

s
с 








 H  

Так как  iU  — произвольное δ-покрытие A, то 

   ).A(cA sss
с   HH  Переходя к пределу в обоих частях 

неравенства, получим dimH (ψ(A))≤ dimH (A).  
Лемма 3.3.2 доказана. 
Лемма 3.3.3. Пусть A — подмножество Rn и ψ: A→ Rn — 

отображение Гельдера с показателем α  1,0 , т. е. для всех 

x,yA и для некоторой постоянной c yxc)y()x(  α. 

Тогда dimH (ψ(A))≤ α–1• dimH (A). 
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Доказательство. Пусть  iU  — произвольное δ-покры-

тие A. Тогда   iUA  — покрытие ψ(A) и 

  


)y()x(
U

supUA
i

Ay,x
i c i

Uy,x
Ucyxsup

i

 



α. 

Cледовательно,   iUA  является cδα-покрытием ψ(A). 

Тогда   
(A)s

c
H  

s

1i
iUA





 ≤





s

1i
i

s Uc . Из нера-

венства получаем  (A)s/

c



H ≤ cs/α  As

H . 

Если  Adims H , тогда   0As H . Следовательно, 

  .0)A(s/ H  Таким образом,  



s

)A(dimH  для всех 

 Adims H . Тогда dimH (ψ(A)) ≤ α–1• dimH (A). 

Лемма 3.3.3 доказана. 
Когда отображение ψ: Rn → Rn — гомеоморфизм и вместе с 

обратным отображением оно является отображением Лип-
шица, т. е. для некоторых постоянных c1 и с2 выполняются не-
равенства     yxcyxyxc 21   для любой пары 

x,y Rn, то для такого отображения dimH (ψ(A))= dimH (A). Это 
следует из леммы 3.3.2, примененной к отображению ψ и ψ–1. 

 

Теорема 3.3.2. Множество A nR , размерность Хаусдор-
фа которого меньше 1 (dimH (A)<1), вполне несвязно. 

Доказательство. Пусть x и y — различные точки множества 

A и ),0[R:f n   — отображение, определяемое f(t) = | t–x |. 

Так как         stxsxtxsxtsftf  , то отоб-

ражение f не увеличивает расстояние и, следовательно, является 
отображением Липшица с постоянной 1. Из леммы 3.3.2 следует, 

что dimH (f(A)) ≤ dimH (A) < 1. Toгда f(A) — подмножество Rn, 1H  
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— мера (или длина), равная нулю [20]. Следовательно, f(A) имеет 
плотное дополнение. Выберем q  Af  и )y(fq0  . Это оз-

начает, что    qxt:Atqxt:AtA  , т. е. A 

— это объединение двух непересекающихся открытых мно-
жеств, причем x принадлежит одному множеству, а y — дру-
гому. Это означает, что x и y принадлежат различным компо-
нентам связности множества A. 

Теорема 3.3.2 доказана. 
Семейство сжатий  m21 ,...,,   имеет единственное са-

моподобное множество  VV
m

1i
i



 , для которого опреде-

лим размерность подобия как положительный корень d урав-
нения (уравнение подобия) 

    1L
dm

1i
i 



, 

где L(ψi) — коэффициент сжатия. Корень d этого уравнения за-
висит только от постоянных Липшица, сжатий ψi. Обозначим 
эту величину dims(V). Хотя это число dims(V) называют размер-
ностью, оно не является ею в общепринятом смысле. Такое на-
звание используется потому, что при выполнении оп-
ределенных условий эта величина согласуется размерностью 
Хаусдорфа самоподобного множества V. Отметим, что рас-
сматриваемое уравнение имеет единственный положительный 

корень, так как функция )x(f x
m

1i
i ))(L(



 монотонно убывает 

и удовлетворяет соотношениям .0)(f2m)0(f   До-

кажем следующую теорему 
Теорема 3.3.3. Для самоподобного множества V  

 dims(V)  dimH(V). 
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Доказательство. Для этого достаточно доказать, что 
 VsH < ∞, здесь s = dims(V). Пусть A — подмножество Rn и 

)m,...,2,1j,mi1(i...ii jk21   — последовательность k нату-

ральных чисел. Для упрощения записи используем обозначе-

ние ).A(...A
k21k21 iiii...ii    Тогда .VV

k21

k21

i...ii
i...ii   

Кроме того, имеем ,V)(LVV k

j
i

k

1jk21 i...ii 


где λ — наи-

большее среди L(ψi), которая, конечно, меньше 1. Пусть  
δ = λk|V|. Тогда  

k21 i...iiV  есть δ-покрытие V и, следовательно, 

 

 

.V)))(L(V

))(L(...VV...V

sk
m

1i

s
i

s

m

1i

m

1i

k

1j

s
i

s
m

1i

m

1i

s

i...ii
s

1 k

j

1 k

k21







  



   
H

 

Величину δ можно уменьшать, если это необходимо, вы-
бирая k достаточно большим. Таким образом получили нера-
венство  

   .VV
ss H  

Теорема 3.3.3 доказана. 
Вычислить размерность подобия как положительный ко-

рень уравнения — непростая задача, но можно получить ее 
оценку с высокой степенью точности. Важно знать, когда не-
равенство в теореме 3.3.3 становится равенством. При выпол-
нении равенства размерность Хаусдорфа, которую трудно оп-
ределить, может быть получена или оценена с помощью корня 
уравнения подобия. 

Определение 3.3.3. Множество сжатий  m21 ,...,,   
удовлетворяет условию открытого множества, если сущест-
вует непустое ограниченное открытое множество nRU  , та-
кое, что 
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       .ji,UUи,mi1,UU jii   

Так как ,U)U(  то .UV   

Определение 3.3.4. Отображение nn RR:  называется 

отображением сжатия, если     yx)(Lyx   для всех 

.Ry,x n Другими словами, отображение ψ есть линейное 

преобразование, т. е. композиция сжатий подобия, вращений и 
инверсий. Приведем теперь теорему Хатчинсона [21]. 

Теорема 3.3.4. Пусть V — самоподобное множество, опре-
деляемое семейством отображений сжатий, которое удовле-
творяет условию открытого множества. Тогда dims(V)  
= dimH(V). 

Пр и м е р . Кривая Коха. 
Рассмотрим четыре преобразования подобия, определяю-

щие СИФ: 
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Эти подобия применим к отрезку [0,1] (рис. 3.4, а) и полу-
чим конфигурацию (рис. 3.4, б). После применения таких пре-
образований подобия к ломаной б получим ломаную в и т. д. 
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Предел такой последовательности ломаных (множеств) в мет-
рике Хаусдорфа является кривой Коха (К). 

 
а 
 

 
б 
 

 
в 
 

 
г 
 

 
д 
 
 

Рис. 3.3 
 

 
З а д а н и е . Доказать, что СИФ, определяющая кривую 

Коха, удовлетворяет условию открытого множества. 
Размерность подобия такой СИФ есть корень уравнения 
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Следовательно, dims(K) = log 4 .log3  Это означает, что раз-

мерность Хаусдорфа кривой Коха K dimH (K) = log 4 .log3  

З а м е ч а н и е . Множество, определяемое двумя различ-
ными СИФ, может иметь различные размерности подобия. 

Рассмотрим, например, отрезок [0,1]. 
Первый СИФ: 

 ' '1 1 1
x x,x x .

2 2 2
    

Bторой СИФ: 

 ' '2 2 1
x x,x x .

3 3 3
    

В первом случае размерность подобия dims([0,1]) — корень 

уравнения 
s

1
2 1

2
   
 

, равная 1. 

В втором случае размерность подобия dims([0,1]) — корень 

уравнения 
s

2
2 1

3
   
 

, равная 
log 2

log3 log 2
, что больше 1. 

Для того чтобы размерность подобия характеризовала 
множество, требуется выполнение условия открытого мно-
жества. Легко проверить, что в первом случае открытое 
множество (0,1) удовлетворяет условию открытого множе-
ства: два его образа (0,1/3) и (2/3,1) не пересекаются и со-
держатся в (0,1). Следовательно, по теореме Хатчинсона 
размерность Хаусдорфа отрезка [0,1] dimH([0,1]) = 1. Откуда 
следует, что во втором случае условие открытого множества 
не выполняется. 
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Глава 4. ПРОСТРАНСТВА СТРОК 
 
 

§ 1. Основные понятия 
 

Пусть A = {0,1}. Множество A  назовем алфавитом, его 

элементы — буквами. Набор букв алфавита вида 10010101 — 
конечной строкой. В дальнейшем строки мы будем обозначать 
строчными буквами греческого алфавита. Количество букв в 
строке  называется ее длиной и обозначается  . Длина стро-

ки 10010101 равна восьми. Примем соглашение о том, что су-
ществует строка нулевой длины, которую мы будем называть 
пустой строкой и обозначать . 

Если  и  — две конечные строки, то можно опреде-
лить новую строку , которая записывается сначала бук-
вами строки , а затем — буквами строки . Такая опера-
ция называется соединением двух строк  и . Например, 
если  = 10010101 и  = 01101, то  = 1001010101101. 

Пусть дана строка , тогда определим две новых строки  
0 и 1, первую из которых назовем левым наследником, а 
вторую — правым. 

Множество всех строк из алфавита A  длины n обозначим 

A  (n). Тогда множество всех строк конечной длины из алфа-

вита A , которое мы обозначим A (), является объединением 
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 A () = A (0)A (1) A (2)… A (n)…. 

и называется бесконечным бинарным деревом (рис. 4.1). 

 

 
 

Рис. 4.1 

 
Пусть даны две строки  и , если существует строка  та-

кая, что  = , то строка  называется префиксом строки , и 
в этом случае мы пишем   . Таким образом, во множестве 

A () мы ввели отношение частичного порядка. 

Если A () и   n, то символом n будем обозначать 

строку, состоящую из первых n букв строки , то есть ее пре-
фикс длины n. Например, 10010101011015 = 10010. 

Используя алфавит A мы можем рассматривать бесконеч-

ные строки, которые также будем обозначать строчными бук-
вами греческого алфавита. Из текста обычно ясно, о какой 
строке — конечной или бесконечной — идет речь. Множество 

всех бесконечных строк из алфавита A мы обозначим A(). 

Если  A(), то для всякого натурального n существует не-

пустая строка n. 
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Очевидно, что A() = A N = 


1i
iX , где Xi = {0,1} для вся-

кого iN [18]. Тогда (см. определение прямого произведения 

множеств) существует функция f: NA, такая, что 

 f(1) f(2) … f(n)… = . 

Множество A наделим дискретной топологией, а множество 

A N — топологией произведения. 

Теорема 4.1.1. Канторово множество гомеоморфно мно-

жеству A N, наделенному топологией произведения. 

Доказательство. Пусть C — множество Кантора. Опре-

делим отображение f: CA N (f = (f1,f2,…,fn,…)) следующим 

образом. Если aC, тогда 





1n

n
n

3

a
a (причем an = 0 или 2) и мы 

положим fn(a) = an/2. Таким образом, f(a) = (a1/2, a2/2,…, 
an/2,…). По построению отображение f является инъекцией, 
так как если a,b  C и a  b, то для некоторого i имеем ai  bi. 

Кроме того отображение f — сюръекция, так как для всякой 

строки A() имеем  = 12…n…, и поэтому f (






1n
n

n

3

2
) = . 

Так как множество A N наделено топологией произведе-

ния, то по определению топологии произведения отображение 

f: CA N непрерывно тогда и только тогда, когда непрерывны 

все отображения fn: CA . Пусть х C и fn (х) = 0, тогда хn = 0 

в троичном представление числа х. Из построения множества 
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C следует, что х  Сn–1, и поэтому х принадлежит одному из 

отрезков I, их объединением является Сn–1, который при пере-
ходе от Сn–1 к Сn превращается в два отрезка — I0 (левый) и I2 
(правый). Таким образом, fn (х) = 0 эквивалентно х  C  I0. 

Но множество C  I0 замкнуто, поэтому отображение fn: 

CA  непрерывно. Что означает, отображение f: CA N не-

прерывно. Множество C — компакт, тогда отображение  

f: CA N — гомеоморфизм [8]. 

Теорема 4.1.1 доказана. 
З а м е ч а н и е . Таким образом, мы наделили множество 

A() естественной топологией, которую обозначим , и полу-

чили топологическое пространство (A(), ). 

Пусть А  A (), строку A () назовем нижней границей 

множества А, если для всякой строки A () мы имеем   . 

Строку A () назовем наибольшей (точной) нижней гра-

ницей множества А, если она является нижней границей мно-
жества А и для всякой нижней границы  множества А мы 
имеем   . Очевидно, Ainf . 

Теорема 4.1.2. Всякое непустое множество А  A () имеет 

единственную точную нижнюю границу. 
Доказательство. Так как множество А  , то существует 

 А, и пусть  = n. Возьмем целое число k такое, что 0  k  n, 

и рассмотрим строки вида k, которые являются нижними 
границами множества А. Множество тех целых k, для которых 
вышесказанное справедливо, не пусто, так как строка 0, оче-
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видно, — нижняя граница множества А. Пусть m — наиболь-
шее из таких k. По определению m является нижней грани-
цей множества А. Тогда если  — произвольная нижняя гра-
ница множества А, то   , и поэтому  = k. Таким обра-

зом, k  m, и поэтому  m. Это означает, что m — точ-

ная нижняя граница множества А. Пусть точных нижних гра-
ниц множества А две — 1 и 2, тогда 21   и 12   , что оз-

начает 1 = 2. 
Теорема 4.1.2 доказана. 
Важную роль в изучении фракталов играют специальные 

отображения, которые называются модельными. Вот один 
пример такого отображения: 

 h1: A()  R. 

Это отображение определяется следующим образом: для вся-
кого  = 12…n… положим h1() = 0, 12…n… = 1/2 + 

+ 2/2
2 + …+ n/2

n +… Очевидно, что h1 (A()) = [0,1]. 

Вот еще один пример такого отображения: 

 h2: A()  R, 

где h2() = 0, 2122…2n… = 21/3 + 22/3
2 + …+ 2n/3

n +…. 

Очевидно, что h2 (A()) = C (теорема 2.2.1). 

Модельное отображение h2: A()  R обладает следующим 

свойством: 

 h2(0) = h2()/3 и h2(1) = h2()/3+2/3. 

З а д а н и е . Доказать это свойство. 
Имеем два отображения: 

 L: A()  A() и R: A()  A(), 
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такие, что L() = 0 и R() = 1 для всякого A(), и два 

отображения f1: R R и f2: R R, такие, что для всякого х R 
f1 (x) = x/3 и f2(x) = x/3 + 2/3. 

З а д а н и е . Используя отображения L, R, f1, f2, записать 
формулу h2(0) = h2()/3 и h2(1) = h2()/3+2/3. 

Определим отображение 

 d: A()  A()  R, 

следующим образом: если  = , то d(,) = 0. Если   , 

то возьмем их наибольший общий префикс . Тогда  =  и 
 = . Положим d(,) = 1/2k, где k . 

Теорема 4.1.3. Отображение d: A()  A()  R является 

метрикой на  A(). 

Доказательство. По определению для любых ,  A() 

имеем d(,)  0 и d(,) = d(,). Проверим выполнение не-

равенства треугольника. Пусть даны , ,  A(), причем 

m — длина наибольшего общего префикса строк  и , а  
n —  длина наибольшего общего префикса строк  и . Поло-
жим k = min {m,n}. Тогда k — наибольший общий префикс 
строк  и , поэтому 

 d(,) = 1/2k = 1/2min{m,n} = max {1/2m,1/2n }= 
 = max { d(,), d(,) }. 

Но max {d(,), d(,) } d(,) + d(,). Таким образом, 
мы получили d(,)  d(,) + d(,). 

Теорема 4.1.3 доказана. 
Такую метрику часто обозначают d1/2. Мы доказали, что 

метрика d1/2 удовлетворят сильному неравенству треуголь-
ника! Метрика d1/2 неархимедова. 
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Метрика индуцирует топологию, и поэтому на множестве 

A() мы имеем топологию, которую обозначим 1/2, и получим 

еще одно топологическое пространство (A(), 1/2). 

 Как связаны между собой топологии  и 1/2? 

З а д а н и е . Пусть d0 — дискретная метрика на A. Опреде-

лим функцию 

 D: A()  A()  R 

следующим образом. Если  = 12…n… и  = 12…n…, то 
 

 D(,) = 






1n
n

nn0

2

),(d
. 

Доказать, что функция D: A()  A()  R является метри-

кой на  A(). 

З а м е ч а н и е . Таким образом, на множестве A() возника-

ет еще одна топология — D. 
Как связаны между собой топологии  и D? 

З а д а н и е . Пусть d0 — дискретная метрика на A. Будет ли 

метрическое пространство (A, d0) полным метрическим про-

странством? Является ли метрика d0 неархимедовой? 

Теорема 4.1.4. Метрическое пространство (A(), d1/2) — 

полное метрическое пространство. 
Доказательство. Пусть {k}kN — последовательность 

Коши в A(). Тогда для всякого натурального k существует на-
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туральное число nk такое, что d1/2 (m, kn ) < 1/2k для всех m  nk. 

По определению метрики d1/2 получим, что mk = kn k для 

всех m  nk. Определим   A() следующим образом:  

k = kn k для всякого натурального k. Пусть  > 0, тогда су-
ществует 1/2k < , мы получим, что d1/2 (m, ) < 1/2k <  для 

всех m  nk. Таким образом, 


m

n
lim . 

Теорема 4.1.4 доказана. 

Теорема 4.1.5. Метрическое пространство (A(), d1/2) явля-

ется компактом. 

Доказательство. Метрическое пространство (A(), d1/2) 

будет компактом в том случае, если оно является полным и 
вполне ограниченным метрическим пространством. Полноту 
мы доказали. Вполне ограниченность доказать самостоятельно. 

Теорема 4.1.5 доказана. 
З а м е ч а н и е . Хорошая подсказка для доказательства — 

рисунок бесконечного бинарного дерева. 
Всякое вполне ограниченное метрическое пространство 

сепарабельно! 
З а д а н и е . Явно указать счетный базис метрического про-

странства (A(), d1/2). Пусть 0 < r < 1, определим отображение 

 dr: A()  A()  R 

следующим образом: если  = , то dr(,) = 0. Если   , 

то возьмем их наибольший общий префикс . Тогда  =  и  
 = . Положим dr(,) = rk, где k . 

Теорема 4.1.6. Отображение dr: A()  A()  R является 

метрикой на  A(). 
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Доказательство. Самостоятельно — аналогично теореме 
4.1.3. 

З а м е ч а н и е . Метрическое пространство (A(), dr) будет 

полным и компактным. Проверить самостоятельно.  

Таким образом, на множестве A() мы имеем семейство 

топологий r для всякого 0 < r < 1. 
Теорема 4.1.7. Если 0 < r < 1 и 0 < s< 1, то r = s. 
Доказательство. Покажем, что тождественное отображе-

ние idA(): (A(),dr)  (A() ds) является непрерывным. Пусть  

 > 0, и A(). Возьмем k таким, что sk <  и пусть rk = . То-

гда для всякого  (= 12…k, k+1…), такого, что dr (,) < , 
мы будем иметь k +1 = k + 1. Это означает, что ds (,) < . 

Таким образом, отображение idA(): (A(),dr)  (A(),ds) явля-

ется непрерывным в точке  и, следовательно, непрерывным. 

Непрерывность отображения idA(): (A(),ds)  (A(),dr)  

доказывается аналогично. 

Отображение idA(): (A(),dr)  (A(),ds) — гомеоморфизм, 

и поэтому r = s. 
Теорема 4.1.7 доказана. 

З а м е ч а н и е . Если отображение idA(): (A(),dr)  

(A(),ds) — гомеоморфизмом, то метрики dr и ds называются 

топологически эквивалентными. 
З а д а н и е . Доказать, что отображение 

 idA(): (A(),dr)  (A() ds) 
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равномерно непрерывное. 
З а м е ч а н и е . Если мы интересуемся топологией метри-

ческого пространства (A(),dr), то мы можем заменить метрику 

dr на топологически эквивалентную. Но если нас интересуют 

метрические свойства пространства (A(),dr), то при такой за-

мене некоторые свойства могут утратиться. 
Теорема 4.1.8. Рассмотрим метрическое пространство 

(A(),d1/3). Модельное отображение h2: A()  R является ото-

бражением ограниченного искажения. 
Доказательство. Докажем, что имеет место формула 

        1/ 3 2 2 1/ 3

1
d α,β h α h β d α,β

3
   .  () 

Пусть  наибольший общий префикс строк ,. Тогда мы 
будем иметь  =  и  = , причем первые буквы строк  и 
 различны. Докажем неравенство () по индукции. Если  
 = 0, тогда d1/3(,) = 1. 

По определению отображения h2: A()  R, h2()[0,1] и 

h2()[0,1]. Тогда    2 2h α h β  1, кроме того, если h2()[0,1/3], 

то h2()[2/3,1], и наоборот. И мы будем иметь 

   2 2h α h β 1/3. В этом случае неравенство () доказано. 

Предположим, это неравенство доказано для случая  = n. 
Пусть  = n +1, тогда  = 0 или  = 1 для строки , для ко-
торой  = n. Выберем один из этих случаев. Возьмем  = 0. 
Тогда по предположению индукции будем иметь 

        1/ 3 2 2 1/ 3

1
d ηα ,ηβ h ηα h ηβ d ηα ,ηβ

3
         

и кроме того  1/ 3d α,β =    1/ 3

1
d 0ηα ,0ηβ d ηα ,ηβ

3
    .  
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Тогда 

 
           

   

h α h β h γα h γβ h 0ηα h 0ηβ

1
h ηα h ηβ .

3

        

  
 

Объединяя неравенства, получим 

 ,        1/ 3 2 2 1/ 3

1
d α,β h α h β d α,β

3
   . 

Для   = 1  доказать самостоятельно [20]. 
Теорема 4.1.8 доказана. 
З а д а н и е . Доказать (используя неравенство()), что ото-

бражение h2: A()  h2(A()) является гомеоморфизмом. 

Определим для всякого A() множество 

 [] = {A():  = }. 

Теорема 4.1.9. Пусть     Ar  — семейство положитель-

ных действительных чисел, таких, что 1) r > r, если    ; 

2) 0rlim n
n


 для всякого A(). Тогда существует метрика 

d на A(), такая, что для всякого  A() будем иметь [] = r. 

Доказательство. Положим d(,) = 0, если  = . Если  
  , тогда d(,) = r, где  — наибольший общий префикс 
строк  и . По определению d(,) = d(,) и кроме того 

d(,)  0 для всех ,A(). Проверим неравенство треуголь-

ника. Пусть ,,A(), при этом  все они различны. Наиболь-

ший общий префикс строк  и  обозначим , строк  и  —  
и строк  и  — . Тогда 

 d(,) = r  max {r,r}= max {d(,),d(,)}. 

Другие случаи рассмотреть самостоятельно. 
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Если ,  [], то d(,)  r. Но 0, 1 [], поэтому 
[] = r. 

Теорема 4.1.9 доказана. 

З а м е ч а н и е . Таким образом, (A(), d) — ультраметриче-

ское пространство. 
Пусть (s1,s2,…sn) — семейство вещественных чисел, таких, что 

 0< si <1 для i = 1,2…n. 

Рассмотрим алфавит A = { s1,s2,…sn }, пусть A() — про-

странство бесконечных строк с таким алфавитом. 

Для каждого siA  зададим отображение i: A() A(), 

которое назовем правым сдвигом, определив его следующим 
образом: 
 i (u) = siu 

для всякого uA(). 

Построим семейство положительных вещественных чисел 
    Ar  следующим образом: r = 1 ( — пустая строка), 

iusr = rusi для всякого uA() и всякого si  A. Имеем: 1) если  

u   v, то v = uw, поэтому если nw  , то 
n21 iii s...susv  . То-

гда rv = ru 
n21 iii s...ss , что означает rv < ru; 2) из пункта 1 следу-

ет, что для всякого u  A() 0rlim nu
n


, так как n

n sr  , где  

s = max { s1,s2,…,sn}. 
Таким образом, условие 1 теоремы 4.1.9 выполнены, сле-

довательно, на A() существует метрика d с указанными в тео-

реме свойствами. 

Покажем, что каждое отображение i: A() A() является 

подобием с коэффициентом si. Пусть u,v A() и wA() — их 

наибольший общий префикс. Очевидно имеем 
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         v,udsrvs,usdv,ud iwsiiii i
 . 

Таким образом, мы получили метрическое пространство 

(A(), d) и семейство {i}i {1,2,…,n} подобий с коэффициентами 

{ si } i {1,2,…,n}. 

Метрическое пространство (A(), d) — полное (почему?), 

поэтому сжимающее отображение F: K(A()) K(A()), где  

F = (1,2,…,n), имеет единственную неподвижную точку, то 

есть существует компакт А  A(), такой, что 

 A = 1(A)2(A)…n(A). 
З а д а н и е . Найти самоподобное множество в метриче-

ском пространстве (A(), d) для СИФ F = (1,2,…,n). 

Метрическое пространство (A(), d) с семейством подобий 

{i}i {1,2,…,n} называется модельным пространством строк. 
Используя это модельное пространство, получим полезную 

теорему. 
Теорема 4.1.10. Пусть (Х,ρ) — полное метрическое про-

странство,    n1,2,...,iif   — система итерированных функций с 

коэффициентами подобия { s1,s2,…sn }= A и (A(),d) — метри-

ческое пространство (построенное выше). Тогда существует 

единственное непрерывное отображение h: A()  X, такое, что 

     uhfush ii   

для всякого u A() и всякого si. Причем h(A()) совпадает с 

самоподобным множеством, определяемым системой итери-
рованных функций    n1,2,...,iif  . 
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Доказательство. Определим по индукции последователь-

ность отображений gk: A()  X следующим образом. 

Возьмем произвольную точку aX и положим g0(u) = a для 

всех uA(). Очевидно, что отображение g0 непрерывно. Если 

отображение gk определено и непрерывно, то для всяких 

uA() и siA положим gk+1(siu) = fi(gk(u)). Непрерывность 

отображения gk+1 проверить самостоятельно. 
Таким образом, мы получили последовательность непре-

рывных отображений gk: A()  X. 

Так как метрическое пространство (A(),d) — компакт, то оп-

ределим метрику D на C0(A(), X) следующим образом: D(f,g) = 

= 
 

    ug,ufmax
u


A . Метрическое пространство (C0(A(),X),D) 

является полным. Пусть s = max { s1,s2,…sn }, тогда s < 1. Легко до-
казать, что D(gk+1,gk)  sk D(g1,g0) (самостоятельно). Поэтому 

 D(gm,gk) (sk/1–s) D(g1,g0), m  k. 

Таким образом, последовательность {gk}kN — последова-

тельность Коши в C0(A(),X), и поэтому сходится к некоторому 

отображению в C0(A(),X), которое мы обозначим h C0(A(),X). 

Причем коммутативна диаграмма (почему?) 

 

   

.XX

hh
i

i

f

s




  AA

 

Очевидно, что A() = s1A()s2A()…snA(). Тогда по-

лучим 
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       
A

AA



 

s
ks1k gfg .   

Так как метрическое пространство (A(),d) — компакт, то 

последовательность gk(A()) сходится к h(A()). Тогда из соот-

ношения       
A

AA



 

s
ks1k gfg  следует, что 

 h(A()) = f1(h(A()))f2(h(A()))…fn(h(A())). 

Поэтому h(A())  X — самоподобное множество для 

СИФ (f1,f2,…,fn). 

Докажем единственность отображения h: A()  X. Пусть 

таких отображений два — h1, h2. Тогда D(h1,h2)  s D(h1,h2), где 
s = max {s1,s2,…,sn}. Но тогда h1 = h2. 

Теорема 4.1.10 доказана. 

Пр и м е р . Рассмотрим алфавит A = {0,1} и пространство 

бесконечных строк A(). Выше мы определили модельное ото-

бражение h2: A()  R. Для которого h2(0) = f1 (h2()) и 

h2(1) = f2(h2()), где f1: R R и f2: R R такие, что для вся-
кого х R,f1 (x) = x/3 и f2(x) = x/3+2/3. Как было показано,  

h2(A())  R является самоподобным множеством для СИФ (f1,f2) 

— множеством Кантора. 
З а м е ч а н и е . Пусть на полном метрическом пространст-

ве Rn задана СИФ F = (f1, f2,…, fn). Возьмем алфавит {1,2,…,n} 

и обозначим Ω = {1,2,…,n}∞ (сравнить с A()). Наделим мно-

жество Ω топологией произведения, тогда топологическое 
пространство Ω будет компактным. 
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Если f1, f2,…, fn — сжимающие отображения, то отображе-

ние F: K (Rn)  K (Rn) также сжимающее, в этом случае СИФ 

называется гиперболическим. 
Если  , то ω = ω1 ω2… ωn…, где  n,...,2,1i  . Возь-

мем  и Xx . Рассмотрим   )x(f...fflim
k21k


   

и обозначим kx )x(f...ff
k21   . Так как f1, f2,…, fn — 

сжимающие отображения, то последовательность {xk} — по-
следовательность Коши, следовательно, является сходящейся. 

Рассмотрим yk = )y(f...ff
k21   (y ≠ x), тогда последо-

вательность {yk} является сходящейся. Кроме того, последова-
тельности {xk} и {yk} — эквивалентны, следовательно, имеют 
общий предел, т. е.    не зависит от x. В этом случае СИФ  
F = (f1, f2,…, fn) называется точечно-расслоеным. 

Мы получили сюръективное отображение A:  , где 
А — аттрактор СИФ F = (f1, f2,…, fn). (Почему?) 

Отображение A:   называется кодовым отображением. 
Введем отображения :sn , где  n)(sn , которое 

называется отображением обратного сдвига. 
Тогда мы имеем коммутативную диаграмму 

 

.RR n
f

n

s

n

n





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