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Книга посвящена вопросам теории передачи непре­
рывных сообщений и связанным с ними проблемам оце­
нивания неизвестного параметра непрерывного случай­
ного процесса. Особый интерес представляет обсуждение 
вопроса о границах снизу дисперсии оценки неизвест­
ного параметра, основанной на наблюдении течения про­
цесса. Наряду с известными из математической стати­
стики границами Рао — Крамера, Баранкина и т. д. 
приводятся и принципиально другие границы, вытекаю­
щие из информационных соображений: так называемая 
граница плотной упаковки и граница, основанная на по­
нятии е-энтропии.

Кроме того, в книге на современном уровне изла­
гаются известные результаты Котельникова о потенци­
альной помехоустойчивости при импульсной модуляции; 
обсуждается, в частности, пороговый эффект, а также 
система фазовой автоподстройки частоты.

Книга интересна студентам, аспирантам, инженерам 
и научным сотрудникам, специализирующимся в раз­
личных областях радиотехники, кибернетики и приклад­
ной математики.

Редакция литературы по математическим наукам

оТчО !)—Y4 16— ®  Перевод на русский язык, «Мир», 1974



ПРЕДИСЛОВИЕ РЕДАКТОРА ПЕРЕВОДА

Эта книга естественным образом дополняет издан­
ные в 1972 г. в русском переводе «Лекции о цифровой 
связи» Дж. Турина. Если книга Турина посвящена опти­
мальным методам передачи по каналам связи случай­
ных величин, принимающих конечное число значений 
(что с математической точки зрения приводит к задаче 
проверки гипотез), то предлагаемая вниманию читателя 
книга посвящена передаче параметров и случайных ве­
личин, возможными значениями которых служит целый 
интервал числовой оси, а также передаче случайных 
процессов. С точки зрения математической статистики 
это задачи теории оценивания. Поэтому большое место 
в книге занимает изучение свойств различных оценок, 
построенных по наблюдениям. Наряду с хорошо извест­
ными границами снизу дисперсии оценок типа неравен­
ства Рао — Крамера приводятся и некоторые новые гра­
ницы, основанные на соображениях теории информации.

Автор старается обходиться по возможности сравни­
тельно простым математическим аппаратом. Это приво­
дит к тому, что многие места в книге не удовлетворяют 
канонам математической строгости. Однако этот недо­
статок искупается доступностью изложения и тем, что 
автор всегда подробно останавливается на идеях, ле­
жащих в основе рассмотрений. К тому же в большей 
части книги математик будет в состоянии сам уточнить 
рассуждения, сделав их строгими.

К сожалению, последнее замечание не относится 
д гл. 4 и 5, Рднако эти гдазы, 0 щ ь  может, будут



наиболее интересны математику, так как они содержат 
краткое, но яркое изложение некоторых важных резуль­
татов теории связи (например, теорию потенциальной 
помехоустойчивости В. А. Котельникова), не имеющих 
пока четкого математического обоснования. Математик 
может рассматривать значительную часть материала 
этих глав как интересные и актуальные задачи, которые 
ждут своего решения.

Книга написана с большим педагогическим мастер­
ством; во многих случаях ' автору удается, начав с 
«азов», довести изложение до современного состояния 
проблемы.

В русском переводе устранены некоторые опечатки; 
в ряде случаев ссылки на американские учебники за­
менены ссылками на источники, более доступные совет­
скому читателю. Добавлено несколько примечаний.

Можно с уверенностью сказать, что прекрасно напи­
санная и богатая содержанием книга профессора Сак- 
рисона будет интересна и полезна широкому кругу ма­
тематиков и инженеров.

Р. Хасъминский



С надеждой на дальнейшее 
развитие сотрудничества между 
советскими и американскими 
учеными.

ПРЕДИСЛОВИЕ К РУССКОМУ ИЗДАНИЮ

Мне очень приятно и лестно, что мои советские кол­
леги сочли уместным перевод этих лекций на русский 
язык, и я благодарен Б. Левиту и Р. Хасьминскому за 
их перевод и редактирование.

Эта книга предназначена для студентов, специализи­
рующихся в электро- и радиотехнике, и по замыслу 
должна охватывать большую часть основных понятий, 
относящихся к приему и передаче непрерывной инфор­
мации. Довольно полное описание рассматриваемых в 
ней вопросов дано в гл. 1, и поэтому их обсуждение 
здесь излишне.

Представляется интересным только указать, как сей­
час, по прошествии пяти лет с тех пор, когда книга пи­
салась по-английски, распределяются усилия исследо­
вателей и каким представляется будущее отдельных от­
раслей.

Проблемы, обсуждаемые в гл. 2, посвящены оценке 
неизвестных параметров и составляют классический 
раздел математической статистики. Исследования в этой 
области сейчас уже не столь интенсивны.

В гл. 3 и 4 описаны применения общей теории к слу­
чаю, когда наблюдение представляет собой выборочную 
функцию случайного процесса. В этой области остались 
открытыми еще некоторые интересные, но трудные проб­
лемы, относящиеся к оптимальному выбору вида пере­
даваемых сигналов и их зависимости от параметров, 
несущих информацию. Новые результаты здесь появ­



ляются медленно, что объясняется трудностью задач. 
По-видимому, разработка недорогих устройств, которые 
дадут возможность осуществлять сложные процессы об­
работки цифровой информации, обусловит развитие 
непрерывной импульсной модуляции, и это позволит пол­
ностью перейти к импульсно-кодовой модуляции (ИКМ). 
Мне кажется, что содержание гл. 4 в наибольшей мере 
способствует восприятию идей, лежащих в основе этой 
проблемы. Здесь уместно также отметить непосред­
ственное влияние на материал гл. 4 классической ра­
боты В. А. Котельникова.

Глава 5, посвященная угловой модуляции, имеет 
важные практические приложения, однако возможности 
для дальнейших теоретических исследований здесь ка­
жутся ограниченными. В гл. 6 на основе понятия функ­
ции скорости при заданном искажении (е-энтропии) 
описан теоретический подход к проблеме кодирования 
источников. Я считаю, что из всех вопросов, рассматри­
ваемых в этих лекциях, именно материал гл. 6 откры­
вает наибольшие возможности для исследователей. 
В частности, представляется важным вычисление функ­
ции скорости при заданном искажении для таких рас­
пределений источников и критериев искажения, которые 
отвечали бы реальным интересующим нас каналам, 
а также построение практических методов универсаль­
ного кодирования, т. е. методов, приводящих к близким 
к оптимальным характеристикам для широкого класса 
распределений источника.

Необходимые при чтении этих лекций математиче­
ские знания отвечают обычной подготовке электро- и 
радиоинженера. Некоторые более тонкие математиче­
ские понятия, такие, как производная Радона — Нико­
дима, используются неформально, на интуитивном 
уровне (хотя по существу корректно). Я надеюсь, что пе­
ревод этих лекций окажется интересным и полезным для 
советских исследователей в области теории информации 
и связи.

Д. Дж . Сакрисон
22, VI. 1973



ОТ АВТОРА

Обычно предисловия пишутся для преподавателей, 
которым данная книга может оказаться полезной, и в 
них делаются попытки описать основные идеи и методы, 
а также приводятся соображения, связанные с темати­
кой и отбором материала. Для тех же читателей, кото­
рые должны учиться по книге, аналогичные вопросы 
обычно излагаются в первой главе.

Настоящие лекции адресованы читателям, которые 
имеют подготовку в объеме технических вузов. Такие 
читатели, как правило, заинтересованы в актуальности 
рассматриваемых вопросов и глубине их изложения в 
той же мере, как и преподаватели. Поэтому обсужде­
ние содержания этой книги мы отложим до первой 
главы.

Здесь мне хочется поблагодарить всех тех лиц, со­
трудничество с которыми оставило след в этой книге, 
особенно своих аспирантов. Я весьма признателен 
М. Закаи за критический просмотр текста — его заме­
чания позволили увидеть ряд вопросов, которые я упу­
стил из виду или недостаточно ясно представлял, а так­
же дали толчок к пересмотру ряда мест, казавшихся 
мне несомненными. Я обязан также Дж. Турину за его 
замечания и лестное для меня предложение опублико­
вать книгу в этой серии.

Д. Дж . Сакрисон
Кембридж,
Англия





Г л а в а  1 

ВВЕДЕНИЕ

Предметом настоящих лекций является проблема 
передачи (в том случае когда в нашем распоряжении 
имеется канал связи) и получения (например, с по­
мощью радиолокационных импульсов) информации при 
наличии случайных шумов или помех. И в том, и в дру­
гом случае мы будем рассматривать источники инфор­
мации, у которых в отличие от цифровых источников 
сообщения или параметры, несущие информацию, имеют 
непрерывный (аналоговый) характер. Темы, охватывае­
мые различными разделами этой книги, кажутся весьма 
далекими, но тем не менее они посвящены одной цент­
ральной проблеме: как с помощью сигналов, доступных 
наблюдению, кодировать или модулировать параметры, 
несущие информацию, и каким образом, а также с ка­
кой точностью можно оценивать эти параметры по при­
нятым сигналам при наличии шумов.

В гл. 2 рассматриваются основные понятия теории 
оценивания. Основываясь на наблюдаемой случайной 
величине Z, распределение которой зависит от некото­
рого параметра а, мы изучим различные «хорошие», 
или практически целесообразные, методы построения 
оценок величины а  по наблюдению Z и получим некото­
рые границы точности, присущей таким процедурам 
оценивания. Для простоты мы будем исследовать слу­
чай, когда наблюдение Z и параметр а  являются конеч­
номерными векторами, однако изложение построено 
так, что нетрудно получить дальнейшие обобщения.

В гл. 3 задача оценивания рассматривается в ситуа­
ции, когда наблюдается случайный процесс

Z(t)  =  s(t, a) +  JP®,  (1.1)

где s(t,  а ) — сигнал, несущий информацию, a J f ( t ) —га­
уссовский шум. Здесь интересующий нас параметр а



по-прежнему представляет собой конечномерный век­
тор. Применительно к этой ситуации уточняются поня­
тия и методы гл. 2. Особое внимание мы уделим задаче 
радиолокационного измерения дальности, чтобы пояс­
нить понятие функции неопределенности и привести при­
мер использования неравенства Крамера — Рао.

Глава 4 также посвящена проблеме оценки пара­
метра а  по наблюдению вида (1.1), однако в этой главе 
внимание концентрируется не на построении методов 
оценивания, а на том, как следует кодировать или мо­
дулировать параметр а  с помощью сигнала s(t,  а).  
В ситуации радиолокационного обнаружения характер 
модуляции не зависит от воли инженера-связиста, по­
скольку дальность и скорость цели определяют соответ­
ственно задержку и сдвиг частоты возвращаемого сиг­
нала. Однако при построении систем импульсной моду­
ляции инженер, проектирующий линию связи, свободен 
в выборе вида сигналов s(t ,  а ) ,  зависящих от пара­
метра а. Вопрос о внутренней точности, присущей за­
даче оценивания параметра а  при оптимальной моду­
ляции, т. е. при оптимальном выборе семейства сигна­
лов s(t ,  а ) ,  как раз и изучается в гл. 4. В частности, 
подробно обсуждается вопрос о том, почему с помощью 
нелинейной модуляции можно получить выигрыш в 
отношении сигнал/шум на выходе канала в обмен на 
расширение полосы частот и почему такой обмен со­
провождается пороговым эффектом.

В гл. 5 вкратце описывается угловая модуляция, ко­
торая на практике применяется в тех случаях, когда 
модулируются не параметры или их последовательности, 
а временные сигналы. В этой главе мы ограничимся на­
хождением структуры оптимального метода оценивания 
или оптимального приемника.

Вплоть до гл. 6 предмет настоящей книги рассмат­
ривается с точки зрения теоретика- или инженера-свя- 
зиста: приняв определенную модель искажений (адди­
тивный гауссовский шум), мы уделяем внимание в ос­
новном тому, каким образом изменение вида модуляции 
влияет на качество передачи. В гл. 6 излагается подход 
к передаче сообщений в рамках теории информации. 
Точнее, мы рассмотрим канал связи с произвольным ви­



дом искажений и источник сообщений, порождающий 
последовательность независимых выходных символов, 
имеющих одинаковое, но произвольное распределение. 
Мы будем считать, что канал связи характеризуется 
своей теоретико-информационной пропускной способно­
стью. На основе некоторого критерия точности мы при­
пишем числовую характеристику величине расхождения 
между символом, поступившим на выход источника со­
общений, и сообщением, вырабатываемым приемником. 
Это естественным образом приводит к следующему ос­
новному вопросу: каково минимальное расхождение, до­
пускаемое передачей по заданному каналу, если источ­
ник сообщений связан с приемником посредством 
произвольного кодирующего прибора, заданного канала 
и произвольного декодирующего устройства? Ответ на 
этот вопрос дает теорема Шеннона о кодировании источ­
ников, использующая понятие границы скорости пере­
дачи при заданном искажении; эта теорема достаточно 
подробно излагается в гл. 6.

Просмотрев оглавление или перелистав книгу, чи­
татель заметит, что одним вопросам уделено достаточно 
много места, тогда как другие изложены весьма кратко. 
В соответствии с замыслом этой книги, рассчитанной на 
достаточно подготовленного читателя, при определении 
объема изложения различных тем мы исходили из двух 
критериев. Во-первых, мы старались вести изложение 
так, чтобы можно было вводить новые понятия и ме­
тоды, не вдаваясь в частные результаты ради них самих. 
Во-вторых, мы избегали детального рассмотрения тех 
вопросов, которые достаточно подробно освещаются в 
имеющихся учебниках.

Несколько заключительных замечаний: в дальнейшем 
прописные буквы всюду используются для обозначения 
случайных величин, а строчные — для их значений. Так, 
мы будем говорить о вероятности того, -что случайная 
величина Z меньше данного значения г. Скалярное про­
изведение двух векторов и и v, принадлежащих п-мер­
ному евклидову пространству, мы будем обозначать



Г л а в а  2 

ОЦЕНКА ПАРАМЕТРОВ

В настоящей главе мы рассмотрим следующую за­
дачу. Имеется некоторое наблюдение г, статистически 
связанное в силу физической природы с некоторым не­
наблюдаемым параметром а, значение которого мы хо­
тим оценить. Известный пример такого рода — задача 
радиолокационного обнаружения, где г представляет 
собой отраженный от цели сигнал с наложенным шу­
мом, по которому необходимо оценить дальность или 
скорость цели.

Начнем с обозначений. Предположим, что наблюде­
ние является векторной случайной величиной Z, допу­
стимые частные значения которой будут обозначаться 
через z. Впоследствии мы рассмотрим общую ситуацию, 
в которой наблюдение будет выборочной функцией слу­
чайного процесса; пока же будем считать, что вектор z 
конечномерен.

Параметр, подлежащий оценке, будем обозначать че­
рез а, если это число (например, дальность цели), и 
через а, если это вектор (например, двумерный вектор 
дальности и скорости). Мы не будем проводить разли­
чия между случайной величиной а  и значением, приня­
тым ею,-попросту по той причине, что прописные гре­
ческие буквы не слишком употребительны; в то же 
время строчные греческие буквы довольно широко 
используются для обозначения оцениваемых пара­
метров.

Обозначим через fa (z ) условную плотность распре­
деления величины Z при заданном значении а, а через 
/(а ) — плотность априорного распределения параметра а, 
если оно определено.

Наша цель заключается в построении и исследова­
нии свойств оценок величины а, которые мы будем обо­
значать через а. Заметим во избежание путаницы, что



термин оценка используется для обозначения двух раз­
личных, хотя и связанных между собой объектов:

1) а есть функция, ставящая в соответствие каждому 
наблюденному значению z некоторое значение 
a =  a ( z )  параметра а; с этой точки зрения по­
строение оценки состоит в указании вида функ­
циональной зависимости;

2) выбранная функция порождает некоторую слу­
чайную величину a =  a ( Z ) ; качество оценки (как 
функции) определяется близостью случайной ве­
личины а к оцениваемому значению а.

В дальнейшем, желая подчеркнуть, что речь идет 
о той роли, которую оценка а играет как функция (в 
противоположность ее роли в значении случайной вели­
чины), мы будем иногда говорить о методе оценивания.

При изучении задачи оценивания естественным об­
разом выделяются следующие два случая: ситуации, ко­
гда параметр а  является случайной величиной, которой 
некоторым разумным образом можно приписать плот­
ность априорного распределения, и ситуации, когда го­
ворить об а  как о случайной величине с некоторым 
априорным распределением не* имеет смысла.

2.1. ОЦЕНКА СЛУЧАЙНЫХ ПАРАМЕТРОВ

Байесовские риски и оценки

Поскольку наша цель состоит в построении оценок 
а (  ), для которых случайная величина a (Z) близка 
к параметру а, мы должны прежде всего выбрать меру 
такой «близости». Начнем с рассмотрения функций по­
терь, приписывающих размер потерь ошибкам а  — а. 
Несколько примеров таких функций потерь изображены 
на рис. 2.1.

Функция потерь с( ) называется симметричной, если 
с(е) =  с ( - е ) ,  (2.1)

и выпуклой , если для произвольных еи е2
с [0^ +  (1 _  0) *2] <  0с (в1) +  (1 — 0) с (е2), (2.2)



Рис. 2.1, в графически иллюстрирует понятие выпук­
лости. Отметим, что функция

сР( е ) = \ е  |р

выпукла при любом р ^  1.
Определим средний риск , или среднюю величину по­

терь, как математическое ожидание величины с (а — а):

где совместная плотность f(a , z) представлена в виде 
произведения двух сомножителей f ( a \ z ) f ( z ) .  Величину

Р и с . 2.1. Примеры весовых функций ошибок.

(2.3) иногда называют также байесовским риском или 
байесовскими потерями. Индекс с указывает на зависи­
мость этой величины от функции потерь. В случае 
c(e) =  \e\v мы будем использовать обозначение S v \ 
если же с(е) =  сА(е) (см. рис. 2.1,а), то средний риск 
будем обозначать 8  Внутренний интеграл в (2.3) 
иногда называют условным риском и обозначают <fTc(z). 
В дальнейшем, не ограничивая общности, мы будем счи­
тать, что рассматриваемые нами функции потерь неот­
рицательны, т. е. с( ) ^ 0 .

Оптимальные оценки, минимизирующие байесовский 
риск, называют байесовскими оценками. Аналитическое 
выражение для байесовских оценок можно найти лишь 
в сравнительно немногих случаях, примеры которых мы 
сейчас рассмотрим. Сначала сделаем следующее общее 
замечание: поскольку плотности вероятностей и функции 
потерь, входящие в (2.3), неотрицательны, то средний



риск <ГС будет минимальным в том случае, когда оцен­
ка а ( ) минимизирует условный риск <fTc(z) при каж­
дом z.

П р и м е р  2.1. С р е д н е к в а д р а т и ч е с к а я  
о ш и б к а .  В этом примере с ( е ) = е 2 и условный риск

оо

<g’2(z) =  J [а — а (z)]2f (а |z) da (2.4)
—  оо

минимален, если в качестве a (z) выбрано условное ма­
тематическое ожидание

оо

a (z) =  Е {а | z} =  J af (а |z) da, (2.5)
—  оо

П р и м е р  2.2. С р е д н я я  по м о д у л ю  о ш и б ­
ка . Для функции потерь с(е) =  |е |  условный риск

00

<ЕГ,(г) =  J | a  — ft (z) [/ (a \z) da (2.6)
— oo

минимален, если в качестве а выбрано любое решение 
уравнения

& (z) ОО

J f ( a \ z ) d a  =  J f(a |z )da . (2.7)
— 00 й  (z)

Это решение, называемое условной медианой, однознач­
но определено, кроме случая, когда / ( a |z )  =  0 на не­
котором интервале, содержащем одно из решений а (2). 
В этом случае в качестве a(z)  можно выбрать любое 
число из связного интервала, на котором / ( a |z )  =  0.

З а д а ч а  2.1. Доказать, что соотношения (2.5) и 
(2.7) определяют соответствующие байесовские оценки 
для <8ч и

П р и м е р  2.3. П р я м о у г о л ь н а я  ф у н к ц и я  
п о т е р ь .  Для функции потерь, изображенной на 
рис. 2.1, а, минимизация условного риска

ffA(z )=  |  f (а | z) da, (2.8)
1 a- а  (г) I >  4



очевидно, эквивалентна выбору значения a (z ) ,  макси­
мизирующего величину

ft (2)+А
1— <§ГД (z) =  Р{| a —а [ <  A | z } =  J f ( a \ z ) da .  (2.9)

ft ( z ) - A

В общем случае нельзя указать явного способа построе­
ния а. Однако в следующих двух конкретных ситуациях, 
представляющих практический интерес, для нахожде­
ния а существует простое правило. Предположим, что

i) f ( a \ z )  как функция от а унимодальна (т. е. имеет
единственный максимум) и симметрична относи­
тельно своей моды

либо
ii) f ( a \ z )  как функция от а  мало меняется на интер­

валах длины 2А.
В первом случае оценка a (z) совпадает с условной 

модой, т. е. со значением а, для которого величина 
f ( a |z )  максимальна; во втором случае совпадение при­
ближенное. Условную моду часто называют оценкой мак- 
симума апостериорной вероятности (МАВ).
Устойчивость оценок по отношению к функциям потерь

Задача нахождения оптимальных (байесовских) 
оценок сводится, как мы видели, к отысканию правила, 
быть может приближенного, позволяющего сопоставить 
с каждым значением z величину a (z ) .  В большинстве 
случаев, отличных от рассмотренных нами выше, это 
весьма трудно. Мы приведем сейчас две теоремы, инте­
ресные тем, что они показывают, что при определенных 
условиях оптимальная оценка не зависит от выбора 
функции потерь. Практически это означает, что для ин­
тересующей нас задачи байесовскую оценку можно 
найти путем определения байесовской оценки для дру­
гой, аналитически более простой функции потерь.

Т е о р е м а  2.1. Пусть a (z )  — условное математиче­
ское ожидание величины а при заданном значении 
Z = z ,  определяемое правой частью равенства (2.5). Если 
при всех г функция f ( a |z )  симметрична относительно 
a (z ) ,  то для любой симметричной выпуклой функции 
потерь с( ) байесовский риск минимален при a (z )  =



Доказательство этой теоремы см. в работе Ван Триса 
[1, п. 2.4.1]. Отметим, что при выполнении условий тео­
ремы 2.1 все три величины — условное математическое 
ожидание, условная мода, условная медиана — равны 
между собой. В следующей теореме мы ослабим ограни­
чения на функцию потерь за счет дополнительного су­
жения класса функций f ( a \ z ) .

Т е о р е м а  2.2. Если функция f ( a \ z )  унимодальна, 
симметрична и для любого г

lim с (a) f (а | z) =  0, (2.10)
а - >  оо

то для любой симметричной функции потерь, монотонной 
в том смысле, что

с ( е ' ) ^ с ( е )  при е ' ^ е ^ Ъ ,  (2.11)
байесовский риск &с минимален при a ( z ) =  a (z ) .

Д о к а з а т е л ь с т в о  (см. Витерби [2, стр. 376]). 
Так как наши рассуждения применимы к условной плот­
ности f (a  |z) при произвольном значении z, мы для 
удобства опустим переменную z. Полагая a* =  a — а, 
запишем условный риск при каком-либо значении оцен­
ки а в виде

ОО 00

8 с ( a )  =  J" с ( а  —  а )  /  (« ) da —  J* с (а* —  а +  а )  /* (a*) da =
—  0 0  — ОО

ОО

=  J c(w) f *(w +  а  — a )dw, 
—  00

где через f*(a*) — f (а* +  а) обозначена центрирован­
ная условная плотность. Используя симметрию функций 
с и /*, находим

0 0

<SC (a) — (ct) =  — 2 J с (да) /* (w)dw +
о

оо О

+  J с (ш) /* (w +  a —a) dw +  J с (w) f* (w +  а — a) dw =
О — оо

оо

=  J* с(ш)[/*(йУ +  а — а ) +  /*(ау— а +  а ) — 2f*(w)]dw. (2.12)
о



Обозначим
V =  С (W),

du =  [/* (до +  а — а) +  /* (до — а +  а) — 2/* (до)] dw
и проинтегрируем выражение справа по частям. Счи­
тая, что а >  а , получаем при всех до ^  0

0 w
и (а,) =  — J р  (у) dy — J /* (у) dy +

— W
—(ft—a)+w ft-a+до

+  J  f * ( y ) d y +  J  f *(y)dy =
—(ft—а) ft—а

w ft—а+ш
=  — J* Г' (*/) dy +  J  /* (у) dy  =

—w й—a—w
—w + (&—a) ш + (6—а)

=  — j  f ’ ( y ) d y +  J  f ( y ) d y  =
— W W

ft—а
=  J* [Г(» +  а » ) - Г ( У - а » ) ] ^ < 0 .  (2.13)

Смысл промежуточных выкладок в (2.13) проще всего 
уяснить, изобразив графически промежутки интегриро­
вания; последнее неравенство следует из монотонности 
функции f.

Объединяя (2.10), (2.12) и (2.13), получаем

£ с (а) — &с (а) =  lim с (w) u(w) — f dw и (w) >  0,
Y . - ± a a  П ^  ^ Д О

dc (до)--  | LLUi! -------
X -> o o  o

(2.14)

так как dc(w) / dw ^ 0  в силу монотонности функции с J). 
Заметим, что из условия (2.10) и вида функции м(до)

1) Если функция с( ) недифференцируема, то интеграл в (2.14) 
можно рассматривать как интеграл Стильтьеса. Тогда из монотон­
ности функции с (до) и неравенства u(w)  ^  0 следует, что этот инте­
грал неположителен. При этом формула интегрирования по частям 
по-прежнему верна.



в (2.13) вытекает, что lim с (w) и (w) —  0. В силу
W-> ОО

симметрии те же рассуждения применимы и при 
а — а <.  0.

З а д а ч а  2.2. Пусть а  — скалярная случайная вели­
чина, a Z обозначает я-мерный случайный вектор, при­
чем совместное распределение а  и Z гауссовское. Пред­
положим, что а  и Z имеют нулевое математическое ожи­
дание и матрицу ковариаций

RaZ —
Rz  г]

а _
■ вектор-строка, г] ■где Rz есть («Х«)-матрида, г- 

тор-столбец, — скаляр.
Обозначим через Q матрицу, обратную к Raz:

Zi . . .  Zn a
Z i

век-

Q  =
Zn

a

Qz q]

Д  4a
где Qz есть (n X  t i)-матрица.

Показать, что E{a|Z} — линейная функция от Z. При 
умелом использовании матричных обозначений и вида 
матрицы Q эта задача не требует громоздких вычис­
лений.

2.2. ОЦЕНИВАНИЕ НЕСЛУЧАЙНЫХ ПАРАМЕТРОВ

Существуют различные ситуации (такие, как измере­
ние радиолокатором скорости вращения планеты), когда 
нет смысла предполагать, что параметр а  выбирается



случайным образом из некоторого множества, на кото­
ром можно разумным способом задать плотность априор­
ного распределения f ( а).  Этот случай, который мы ис­
следуем в настоящем разделе, логически не столь прост, 
как предыдущий. Трудность состоит в том, что нелегко 
непосредственно определить, что мы будем понимать 
под наилучшей оценкой. Чтобы обойти эту трудность, 
изберем следующий путь. Сначала, опираясь на интуи­
тивные соображения, определим некоторую оценку спе­
циального вида — так называемую оценку максималь­
ного правдоподобия. Затем получим границу качества 
оценивания для произвольной оценки а. Наконец, рас­
смотрим ряд «хороших» свойств, которыми могут обла­
дать те или иные оценки, и покажем, что если суще­
ствует оценка, обладающая этими свойствами, то она 
совпадает с оценкой максимального правдоподобия.

Оценка максимального правдоподобия

Чтобы объяснить, почему мы уделяем оценке макси­
мального правдоподобия особое внимание, заметим сле­
дующее.

i) Как мы видели, при некоторых слабых ограниче­
ниях на плотность f {a\ z )  для широкого класса функ­
ций потерь оптимальной оценкой является оценка мак­
симума апостериорной вероятности (МАВ); другими 
словами, это оценка, принимающая то значение а, при 
котором величина

f ( a  | z ) = E M g p ? I  (2.15)
максимальна.

ii) Поскольку f ( z) в последнем равенстве не зави­
сит от а, оценка МАВ максимизирует / ( z | a ) / ( a ) .  Если 
же предположить, что наблюдение Z заметно увеличи­
вает надежность оценивания а, то функция f ( z |a ) f ( a )  
должна иметь гораздо более выраженный пик вблизи 
своей моды, чем / ( а ) .  Следовательно, в этом случае 
максимум (относительно а) функции / ( z | a ) / ( a )  распо­
ложен вблизи максимума функции f ( z |a ) .

Таким образом, в качестве оценки разумно выбрать 
то значение а, которое максимизирует / (z | ос); эту оценку



мы и будем называть оценкой максимального правдо­
подобия (МП). Ж елая подчеркнуть, что параметр а  
здесь не предполагается случайным, мы будем для 
условной плотности f ( z \ a)  использовать в дальнейшем 
обозначение fa (z). Это функция, которая при каждом 
фиксированном а  является вероятностной плотностью 
по z. Рассматриваемая же как функция от а  при фи­
ксированном z, она часто называется функцией правдо­
подобия.

В нашем рассуждении мы лишь для простоты счи­
тали, что а  — скаляр; все замечания, относящиеся 
к оценке максимального правдоподобия, в равной мере 
применимы и к векторному параметру а.

Свойства оценок

Определим свойства рассматриваемых статистиче­
ских оценок. Для ясности изложения будем различать 
следующие значения а:

а ' — фактическое (истинное) значение параметра, 
а  — произвольное значение параметра, 
а — значение оценки.
Параметр а является векторным, однако его размер­

ность не связана с размерностью вектора z. Мы будем 
обозначать через Еа { } математическое ожидание ве­
личины, стоящей в фигурных скобках, относительно рас­
пределения вероятностей dPa (z) =  fa (z)dz.

Будем называть оценку а несмещенной, если

E«{a(Z)} =  a для всех a e i ,  (2.16)

где S& — множество тех значений а, которые считаются
априори возможными.

Пусть Zft, k = l 9 2, . . . ,  — последовательность неза­
висимых одинаково распределенных случайных величин. 
Предположим, что задана последовательность оценок

®/z , * * * , Zti)y п =  1, 2, • • • •

Будем называть оценку ап состоятельной, если
6tn (zb . . . ,  z n) сходится по вероятности к а '  при я->оо ,



Если существует такая функция a(z), что fa (z) 
можно представить в виде

M z) =  £: (a, a)w(z) ,  a> (z )> 0 , (2.17)

то a(z) называется достаточной статистикой для оценки 
параметра а. Важность этого понятия объясняет

Т е о р е м а  2.3. Если a (z) — достаточная статистика 
для параметра а, то при любом выборе функции по- 
терь байесовская оценка зависит лишь от a (z ) .

Д о к а з а т е л ь с т в о .  Используя (2.17), предста­
вим байесовский риск в виде

&с =  J dz J d a f  (a) fa (z) с (a — a) =

=  J dz w (z) J dag [a (z), a] с (a — a). (2.18)

Поскольку w (z) ^  0, минимальное значение <?fc дости­
гается тогда, когда внутренний интеграл минимален 
при каждом значении z. Но так как этот интеграл зави­
сит лишь от значения, принятого величиной а, а не от 
самих значений z, то любая оценка а, минимизирующая 
(2.18), зависит лишь от а. Заметим, что в этом рас­
суждении существенную роль играет неотрицательность 
функции w.

Практическое значение достаточных статистик со­
стоит в том, что а может иметь меньшую размерность, 
чем z, так что замена наблюдения z статистикой а зна­
чительно упрощает обработку наблюдений и вычисле­
ние оценок.

П р и м е р  2.4. Пусть Zb . . . ,  Zn — последователь­
ность независимых гауссовских случайных величин с из­



вестной дисперсией а2 и неизвестным средним а. Тогда

Таким образом, 2  z* а также (1/п) 2  %k служит
k = i  \  k = i  )

достаточной статистикой для оценивания параметра а.

З а д а ч а  2.3. Пусть распределение имеет тот же 
вид, что и выше, со средним, равным нулю, и неизвест­
ной дисперсией а2. Найти достаточную статистику для а2. 
Является ли эта величина достаточной статистикой для 
стандартного отклонения а?

Отношение правдоподобия

Прежде чем приступить к выводу неравенства Кра­
мера — Рао, рассмотрим функцию отношения правдопо­
добия. Это позволит сформулировать результаты, кото­
рые окажутся справедливыми и тогда, когда вместо 
конечномерного наблюдения z мы будем иметь дело 
с выборочными функциями случайных процессов.

Снова обозначим через зФ множество значений а, 
предполагаемых априори возможными. Пусть суще­
ствует такое фиксированное значение ао, что

f а„ (Z) >  0 (2.20)

Здесь



для тех z, для которых fa (z) >  0 хотя бы при одном 
a e i .  Определим отношение правдоподобия равен­
ством *)

( 2 - 2 1 )

Отметим, что условие (2.20) необходимо для того, 
чтобы функция А.а (г) была определена при каждом 
( t E i  для всех z-событий, имеющих положительную 
вероятность. При этом в качестве ао можно взять любое 
значение, удовлетворяющее условию (2.20); на практике 
выбор ао определяется лишь удобством вычислений. 
Читатель заметит также, что в случае конечномер­
ных наблюдений проводимые ниже вычисления, основан­
ные на Аа, можно с таким же успехом провести с ис­
пользованием лишь fa.

Укажем теперь некоторые свойства отношения прав­
доподобия. Прежде всего для любого наблюдения z 
оценку максимального правдоподобия параметра а мож­
но определить как значение а, максимизирующее Aa (z). 
Далее, для любой случайной величины G =  g ( Z), зави­
сящей от Z,

Ea {G} =  J d zg  (z) fa (z) =

=  J d z g ( z ) Aa (z) fao(z) =  Eat{GAa), (2.22)

!) В том случае, когда распределение вероятностей Pa (z) нельзя 
описать функцией плотности, Оо выбирается таким образом, чтобы 
соотношение Рао (В) Ф  0 выполнялось для всех событий В , для ко­
торых Ра (£) Ф 0  хотя бы для некоторого a e i .  Тогда в качестве 
Aa (z) можно взять производную Радона — Никодима [3, стр. 140] 
вероятностной меры Pa(z) относительно меры P ao(z). Хотя повсюду 
в этой главе наши рассуждения опираются на существование веро­
ятностной плотности, все окончательные и промежуточные резуль­
таты справедливы и в общем случае. Если же нельзя указать такое 
значение «о, что выполнено сформулированное выше условие, то при 
осуществлении события В по наблюдению Z можно безошибочно 
определить, какое из двух значений параметра передавалось. Такой 
случай принято называть сингулярным. Как мы видим, сингулярная 
математическая модель не является адекватной для большинства ре­
альных физических задач,



где под Аа понимается случайная величина Aa (Z). З а ­
метим, что

1 =  J dz fa (z) =  J dzA a (z) fai (z) =  Ea] {AaJ. (2.23)

Возьмем частные производные no aj от обеих частей 
этого равенства и изменим порядок дифференцирова­
ния и взятия математического ожидания; получим

o=M4 -A-(2)]f“-<z)=
=  E „ { ^ - ln A „ ( z ) } .  (2.24)

Если указанное изменение порядка допустимо!) и, сле­
довательно, выполняется равенство (2.24), то функцию 
Аа называют регулярной относительно ее частных про­
изводных по а  первого порядка. Если же правую часть 
равенства (2.24) можно вторично продифференцировать 
по а*, изменив порядок дифференцирования и взятия 
математического ожидания, то функцию Л„ называют 
регулярной относительно ее вторых частных производ­
ных по а.

З а д а ч а  2.4. Показать, что если функция Аа регу­
лярна относительно вторых частных производных, то

E“{ l a ^ ln A a l a ^ ln Л“ } =  — E“ {da/(?aft 1пЛа } ‘ (2.25)

Левая часть равенства (2.25) представляет собой 
ковариацию двух случайных величин, являющуюся 
функцией параметра а. Обозначим эту величину через 
bjk(a) и положим bjk = bjk(а' ).  Матрицу ковариаций, 
отвечающую bjk (а), обозначим через В ( а), а обратную 
к ней — через G ( a ) = B _1(a). Отметим, что хотя

1) По теореме о мажорируемой сходимости [3, стр. 135] это 
имеет место, если частные производные d A jd a j  ограничены абсо­
лютно интегрируемой (по мере P ao(z)) функцией в некоторой после­
довательности точек а, сводящейся к интересующему нас значению 
параметра.



полученные в этом пункте результаты и не имеют непо­
средственной статистической интерпретации, однако, как 
мы увидим, они окажутся полезными в дальнейшем.

Неравенство Крамера — Рао

Найдем абсолютною границу эффективности, кото­
рую можно будет использовать как эталон для сравне­
ния различных оценок. При этом мы ограничимся лишь 
квадратичными функциями потерь и, не предполагая 
наличия априорного распределения параметра а, рас­
смотрим условный байесовский риск при а =  а'.

Естественной функцией потерь для векторного пара­
метра а могла бы служить величина ||а — а'И2. Однако 
в ряде случаев такая мера близости не адекватна по­
ставленной задаче, поскольку нас может интересовать 
не только оценка самого параметра а, но и некоторых 
функций от а. Например, если а — радиолокационные 
координаты цели, то нас могут интересовать ее декар­
товы координаты. При этом, если ошибки малы (напри­
мер, ошибка в измерении дальности в процентном отно­
шении мала по сравнению с дальностью цели), для вы­
числения ошибки в преобразованных координатах 
можно воспользоваться разложением с точностью до пер­
вого порядка малости. Таким образом, в одной из пре­
образованных координат ошибка будет иметь вид

е =  2  cf (а' — а,) =  (с, а '  — а), (2.26)

и, таким образом, наша задача состоит в исследовании 
условных рисков вида

Еа' И = Еа- {/ S i с,ск (а; — &/) « ~ Ч )} =
=   ̂ cjck^a' {(а / ®/)(a ft “ ft)} == (с> ^йС)> (2-27)

где Яй — корреляционная матрица ошибок в а-коордц- 
натах.



Мы хотим найти минимальное значение, которое мо­
жет принимать этот условный риск для любого значе­
ния с, какова бы ни была несмещенная оценка а. Сна­
чала поясним, почему удобно потребовать выполнение 
условия несмещенности. Дело в том, что поскольку 
истинное значение а '  параметра а нам неизвестно, мы 
должны были бы найти границу величины Еа' {е2} для 
некоторых значений а', которые кажутся нам наиболее 
характерными или вероятными. Заметим, однако, что 
для каждого отдельного значения а '  можно получить 
Еа/ {е2} =  0 , полагая попросту a(z) =  а'. Естественно, 
нам хотелось бы избавиться от таких патологических 
оценок. Точнее, мы хотели бы, чтобы принимаемые 
функцией a(z) значения отражали зависимость от а' 
при любых значениях а'. Одним из удобных и содержа­
тельных условий такой зависимости является требова­
ние несмещенности оценки a(z):

В ряде задач несмещенных оценок может не быть. 
В этом случае граница качества оценок должна также 
учитывать возможную величину смещения; см. ниже за ­
мечание 2.3.

Приступим теперь к выводу границы для величины 
условного риска в (2.27) при произвольной несмещен­
ной оценке. Для такой оценки при любых с и а имеем

Предположим, что функция Аа регулярна относи­
тельно частных производных первого порядка. Диффе­
ренцируя обе части последнего равенства по а* и меняя



порядок дифференцирования и интегрирования, после 
перегруппировки членов получаем

Умножим обе части этого равенства на произвольные 
постоянные du i =  1, п, и просуммируем по i. Тогда

(с, d) =  Еа j (с, а  — а ) S In Ла j •
Применим к правой части полученного равенства не­
равенство Шварца:

( c , d ) * < E „ { ( c , 5 - a ) i)E <,{ £  d,d ,
Ч , Н  ! ’

- E „ { ( c , S - a w i ;  d td f i a {-d]^  -d £ M -  
1,1= 1 '

=  Еа {(с, a — a)2}(d, f i(a)d). (2.29)

Рассмотрим неравенство (2.29) при а =  а', В ( а ' ) = В .  
Предположим, что матрица В положительно определена, 
и положим d =  Gc — В~1 с; тогда

(с, Gc)2< E a ' ( c ,  а — a')2(Gc, В В ~ 'с).

Заметим, что матрица G положительно определена (по­
скольку такова матрица В) и симметрична. Разделив 
обе части последнего неравенства на (с, Gc), оконча­
тельно находим, что

Е а ' И  =  Еа'{(с, of — а)2} =  (с, Raс ) > ( с ,  Gc). (2.30)

Мы получили хорошо известное неравенство Краме- 
ра — Рао, описывающее абсолютную нижнюю границу 
величины риска для любой несмещенной оценки при



произвольном  преобразовании координат с. Его вывод 
потребовал по существу лишь положительной определен­
ности матрицы В.

В дальнейшем нам понадобятся обозначения

Se =  grade In Лв (Z), (2.31)

5 г, . = Д - 1пЛа(г), i =  1, . . . ,  /г. (2.32)

З а д а ч а  2.5. Показать, что матрица В  положитель­
но определена, за исключением случая, когда случай­
ные величины Si, а линейно зависимы при а  =  а '  (т. е. 
одну из этих величин можно представить со средне­
квадратической погрешностью, равной нулю, в виде ли­
нейной комбинации остальных величин).

Приведем ряд замечаний, связанных с применением 
неравенства Крамера — Рао.

З а м е ч а н и е  2.1. Обычно нахождение матрицы В 
упрощается при вычислении правой части равенства
(2.25).

З а м е ч а н и е  2.2. В одномерном случае, когда сс— 
скаляр, неравенство Крамера — Рао принимает вид

Е0' { ( а ' - 6 ) 2} >

З а м е ч а н и е  2.3. В случае смещенной оценки, т. е. 
когда

Еа {а} =  а +  b (а), (2.34)

неравенство Крамера — Рао можно модифицировать 
с учетом влияния величины смещения. Мы предлагаем 
читателю ознакомиться с этим обобщением неравенства 
Крамера — Рао по книге Уилкса [4, разд. 12.2] либо 
в качестве упражнения разобраться в нем самому. При 
этом следует начать с замены левой части в (2.28) на 
Ь (а) .

З а м е ч а н и е  2.4. Пусть aN —  оценка параметра а, 
построенная по N  независимым одинаково распределен­



ным наблюдениям Zb ZNy и пусть G — матрица, от­
вечающая наблюдению Zk. Тогда

Еа' {(с- «дг -  «О2} >  N ~' (С> Gc)- (2.35)

З а д а ч а  2.6. Получить неравенство (2.35).

З а м е ч а н и е  2.5. Рассмотрим случай обращения 
неравенства Крамера — Рао в равенство. В неравенстве 
Шварца (2.29) равенство достигается, когда

k(a)(c,  а — a) =  (d, Sa),

где k (a) — «постоянная», которая может зависеть от а, 
но не зависит от г. Производя подстановку d =  Gc, 
применявшуюся нами при выводе неравенства Краме­
ра — Рао, получаем

k (а)(с, а - а )  =  (Gc, Sa) =  (с, GSa). (2.36)

Это равенство является условием обращения нера­
венства Крамера — Рао в равенство при фиксированном 
выборе с. Если же неравенство Крамера — Рао обра­
щается в равенство при любом с, то должно выпол­
няться соотношение

k (a) (a — a) =  GSa. (2.37)

Если в неравенстве Крамера — Рао достигается ра­
венство при a  =  а', так что

Ra =  G, (2.38)
то оценку а  называют эффективной (в точке а ') .  Если 
же ajv — оценка, построенная на основании N незави­
симых одинаково распределенных наблюдений величины
Z, и G — матрица, отвечающая функции Aa (Z) для от­
дельного наблюдения Z, то оценку o,n называют асимп­
тотически эффективной, если

(2.39)

где 0 — нулевая матрица.

З а д а ч а  2.7. Пусть Zm =  +  m =  1, 2, . . .
. , , ,  пг — п наблюдений, где — независимые гауссов­



ские случайные величины с нулевым средним и диспер­
сией о2.

а) Пусть
мг(я)=Иед( 4к=1

где gk ( m) — известные функции от т ,  а ось — неизве­
стные параметры.

(i) Какой вид имеет оценка максимального прав­
доподобия вектора а?

(и) Является ли эта оценка несмещенной? Эффек­
тивной? Асимптотически эффективной?

(iii) Какой вид имеет неравенство Крамера — Рао 
для дисперсии ошибки?

б) Пусть g{m)  =  пга, где а  — неизвестный параметр, 
а  >  0.

(i) Выписать уравнение для нахождения оценки 
максимального правдоподобия параметра а.

(ii) Является ли эта оценка эффективной?
(iii) Допустим, что А — случайная величина с экс­

поненциальным распределением. Выяснить, 
трудно ли получить в этом случае выражение 
для E{a|Z}.

П р и м е р  2.5. Рассмотрим более подробно частный 
случай предыдущей задачи. Пусть

Z =  g(a) +  JT,

где для простоты будем считать Z, N  и а  скалярными 
величинами. Пусть УГ — гауссовская случайная величи­
на с нулевым средним и дисперсией а2. Тогда

Sa=ж 1п Л« =■£■ln =°~ 2 f2 ~8 (с̂ &  ̂ •
Чтобы оценка й(г)  параметра а  была эффективной, 
она должна иметь вид

^>-2W  + a- 1 5W!l' (2-40)
Но функция a (z) может зависеть лишь от наблюдения 
z  и не должна зависеть от параметра а. Для того чтобы

2  Д . Сакрисон



правая часть равенства (2.40) не зависела от а, долж­
ны выполняться равенства

8 ' (  ° )  .
k (а)а2 *’
g(a)g' (а) _

а  k (а) а2 — С2’ 
откуда следует, что

g(a) =  ^ - .  (2.41)С1

Таким образом, если функция g (a )  нелинейна, ни 
один метод оценивания не позволяет достичь границы 
Крамера — Рао для среднеквадратической ошибки.

Полученное условие весьма ограничительно. Поэтому 
гораздо важнее выяснить, в каких условиях неравен­
ство Крамера — Рао дает все же приближенную гра­
ницу для качества оценок. Рассмотрим с этой целью 
рис. 2.2. Заметим, что для того, чтобы в неравенстве 
Шварца (2.29) выполнялось приближенное равенство, 
соотношение (2.40) должно приближенно выполняться 
для тех значений z , которым плотность вероятности 
f a (z) приписывает основную вероятностную массу (на 
рис. 2.2 это интервал (zb z2)) .  Следовательно, равенство 
(2.41) должно выполняться приближенно лишь для со­
ответствующих значений а, т. е. в интервале (аь  аг) 
на рис. 2.2. Длина интервала (21, 22), а значит, и 
(oci, ссг), непосредственно зависит от дисперсии а2 вели­
чины Jc.

Итак, если функция g (a )  гладкая, то при достаточ­
но малых а она приближенно линейна на интервале 
( а ь а г ) ,  и потому граница Крамера — Рао дает в этом 
случае хорошее приближение достижимого качества 
оценки й. С другой стороны, если а настолько велико, 
что функцию g( a)  уже нельзя считать линейной на 
интервале ( a i , a 2), то граница Крамера — Рао будет су­
щественно меньше фактически достижимой среднеквад­
ратической ошибки.

Сделанные замечания обобщаются на случай, когда 
а  и Z — векторы, а также когда наблюдение Z и гаус­
совский шум №  являются случайными процессами. Лишь



в случае, когда отношение сигнала к шуму, входящему 
в наблюдение, достаточно велико (над некоторой «по­
роговой» областью), так что система приближенно ли­
нейна, граница Крамера — Рао оказывается полезной. 
Мы вернемся к этому вопросу в гл. 4.

Другого рода трудность, связанная с применением 
неравенства Крамера — Рао, состоит в том. что в нем 
не учитывается априорная информация о параметре а,

Р и с .  2.2. Изображение области, в которой функция g (а) должна 
приближаться линейной.

которой мы могли бы располагать, так что граница в 
этом случае оказывается завышенной. Другими сло­
вами, здесь мы имеем дело со слишком «пессимистиче­
ским» прогнозом в отличие от предыдущего случая, 
когда полученная граница оказалась слишком «опти­
мистической».

Рассмотрим, в частности, случай Z =  a +  JY>1 где 
N  — гауссовская случайная величина с нулевым сред­
ним и дисперсией а 2. При этом оценка a (z) =  z  несме­
щенная и ее дисперсия совпадает с границей Крамера — 
Рао. Однако если априори известно, что а принадле­
жит некоторому интервалу (а, 6), то качество оценки 
можно улучшить, урезая функцию a (z) =  z так, чтдОы

Г



она принадлежала тому же интервалу. Если же из­
вестно, что а  — случайная величина с дисперсией 5, то 
лучшую по сравнению с a (z) =  z , но опять-таки смещен­
ную оценку можно получить, взяв

6 (г) =  s  +  а2 2‘

Ниже мы опишем вкратце получение модифицированной 
границы Крамера — Рао в ситуации, когда а  — случай­
ная величина с известным априорным распределением.

Важность неравенства Крамера — Рао объясняется 
тем, что в случае, когда можно пренебречь краевы­
ми эффектами (длина интервала (а, Ь) существенно 
больше границы Крамера — Рао), легко оценить свой­
ства системы в линейной области, не прибегая к ис­
следованию вопроса о том, как построить хорошую 
оценку.

Дальнейший путь исследования состоит в нахожде­
нии более точных границ, дающих правильное представ­
ление об оптимальных свойствах оценок в нелинейной 
области (т. е. при малых значениях отношения сигнала 
к шуму). Такого рода граница найдена Баранкиным [5], 
однако, хотя в некоторых случаях с ее помощью были 
получены, по-видимому, довольно точные результаты, 
возможность использования границы Баранкина в ряде 
задач кажется проблематичной. Поясним кратко суть 
дела, в которой не все отдают себе отчет.

Граница Баранкина (частным случаем которой яв­
ляется граница Крамера — Рао) представляет собой 
наименьшее значение Еа'{(а — а')2} для любой несме­
щенной оценки а. Эта граница точна в том смысле,-что 
существует оценка с произвольно малым смещением, 
качество которой сколь угодно близко к данной гра­
нице при а =  а Но эта оценка может оказаться не­
устойчивой, т. е. качество ее в близкой точке будет зна­
чительно хуже (см. [6]). Поскольку мы хотим построить 
оценку, используемую независимо от значения, приня­
того а, то граница Баранкина может оказаться на­
много меньше среднеквадратической ошибки, достижи­
мой с помощью оценок, пригодных в некоторой области 
значений



Более полезные границы для задач, рассматривае­
мых нами в гл. 3 и 4, найдены Зивом и Закаи [7] с по­
мощью концепций теории обнаружения. Мы вернемся 
к этому вопросу в гл. 3 и 4.

Свойства оценки максимального правдоподобия

Теперь мы можем обосновать сделанное выше заявле­
ние о том, что если существует оценка, обладающая 
теми или иными «хорошими» свойствами, то она совпа­
дает с оценкой максимального правдоподобия.

Т е о р е м а  2.4. Если эффективная оценка суще­
ствует, то ею является оценка максимального правдо­
подобия.

Д о к а з а т е л ь с т в о .  Согласно (2.36), эффективная 
оценка должна удовлетворять соотношению

k (a) [aeff (z) — а] =  GSa (z), (2.37')
где

Sa (z) =  grada lnA a (z). (2.3Г)

Соотношение (2.37') эквивалентно равенству

Sa (z) =  k ( a ) B  [aeft (z) — a]. (2.42)

Рассмотрим оценку максимального правдоподобия a Mn, 
т. е. такое значение параметра а, которое максимизи­
рует величину Ла (г) (или lnA a (z)). Если же существует 
grada lnA a (z), то оценка максимального правдоподо­
б и я— это значение а, для которого

grada In Л0 (z) =  Sa (z) =  О,

и, следовательно, в силу (2.42) амп совпадает со зна­
чением а, для которого

В [«ен (z) — а] =  0.
Таким образом, поскольку матрица В положительно 

определена (условие, наложенное при выводе неравен­
ства Крамера — Рао), то а мп определяется раренством

**№П ^  °eff(z). и теорема доказана



Т е о р е м а  2.5. Если существует достаточная стати- 
стика а, то оценка максимального правдоподобия за­
висит лишь от а.

З а д а ч а  2.8. Доказать теорему 2.5.
Т е о р е м а  2.6. Пусть Z u Z2, . . .  — последователь­

ность независимых одинаково распределенных случай­
ных величин , для которых отношение правдоподобия 
Aa (Z) регулярно относительно своих первых и вторых 
частных производных по а, и пусть ковариационная мат­
рица В вектора Sa положительно определена. Обозна­
чим через an оценку МП, построенную по наблюдениям  
Zi, . . . ,  Zjv. Если оценка an однозначно определена для 
всех N , больших некоторого Л̂0, то оценка МП асимпто­
тически нормальна со средним а и ковариационной мат­
рицей Ra =  N~lG и, следовательно, асимптотически эф­
фективна.

Доказательство этой теоремы можно найти в книге 
Уилкса [4, разд. 12.7].

З а д а ч а  2.9. Пусть Z и а  — соответственно т-мер- 
ный и я-мерный векторы, а матрица G и В определены, 
как выше. Показать, что для любой несмещенной оцен­
ки а

Е {(а; -  Йг)2} >  gu >  {Ь ц Г \ i =  1, . . . ,  п. (2.43)
З а д а ч а  2.10. Пусть Z =  g ( a где Z, g (a)  и 

J f  обозначают m-мерные векторы, причем вектор J f — 
гауссовский с нулевым средним и ковариационной мат­
рицей R. Пусть а  будет «-мерным параметром. Пред­
положим, что существует такое значение ао, что g(ao) =  
=  0.

а) Найти выражение для Ла.
б) Найти выражение для =  gradaAa (z).
в) Найти вид элементов bjh ковариационной мат­

рицы В вектора S.
г) Не вычисляя матрицу G =  Б"1, выразить через ее 

элементы границу снизу величиныЕ{1К-«И2}
для произвольной несмещ енной оцедкр



д) Рассмотреть возможные упрощения в задаче в) 
в случае некоррелированного шума, т. е. при R =  N0I, 
г д е /  — единичная (m X  w) -матрица.

Неравенство Крамера — Рао для случайных параметров

Интересно найти неравенство, аналогичное неравен­
ству Крамера — Рао, для случая, когда известно априор­
ное распределение параметра а. Такое неравенство дей­
ствительно можно вывести, и мы сейчас этим займемся. 
Наши рассуждения следуют разд. 2.4 книги Ван Три- 
са [1].

Обозначим, как и в (2.34), смещение оценки через 
Ь(а). Мы не будем здесь предполагать, что оценка па­
раметра а является несмещенной, а лишь потребуем 
выполнение следующего условия:

lim /(а )Ь (а )  =  0, / =  1, . . . ,  п. (2.44)
d j  - »  ±  ОО

Рассмотрим скалярное произведение вектора Ь(а) и 
произвольного вектора с; умножая эту величину на /(а )  
и дифференцируя по а г*, получаем

п

^ -[f(a )(c , b («))]= ^ - с ,  j d z ( a , - a , ) f ( a ) A a(z ) fa,(z) =  
1 1 /= i

=  — C/f(a)J dzA.a(z)fa,(z) +
rt

+  5 1  Ci J dZ  (“ / — a / ) - ^ - [ / ( « ) A a (z ) ]fa .(z )  =
/=1 ' 

rt

/= i 1
(2.45)

Введем обозначения:

s p . a  =  gi'ada ln |!(a), S0>a =  grada lnA a (z), (2.46) 
Sr. a =  Sp, a +  So, a =  g rada {In [f (a) Aa (z)]}, (2.47)

Bp — cov Sp, a, B0 —  cov S0, a, (2.48)



где математическое ожидание берется относительно сов­
местного распределения с плотностью f ( a) f a (z )- В ка­
честве упражнения предлагаем читателю проверить, что

в т =  cov Sr, „ =  В р +  В0. (2.49)

Отметим, что В0— математическое ожидание матрицы 
В (а), фигурирующей в неравенстве Крамера — Рао, по 
мере с плотностью / (а ) .

Возвращаясь к (2.45), заметим, что в силу (2.44) 
интегрирование этого равенства по а  * от —сю до сю дает 
в левой части 0. Таким образом,

п

0 —* + 5 Ы da,{ J dz (a/ — °/)X 
/=1

X ^ - { l n [ f ( « ) A a (z)]}f(«)/„(z), / = 1 ,  n. (2.50)

Умножая обе части последнего равенства на d* и сум­
мируя по /, получаем

(с, d) =  Е {(с, a — a) (d, S T)}.

Дальнейшие рассуждения, аналогичные использованным 
при выводе неравенства Крамера — Рао, приводят к не­
равенству

Е{(с, £ - а ) 2} > ( с ,  Вт1с), (2.51)

где В т вычисляется по формуле (2.49). Нетрудно по­
казать, что В р выражается следующим образом через 
вторые производные:

(2-52>
З а д а ч а  2.11. Вывести (2.49) и (2.52).

Заключительное замечание

Мы определили некоторые основные понятия и сфор­
мулировали ряд результатов теории оценивания. Для 
более широкого изучения предлагаем читателю ознако­
миться с книгой Уилкса [4, гл. 12] или Ван Триса 
[1, гл. 2].



СПИСОК ЛИТЕРАТУРЫ

1. Ван Трис Г. Л., Теория обнаружения, оценок и модуляции, т. 1, 
изд-во «Сов. радио», М., 1972.

2. Витерби Э. Д., Принципы когерентной связи, изд-во «Сов. радио», 
М., 1970.

3. Лоэв М., Теория вероятностей, ИЛ, М., 1962.
4. Уилкс С. С., Математическая статистика, изд-во «Наука», М., 

1967.
5. Баранкин (Barankin Е. W.), Locally best unbiased estimates, Ann. 

Math. Statist., 20 (1949), 477—501.
6. Глейв (Glave F. W.), неопубликованное исследование качества 

различных оценок, используемых при время-импульсной моду­
ляции.

7. Зив, Закаи (Ziv J., Zakai М.), Some lower bounds in signal para­
meter estimation, IEEE Trans. Inform. Theory, IT-15 (May 1969), 
386-391.



Г л а в а  3

ОЦЕНКА ПАРАМЕТРОВ СИГНАЛА 
В АДДИТИВНОМ ГАУССОВСКОМ ШУМЕ

Применим идеи предыдущей главы к исследованию 
задачи модуляции, в которой интересующие нас пара­
метры в процессе модуляции временного сигнала s(t) 
порождают семейство сигналов s(t> а) 0 ^  ^  Т. Н а­
блюдение этих сигналов производится при наличии ад­
дитивного гауссовского шума Z n (t), и, следовательно, 
результат наблюдения представляет собой выборочную 
функцию гауссовского случайного процесса

Z(t) =  s( t 9 a) +  Zn (t)9 О (3.1)

длительностью Т секунд.
Такая модель вполне приемлема для ряда реальных 

физических проблем, представляющих практический ин­
терес, среди которых мы упомянем следующие.

1. Измерение дальности радиолокатором. В этом слу­
чае вектор а отвечает таким параметрам цели, как 
дальность, скорость, отражающая способность и т. д. 
Шум Zn(t)  представляет собой собственный шум прием­
ника, приведенный ко входу, или является результатом 
шумового воздействия основных излучателей. В данной 
задаче сигнал s(/, а) узкополосный.

2. .Сейсмические исследования. Здесь сигнал s(/, а) 
представляет собой низкочастотные сейсмические коле­
бания, возникающие в результате искусственного взры­
ва, а а обозначает параметры, характеризующие, на­
пример, глубину пласта и его проводящие свойства. 
В этом случае на возникновение шума оказывают влия­
ние окружающий геофон, а также побочные источники, 
не интересующие исследователей.

3. Импульсная модуляция. Роль а здесь играет со­
общение, представляющее собой случайный процесс, а 
в качестве Z n(t) снова выступают шумы в канале и соб­
ственный шум приемника, приведенный ко входу.



Сначала мы будем искать Ла применительно к об­
щей модели вида (3.1). Затем сосредоточим внимание 
на задачах радиолокации и рассмотрим подробнее 
влияние выбора конкретного вида сигнала на качество 
приема. Задачам импульсной модуляции будет посвя­
щена гл. 4.

При рассмотрении задач радиолокации нельзя не 
учитывать тот факт, что сигнал s{t, а) является узкопо­
лосным, поскольку именно на этом основано определе­
ние скорости движущегося объекта. Поэтому мы начнем 
с модели, специально приспособленной к случаю сигна­
лов с ограничением на спектр. Обычно в радиолокации 
посылаемый сигнал имеет вид Re{5(/)ef0)°̂ }, где полоса 
частот модуляции s(t)  много меньше несущей частоты 
/о =  (о0/2я. Представим принятый сигнал в виде

5 (/, «) =  Re {6sp (/) е*ъ*}9 0 <  t <  Г, (3.2)

где я-вектор Р =  (Рь Рп) обозначает те параметры 
цели, которые могут представить интерес, а именно 
дальность, скорость, отражающую способность, пло­
щадь рассеяния и т. п. Комплексный коэффициент уси­
ления

Ь =  Ае*> (3.3)

указывает на влияние побочных факторов, также вызы­
вающих изменение фазы и амплитуды, измерение ко­
торых, однако, нас не интересует; так, ср может указы­
вать на сдвиг фазы между передатчиком и приемником. 
Таким образом, вектор а  имеет вид а  =  (А, ф, (5Ь . . .

Рп).
Будем предполагать, что шум, т. е. процесс Z n ( t ) t 

является результатом прохождения широкополосного 
гауссовского процесса через высокочастотную (радио) - 
часть приемника. Соответственно в математической мо­
дели будем считать, что процесс Z n (t)

(i) гауссовский,
(ii) имеет нулевое математическое ожидание,
(iii) стационарный со спектральной плотностью, 

симметричной относительно о)о.



Прежде чем переходить к задачам оценивания, по­
пытаемся описать такие узкополосные случайные про­
цессы.

3.1. ПРЕДСТАВЛЕНИЕ УЗКОПОЛОСНЫХ СЛУЧАЙНЫХ 
ПРОЦЕССОВ

Преобразование Гильберта и комплексная огибающая

В этом разделе мы сформулируем некоторые полез­
ные свойства комплексного представления узкополос­
ных случайных процессов. Мы не будем подробно вда­
ваться в вопросы физической интерпретации, а также 
в детали обсуждаемых здесь свойств; читателю, инте­
ресующемуся более полным обсуждением этих вопро­
сов, предлагаем ознакомиться с разд. 5.1 книги Сакрн- 
сона [1].

Для произвольной временной # функции z (t) опреде­
лим ее преобразование Гильберта z(t )  как сигнал, по­
лучающийся в результате воздействия на z(t )  линейной 
системы с передаточной функцией

Отметим, что знак ~ имеет здесь другой смысл, не­
жели в случае оценок. Такое использование одного и 
того же символа для обозначения оценок и преобра­
зований Гильберта в принципе может привести к пу­
танице; однако в дальнейшем из текста всегда будет 
ясно, о чем идет речь. Заметим, что в обоих случаях 
использование этого знака общепринято.

Отметим простейшие следствия из данного нами 
определения *):

(п) если z(t )  принимает действительные значения, 
то и z(t )  принимает действительные значения.

*) Если преобразованию Фурье Z(f )  функции z(t)  отвечает им­
пульс при / =  О, то г отличается от —z(t) постоянной, соответ­
ствующей этому импульсу.



Определим комплексную огибающую функции z(l)
формулой

z+ (t) =  2 (0 +  iz (0- (3.5)

Если функция z(t )  допускает преобразование Фурье
оо

Z ( f ) =  j  d t z ( t ) e - l3nf*,
—  оо

то преобразованием Фурье функции z+(t) является

( 2 Z(f),  f >  О,
Z+ (f) =  I Z(0), f =  о, (3.6)

I 0, f < 0 .

Предположим, что функция Z(f)  отлична от нуля 
лишь в полосе | / ± / о | < / о -  Положим

v(t) =  z +e~i2nf,,t,
х (t) =  Re {v (/)}, у (t) =  I m {i> (/)},

« (0  =  +  V x 2(t) +  y 2( t ) = 11>(/) | = |  z+ (01, 3̂’7^
0 (/) =  arc sin [y (t)/a (/)] =  arc cos [x (t)/a (/)].

Можно показать [1, разд. 5.1], что функция z(t )  пред­
ставима в виде

z  (t) =  Re {о (t) е12лМ} =  х (t) cos 2n f j  — у (t) sin 2 л =
=  а (() cos [2nf^ +  6 (/)]» (3.8)

где сигналы x(t )  и y(t )  низкочастотные, т. е. их пре­
образование Фурье отлично от нуля лишь при | / | < / о -  
Это представление единственно, причем величины x(t )  
и y(t )  можно получить, пропуская функцию z( t ) ,  умно­
женную соответственно на 2cos2nfot  и 2s\n2nfot ,  через 
фильтр с частотной характеристикой

Я,р (/) =
1, / < / о .
О, f > f 0-

З а д а ч а  3.1. Проверить указанные свойства пред­
ставления (3.8).



Рассмотрим теперь ситуацию, когда Z(f)  — случай­
ный процесс. Обозначим через

Е Ы = ^ ( Н т ,  /),
E { Xt+xYt} =  R xy(t +  r, t)

соответственно ковариационную и взаимную ковариа­
ционную функции процессов X(t )  и Y(t).  В стационар­
ном случае положим

Е {Xt+xX t} =  R x (т), Е {Xt+xYt} =  Rxy (т),
а соответствующие спектральные плотности (преобразо­
вания Фурье функции R) обозначим через S x (f) и 
Sxy if) •

Предположим, что Z( t ) —  стационарный гауссовский 
случайный процесс с нулевым средним, спектральная 
плотность которого S z(f) отлична от нуля лишь при 
| / d = f o |< /o .  Опишем свойства процессов X(t )  и Y(t) 
в представлении (3.8). Обозначим через 2(t)  случайную 
функцию, являющуюся откликом на Z(t)  линейной си­
стемы с частотной характеристикой (3.4), и пусть

Z+(t) =  Z (t) +  iZ (t). (3.9)
Процессы Z(t )  и Z(t)  имеют нулевые математические 
ожидания, а их совместное распределение гауссовское 
(почему?). Отвечающие этим процессам спектральные 
плотности описываются соотношениями

S * ( f )  =  - S *  (f) =  ( jsgn f ) S z (f),
( S z (f), f  Ф  О,

Ss ( f ) =  I i sg n /  |2S z (f) —  |  гУ"0 ' '/  =  0( (3.10)

где
f 4- 1> / >  0,

s g n / = l  0, f  =  0, • (3.11)
l - l ,  f < 0 .

Согласно (3.7), процессы X(t )  и Y(t)  определяются 
равенствами
X (t)= R e  {e~l23lfoiZ + (t)}= Z  (t) cos 2n f0t-\-Z (t) sin 

Y ( 0 = lm  {e~ l2«f°‘Z + (t)}=Z  (t) cos 2n f J - Z  (t) sin 2я/0/, (3' 12)



из которых видно, что совместные распределения про­
цессов X(t )  и Y (4) также гауссовские, а отвечающие 
им средние равны нулю. Менее очевидно, что эти про­
цессы стационарные; однако, отправляясь от равенств 
(3.12) и используя соотношения (3.10) для преобра­
зования вида функций Rx{t  +  r, /), Ry (t +  %y t) и 
RXy(t  +  т, /), получаем [1, разд. 5.1], что эти ковариа­
ционные функции зависят лишь от т, а отвечающие им 
спектральные плотности имеют вид

S* (/) =  Sy (f) =  1  {Sz (f +  fo) +  Sz ( f -  fo) +

+  [sgn ( • )  S2 (•)] * [6 (• +  fo) ~  6 (• -  /о)]}- (3 j 3)
SXy (/) =  s ;x (f ) =  4  {52 (/ +  fo) -  S2 (f -  fo) +

+  [ s g n ( - ) 5 2( - ) l *[S( -  +  fo) +  S(- -/„)]}.
Полученные выражения, по-видимому, проще всего 

интерпретировать графически, зафиксировав некоторую 
спектральную плотность S z(f) шума с ограниченной 
полосой частот (см. рис. 3.1). Из рисунка видно, что 

(i) плотности SXi Sy и Sxy отвечают низкочастотным 
шумам, т. е. отличны от нуля лишь при | / | < / о ;

(п) если функция Sz(f) симметрична относительно 
fo при / >  0, то Sxy(f) =  0.

Суммируя сказанное, приходим к представлению
Z (t) =  Re {V (it) ei2̂ }  =  X (t) cos 2nf0t — Y (t) sin 2nf 0ty (3.14)

причем, если процесс Z(t)
(i) имеет нулевое среднее,
(ii) гауссовский,

(iii) стационарный с ограниченным спектром и 
спектральной плотностью, симметричной при 
/ >  0 относительно /о,

то процессы X(t )  и Y(t)
(i) имеют нулевые средние,
(ii) совместно гауссовские,

(iii) совместно стационарные, ■ некоррелированные 
(а следовательно, независимые в силу гауссо- 
вости) и имеют общую спектральную плотность 
в ограниченной полосе частот.



Р и с .  3.1. Спектральные функции, используемые при нахождении 
S x (f) и Sx y (f ): a) S2 {}), б) S2 (f) sgn f, в) компоненты функции 
£*(/). г ) результирующая функция S x ( f ), (?) компоненты функции 

SxyU)* е) результирующая функция SXy(f).



Перечисленные свойства эквивалентны тому, что
V(t) =  X( t ) - \ - iY( t )  является комплексным стационар­
ным гауссовским процессом с нулевым средним и

Е {VI+%W  =  R 0 (т) =  2Rx (т) =  29- 1 {5, (/)}, (3.15а) 
Е{У<+хУ,} =  0, (3.15Ь)

где @~~1 — обратное преобразование Фурье.

Разложение Карунена — Лоэва для комплексных 
процессов

Рассмотрим разложение Карунена — Лоэва ком­
плекснозначного процесса V(t)  с указанными свой­
ствами. В общем виде это разложение рассматривается 
в книгах Лоэва [2, разд. 34.5], Давенпорта и Рута [3, 
разд. 6.4]. Здесь мы лишь сформулируем ряд основных 
фактов, относящихся к этому разложению.

Как обычно, введем в пространстве Z-2 [0, 7"] ком­
плекснозначных функций, определенных и интегрируе­
мых на отрезке [О, Т]9 скалярное произведение

т
( f , g ) = j d t f ( t ) g ' { t ) .  (3.16)б

Интегральный оператор, соответствующий ковариа­
ционной функции R v(i — s) =  Е {К/К*}, определяется 
формулой

т
[Rvf]( t )= J  ds R0(t — s)f (s),  0 < / < 7 \  (3.17)

О

Подставляя в (3.17) равенство Rv (s — /) =  /?*(/— s), 
получаем, что оператор Rv симметричный, т. е.

(Rvf> g) =  (f> Rvg)- (3.18)

Напомним, что оператор называется положительно 
определенным , если для любой функции ф, норма кото­
рой отлична от нуля, т. е.

11ф 11 =  +  (ф, ф),/г >  о,



выполняется неравенство
(ф, /?оф) > 0 .  (3.19)

Заметим, что если функция R v(т) ограничена и аб­
солютно интегрируема на (— оо, оо ), то оператор R v по­
ложительно определен.

З а д а ч а  3.2. Доказать это утверждение. [Указание. 
Преобразуйте сначала двойной интеграл в выражении 
для (ф, Rvф) к обычному интегралу, содержащему спек­
тральную плотность S v(f) и преобразование Фурье 
ф (/)  =  #~[ф(/)]. Далее, используя тот факт, что функ­
ция ф(/) отлична от нуля лишь на отрезке [0, Г], по­
кажите, что Ф(/) не может равняться нулю на невырож­
денном интервале, не будучи равным нулю тожде­
ственно.]

Рассмотрим теперь нормированные собственные 
функции уравнения 

т
h<i>k (0 =  J  dsR v (t — s) ф* (s), 0 <  / <  T, (3.20)

0
или, в операторных обозначениях,

=  Rv Фа- (3.20')
В дальнейшем мы будем предполагать, что функция 
R v(т) ограничена, непрерывна и абсолютно интегри­
руема (а следовательно, интегрируема в квадрате). При 
этих предположениях оператор Rv обладает следую­
щими свойствами:

а) Собственные функции ф&, отвечающие различным 
собственным значениям, ортогональны в силу симмет­
ричности оператора Rv, т. е. (ф*, ф;) =  0 при
при этом собственные значения Kh действительны.

б) В силу интегрируемости в квадрате функции 
7?v(-) существует не более счетного числа различных 
собственных значений, причем каждому собственному 
значению отвечает не более конечного числа линейно 
независимых собственных функций; эти функции можно 
выбрать попарно ортогональными, и впредь мы будем 
считать, что они выбраны именно таким образом.



в) Непрерывность функции /?„(•) влечет непрерыв­
ность функций щ .

г) Если оператор R v положительно определен, то си­
стема функций ф/t полна в Ь2[О, Т].

Читатель, интересующийся доказательствами этих 
утверждений, может познакомиться с ними по книге 
Рисса и Надя [4, разд. 97]. Мы видим, таким обра­
зом, что при соответствующих предположениях мно­
жество функций ф/t, связанных с уравнением (3.20), об­
разует ортонормированный базис в L2[0, Т]. В даль­
нейшем мы будем считать, что соответствующие этой 
системе собственные значения расположены в по­
рядке убывания: Х\ ^  Я,2 ^  . . .  .

Если функция R v(x) непрерывна, то процесс V(t)  
можно разложить по ортонормированному базису {ф/J:

1 / ( 0 =  lim 2  П<р*(0, 0 < / < 7 \  (3.21)
N->oo k=\

где
т

Vk =  (V,  ф * ) = |  dtV{t )yl{t ) .  (3.22)
о

Равенство (3.21) понимается в том смысле, что при
N

N -> oo  разность V( t ) — 2 стремится в средне-
k=\

квадратическом к нулю для любого 0 < ^ ^ 7 \  Выбор 
функций ф*, отвечающих уравнению (3.20), в качестве 
базиса разложения процесса V (/) основан на том, что 
коэффициенты Vk и V/, входящие в разложение, не- 
коррелированы при / Ф  k\  в частности, если E{Vft} =  
=  E{Vj} = 0 ,  то

Е {VkVf} =  Xk6fk. (3.23)

Доказательство соотношений (3.21) и (3.23) можно 
найти в книге Лоэва [2, разд. 34.5]; при этом доказа­
тельство (3.21) опирается на теорему Мерсера, с ко­
торой интересующийся читатель может познакомиться 
по книге Рисса и Надя [4, разд. 98].

З а д а ч а  3.3. Пусть V( t ) — гауссовский случайный 
процесс с нулевым средним, и пусть выполнено



соотношение (3.15Ь). Показать, что коэффициенты раз- 
ложения Vi, V2.........Vm распределены с плотностью

3.2. ОТНОШЕНИЕ ПРАВДОПОДОБИЯ

Вернемся к проблеме оценки параметра а  по на­
блюдаемому процессу

Z(t) =  s(t,  a) +  Zn (t) =
—  Re{6sp(/) +  R e { Л (t) ei<sx,t}, (3.25)

где через Jf { t )  обозначено комплексное низкочастотное 
представление процесса Zn (t). Заметим, что при наших 
предположениях о процессе Z n(t) коэффициенты в раз­
ложении J f ( t )  имеют совместное распределение с плот­
ностью вида (3.24).

Положим

Поскольку действительную и мнимую части W (t) мож­
но получить квадратурной синхронной демодуляцией 
процесса Z(t )  (демодуляцией посредством cos о)0/ и 
sin о)0/), наблюдение процесса Z(t)  эквивалентно наблю­
дению процесса W(t) .  Поэтому мы найдем отношение 
правдоподобия для процесса W(t ) .

Заметим, что построение отношения правдоподобия 
важно как для

(i) нахождения оценок максимального правдоподо­
бия параметров b и р по наблюдению W (t),

так и для
(ii) получения границы Крамера — Рао.
Учитывая полноту систему {ср̂ }, представим s&(0

в виде

(3.24)

(3.26)
так что



где

s*(P) =  (fy Ф*) =  J  dts^{t)(fk{t).

Таким образом, W(t)  можно записать как
м

W (t) =  lim S  W k<pk (/), 0 <  t <  Г, (3.27)
M->oo k=l

где

W k =  bsk (P) +  J f k, Jfk  =  J  dtJC (t) ф£ (t). (3.28)
0

Из соотношений (3.24) и (3.28) следует, что при наших 
исходных предположениях о процессе Zn {t) совместную 
плотность распределения коэффициентов Wk, фигури­
рующих в равенстве (3.27), можно представить в виде

WM { wu WM) =
м 1 г м .  /пч 0 ■

w k -  b s, (Р) |2

v\ *"

Д ( я Я А) 1 ехр — 2
к=\ k=\

(3.29)

где Xh — собственные значения оператора R n на отрезке 
[О, Т\. Таким образом, мы найдем Ль, в(№), вычислив 
сначала Ль, в(№ь • WM) и перейдя затем к пределу 
при М —* оо.

При вычислении Ль, р выберем в качестве опорной 
точки ао пару b =  0, р произвольно. Тогда, рассматри­
вая отношение двух плотностей,v получаем
1п Л ьр0 Р ,.........WM) =

М

=  Ц  {2 Re [fcs* (Р) Wl\  - 1 bsk (p) m k- (3.30)
k=\

Сходимость отношения правдоподобия

Нас будет интересовать предел правой части равен­
ства (3.30) при М —► оо. Выясним сначала, при каких 
условиях этот предел существует. Обозначим

и к =  {2 Re [bsk (Р) Wl] - 1 bsk (P) 12}Д*.



Заметим, что случайные величины Uk независимы. 

З а д а ч а  3.4. Показать, что

Е {Uk} =  \ Ь |21МР)12А ь  

var{t/fe} =  2| b\2\ sk (Р) |2/А̂ .

Воспользуемся теперь следующей теоремой Колмого­
рова [5, стр. 102]: если f/j, U2, . . .  — последовательность 
независимых случайных величин и

м
=  2  U k,

k = l

2  E{i/ft} <  оо, 2  var {Uk} <  oo,
k = \  k = l

to  Vm сходится с вероятностью 1, а также в средне­
квадратическом к некоторой случайной величине V, при­
чем

Е { К } = 2 Е {£/*}, var {F} =  2  v a r {U*.}.
k = l  k = \

В нашем случае величины Uk являются совместно гаус­
совскими, и, следовательно, случайная величина V также 
распределена по гауссовскому закону. Таким образом, 
если

s =  2 1 Sfc (Р) РА* <  °°> (3.31)
k = \

ТО

In Л*, в (W) =  2 2  Re [bsk (Р) w m k - 1  b f  2 (3.32) 
p *=i

есть гауссовская случайная величина со средним |Ь |22 
и дисперсией 2 | 6 | 22.

Интересно поэтому понять, в каких случаях справед­
ливо соотношение (3.31). Очевидно, для этого необходи­
мо, чтобы слагаемые |s/t(P) |2А* достаточно быстро убы­
вали — ряд из них должен сходиться. Физически это от­
вечает тому, что при больших частотах энергия сигнала



падает быстрее мощности шума. Келли, Рид и Рут [6, 
часть I] показали, что ряд (3.31) сходится, если

(i) s$(t) —  отклик фильтра Н  на сигнал конечной
энергии;

(ii) J f ( t ) — отклик того же фильтра на белый шум
(приблизительно постоянная спектраль­
ная плотность на всех частотах). 

Учитывая, что в практической ситуации предположе­
ния (i) и (ii) оправданы, мы будем считать условие
(3.31) выполненным. Таким образом, в дальнейшем при 
нахождении оценок максимального правдоподобия и по­
строения границы Крамера — Рао отправным соотноше­
нием для нас будет равенство (3.32) *).

Заметим, однако, что представление в виде бесконеч­
ного ряда не слишком удобно при обращении с величи­
ной In Л. Поэтому предположим, что

с»

2  I sk (Р) р/я! <  оо (3.33)
k=\

(это условие сильнее вытекающего из него неравенства
(3.31)). Тогда можно определить семейство интегрируе­
мых в квадрате функций

=  (3.34)
k=\

Непосредственной подстановкой убеждаемся, что 
/в (0  решение интегрального уравнения 

т
J  dsR n (t -  s) (s) =  (/), 0 <  t <  T, (3.35)б

*) Отметим, что интересующая нас величина Л&, р(№) есть про­
изводная Радона — Никодима меры, связанной с процессом W (/) и 
отвечающей значениям b, 0, по мере, соответствующей О, р, а правая 
часть равенства (3.32) представляет собой предел логарифма произ­
водной Радона — Никодима, отвечающей мерам, порождаемым ко­
нечномерным представлением этого процесса. Однако, как показано 
Гренандером [7], этот предел равен логарифму производной мер, 
определяемых по полностью наблюдаемому процессу W(t)  Мы не 
будем здесь вдаваться подробнее в связанные с этим довольно тон­
кие рассуждения,



или, в операторных обозначениях,

=  5|5> /(3 “
Решение интегрального уравнения (3.35) является 

единственным практическим путем для нахождения 
/ з (0 -  В том случае, когда Rn — ковариационная функ­
ция, отвечающая рациональной спектральной плотности, 
решение уравнения (3.35) можно свести к решению ли­
нейного дифференциального уравнения с постоянными 
коэффициентами [3, разд. А2-3].

З а д а ч а  3.5. Пусть
т

(/р- sp ) =  .f dt f^( t )4( t ) ,  (3.36)
о
Т

(3.37)
О

Показать, что число ( / 3, sp) действительно и
In A*, g =  2 Re [b (f„, W ) \ - \ b f  (fp, Sp), (3.38)

E {In A6i p} == | 6 |2 (/p, Sp), (3.39)
var {In A6i p} =  2 1 b |2 (/g, s3). (3.40)

Показать также, что In Аь, p — гауссовская случайная ве-
личина.

Случай белого шума

Начиная с этого раздела, мы будем интересоваться 
тем, как реально находить оценки максимального прав­
доподобия параметров Ъ и и строить матрицу G, фи- 
гурирующую в неравенстве Крамера — Рао. В соответ­
ствии с этим сосредоточим внимание на ситуации, пред­
ставляющей большой практический интерес и, к счастью, 
допускающей численное решение. Точнее, предположим, 
что Zn (t) и sa (t) — отклики соответственно на шум и на 
сигнал фильтра, имеющего постоянную частотную ха­
рактеристику на ограниченном интервале частот длиной 
2W 0t много большем, чем полоса частот сигнала sa (t).



Таким образом, sa (t) представляет собой неискажен­
ный вариант слабого сигнала, принимаемого антенной, 
а сигнал Zn (t) мы считаем возникающим вследствие ши­
рокополосного шума (например, теплового) на входе

Р и с .  3.2. Вид спектра и корреляционной функции «белого» шума.

фильтра, причем спектральная плотность шума постоян­
на на интервале, большем, чем полоса пропускания 
фильтра.

Поэтому
N 0/2 при | f  ± / о  | <  Г 0,

S (Л —
Zn ( монотонно убывает при | / ± f 0 | > № 0> 

и, следовательно,
2N0 при | f  | <  Г 0,

. монотонно убывает при | f  | >  W0.Sn(f) (3.41)

Соответствующая ковариационная функция Rn (т) имеет 
вид, показанный на рис. 3.2, с шириной центрального 
пика, равной примерно l / ( 2W0). Однако если полоса 
частот s$(t)  пренебрежимо мала по сравнению с Wo, как 
мы предположили, то изменением s$(t)  на интервале



длины l/(2Wo) можно пренебречь. Таким образом, 
R n (т) по отношению к sp (0  приближенно есть импульс, 
ограничивающий площадь

оо

J dxRn(x) =  Sn (0) =  2N0,
—  оо

и, следовательно,
оо •

J  dsRn (t — s) Sp (s) 2N0Sq (t), 0 <  t <  T.
—  oo

Итак, (l/2Af0)sp (s) — приближенное решение интеграль­
ного уравнения (3.35), и мы полагаем

0 (3.42)

И ! )

1 п Л » .„ (Г )«  2 i ^ {2 R e [& (V Û )] — 1 6 р|| |р>. (3.43)

Напомним, что In Л имеет гауссовское распределение со 
средним

Е { 1 п Л } ~ Ш 2| | 5р |р/2^ 0 (3.44)

и дисперсией
var {In Л} «  | 6 |21| Sp \f/N0. (3.45)

3.3. РАДИОЛОКАЦИОННОЕ ИЗМЕРЕНИЕ ДАЛЬНОСТИ 
И ЗАДАЧА ОЦЕНИВАНИЯ

Опишем способы построения оценок максимального 
правдоподобия и границы точности, присущей задаче 
оценивания, в случае радиолокационного измерения
дальности. Мы будем постепенно приспосабливать наши
вычисления к проблемам радиолокации, хотя значитель-

*) Математически строгий вывод этого выражения для отноше­
ния правдоподобия в случае, когда шум гауссовский белый, можно 
найти, например, в книге [15, стр. 90]. При этом (s$, W) понимается 
как стохастический интеграл по наблюдаемому процессу. — Прим. 
ред.



ную часть наших результатов можно применить к более 
широкому классу прикладных задач.

При исследовании задач радиолокации необходимо 
выяснить, каким образом влияют интересующие нас па­
раметры на фазу отраженного (принятого) сигнала. Та­
кие важные параметры, как дальность цели или ее от­
ражательная способность, влияют, конечно, на сдвиг 
фазы. С другой стороны, к изменению фазы приводят и 
такие факторы, как дрейф гетеродина приемника, не 
имеющие отношения к цели. Мы будем использовать 
обозначение с р =  Z b  для описания тех воздействий, ко­
торые не содержатся в Р; влияние же всех параметров, 
связанных с целью, которые мы хотим оценить, вклю­
чим в р. Это приводит к необходимости различать сле­
дующие случаи:

1. Угол ф известен, влияние неизвестных параметров 
целиком содержится в Р; гетеродин приемника считается 
в этом случае вполне стабильным.

2. Параметр ср неизвестен и нуждается в оценке на­
ряду с вектором Р; по-прежнему р и ср различаются 
своей связью с целью и соответственно с факторами, не 
относящимися к цели.

3. Угол ф является случайной величиной, значение ко­
торой неизвестно. Здесь мы рассмотрим лишь полностью 
некогерентный случай, когда случайная величина ф рав­
номерно распределена на интервале [0,2л;).

Случай 1 принято называть когерентным (случай из­
вестной фазы); случаи 2 и 3 называются некогерент­
ными.

Первым нашим предположением при анализе этих 
возможностей, относящимся именно к задаче радиолока­
ции, будет предположение о том, что

II Sp 1Р= ь  (3.46)

Заметим, что хотя на самом деле ||sg|| меняется в зави­
симости от дальности цели, этим изменением можно 
пренебречь в тех пределах дальности, которые обычно 
рассматриваются. Такая нормировка выбрана исключи­
тельно для удобства; при этом изменение амплитуды 
сказывается лишь на Л =?= \Ь\,



В первом из перечисленных выше случаев In Л можно 
представить в виде

In Л*. р =  - A. Re E(sp> e - * w ) \  -  ^ . (3.47)

Таким образом, оценка максимального правдоподобия 
Рмп — это то значение р, которое максимизирует дей­
ствительную часть скалярного произведения

(Sp, e-^W),
и, следовательно, Рмп не зависит от А.

З а д а ч а  3.6. Показать, что если функция In Ль, g 
определена соотношениями (3.43), (3.46), то значение Ь, 
максимизирующее In Ль, в, равно

5мп =  (5р> w y
и

sup In А Ьш р =  - щ  | (Sp, W) [2. (3.48)

[Указание. Выделите полный квадрат.]
Во втором случае, когда параметр ср неизвестен, 

оценка максимального правдоподобия вектора р — это 
значение р, максимизирующее правую часть равенства 
(3.48). Заметим, что эта оценка не зависит от А и ср.

Рассмотрим теперь случай, когда ср — равномерно 
распределенная случайная величина. Если мы вернемся 
к наблюдению только М координат Wu WM) то най­
дем, что отвечающая им плотность вероятности, входя­
щая в отношение правдоподобия, равна

2я

fA, р(в>„ WM) =  J ^Фл.ф.рК, . . . ,  W„).
о

Рассуждая так же, как при выводе формулы для Ль, р, 
получаем, что в этом случае интересующее нас отноше­
ние правдоподобия имеет вид

2я

=  (3-49)
о



З а д а ч а  3.7. Показать, что

где I q ( x ) — функция Бесселя первого рода нулевого по­
рядка, определяемая формулой

2я

Поскольку / о монотонно возрастает, при нашем пред­
положении (3.46) (т. е. Ilsflll =  1) оценка максимального 
правдоподобия вектора по-прежнему совпадает с его 
значением, максимизирующим

Функция неопределенности

Введем функцию корреляции между двумя детерми­
нированными сигналами s${(t) и sp2(0  как

В том случае, когда область интегрирования не указана, 
будем считать, что ее образуют те значения переменной 
интегрирования, для которых подинтегральное выраже­
ние отлично от нуля. В дальнейшем мы ограничимся 
специальным случаем, когда функция корреляции зави­
сит лишь от разности — fc, и обозначим эту функцию

Такое допущение представляет интерес не только в за ­
дачах радиолокации, но и в некоторых случаях импульс­
ной модуляции, таких, например, как время-импульсная 
модуляция. В силу условия (3.46) и неравенства Ш вар­
ца имеем

о

(3.51)

J dtŝ  (t) sW -

X (Р, -  Р2) =  (%, «(О =  j  dtsb (t) 4  (t). (3.52)

I K ,  s^)l =  l x ( P | - P ? ) K x ( 0) = b  (3,53)



Согласно установившейся терминологии, функция
I % (Р) 12 называется функцией неопределенности.

Если ф неизвестно, т. е. либо рассматривается как 
неизвестный параметр, либо предполагается равномерно 
распределенной случайной величиной, правило для по­
строения оценки, как мы видели, состоит в выборе зна­
чения р, максимизирующего | (53, W)\ .  Это заставляет 
нас более тщательно изучить величину (53, W).  Зам е­
тим, что при любом фиксированном значении Р скаляр­
ное произведение (53, W) является случайной величиной. 
Далее, для любого набора значений параметров Рд, 
k =  1, . . . ,  Л4, соответствующие случайные величины 
(s$k, W) имеют совместное гауссовское распределение. 
Таким образом, (sp, W) представляет собой гауссовский 
случайный процесс, зависящий от векторного парамет­
ра р. (Читателю следует вспомнить, что в теории слу­
чайных процессов не требуется, чтобы параметр играл 
роль времени; этому случаю просто отвечает один важ ­
ный и наиболее распространенный вид процессов.) По­
скольку гауссовский случайный процесс полностью опре­
деляется своими средйим и ковариационной функцией, 
интересно найти эти величины.

З а д а ч а  3.8. Обозначим снова через р ' «истинное», 
или фактическое, значение параметра р. Запишем наше 
предположение о виде спектральной плотности шума как

Rn ( r ) ~ 2 N 06(r). (3.54)

Показать, что среднее значение процесса (53, W) за ­
дается равенством

W)} =  b'%(Р - Р ') ,  (3.55)

а его ковариационная функция равна 

Е {(%, W)(sь,  r n - E { ( S(3l) Г )}Е {(%, Г П  =
=  2ЛГоХ(Р,-Р2). (3.56)

Исследуем теперь качественно, каким образом выбор 
функции неопределенности |х ( ) | 2 влияет на величину 
ошибок при оценке параметра р. Для того чтобы пред­
ставит!? себе эту зависимость наглядно, проще всего



рассмотреть случай скалярного параметра Р; это позво­
лит нам графически изобразить выборочные функции 
процесса, а сделанные нами замечания будут справед­
ливы и для дг-мерного вектора р.

Методически удобно представить (sp, W ) в виде сред­
него плюс аддитивный шум с нулевым математическим 
ожиданием:

(*э, Г )  =  Г х ( Р - Р ' )  +  ^ р.

В силу (3.56) корреляционная функция процесса 
равна 2Л^ох(Р — Р')- Таким образом, вид выборочных 
функций процесса в частотном смысле должен на­
поминать функцию %. Поучительно будет привести вид 
выборочных функций процесса (sp, W) при

а) ИГр =  0, .
б) 2N0 << | Ъ |2,
в) 2N0 ~ \ b \ 2.
На рис. 3.3 показаны эти три случая. Центральная 

часть графика % хорошо аппроксимируется квадратич­
ной функцией от р в интервале длины 2е, симметричном 
относительно нуля.

Напомним, что когда фаза неизвестна, правило по­
строения оценки состоит в выборе значения р, максими­
зирующего | (53, W) |. В случае слабого шума, как видно 
из рис. 3.3, б, этот максимум лишь несколько сдвинут в 
пределах центрального интервала длины 2е, и величина 
смещения прямо пропорциональна стандартному откло­
нению аддитивного шума; при этом она находится в 
обратной зависимости от крутизны % в начале коорди­
нат. В случае когда величина шума J f  р сравнима с ма­
тематическим ожиданием, этот локальный максимум не 
только сдвинут относительно начала координат, но, что 
весьма вероятно, он уже может перестать быть глобаль­
ным максимумом, который при этом, как показано на 
рис. 3.3, 6, может сместиться в точку какого-либо дру­
гого локального максимума. Величина ошибки теперь 
уже значительно превосходит величину смещения цен­
трального локального максимума.

Такие большие ошибки называются аномальными 
ошибками. Как мы видели, они возникают тогда, когда



величина становится сравнимой с |%(0) | — |%(Р) | 
для |3, лежащих вне интервала длины 2е с центром в на­
чале координат.

Р и с . 3.3. Вид выборочных функций процесса (sp, W ).

Из этих замечаний вытекают следующие требования, 
предъявляемые к выбору сигнала sp:

(i) функция |х(Р) 12 должна иметь острый пик в 
начале координат,

(ii) значения |%(Р)| вне интервала длины 2е с цен­
тром в начале координат должны быть малы по 
сравнению с |%(0) |.

Цель первого требования — оптимизация качества 
приема при слабых шумах, а второе позволяет макси­



мально увеличить уровень N 0 шума, при котором ано­
мальные ошибки происходят достаточно редко. Эта дав­
но привлекавшая к себе внимание проблема выбора сиг­
налов в настоящее время вызывает особый интерес 
([8]—(11]).

Отметим, что задача нахождения вероятности того, 
что глобальный максимум выборочной функции 
| (53, W) | окажется вне центрального интервала, экви­
валентна нерешенной классической проблеме времени 
первого прохождения для гауссовского случайного про­
цесса. Влияние аномальных ошибок, или так называемый 
пороговый эффект, рассматривается с иной (геометри­
ческой) точки зрения в разд. 4.3. Задачу построения оце­
нок для величины среднеквадратической ошибки в поро­
говой области или хотя бы выяснение того, при каких 
значениях отношения сигнала к шуму A 2/N0 возникает 
пороговый эффект, можно считать одной из важных от­
крытых проблем современной теории связи.

Наиболее полезными в пороговой области оказались 
границы, установленные Зивом и Закаи [12]. По-види- 
мому, эти границы вполне достаточны для задачи радио­
локационного измерения дальности, а также для экви­
валентной задачи время-импульсной модуляции. Однако 
все еще неясно, для сколь широкого класса задач эти 
границы точны или хотя бы достаточно просто вычис­
лимы; исследования в этом направлении вряд ли можно 
считать завершенными.

В оставшейся части главы мы займемся вычислением 
границы Крамера — Рао. Эта граница не позволяет су­
дить о качестве приема в пороговой области, где большие 
аномальные ошибки являются вероятными, однако, как 
следует из обсуждения задачи 2.7, она весьма точно опи­
сывает достижимое качество приема в случае, когда от­
ношение сигнала к шуму A 2/NQ велико.

Граница Крамера— Рао в задаче радиолокационного 
оценивания

Для того чтобы применить неравенство Крамера — 
Рао, обсуждавшееся в гл. 2, достаточно вычислить вели­
чины Ьц. Прежде чем приступить к этому, заметим, что

3  Д. Сакрисон



как в когерентном, так и в некогерентном случаях наше 
правило построения оценок параметра р не зависело 
от А. Чтобы избежать в дальнейшем обращения матриц 
высокого порядка, будем предполагать, что мощность А 
возвращенного сигнала известна; таким образом, неиз­
вестные параметры — это

(а,.........an+i) =  (<p, Р„ . . Р„)-

При нашем допущении о том, что ||sg|| =*= 1, из (2.25) 
и (3.47) следует, что

а=а'
Вынося дифференцирование за знак математического 
ожидания, получаем

bt> =  - ^ { d ^ w : R e Uei*st' Л 'е<ф> )]} =О  ̂ i / 'a=a'

<з -57>
А'2

Это равенство подтверждает полученный нами ранее 
качественный вывод о зависимости величины ошибки в 
случае слабого шума от крутизны функции % в начале 
координат.

Остановимся на классическом случае задачи радио­
локационного измерения. Предположим, что передавае­
мый сигнал имеет вид

А ' Re {s {t)

а возвращенный сигнал равен 

А ' Re {s(t —

где т '— задержка, пропорциональная дальности цели, 
а со' — допплеровское смещение, пропорциональное ско­
рости цели. В наших предыдущих обозначениях

So (t) =  s(t  — т') е~ш°х'еш'
Р а а (3-58)Pl =  T, р2==®-



Производя несложные алгебраические преобразования, 
находим, что радиолокационная функция неопределенно­
сти имеет вид

Отметим физическую интерпретацию этого выраже­
ния. Оно представляет собой квадрат величины отклика 
на сигнал s(t )  «рассогласованного» согласованного 
ф ильтра1), расстроенного на со — со' и наблюдаемого с 
опозданием в т — т' с.

З а д а ч а  3.9. Найти оценку максимального правдо­
подобия величин т и со в некогерентном случае с по­
мощью операций над узкополосным сигналом Z( t) .  Пре­
образовать выражение для величины, которую нужно 
максимизировать, к виду, удобному для практической 
реализации, и нарисовать блок-схему такой реализации.

З а д а ч а  3.10. Из условия llspll2 =  1 следует, что

Равенство (3.60) показывает, что функция неопреде­
ленности не может одновременно иметь острый пик в на­
чале координат и быть равномерно малой вне некоторого 
сужающегося центрального интервала, поскольку огра­
ничиваемый ею объем постоянен. В работах [8]—[11] об­
суждается проблема выбора сигнала для получения нуж­
ных свойств функции |х |2 при ограничениях на пиковую 
и среднюю мощности, длительность и ширину полосы 
частот.

!) Фильтр называется согласованным с сигналом s(t), 
если его импульсная характеристика имеет вид h(x) =  s(T  — т), 
0 ^  т ^  Т. Этот фильтр применяется для оптимального обнаруже­
ния сигнала s(t) или оценивания его амплитуды при наличии адди­
тивного белого гауссовского шума; см. [1, разд. 8.3 и 7.2].

Ьс(т —  т ' ,  СО —  Сй') Р = 1  (sp , S|}') I2 =

=  J  dts  ( t) s ' ( t  +  T —  t ' )  e «  2 . ( 3 . 5 9 )

l x ( 0 , 0 ) l 2 =  1.

Доказать, кроме того, что
оо оо

( 3 . 6 0 )

—  оо —  оо



Опишем некоторые свойства сигнала s(t)> облегчаю­
щие нахождение величин Ьц в равенстве (3.57). Хотя 
преобразование Фурье чаще определяется как функция 
обычной частоты /, нам будет удобнее ввести радианную 
частоту со и положить

оо

S(<о ) =  |  d t s ( t ) e m .
—  оо

Заметим, что в силу предположения о нормированности 
сигнала, т. е. ||sp|| =  1, выполняется равенство

оо оо

J  d t \ s ( l ) ? =  J  S(cd) р =  1.
—  оо — оо

Зададим усредненные по времени и частотам величины
оо оо

is =  J  dt t\ s (t) |2, J  d t ? \ s ( t ) \ \

var ts =  t\ t\,
W

0)2 =  J  dcOOl2-^-! 5((0) p.
(3.61)

Учитывая равенство (3.57) и свойства преобразования 
Фурье, находим

ш̂о>=  ~Щ Ки>=  777 с̂о° 01 ) *s’

К = [(“ о -  «О2 +  Щ ~ т ; ( . ыо - “ 0 2-

.  <3 -6 2 > 
bq>i ~  (®о ®/ )> К < » = Л ^ ’

L _ j4 f_
"фф — ЛГ0 *

Приближенное равенство здесь относится к случаю узко­
полосного сигнала Re[s(^)e,’fi>°/], ширина полосы частот 
которого мала по сравнению с его несущей частотой.



З а д а ч а  3.11. Показать, что в некогерентном случае, 
когда параметры т, ср и со неизвестны, симметричная 
(3 X  3 )-матрица G — В~1 равна

Для сигнала, имеющего прямоугольный вид, т. е.

со2 =  оо и, следовательно, правая часть неравенства 
(3.64) обращается в нуль. Этому на первый взгляд со­
мнительному результату наша физическая интуиция 
склонна искать объяснение в том, что никакой реальный 
импульс не может иметь строго прямоугольной формы. 
Однако это лишь уход от вопроса. В действительности 
трудность здесь связана с применением неравенства 
Крамера — Рао, поскольку для рассматриваемого им­
пульса не всюду существует производная д2%(т, со)/дт2. 
Здесь вместо границы Крамера — Рао надо воспользо­
ваться некоторыми более общими границами. В рассмат­
риваемом примере можно получить полезные результаты 
с помощью границы Баранкина [14]. Эти результаты 
можно еще более уточнить при использовании границы 
Зива — Закаи [12].

Т (0 ф

v a r /s 0 (сэ0 — (o ')var/

А 2со2 var ts
(3.63)

Таким образом,

v a r( i  — т ' ) ^ (3.64)

и

var (6 — со') ^ N,О (3.65)Л2 var ts

при



З а д а ч а  3.12. Показать, что в когерентном случае 
известной величины ср матрица G размера 2 X 2 ,  отве­
чающая параметрам т и со, имеет вид

со

G N0
А2 (со0 — ю ')2 var ts 

Таким образом,
(ш0 — со')2

Nnt
v a r(r  т ' ) >  А 2 (Шо _  Уаг ts 

var (6 -  со') >  ^ 7 iF77-

(3.66)

(3.67)

(3.68)

З а д а ч а  3.13. Сравнить результаты (3.64) и (3.67). 
Какие трудности могут возникнуть при построении бо­
лее эффективного метода оценивания в когерентном слу­
чае, существование которого подсказывает неравенство 
(3.67). Для большей конкретности предположите, что 
s ( t ) — прямоугольный импульс длительности Г0, и изо­
бразите графически функцию % при значениях Т0щ/2п  
порядка нескольких единиц и при значениях Г0соо/2я, 
много больших единицы.
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Г л а в а  4 

ИМПУЛЬСНАЯ МОДУЛЯЦИЯ

Рассмотрим ситуацию, в которой случайные величи­
ны из последовательности . . .  М_ь М0, М и . . .  предъяв­
ляются по одной в каждые Т с, причем значение любой 
из них, скажем М ^  передается с помощью сигнала про­
должительности Т с, занимающего интервал времени 
kT  sg: / <  (k +  1) Т. Пусть переданный сигнал подвер­
гается в канале воздействию аддитивного гауссовского 
белого шума. Задача состоит в том, чтобы оценить ве­
личину Mk по принятому сигналу.

Последовательность случайных величин Mk может 
представлять собой отсчеты случайного процесса — сооб­
щения, эффективная ширина полосы которого прибли­
женно равна 1 /27". Мы не будем обсуждать проблему 
восстановления этого случайного процесса из последова­
тельности оценок выборочных значений Mk. Читатель, 
интересующийся этим вопросом, может обратиться к 
разд. 9.1 книги Сакрисона [1], где содержится краткое 
обсуждение этой проблемы. Мы ограничимся единствен­
ной случайной величиной М и единственным передан­
ным сигналом s(/, m), 0 ^  t ^  Г, и будем искать сред­
неквадратическую ошибку, которую можно достичь при 
оценке М из сигнала

Z(t) =  s ( t , m) +  JT(t), 0 < f < 7 \  (4.1)

Здесь J f ( t ) — гауссовский случайный процесс, спектр 
которого «белый» по сравнению с полосой частот сиг­
нала s ( i , m).

У читателя может возникнуть вопрос: чем отличается 
эта задача от поставленной в предыдущей главе? Р аз­
ница состоит в следующем. В гл. 3 предполагалось (как 
в случае радара), что функцию s(t, а)  менять нельзя, 
и рассматривалась лишь задача оценивания. Здесь же



рассматривается задача модуляции, или кодирования: 
при заданных ограничениях выбрать семейство сигналов 
s(t, т) (семейство потому, что необходимо выбрать свой 
сигнал для каждого /л), минимизирующее достижимую 
ошибку оценивания. Наши ограничения на выбираемые 
семейства сигналов связаны с физическими ограничения­
ми, продиктованными потребностями приложений. При 
введении этих ограничений и при определении эффектив­
ности таких импульсных передающих систем ситуация 
становится много более прозрачной при геометрическом 
подходе. Наше изложение основано на геометрических 
представлениях, впервые введенных Котельниковым [2, 
часть III] и более полно развитых в книге Возенкрафта 
и Джекобса [3, гл. 8]. Этот подход описан также в книге 
Сакрисона [1, гл. 9].

Сигналы продолжительности Т с, имеющие конечную 
энергию, будут трактоваться как точки, или векторы, 
векторного пространства L2[0, Г] функций, интегрируе­
мых с квадратом на отрезке [О, Г]. Для сигналов Z(t)  

будут употребляться обозначения Z 
и s(m).  Для скалярного произведения и нормы будут 
использоваться обычные обозначения:

т

(г, s ( m ) ) =  [ z ( t ) s ( t , m)dt ,  
б
т

II s(m)  |р =  J I s(t, m)fdt.
0

Мы будем предполагать (исключительно ради упроще­
ния изложения), что сигналы низкочастотные, так что 
их можно описать функциями, принимающими действи­
тельные значения. Результаты этой главы самым пря­
мым образом применимы и в том случае, когда s ( t , m) — 
одна из квадратурно модулированных компонент узко­
полосного сигнала.

Рассмотрим ограничения на семейство s(m).  Пусть 
М  — множество возможных значений сообщения т\ 
предполагается, что JI  — действительная прямая или ее 
подмножество. Тогда для любого m ^ J [  естественно



требовать, чтобы сигнал s ( t ym)  имел конечную энергию, 
т. е.

|| 5 (т) II2 Е для всех (4.2)

Заметим, что любая физическая система должна 
удовлетворять некоторой форме ограничения полосы ча­
стот. Любой сигнал ограниченной энергии можно разло­
жить по полной ортонормальной системе функций срл:

оо

s(t, т ) =  2  sk (m)q>k(t), О < < < 7 \  (4.3)
k = \

Бели {щ} — множество функций, выбранное так, что 
они эффективно заполняют полосу частот (например, 
преобразования Фурье от зональных сферических функ­
ций [3, приложение 5А; 4; 5]), то для больших N (боль­
ше 10) можно найти примерно N = 2 W T  ортонормальных 
функций из {ерь}, которые заполняют частоты, не превос­
ходящие W. Можно показать, что это наибольшее число 
ортонормальных функций, заполняющих частоты, не пре­
восходящие W. Таким образом, в нашей геометрической 
структуре математически удобный путь введения огра­
ничения полосы частот состоит в том, чтобы потребовать 
возможность представления

N

s(t, т) =  2  sk (m )ф* (/), 0 < ^ < 7 \  (4.4)
k = \

Заметим, что если последовательность случайных ве­
личин образована отсчетами случайного процесса с эф­
фективной шириной полосы частот 1/2Т, то W — ширина 
полосы нашей системы импульсной модуляции — в N раз 
больше, чем ширина полосы первоначального сигнала. 
Число N называете9 поэтому множителем расширения 
полосы частот

Ограничение сигналами, представимыми в виде (4.4), 
удобно с чисто математической точки зрения. Однако 
оно не выполняется для таких схем, как время-импульс- 
ная модуляция (ВИМ)

s ( t t m) =  p( t — m TQ),



которая заполняет ограниченную полосу частот (полосу 
функции p{t))y но которую нельзя выразить в форме (4.4) 
для конечного N.

Введем, наконец, условие регулярности функции s(m).  
Предположим, что функция s(m)  дифференцируема; 
точнее,

Конечно, из этого условия вытекает непрерывность 
s(m ), т. е.

Это значит, что при изменении т в Л  функция s(m)  
вычерчивает непрерывную кривую в L2 [О, Т]. Мы будем 
называть эту кривую линией сигнала или кривой сиг­
нала.

Ограничиваясь аддитивным шумом У^(/), предполо­
жим снова, что он представляет собой гауссовский про­
цесс с нулевым средним и «белым» по сравнению с 
s ( t f m) спектром, так что

Как и выше, мы говорим «белый шум», хотя J f ( t )  
имеет конечную мощность; однако предполагается, что 
R n {т) ведет себя как импульсная функция с весом N J 2, 
когда она свертывается с s ( t ,m ) .  Из гл. 3 следует, что 
отношение правдоподобия имеет в этом случае вид (если 
произвести соответствующие упрощения для действи­
тельнозначного низкочастотного процесса JP(t))

Приступим теперь к анализу потенциальной эффек­
тивности систем импульсной модуляции. Одна из глав­
ных целей последующего изложения — объяснить чита­
телю, почему для увеличения отношения сигнал/шум за

т

ds] f ' 2 dt  <  оо для всех m  е  М.  (4.5)
о

lim || s (m  +  h) — s(m)  || =  0. (4.6)

(4.7)

In A m (Z ) «  -g-  {2 (s (m), Z) — 1| s (m) f}. (4.8)



счет расширения полосы частот необходима нелинейная 
модуляция и почему отсюда с необходимостью следует 
пороговый эффект.

4.1. ЭФФЕКТИВНОСТЬ ПРИ МАЛОМ ШУМЕ

Рассмотрим сначала вид оптимальной оценки. Так 
как наша цель состоит в минимизации среднеквадрати­
ческой ошибки оценивания

<Г2 =  Е { ( М - М П

то наилучшая оценка равна условному математическому 
ожиданию

Af =  E{AJ|Z(/),
В дальнейшем особенный интерес для нас представляет 
ситуация, в которой s(m)  — нелинейная функция. В этом 
случае задача точного вычисления условного математи­
ческого ожидания М безнадежна. Вместо этого обра­
тимся к нашему старому другу — оценке максимального 
правдоподобия (МП). Правда, эта оценка игнорирует 
априорную информацию об М\ однако можно использо­
вать вместо нее оценку максимальной апостериорной ве­
роятности 1) (МАВ), т. е. оценку, максимизирующую ве­
личину In f (m)  -|-lnA m (z). В интересующем нас случае, 
когда Е{{М — М ) 2} <С var М, эффективность оценок МАВ 
и МП на самом деле совпадает.

Дадим геометрическую интерпретацию оценки МП. 
Так как ||z|| не зависит от т ,  то, как видно из (4.8), 
оценка МП при данном z совпадает со значением т ,  
минимизирующим величину

|| г — s(m )||2 =  — [— ||г ||2 +  2(s(m ), z) - | |  s(m)  ||2], (4.9)

т. е. со значением т ,  соответствующим точке кривой сиг­
нала, ближайшей к принятому вектору z. Это правило 
оценивания иллюстрируется на рис. 4.1, на котором по­
казана двумерная проекция кривой бесконечномерного 
пространства L2 [О, Т].

Точнее, плотности вероятности. — Прим. перев.



Вычислим <%2 для слабых шумов. Обозначим через п 
вектор в L2 [О, Г], соответствующий выборочной функции 
шума, и пусть г0 — наименьшее число, при котором спра­
ведливо неравенство

P { | | ^ | | > r 0} < 6 <  1. (4.10)

Зафиксируем произвольное значение т ,  скажем т 0, и 
проанализируем величину <§2 в предположении, что пе-

Р и с .  4.1. Аппроксимация кривой сигнала касательной для опре­
деления ошибки при низком уровне шума.

реданное значение равно т 0. Предположим, что шум 
достаточно мал (г0 достаточно мало), так что

(i) в шаре радиуса г0 с центром в точке s ( m 0) функ­
цию s(m)  можно достаточно точно аппроксимировать 
касательной

s (m) — s(tn0) +  (m — m0) I ; (4.11)
I m=m0

(ii) через этот шар не проходит никакой другой от­
резок кривой сигнала, т. е. в шаре радиуса г0 с центром 
в точке s(ttio) находится только один связный сегмент



кривой, который к тому же можно аппроксимировать 
его касательной.

Для шара радиуса г0 на рис. 4.1 эти предположения 
выполнены.

Найдем среднеквадратическую ошибку оценивания 
в случае, когда эти предположения выполнены. Нам 
удобно будет использовать обозначение 

, . v ds (т)
s (то) =  - T - m_ m •т=Шо

Тогда s '(m 0) /l |s '(mo) || — вектор единичной длины в на­
правлении касательной. Оценка МП т соответствует точ­
ке, для которой расстояние от s(tn) до z  кратчайшее. 
Из рис. 4.1 видно, что в предположении линейности эта 
точка s(m)  получается проектированием вектора п на 
касательную, так что
s ' (mo) (Ifi - m 0) ~ s  (/ft) -  s (m 0) «  [n, .

или, поскольку числовые коэффициенты слева и справа 
должны совпадать,

th — m n ~  (п’ * '(то))- (4 12)т т ° II s'(m0) II2 ' К ’
Это соотношение справедливо для любого значения, ко­
торое примет шум. Случайная ошибка оценки дается 
выражением

М — т ~  (l/f’ *  (/Wo))
М m° ~  II s ' («о) И* '

При наших предположениях о процессе шума J f ( t )  ска­
лярное произведение (Jf,  s ' (то)) — это гауссовская слу­
чайная величина с нулевым средним и дисперсией 
||s '(m 0) ||2ЛУ2. Таким образом 1).
& 2 (то) —  Е {(М — т 0)2} =

No/2 _  N 0/2 .
~  II s' (m0) II2 т .

Я
ds (/, m) 

dm m=m0

|2
dt

*) Точные условия, достаточные для справедливости соотноше­
ния (4.13) в некотором асимптотическом смысле, приведены в ра­
боте Ибрагимова И. А и Хасьминского Р. 3., Оценка. параметра 
сигнала в гауссовском белом шуме, Проблемы передачи информа­
ции, 10, 1 (1974). — Прим. перев.



З а д а ч а  4.1. Найти границу Крамера — Рао для 
&2 (ffto) •

З а д а ч а  4.2. Время-импульсная модуляция есть 
система передачи, описываемая равенством

s(t, m) — p(t  — mT0),

в котором p(t)  — импульс продолжительности Ти а Т0 и 
Т\ выбраны так, что функция p( t  — пгТ0) отлична от 
нуля лишь на отрезке 0 ^  ^  Т для всех т ^ Ж .  Выра­
зить &2 {то) с помощью среднеквадратической ширины 
полосы функции p( t) ,  определенной формулой

+ 00

f P\P(f) \*df
f J  =  A ____________I p -f- oo *

f  i p  m i 2 #
—  00t

где
+  oo

P(f)  =  &~[p(t))=  j  e - ^ p { t ) d L

4.2. ОПТИМАЛЬНОЕ ОТОБРАЖЕНИЕ 
НА КРИВУЮ СИГНАЛА

Формула (4.13) дает среднеквадратическую ошибку 
при условии, что передается величина т0. Найдем ошиб­
ку, усредненную также и по распределению случайной 
величины М. Прежде чем делать это, исследуем имею­
щиеся в нашем распоряжении возможности для оптими­
зации. ВИМ может в более общем виде мыслиться как 
семейство сигналов p(t  — т), где p(t)  — импульс продол­
жительности Т1, а т — параметр этого семейства, прини­
мающий значения 0 ^ т ^ Г 0 =  Г — 7Y В задаче 4.2 
предполагалось, что соотношение между величиной сооб­
щения m и параметром задержки т линейно. Однако это 
предположение не обязательно. В самом деле, если М — 
случайная величина с неограниченной областью возмож­
ных значений, как, например, гауссовская, то линейность



даже невозможна. В этом случае нужно использовать 
нелинейное отображение

т =  т (т ) , — оо < /л <  оо, 0 <  т TV
Физически это отображение можно реализовать с по­
мощью усилителя с существенно нелинейной характери­
стикой. Такое устройство называется компандером.

В данной ситуации желательно знать, как выбрать 
это нелинейное отображение, чтобы минимизировать <£% 
В случае ВИМ для данной функции p(t)  функция 
p( t  — т) при изменении т пробегает кривую в L2 [0, Г]. 
Однако мы не хотим ограничивать анализ системой 
ВИМ. Поэтому надо ввести параметризацию (т в случае 
ВИМ), применимую для произвольной кривой. Удобным 
параметром будет просто длина кривой в L2, т. е. длина, 
которую измерил бы счетчик пройденного пути, укреп­
ленный на велосипедном колесе, катящемся по кривой, 
или рулетка с гибкой лентой.

Обозначим через 2L полную длину кривой, а через 
/ — длину (со знаком), измеренную от центра кривой, 
так что — L I L. Так как / есть по определению 
1 2-длина кривой, то справедливо тождество

^ 4 - 1 ,  - £ < / < 1 ,  (4.14)

в котором s(l)  означает точку на кривой как функцию 
от I. Тогда переменная сообщения т отображается на 
кривую посредством функционального соотношения

I =  I (m), s(m) =  s[t(m)]. (4.15)
Здесь мы некорректно употребляем обозначения, приме­
няя символы s (m)  и s(l)  для двух различных функций с 
разными областями определения. О какой именно функ­
ции идет речь, ясно из аргумента.

Имеем
|| d s  ( /)d s  ( т ) | |___ || d s (t) d l

dm  !l I d l dm d l

Подставляя (4.16) в (4.13), получаем 

( m o ) -  Mo/2d l 2

dm m=m9



Усредняя по распределению случайной величины М , 
находим

+  оо

^2 =  W 2 )  J \ - ~ \ ~2f (m )d m .  (4.17)
—  оо

Выберем l(m)  так, чтобы минимизировать правую часть 
равенства (4.17). При этом мы должны учесть ограниче­
ние, состоящее в том, что полная длина кривой равна
2 L:

+  оо

J  JjL-dm =  2L. (4.18)
—  оо

Кроме того, необходимо, чтобы между точками кривой и 
величинами m было взаимно однозначное соответствие. 
Поэтому мы потребуем, чтобы выполнялось неравенство

- £ • >  О, (4.19)

причем равенство возможно только для тех значений т ,  
для которых f (m)  =  0.

Найдем функцию dl/dm , минимизирующую (фор­
мула (4.17)) при ограничении (4.18). Обозначим через
go(rn) эту (пока не известную) оптимизирующую функ­
цию, и пусть r\(m) — произвольная функция, удовлетво­
ряющая условиям

т0
|  r\(m)dtn =  0, (4.20)

- т 0
т](т) =  0, \ т \ > т 0. (4.21)

Так как функция go(m)  удовлетворяет ограничению 
(4.18), то это же ограничение выполнено и для функции

- £ г =  £о (m) +  eti(m) (4.22)

при всех значениях е. Для такого выбора dl/dm имеем
+  оо

#2 =  В2 (е, Т]) =  J  / (т) [go {т) +  6Т1 (т )\~2 dm- (4-23)



Если go(m) действительно является минимизирующей 
функцией при указанных выше ограничениях, то для лю­
бой функции гi(m ), удовлетворяющей условиям (4.20) и 
(4.21), значение <S2 должно быть минимально при 8 =  0. 
Для этого необходимо, чтобы

+  оо

д$> 2 (е, У])
8= 0де = —2 f f (m)r\(m)[g0(m)+sr\(tn)] 3\ d t n =
?=П •>

—  оо

+ оо

— 2 J f (m)r \(m)[g0(m)]~3 dm =  0. (4.24)

Заметим, что

д2&2 (е, Т1)
де2 =  6 [ f(m.)yf(m)[g0(m)] * d m > 0 ,

8 = 0  J

так что выполнение равенства (4 .24)— необходимое 
условие именно для минимума, а не для другой крити­
ческой точки.

Рассмотрим теперь пространство L2[—m0, т 0]. Из 
уравнений (4.20) и (4.24) вытекает, что

( f§o3> Л) =  0 (4.24')

для любой функции г] е  L2 [—m0, /п0] с носителем 
[—то, /Яо]> удовлетворяющей соотношению

(1, л) =  о,
где 1 означает функцию, тождественно равную 1 на 
отрезке [— т 0, т 0]. Соотношение (4.24') должно вы­
полняться для любой функции т], ортогональной к 1, так 
что функция fgQ3 должна быть «параллельна» функ­
ции 1.

Так как это рассуждение справедливо при любом /л0, 
то окончательно получаем, что g0 удовлетворяет соотно­
шению

f (т ) go3 (m) =  с',
или

g0(m) =  c ( + [ / ( m ) ] 7#}. (4.25)



В последней формуле знак +  означает, что берется поло­
жительный кубический корень. Очевидно, это решение 
удовлетворяет ограничению (4.19). Чтобы удовлетворить 
ограничению (4.18), следует положить

2 L (4.26)+  оо

j* (m) dm
—  оо

Обозначим

[
+ о °  -|3
J  f'h (m )d m \ .  (4.27)

Подставляя (4.25) — (4.27) в выражение для по­
лучаем, что среднеквадратическая ошибка вычисляется 
по формуле

(4'28)

Заметим, что эта минимальная величина для ^Г2 пред­
ставляет собой произведение трех сомножителей, первый 
из которых зависит лишь от уровня шумов, второй — 
только от длины кривой сигнала, третий — только от рас­
пределения сообщения.

З а д а ч а  4.3. Показать, что в случае, когда сообще­
ние есть равномерно распределенная случайная величина 
с нулевым средним и дисперсией а2,

^ - ^ 2 2 1 .  (4.29)

а для гауссовского сообщения с нулевым средним и дис­
персией а2 справедлива формула *)

_  (Ы0/2) 2 n 3 V  ОЛЧ
®2--------- ЩУ2 ' (4,3°)

4) Конечно, формулы (4.29) и (4.30) справедливы при любом 
математическом ожидании величины М. — Прим. перев.



4.3. ГРАНИЦЫ ЭФФЕКТИВНОСТИ. ПОРОГОВЫЙ ЭФФЕКТ

Из формулы (4.28) вытекает, что значение <S2 можно 
уменьшить, если увеличить длину кривой. Интуитивно 
ясно, однако, что эту ошибку нельзя сделать произвольно 
малой за счет безграничного увеличения L. Выясним 
факторы, ограничивающие длину кривой. В соответствии 
с обсуждавшимся во введении к настоящей главе огра­
ничением полосы частот предположим, что s(m)  принад­
лежит пространству, порожденному N ортонормальными 
функциями ф&:

N

s(t, т )  =  2  Sk ( т ) Фй (t), (4.4)
k = \

Отметим, что для гауссовского случайного процесса с 
нулевым средним и корреляционной функцией

/ г „ ( т ) ~ ^ в ( т )  (4.7)

проекция вектора Z(t)  на подпространство, порожденное 
функциями фь . . . ,  ф^ (т.е. N коэффициентами Фурье 
(Z ,ф/t), k =  1, . . . ,  N),  есть достаточная статистика для 
оценки М.

З а д а ч а  4.4. Доказать это утверждение.

Обмен полосы частот и пороговый эффект

Учитывая сформулированное только что утверждение, 
будем рассматривать не векторы s(m),  Z и J f  в L2[0> Г], 
а лишь их проекции на Л/-мерное векторное простран­
ство, порожденное функциями ф*, k = l , . . . ,Л/ .  Тогда 
наши частотное и энергетическое ограничения приводят 
к тому, что кривая s (m)  лежит в N-мерном шаре радиуса
V e .

Сделаем теперь следующие замечания. Во-первых, 
если потребовать, чтобы система модуляции была линей­
ной, т. е. s[l(m)]  =  / ( т )ф  для произвольной, но фиксиро­
ванной функции ф в N -мерном подпространстве, то

(i) подпространство можно будет редуцировать к од­
номерному подпространству, порожденному функцией ф, 
а множитель расширения полосы частот будет равен 1;



(и) кривая сигнала будет прямой линией с макси­
мальной длиной 2L =  2 ] /£  и соответствующая мини­
мальная среднеквадратическая ошибка будет равна

( В Д  k 
%2= - - 4Е— ■

Наше второе замечание состоит в том, что для увели­
чения длины кривой необходимо как можно больше «из­
гибать» ее в ^/-мерном шаре. Отсюда немедленно выте­
кают два следствия:

(i) функция s(l)  должна быть нелинейной;
(ii) кривая должна заполнять более чем одно изме­

рение.
Таким образом, метод нелинейной модуляции и рас­

ширение полосы частот являются необходимыми предпо­
сылками возрастания L и убывания среднеквадратиче­
ской ошибки. Этот эффект называется обменом ширины 
полосы на отношение сигнал/шум.  Использование этой 
фразеологии связано с тем, что при измерении эффектив­
ности чаще пользуются отношением сигнал/шум для сиг­
нала на выходе

(S/ЛОзых =  ал1 /  ̂ 2» (4.31)

чем самой величиной <§Г2.
Выясним теперь, насколько длинной можно сделать 

кривую сигнала и какой неблагоприятный эффект могло 
бы иметь слишком сильное ее_ изгибание. Заметим, что 
в N-мерный шар радиуса У Е  можно поместить сколь 
угодно длинную кривую просто путем многократного и 
очень частого изгибания этой кривой, как показано на 
рис. 4.2 (для двумерного сечения). Вспомним, однако, 
второе предположение (см. стр. 77), касающееся отсут­
ствия других участков кривой в шаре радиуса г0. Это 
предположение существенно использовалось при выводе 
формулы для <§Г2, и оно совершенно необходимо для 
справедливости этой формулы.

Посмотрим (рис. 4.3), что произойдет, если различ­
ные ветви кривой сигнала будут слишком близки друг 
к другу. Предположим, что передается сигнал s ( m 0). 
Если уровень шума Л/0 мал, то типичное значение приня­



того вектора есть z \  а соответствующий сигнал на вы­
ходе приемника т\. При большем значении N 0 типич­
ным значением принятого вектора будет z". В этом слу­
чае метод максимального правдоподобия дает на выходе

Р и с .  4.2. Сильно изогнутая кривая ограниченной энергии, но боль­
шой длины.

приемника сигнал т ", в то время как наш линейный 
анализ привел бы к т'г  Фактическая ошибка была бы 
гораздо больше той, которая указывается соотношением 
(4.12), и поэтому формула (4.13) уже неверна. Когда N0 
становится настолько большим, что эти аномальные 
ошибки (большие ошибки, возникающие вследствие ука­
зания неправильной ветви кривой сигнала) вносят суще­
ственный вклад в среднеквадратическую ошибку, гово­



рят, что приемник оперирует в пороговой области. Это 
уменьшение эффективности приводит к кривой, изобра­
женной на рис. 44  и отражающей зависимость от 1 /N0 
отношения сигнал/шум на выходе. Этот пороговый эф­
фект неизбежно возникает в силу нелинейности кривой 
s(/) , и степень его. проявления зависит (если N0 стано­
вится достаточно большим) от того, насколько сильно 
изогнута кривая сигнала.

Граница плотной упаковки для эффективности

Если второе предположение (стр. 77), касающееся 
других ветвей кривой, выполнено, то тем самым ограни­
чивается возможная длина кривой. Найдем количествен­
ную границу для этой длины. Наше изложение опирается 
на книгу Возенкрафта и Джекобса [3, § 8.4].

З а д а ч а  4.5. Рассмотрим проекцию шума на W-мер­
ное подпространство, порожденное функциями фь . . . ,  <pN:

т
=  JTN), X k =  J jr(t)<pk (t)dt.

0
Найти совместное распределение величин Jfk  и показать, 
что для случайной величины

i m i 2=  2  (л%)2 k=\
справедливы соотношения

Е{||ЛП12} =  Л/(ЛУ2), 
var { |l J f  II2} =  2N (jV0/2)2. (4,32)

Из этих соотношений и из неравенства Чебышева по­
лучаем

Р { | | | ^ 1 Р - ^ | >  (4.зз)

Таким образом, вероятность того, что для больших N 
случайная величина \\Jf\\ лежит в интервале

/Л Щ /2 Н 1  — е ' Х  || Л !  <  \ Г Щ Щ {  1 +  8'), (4.34) 
стремится с ростом N к I.



Р и с. 4.4. Пороговое поведение нелинейной системы импульсной
модуляции.

Р и с .  4.3. Возникновение малых и больших аномальных ошибок.



Выясним, насколько должны отстоять для больших N 
разные ветви кривой при данном уровне шумов jV0. Рас­
смотрим две соседние ветви кривой (рис. 4.5) и разло­
жим вектор шума J f  на перпендикулярную к кривой сиг­
нала компоненту J f  ± и параллельную ей компоненту ./Рц.

Вектор J f  1 лежит в (N — 1)-мерном подпространстве. 
Следовательно, рассуждения использованные при выводе 
неравенств (4.33) и (4.34), применимы к J f  i  с заменой 
N на Л/ — 1.

Из неравенства (4.34) видно, что для больших N 
аномальные ошибки встречаются с большой вероят­
ностью, если расстояние между различными ветвями 
кривой меньше 2 ] f { N — \)N J2 .  Если же различные 
ветви удалены друг от друга на расстояние, немного 
превышающее 2 |/(/V — 1)jV0/2 , то вероятность аномаль­
ной ошибки мала. Это последнее условие выполнено,

Р и с .  4.5. Разложение вектора шума на две компоненты.



если кривую можно заключить в «трубку» радиуса 
Y (N  — 1) NJ2 без самопересечений. Итак, мы получаем 
оценку

(2L) [площадь сечения ((N — 1)-мерный объем) диска 
радиуса <  V ( N - l ) N J 2 ]  <
^ЛГ-мерный объем, занятый принятыми сигналами.

(4.35)

Это соотношение является неравенством, поскольку, 
вообще говоря, нельзя упаковать плотно (без «воздуш­
ных» зазоров) эту трубку в N-мерном объеме. Площадь 
сечения (N — 1)-мерного диска есть объем шара в (N — 1)- 
мерном пространстве радиуса (А̂  — 1) А̂ о/2. Как хо­
рошо известно [6, т. III, стр. 392 — 393], этот объем 
равен

Ve- , ( W V - l W 2 )  =
„(N-1)12 ... ...п

-  г д а _ 1 ) /2 + 1, [ < * - ! > m f - w . (4.36)

Оценим объем, занятый принятыми сигналами. Так как 
Z =  s (т) +  J¥, то || Z ||2 =  || s (т) ||2 +  2 (Л9, s (т)) + 1| J f II2. 
С помощью тех же соображений, которые привели к не­
равенству (4.34), можно показать, что с большой вероят­
ностью

IIS ( т )  f  +  N (No/2) ( I -  8') <  IIZ  IP <
< | | 5 (/п)||2 +  ЛГ(ЛУ2)(1+е'). (4.37)

Так как || s (m) ||2 ^  Е, то объем, занятый принятыми 
сигналами, не превосходит объема W-мерного шара 
радиуса V Е  +  N (NJ2), равного

„N/2
[E +  N  (Л̂  о/2)] . (4.38)

Из (4.35), (4.36) и (4.38) находим, что

о ,  <  п ^ Г  ((N — 1)/2 +  1) [NN0/2]n^  I Е +  N N 0f2 1W2



Используя формулу Стирлинга [6, т. II, стр. 792] для 
Г-функции при больших N и сокращая общие множи­
тели, получаем

/ ----------- Г Е 1 \W-DI2(i + тгЬ-) •

Замечая, что последний множитель в правой части 
при больших N  приближается к | / е ,  окончательно 
имеем

2 L <  V2ne(N  0/2) [ 1 +  д г д а г Г  • (4-39)

Подставляя (4.39) в (4.28), приходим к границе для до­
стижимой среднеквадратической ошибки

s i > ^ V + T n k m T “  ■ (4-40)

В терминах отношения сигнал/шум на выходе неравен­
ство (4.40) можно переписать в виде

(SlJf)B ых <  х  2яе [ 1 +  N {§ -оЩ ]М. (4.41)

Эти границы нельзя понимать как точные границы 
эффективности достаточно «хорошей» системы импульс­
ной модуляции по упомянутой ранее причине: трудно 
эффективно упаковать в данном объеме непрерывно диф­
ференцируемую кривую (это даже более трудная задача, 
чем упаковка точек — задача, рассматриваемая в цифро­
вом кодировании). На эти границы следует скорее смо­
треть как на указание того, как меняется эффективность 
для соответствующего семейства систем модуляции: от­
ношение (SA/Нвых должно меняться как N-я степень 
отношения сигнал/шум в канале , ( 5 / ^ ) KaH =  E / (N 0/2). 
Заметим, что этот вывод относится именно к семейству 
систем модуляции, в то время как для любой данной си­
стемы модуляции надпороговая эффективность растет 
линейно с E / (N 0/2).

Таким образом, при оперировании с широким диапа­
зоном значений отношения сигнал/шум в канале эффек­
тивное использование канала требует использования



семейства систем модуляции, каждая из которых эффек­
тивна при данном значении отношения сигнал/шум. Та­
кое семейство систем модуляции не обязано порождаться 
семейством различных физических схем. Его можно по­
строить, изменяя один или более параметров в данной 
схеме; см., например, Мак-Аули и Сакрисон [7].

Очень трудно сравнить эффективность данной си­
стемы модуляции (например, ВИМ) с границей (4.40), 
так как эффективность данной системы трудно вычис­
лить. Выше порога эффективность можно вычислить с 
помощью формулы ' (4.13) и последующего усреднения 
по /По:

+  оо

&2=  J (т о) f  (^o) dtn0. (4.42)
—  оо

Однако эта формула верна только выше порога. Следо­
вательно, без дополнительного анализа того, при каких 
значениях отношения £*/(Л^о/2) справедлива формула 
(4.42), ее нельзя использовать для сравнения с границей.

Среднеквадратическую ошибку как функцию отноше­
ния EI{NqI2) (и линейное, и нелинейное поведение) мо­
жно иногда найти из границ. Возенкрафт и Джекобе 
[3, § 8.2] дали выражение для как функции от 
£■/(^0/2), но оно применимо только к сигналам с функ­
цией корреляции вида

(s(m ), s(m')) =  c (m —  m '),

где c(m)  имеет периодические нули и низкие боковые 
ветви.

Анализ ВИМ, использующий границу Баранкина, про­
веден Мак-Аули и Зейдманом [8]; граница Зива и Закаи 
значительно точнее и ее тоже можно применить к этой 
задаче. Единый подход к описанию этих трех границ 
в применении к ВИМ излагается в статье Зейдмана [9].

В области импульсной модуляции предстоит еще мно­
гое сделать. Главная из тем, требующих внимания, — на­
хождение сравнительно просто вычисляемых или же при­
ближенных границ для нахождения эффективности дан­
ной системы модуляции как функции от E/(N0/2). Кроме 
того, большую область исследований составляет нахож­



дение новых систем модуляции, которые можно практи­
чески реализовать и эффективность которых ближе к 
границе (4.40), чем в существующих системах.
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Г л а в а  5

ОПТИМАЛЬНАЯ УГЛОВАЯ ДЕМОДУЛЯЦИЯ

В этой главе мы рассмотрим задачу оптимальной де­
модуляции сигналов систем модуляции, т. е. систем, в 
которых модулятор непрерывно во времени обрабаты­
вает сигнал сообщения и непрерывно производит ме­
няющийся модулированный сигнал V{t). Мы ограни­
чимся модуляторами вида, изображенного на рис. 5.1,

Р и с .  5.1. Рассматриваемая система модуляции.

учитывая их практическую важность. В этих системах 
операция модуляции представляет собой каскад, состоя­
щий из линейной операции и следующей за ней нели­
нейной операции без памяти. В конце нашего обсужде­
ния мы сосредоточим внимание на одном классе систем 
модуляции, представляющем наибольший практический 
интерес, а именно на угловой модуляции. Изучение оп­
тимального демодулятора даст повод кратко описать 
очень полезный субоптимальный демодулятор — фазо­
вую автоподстройку частоты.

5.1. ДЕМОДУЛЯТОР ПО МАКСИМУМУ АПОСТЕРИОРНОЙ 
ВЕРОЯТНОСТИ (МАВ)

Определим оптимальный демодулятор для системы 
модуляции, показанной на рис. 5.1. Хотя обычно прихо­
дится рассматривать узкополосные сигналы, мы будем 
сразу описывать сигналы V ( t ), J f ( t )  и Z(t)  как действи­



тельнозначные узкополосные сигналы, а не с помощью 
комплексного низкочастотного представления. Мы будем 
считать шум стационарным гауссовским процессом с ну­
левым средним и белым спектром:

Rn(r) =  E { J fu+x)J f u)} =  - ^ & ( x ) .  (5.1)

Чтобы облегчить дальнейшее исследование, начнем с 
проблемы оценки процесса U(t)  по наблюдению Z(t) .  
В разд. 5.2, где будет обсуждаться демодулятор фазовой 
автоподстройки частоты, мы коротко исследуем вопрос 
о том, как выбор демодулятора должен учитывать эф­
фект предыскажения в сети связи.

Для некоторых важных нелинейных операций а(*,  •) 
вычисление условного математического ожидания про­
цесса U(t)  по наблюдениям Z(t)  представляет собой со­
вершенно безнадежную задачу. По этой причине мы бу­
дем рассматривать здесь оценку МАВ.

Предположим, что сообщение является стационарным 
гауссовским процессом с нулевым средним и известной 
корреляционной функцией Rm(т). Тогда и U(t ) — тоже 
стационарный гауссовский процесс с нулевым средним.

Последующее изложение опирается на книгу Витерби 
[1, гл. 5]. Сначала сведем процесс U(t)  и наблюдаемый 
процесс Z( t)  к процессам с дискретным временем, счи­
тывая каждые Дт с значения этих процессов в моменты 
времени

tk =  t0 +  k k x ,  k =  1, 2, . . . ,  /С, тk =  t. (5.2) 

Введем обозначения:

Uk =  U( xk), uk =  u ( xk),
Nk =N{ Vk ) >  n k =  n ( x k),
Z k =  Z(  xk)t z k =  z ( x k),
Vk =  v (xk, Uk), vk =  v (xk9 uk)

u =  (uu uK\  n =  {nu . . . ,  nK\
w =  (vi9 vK)9 Z =  (zh z K).

(5.3)

(6.4)



При наблюдении Z =  z задача состоит в нахождении 
значения и, максимизирующего функцию

Н „ 1 г ) = 1 М !Ш Н > .

или, что эквивалентно, максимизирующего ее натураль­
ный логарифм.

Необходимое условие максимума — выполнение ра­
венств

l i - 0 ,  4 - 1 ..........к .  (5.5)

При сделанных предположениях относительно гауссово- 
сти процесса J f  (t) имеем

In f  (z |u) =

=  — Y  In 2n —  Y  In | Rn | — -J (z — V, R n '(z  —  v)), (5.6)

где Rn — ковариационная матрица процесса J)P(t). Так
как лишь Vk зависит от Uk, то

[ -  J  (z -  V, R ?  (z  -  V))] =  ^  [ r ; 1 (z -  v)]ft. (5.7)

Зададим вектор g равенством

Atg =  R n1 (z — v). (5.8)

Другими словами, g =  g(u) определяется из уравнения 

z — v(u) =  /?„g(u)AT. (5.9)

Заметим, что хотя Vh =  Vk(Uk)  есть функция только пере­
менной Hfc, но gk зависит от всех компонент вектора и. 

Из (5.6) — (5.8) находим, что

- ^ - l n f ( z  |и) =  -^ -£ * (и )  Дт. (5.10)

Подобным образом для плотности / (и) получаем

1 1̂ 1 г» 1



и

J L l n f ( u ) = - [ R Z ' u ] k, (5.11)

где R u означает ковариационную матрицу процесса U. 
Соотношения (5.5), (5.10) и (5.11) приводят к равен­
ствам

[R: 'u\k =  ^ - g k (u)Ar,  * =  1 , 2 , . . . , * ,  (5.12)

определяющим оценку МАВ. Положим

Хк =  Ж 7  gk М  Лт- 5̂ЛЗ)

Умножая обе части равенства (5.12) на R u, получаем си­
стему уравнений, которую в векторной форме можно за­
писать в виде

u =  Rax. (5.14)

Так как матрицы R n и Ru имеют элементы

[R n \if  === Rn (УЬу /̂)> \R u \i !  == ( /̂» /̂)>

то, расписывая (5.9) и (5.14) по компонентам и учиты­
вая (5.13), находим системы уравнений для оценки МАВ 
йк:

к
z { x k) — v{xk, df t ) =2#n( Tf c> T„)g(r„, й)Ат, (5.15)П—1

К
а Ы  =  2 /? » (* * . *«) -dv (хдпипйп) g(Tn, и) Ат, (5.16)

п= 1
ft =  l, . . . ,  /с.

Э ти две системы уравнений определяют оценку МАВ 
в случае дискретного времени. Однако на самом деле нас 
интересует случай непрерывного времени. Переходя к

4  Д. Сакрисон



пределу в (5.15) и (5.16) при Дт--*0, формально прихо­
дим к системе двух интегральных уравнений
z ( t) — v ( t ,  й(х)) =  

и
=  J dsRn (т, s ) g [ s ; й(а), (5.17)

<0
й ( т ) =  J dsRu(т, s) - ° ^ f s)(S)1g [ s> й (а)> (5-18)

Уравнения (5.17) и (5.18) справедливы для произ­
вольных гауссовских процессов U(t) и J f ( t )  с нулевым 
средним.

Сделаем теперь следующие дополнительные предпо­
ложения, имеющие наибольший практический интерес: 

(i) процессы U(t) и J?(t)  стационарны;
(И) процесс JP{t) есть белый шум, т. е. R n (т) =

=  (ЛУ2)6(т);
(iii) режим работы стационарен, to =  — оо.
При выполнении этих предположений уравнение 

(5.17) принимает вид
z ( t )  —  w ( t ,  й (т)) =

* = - j - g [ t ‘, й(а), — о о ^ а ^ / , ] ,  — оо <  т < / , .  (5.19)

Подставляя (5.19) в (5.18), видим, что оценку МАВ мож­
но найти как решение одного интегрального уравнения !)

й (т) =  Г„ |  dsRa( t - s ) d- ^ J f - ) { z ( s ) - v ( s ,  й(8))). (5.20)
—  оо

Применим эти результаты к фазовой модуляции 
(ФМ). Заметим, что предыскажающий фильтр, предше­

*) Уравнению (5.20) в случае «чистого» гауссовского белого 
шума Jf ( i )  нелегко придать четкий математический смысл, так как 
в этом случае (5.20) фактически содержит стохастический интеграл 
с подинтегральной функцией, зависящей от будущего течения про­
цесса. Этой трудности нет для уравнения (5.25), описывающего 
систему фазовой автоподстройки частоты. — Прим. ред.



ствующий нелинейному модулятору без памяти, позволит 
нам позже изучить частотную модуляцию (ЧМ), а также 
ФМ или ЧМ с предыскажением. Для фазовой модуляции

v (т, и (т)) =  / 2 Р sin [со0т +  и (т)] (5.21)
и

| J = / 2 P c o s [ cd0t  +  A ( t ) ] .  ( 5 . 2 2 )

Подставляя (5.21) и (5.22) в (5.20) и используя тригоно­
метрическое тождество 2sin A cos А =  sin 2А, получаем

t
—  J  dsRu (х — s) У2Р  cos (сo0s +  й (s)) X

—  оо

X  U (s) — V 2 P  sin (co0s +  й (s))) =

=  — I  dsRu (т — s) sin (2«у? +  2й (s)) +
—  оо

+  I  dsRa (т — s) cos ((D0s - f  й (s)) z  (s) «
—  oo

«  J  dsRu (T — s) cos [co0s +  й (s)] z (s), (5.23)
—  oo

---- OO <  T ^  t.

Предположение, при котором справедливо последнее 
приближенное равенство, состоит в том, что U(t)  — низ­
кочастотный процесс. Поэтому членом, содержащим 
двойную частоту, на выходе фильтра с импульсной пере­
ходной функцией R u ( ’ ) можно пренебречь. Уравнение 
(5.23) определяет демодулятор МАВ для ФМ.

При попытке решить это уравнение, т. е. найти физи­
ческую реализацию оценки МАВ, обычно появляются 
некоторые трудности. Мы сможем найти лишь прибли­
женное решение этого уравнения, которое приемлемо при 
некоторых дополнительных условиях. Д ля выяснения



физической интерпретации уравнения (5.23) полезно рас­
смотреть частный случай т =  t. В этом случае

__ t

d ( t ) —  2 ^ "  J  d sRu (t — s) cos (co0s +  и (s)) z  (5). (5.24)
—  00

Заметим, что функция #(s) в подинтегральном выраже­
нии— это оценка МАВ для U(s),  основанная на наблю­
дении Z (т) на всем интервале — оо ^  т ^  t.

5.2. ФАЗОВАЯ АВТОПОДСТРОЙКА ЧАСТОТЫ -  
СУБОПТИМАЛЬНЫЙ ДЕМОДУЛЯТОР

Рассмотрим поведение цепи, изображенной на блок- 
схеме рис. 5.2. Сигнал на выходе этой цепи есть решение 
интегрального уравнения

t
и' (t) =  V 2  J  dsf (t — s) cos (co0s - f  u'  (s)) z  (5). (5.25)

—  00

Если положить

то это интегральное уравнение примет вид

и'  (0 == 2 -  J dsRu(t — s) cos(a0s -j- и ' (s) )z  (s). (5.26)
—  00

По внешнему виду уравнение (5.26) кажется точно та­
ким же, как и уравнение (5.24), определяющее оценку 
МАВ. Однако имеется одна существенная разница. 
В (5.24) й (5 )— это оценка МАВ для U(s),  основанная 
на наблюдении. Z ( t) , — оо <g; т ^  /, в то время как в
(5.26) u'(s)  есть отклик физически реализуемой системы 
и, следовательно, зависит лишь от Z (т) при — оо ^  т ^  
^  s <  t. Система фазовой автоподстройки частоты 
(5.25) лоэтому не реализует оценку МАВ,



Чтобы показать, как приближенно реализовать оцен­
ку МАВ, вернемся к (5.23) и выпишем выражение для 
z ( s ): _

г  (s) =  У  2 Р sin (co0s +  и (s)) =  п (s).
Положим

п'  (s) =  У 2 cos (co0s +  й (s)) п (s) (5.27)

Р и с .  5.2. Фазовая автоподстройка частоты, 

и воспользуемся тригонометрическим тождеством 

cos A  sin В  =  [sin {А +  В) +  sin (В — Л)].
Тогда

й (т) — j  dsRu (т — s) cos (co0s +  й (s)) X

X  {У~2P sin (co0s +  и (s)) +  n (s)}

=  / * Л в( т - в ) { - р 1 г п '( в) +
—  oo

+  Y  sin (2co°s +  ti(s) +  u (s)) +

+  } / Гy sin (M  (s) — й (s)) | «
t

J  dsRu (x —  s)Js in (« (s) — d(s)) +  p = /» '( s ) j ,  (5.28)

—  00 <  T <  t,



Приближенное равенство в (5.28) основано на том, что 
членом, содержащим двойную частоту, на выходе филь­
тра с переходной функцией /?и(*) можно пренебречь.

Предположим теперь, что ошибка оценки МАВ про­
цесса U(s)  мала; в частности, с вероятностью, близкой 
к единице, величина | f/(s) — O(s) | мала по сравнению 
с радианом, так что

sin [и (s) — й (s)] «  и (s) — й (s). (5.29)

Учитывая это предположение и полагая

2' ( S) =  «(S) +  - ^ - ,  (5.30)

приводим (5.28) к виду 
t

j  d s R « <т  ~  s ) 1г '  ”  й <5 -3 1 )
—  оо

Прежде чем вычислять корреляционную функцию шумо­
вого процесса, определенного в (5.27), рассмотрим с ил­
люстративной целью сумму независимых одинаково рас­
пределенных случайных величин

м

N Ъ— -}Й 2 * ^ * '
*=1

Легко видеть, что для больших М зависимость J f z  от 
любой одной величины Jfh  слаба, а при М -* оо случай­
ная величина JC-z становится статистически независимой 
от любой величины Jfk- Заметим, что 0(s)  зависит от 
V (t) и J f (x )  при — оо <; т ^  t. Если можно прибли­
зиться к O(s),  производя действия над У(тл) и f l ’ixh) 
с достаточно частым дискретным множеством точек т* на 
временной оси, то, как и раньше, процесс 0 (s )  зависит 
от большого числа независимых случайных величин

Тй). Тогда с помощью приведенных выше эвристиче­
ских соображений заключаем, что 0(s)  и И°(т) незави­
симы.

Так как процесс J f ( t )  имеет нулевое среднее, то этим 
же свойством обладает и процесс Чтобы изучить



спектральные свойства процесса Л " ^ ) ,  запишем шум 
JP(t) в виде

J f  (t ) =  J P C ( /)  COS CD0t  —  t f s  ( t )  sin (Dot.

Заметим, что процесс Jf ' ( t)  появляется лишь в свертке 
с Ru. Как и для других сигналов, мы интересуемся 
лишь низкочастотными членами в Jf '{t )  и можем пре­
небречь членами с двойной частотой. Преобразуя 

(Ocos(co0̂  +  й(0) с помощью тригонометри­
ческих тождеств и опуская члены с двойной частотой, 
получаем

j f '  (t) =  у = - \J fc(t) cos й (t) — J f s it) sin й (0]. (5.3Г)

Учитывая независимость JV{t) и d{t),  находим отсюда, 
что

^ ( T )  =  E { ^ +X,^'(0} =

== Т  Е ĉos й (* +  т ) cos й (*)} +
+  Rns (т) Е {sin й (* +  т) sin й (/)} —

— Rncnc (т) Е {cos й (t +  т) sin й (0} —

— Rnsnc (т) Е {sin й (t +  т} cos й (/)}].

Уточним теперь предположение о том, что JP{t) — белый 
шум, а именно мы будем считать, что S n (f) имеет харак­
тер, указанный на рис. 5.3, где И?о много больше ширины 
полосы сигнала V(t) .  Тогда

Rn' (т) «  j  N 06 (т) [Е {cos й (t +  т) cos й (/)} +

+  Е {sin й (t +  т) sin й (0)] »  у  N°b (5‘32)

Отсюда находим выражение для корреляционной функ­
ции процесса Z'(t):

/М * )  =  Я«(т) +  ^ - 6 ( т ) .  (5.33)



Возвращаясь к (5.31) и подставляя выражение для 
/?ц(т) из (5.33), получаем

й(т) =  ^ { - § [ г ' ( т ) - Й ( т ) ]  +

t
+  j  dsRz, ( x - s ) [ z ' ( s ) - a ( s ) ] \ ,

—  оо

или
t

г ' ( т ) = - ^  I rfs/?2'( T - i ) [ z ' ( s ) - i J ( s ) ] ,  т < / .  (5.34)
—  oo

Пусть теперь h ( т ) — решение уравнения Винера — 
Хопфа (см. [2, § 11.2])

оо

|  h (s )  RZ' (cr — s)ds  =  Ra (a), a ^ O .  (5.35)
о

Тогда, свертывая обе части равенства (5.34) с h(-)  
и используя (5.35) и (5.31), имеем

t
J  h(t  — x)z'  (т) dx —

—  ОО

t t
=  I  h'it — x)dx  |  Rz' (T — s) [z' (s) — й (s)] ds —

—  oo — oo

t t
— 112' (s) ~  ̂  (s)] ds j  h ( t  — x) Rz' (X  — s )d x  =

—  00 — oo

t
=  j [ z '  (s) -  й (s)] Ra (t - s ) d s  =  a (t). (5.36)

—  oo

Итак, мы приходим к выводу: если ошибка u(t)  —
— d(t) мала по сравнению с одним радианом, то оценку 
H(t) можно получить на выходе линейного фильтра с им­
пульсной переходной функцией, являющейся решением 
уравнения Винера — Хопфа (5.35), *



З а д а ч а  5.1. Рассмотрим снова систему фазовой ав­
топодстройки частоты (ФАЧ), показаную на рис. 5.2. 
Пусть значения U ( t )— U'(t) малы по сравнению с од­
ним радианом, а частотная характеристика ФАЧ пред­
ставляется в виде

(5.37)

где H ( s ) — частотная характеристика фильтра с импуль­
сной переходной функцией h(s) (h(s)  — решение уравне-

Р и с. 5.3. Предполагаемый вид спектра шума.

ния (5.35)). Показать, что сигнал u'(t)  на выходе си­
стемы ФАЧ приближенно равен левой части равенства
(5.36).

Результат предыдущей длинной выкладки можно 
сформулировать так: если ошибка наилучшей в средне­
квадратическом оценки фазы мала по сравнению с од­
ним радианом, то ФАЧ ведет себя как оптимальная 
(МАВ) оценка. Полученный результат, однако, не мо­
жет нас полностью удовлетворить, поскольку одна из 
главных причин широкого практического использования 
ФАЧ состоит в том, что ее эффективность при высоком



уровне шумов (пороговое поведение) превосходит более 
удобные приемники типа угловых демодуляторов, в то 
время как наш вывод применим лишь к изучению эф­
фективности выше порога.

Остановимся теперь кратко на задаче исследования 
эффективности ФАЧ. На рис. 5.4, а изображена блок- 
схема всей системы фазовой модуляции. Из нашего ана­
лиза вытекает, что выше порога (среднеквадратическая 
фазовая ошибка мала по сравнению с одним радианом) 
всю систему можно заменить эквивалентной линейной 
системой, показанной на рис. 5.4, б. Для вычисления 
ошибки в оценке сообщения можно объединить два ли­
нейных фильтра H(s)  и Hpi(s) и исследовать задачу 
фильтрации, показанную на рис. 5.4, в.

Для вычисления минимальной среднеквадратической 
ошибки фильтрации как функции от P/N0 при оценке 
M{t)  в ситуации, отраженной на рис. 5.4, в, можно ис­
пользовать винеровскую теорию оптимальной линейной 
фильтрации. Напомним, однако, что эти результаты 
справедливы лишь выше порога. Поэтому теорией опти­
мальной линейной фильтрации следует пользоваться для 
вычисления минимальной среднеквадратической ошибки 
фильтрации как функции от P/N0 при оценке U(t)  в си­
туации, отраженной на рис. 5.4, б. Вычисленная таким 
способом величина

&2, м = е  { ( M ( f ) - M m

совпадает с истинной лишь для тех значений P/N0, кото­
рые настолько велики, что

& 2 , и = ь { ( и а ) - й ( т < & с,

где — число, заключенное между 0,16 и 0,33 (ра­
диан) 2.

Этот подход позволяет вычислить не только надпо- 
роговую эффективность (5/Л,)вых=<Тд1/1Г2 м как функцию 
от P/N0, но также и значение P/N0, соответствующее по­
рогу. Графики зависимости (5/тГ)Вых от P/N0 для частот­
ной и фазовой модуляций, основаннще на этом подходе,
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приведены в книгах Витерби [1, гл. 6] и Сакрисона [3, 
гл. 10].

Бордман и Ван Трис [4] довели этот подход почти до 
конца, решив следующую оптимизационную задачу. При 
ограничениях

P/N0= a u
- о о  — 1/2

j ( / - f 0)2S„ (f)df 
0 ^------5----------------  < « 2

j  Sy (f) df 
o

(левая часть этого неравенства представляет собой сред­
неквадратическую ширину полосы процесса V{t))  и

найти предыскажение цепи B (s), минимизирующее <S2, м, 
и минимальное значение этой величины как функцию от 
а\ для различных выборов а 2-

Ван Трис [5] использовал эти результаты для сравне­
ния эффективности без ограничения полосы (а2 =  оо) 
с эффективностью, которую можно достичь при передаче 
гауссовского источника с известным спектром по адди­
тивному гауссовскому каналу с белым шумом. Послед­
нюю эффективность можно получить, приравнивая ско­
рость создания информации при заданном искажении 
источника и пропускную способность канала [6]. Согласно 
результату Ван Триса, в случае бесконечной полосы ча­
стот оптимальная угловая модуляция лишь на несколько 
децибелл хуже, чем полная эффективность, которую мо­
жно достичь методом модуляции, или кодирования. 
В противоположность этому следует заметить, однако, 
что для разумных значений множителя расширения по­
лосы (т. е. отношения среднеквадратической ширины по­
лосы V к ширине полосы М) и больших значений отно­
шений сигнал/шум в канале угловая модуляция дает 
существенно худшую эффективность, чем теоретически 
достижимая.



СПИСОК ЛИТЕРАТУРЫ

1. Витерби Э. Д., Принципы когерентной связи, изд-во «Сов. ра­
дио», М., 1970.

2. Давенпорт В. Б., Рут В. Л., Введение в теорию случайных сиг­
налов и шумов, ИЛ, М., 1960.

3. Сакрисон (Sakrison D. J.), Communication theory, Transmission 
of waveforms and digital information, New York, 1968.

4. Бордман, Ван Трис (Boardman С. J., Van Trees H. L., Jr.), Op­
timum angle modulation, IEEE Trans. Commun. Tech., COM-13,
4 (December 1965), 452—469.

5. Ван Трис (Van Trees H. L., Jr.), A comparison of optimum angle 
modulation systems and rate distortion bounds, IEEE Proceedings, 
53, 12 (December 1965), 2123—2124. (Русский перевод: ТИИЭР , 
53, 12 (1965), 2347—2348.)

6 Гоблик (Goblick Т. J., Jr.), Theoretical limitations on the trans­
mission of data from analog sources, IEEE Trans. Inform. Theory, 
IT-11, 4 (October 1965), 558—566.



Г л а в а  6

КОДИРОВАНИЕ СЛУЧАЙНЫХ ИСТОЧНИКОВ 
СООБЩ ЕНИЙ

В этой главе мы подробно обсудим аспекты теории 
передачи аналоговых сообщений, связанные с вопросом 
точности, с которой можно окончательно восстановить 
эти сообщения в результате прохождения ими некоторой 
зашумленной или ограниченно передающей среды. Важ ­
ную роль в нашем обсуждении будут играть некоторые 
концепции теории информации. Поэтому прежде чем 
сформулировать задачу, мы приведем интуитивные опре­
деления понятий скорости цифровых данных и пропуск­
ной способности канала.

Рассмотрим сначала цифровую . последовательность, 
представленную, например, набором двоичных символов,

. . .  01101001 . . . .
Любая последовательность, состоящая из Q таких симво­
лов, может описать одно из М =  2е? возможных событий, 
так как существует ровно М двоичных последовательно­
стей длины Q. Обратно, любое из М возможных событий 
можно описать с помощью Q двоичных символов, где 
Q — наименьшее целое число, не меньшее log2Al. Для 
описания последовательности таких событий, обладаю­
щих к тому же тем свойством, что каждое новое событие 
происходит один раз в Г с, введем величину

П _  10g2 МА у* »

т. е. число двоичных символов в секунду, требуемое для 
описания реализации этих событий, которую назовем 
цифровой скоростью (в двоичных символах в секунду) 
последовательности дискретных событий. Ясно, что вы­
бор логарифма по другому основанию, например по осно­
ванию 3 или 10, привел бы попросту к тому, что скорость 
выражалась бы в троичных или десятичных символах 
в секунду.



Рассмотрим теперь канал связи с шумом (например, 
аддитивный гауссовский канал), по которому в течение 
Т с передается сигнал s( t ) ,  0 ^  t ^  Г, в результате чего 
на выходе канала наблюдается выборочная функция слу­
чайного процесса Z(t)  той же длительности. Оказы­
вается, что в такой схеме любопытным образом возни­
кает следующий пороговый эффект. Существует такое 
число С, что если R — произвольное число, меньшее С, 
то при достаточно больших Т можно найти М =  2RT раз­
личных сигналов sm (t) , 0 ^  t ^  Г, m =  1, . . . ,  М, так, что 
по наблюдению Z(t)  с некоторой малой вероятностью 
ошибки Р ( 8 )  можно определить, какой из этих сигналов 
был передан, причем вероятность ошибки можно произ­
вольно уменьшить, если Т достаточно велико, а М ра­
стет, как 2ЛТ. Если же R больше С, то такая надежная 
передача оказывается невозможной. Величина С назы­
вается пропускной способностью канала и измеряется в 
битах (двоичных единицах информации) за секунду. 
Другой выбор основания (вместо основания 2, использо­
ванного выше) привел бы попросту к соответствующему 
изменению размерности пропускной способности.

Таким образом, число С является критической грани­
цей для скорости R , при которой возможна надежная 
передача по каналу с шумом. Это замечательное откры­
тие принадлежит Клоду Шеннону. Читателю, не знако­
мому с его основными идеями, мы настоятельно рекомен­
дуем прочитать отправную статью Шеннона [1], в которой 
приведено доказательство указанной теоремы коди­
рования для аддитивного канала с белым гауссовским 
шумом. Для произвольного случайного канала число С 
можно определить на основе теоретико-информационных 
понятий. В настоящей главе те же понятия будут ис­
пользованы двойственным образом для определения ин­
формационной скорости аналогового источника. С теоре- 
тико-информационной точкой зрения на понятие про­
пускной способности канала и на теорему кодирования 
читатель может познакомиться по работе Шеннона [2, 
части I—IV] и книге Галлагера [3, гл. 2—5].

Исследуем ситуацию, схематически изображенную 
на рис. 6.1. Здесь выход источника U может представ­
лять случайный процесс или случайное поле (например,



двумерное случайное поле, возникающее при передаче 
изображений). Каналом может быть линия телеметриче­
ской цифровой связи, не содержащая по существу оши­
бок, либо цифровое запоминающее устройство, либо канал 
связи с шумами, имеющий пропускную способность, рав­
ную С. Задача состоит в построении кодирующего 
устройства, позволяющего добиться эффективной пере­
дачи в том смысле, что для достижения удовлетворитель­
ного уровня воспроизведения исходного сообщения U на

Р и с .  6.1. Проблема кодирования источника.

выходе источника выходным сообщением О потребова­
лась бы минимальная пропускная способность передаю­
щего канала.

Если выход источника представляет случайный про­
цесс U(t),  а каналом является канал связи, содержащий 
шумы, эта задача эквивалентна построению модуляцион­
ной системы, приводящей к максимизации на приемном 
конце отношения сигнал/шум при заданных ограниче­
ниях на передаваемую мощность, ширину полосы частот 
и уровень шума в канале. Именно по этой причине сфор­
мулированная выше задача отвечает тематике данной 
книги, а в той формулировке, в какой она рассматри­
вается ниже, эта задача применима к значительно более 
широкому классу реальных физических проблем, таких, 
как эффективное хранение аналоговой информации с по­
мощью цифровых запоминающих устройств. В настоящей 
главе мы не будем пытаться ответить на вопрос, как до­
биться эффективного кодирования, а лишь определим, 
какова минимальная пропускная способность канала, 
требуемая для достижения заданного уровня искажения 
сообщения, и выясним структуру близкого к оптималь­
ному метода кодирования.

Для пояснения методов, которыми мы будем в даль­
нейшем пользоваться, опишем один частный подход к на­
шей задаче и выясним некоторые его недостатки. Рас­



смотрим источник, выходом которого является случай­
ный процесс, и кодирующее устройство (рис. 6.2), состоя­
щее из считывающего устройства, квантователя (преоб­
разующего аналоговое сообщение в цифровое) и цифро­
вого кодирующего устройства. Частота считывания и 
уровень квантования определяют так, чтобы представить 
сигнал U (t ) с заданной степенью точности. Избыточность

Исходная цифровая последовательность------ ►

1Ю0 , иоо, 1Ю0 , h o i , not, по1 , т о,  т о, . . .
11100, 0, 0,11101, 0, 0,11110, о , . . .

Редуцированная цифровая последова­
тельность

Р и с .  6.2. Типичный частотный метод редукции данных.

в полученных таким образом отсчетах используется за­
тем цифровым кодирующим устройством. Простой спо­
соб такого использования избыточности состоит в том, 
что повторившееся значение отсчета заменяется переда­
чей нуля; о появлении же нового отсчета приемник ин­
формируется с помощью передачи единицы, вслед за чем 
передается двоичное представление этого отсчета. При­
мер такой редукции показан на рис. 6.2, где для пред­
ставления отсчета используются четыре бита. Этот метод 
называется интерполяцией нулевого порядка. Он эффек­
тивен, если U ( t )  изменяется не слишком быстро, в ре­
зультате чего кодируемая последовательность содержит 
устойчивые интервалы, приводящие к передаче длинных 
серий нулей. Соответствующий коэффициент сжатия



определяется как А /В , где А — число двоичных символов 
в секунду в исходной цифровой последовательности, В — 
число двоичных символов в секунду в закодированной 
цифровой последовательности.

Хотя указанный метод редукции в некоторых случаях 
может оказаться весьма эффективным, все же этот част­
ный подход во многом несовершенен, если его рассма­
тривать с точки зрения общей конструкции для изучения 
задачи. Во-первых, в самой основе этого метода предпо­
лагается, что считывание значений функции с определен­
ной частотой и их квантование должны составлять первый 
шаг при редукции данных к цифровому виду. На са­
мом деле это не так, и существует много различных спо­
собов первичного сведения данных к цифровому виду; 
некоторые из них могут оказаться гораздо более эффек­
тивными, чем дискретизация по времени с последующим 
квантованием. Во-вторых, использование в качестве 
меры эффективности коэффициента сжатия само обла­
дает рядом серьезных недостатков. Прежде всего эта ' 
величина позволяет производить лишь относительное 
сравнение различных возможных схем, но не дает абсо­
лютной меры, с помощью которой можно было бы выде­
лить оптимальное решение задачи. Кроме того, она мо­
жет оказаться обманчивым показателем успеха, если, на­
пример, исходная скорость считывания слишком велика.

При введении теоретической конструкции, применяе­
мой при изучении проблемы кодирования источников, 
важным первым шагом является определение меры иска- 
жения, позволяющей количественно измерить расхожде­
ние между сигналом на выходе декодирующего устрой­
ства О и сигналом на выходе источника U. Это позволит 
сравнить скорости различных методов кодирования про­
извольного вида при одном и том же уровне искажения. 
Введенная мера позволит также определить шеннонов­
скую функцию скорости R(d)  при заданном искажении.

Важность этой функции подчеркивает следующая 
теорема Шеннона о кодировании источников:

При передаче сообщений с уровнем искажения d не­
обходим канал связи с пропускной способностью, не 
меньшей R(d)  (независимо от наличия в канале шумов).



Обратно, при соответствующем кодировании сообщения 
источника могут передаваться со скоростью, незначи­
тельно превышающей R(d)  при уровне искажения d.

Приступим теперь к изложению шенноновской тео­
рии, устанавливающей связь между уровнем искажения 
и скоростью передачи. В разд. 6.1 мы начнем с ряда рас­
смотрений, которые приведут нас к геометрическому до­
казательству теоремы кодирования для источников, по­
рождающих гауссовские случайные величины. Несмотря 
на то что этот результат носит частный характер, он дает 
отчетливое представление о методе, с помощью которого 
достигается эффективное кодирование источников. 
В разд. 6.2 мы введем необходимые для нас концепции и 
определения теории информации, в разд. 6.3 докажем 
теорему кодирования для произвольного вида источников
и, наконец, в разд. 6.4 найдем для гауссовского случай­
ного процесса скорость создания информации при задан­
ном искажении, используя критерий среднеквадратиче­
ской ошибки.

6.1. ГАУССОВСКИЙ ИСТОЧНИК
СО СРЕДНЕКВАДРАТИЧЕСКОЙ МЕРОЙ ИСКАЖЕНИЯ

В этом разделе мы дадим геометрический вывод функ­
ции скорости при заданном искажении для гауссовских 
случайных величин в случае, когда мерой искажения слу­
жит среднеквадратическая ошибка. Этот результат вряд 
ли нов — по сути дела он вытекает из ранней работы 
Шеннона [1]. Однако наглядность геометрического дока­
зательства имеет определенное преимущество для уясне­
ния метода, с помощью которого производится кодирова­
ние источника. Став на геометрическую точку зрения, мы 
лучше уясним как приемы кодирования, так и свойства, 
которыми должен обладать близкий к оптимальному 
метод кодирования. Это достигается, однако, ценой того, 
что геометрические рассмотрения ограничиваются слу­
чаем гауссовского источника со среднеквадратической 
ошибкой в качестве меры искажения.

Итак, рассмотрим ситуацию, когда по каналу, допу­
скающему безошибочную передачу со средней скоростью



R бит на случайную величину, необходимо передать по­
следовательность независимых гауссовских случайных 
величин с нулевым средним и дисперсией о2. Наша цель 
состоит в том, чтобы с помощью геометрических сообра­
жений найти минимальную среднеквадратическую ошиб­
ку, с которой можно передать по имеющемуся каналу 
связи указанные случайные величины.

Начнем с того, что сгруппируем L данных случайных 
величин в отдельные блоки. Каждый такой блок будет 
описываться словом в LR  двоичных единиц информации, 
которую можно безошибочно передать получателю. Мы 
будем рассматривать такой блок, состоящий из случай­
ных величин U1, U2l UL как L-мерный случайный 
вектор U:

U =  ([/,, t /2, . . . ,  UL), (6.1)

предполагая, что L велико. Нашу задачу можно теперь 
переформулировать следующим образом. Поскольку пе­
редачу цифровых символов можно вести со скоростью R 
двоичных символов на случайную величину, возможно 
различение М =  2RL значений вектора U, и, следова­
тельно, в пространстве значений U можно выбрать М 
соответствующих кодовых, или изображающих, векторов 
ui, U2, и м. Разобьем L-мерное пространство на М 
областей так, чтобы /-я область состояла из значений и, 
находящихся ближе (в евклидовой метрике) к uj, чем 
к любому другому изображающему вектору (точки, ле­
жащие на равном расстоянии, произвольным образом 
приписываются к одной из областей).

Если случайный вектор U принял значение и, то мы 
будем передавать (не совершая ошибок) номер / бли­
жайшего к и изображающего вектора uj, т. е. номер об­
ласти, содержащей и. После этого приемник использует 
uj в качестве аппроксимации значения и, принятого век­
тором U. Если в качестве скалярного произведения в L- 
мерном евклидовом пространстве, содержащем наши на­
блюдения, принять

L

(и, и) =  -J- 2 ]  м * .  (6.2)
k=\



то расстояние

= т Е М - “ .>’ <б-3>
k = \

будет представлять собой среднюю ошибку на одну 
компоненту, когда вектор U принял значение и =  
=  {иь и2, . . uL), а в качестве аппроксимации вектора и 
использован вектор =  и!2, . . . ,  Наша ц е л ь —
найти минимальную возможную среднюю ошибку аппро­
ксимации, когда размерность L велика, а М = 2RL изо­
бражающих векторов выбираются оптимальным образом.

Сделаем ряд замечаний, касающихся наиболее веро­
ятных значений вектора U. Случайная величина L ||U ||2 
имеет %2-распределение с L степенями свободы. Исполь­
зуя известный вид плотности этого распределения [4], не­
трудно показать, что

Е {|1 U ||} =  a i f  X  L W 2.± l h l  (6.4)
1 У L Г (Z./2) * v ’

Е {|| U ||2} =  <т2 (6.5)

и, следовательно,
v a r ( | | U l ) - a > [ l - A H № + j y ] .  (6.6)

С помощью разложения для In Г с остаточным членом [5] 
нетрудно получить оценку

v a r d l U H X - ^ - .  (6.7)

Таким образом, при больших значениях L величина 
IIU || близка в среднеквадратическом к своему математи­
ческому ожиданию. Зададим поэтому случайный вектор 
Up равенством

it _it е {|| и | |} / д

|| и II ’
так что длина Up есть

о̂ =  11 и р | |=  Е {|| U ||}.
Так как

Е {|| U — Up |р) =  var {|| U ||} <  (6.9)



то при больших L среднеквадратическая ошибка аппро­
ксимации U вектором Up мала. Далее, квантуя значение 
Up ближайшей точкой из набора Uj, мы получим, что 
общая среднеквадратическая ошибка приемника равна 
сумме ошибки квантования и величины var{||U ||}:

равен нулю.

Поскольку величину var{||U ||} можно сделать сколь 
угодно малой за счет выбора достаточно большого L, в 
процессе кодирования, или «квантования», мы ничего не 
теряем, проектируя сначала вектор U на сферу радиуса 
Е {IIU ||}. Преимущество такого проектирования состоит 
в том, что вектор Up имеет равномерное распределение 
на L-мерной сфере радиуса Е {||U||} =  г0.

В применении к передаче последовательности незави­
симых гауссовских случайных величин с дисперсией ст2 
шенноновская теория скорости при заданном искажении 
[2, часть V; 6] приводит к следующему результату:

Т е о р е м а  6.1 ( т е о р е м а  к од  и р о в а н и я ) . Каков 
бы ни был метод кодирования при передаче по каналу 
с пропускной способностью R бит на случайную вели­
чину , нельзя добиться передачи указанных выше величин 
со среднеквадратической ошибкой, меньшей чем

Однако, кодируя случайные величины достаточно длин­
ными блоками (т.е. выбирая L достаточно большим), 
можно добиться передачи со среднеквадратической 
ошибкой, сколь угодно близкой к d(R) .

Учитывая сделанные выше замечания относительно 
распределения Up и величины var {||U 11}, дадим геомет­
рическое доказательство этого результата. В наших рас­
суждениях мы опустим некоторые, необходимые, конеч­
но, для достижения полной строгости, выкладки (их не­

d =  Е{|| U — и, ||2} =  Е { || U — и р +  и р — Uj ||2} =
(6 . 10)

d(R)  =  a2 2_ад. (6 .11)



трудно будет воспроизвести); это позволит сделать ос­
новные этапы доказательства более доступными.

Докажем сначала негативную часть теоремы кодиро­
вания, т. е. утверждение о том, что величина d(R)  в
(6.11) определяет минимальную ошибку, совместимую 
с передачей со скоростью R. Это утверждение будет до­
казано в три этапа.

Во-первых, заметим, что поскольку var {|| U | | } стре­
мится к нулю при L-* оо, асимптотически мы ничего не 
проигрываем, проектируя U на сферу радиуса г0.

Во-вторых, выясним, какова наиболее эффективная 
форма области, отвечающей данному кодовому вектору. 
Воспользуемся тем, что поскольку вектор Up равномерно 
распределен на сфере сообщений радиуса г0, оптималь­
ной формой области будет форма, при которой для дан­
ного значения А минимизируется величина &2> где

А — площадь пересечения сферы сообщений с рас­
сматриваемой областью,

— момент инерции этой поверхности относительно 
кодового вектора (точки uj),  равный среднеква­
дратической ошибке при квантовании проекти­
руемых на эту поверхность векторов данным ко­
довым вектором.

Нетрудно видеть, каким должен быть оптимальный 
вид области, представляемой кодовым вектором. Пусть 
направление кодового вектора u j выбрано произвольно, 
и пусть Up — точка пересечения сферы сообщений с пря­
мой, проходящей через центр сферы в направлении uj. 
Эта ситуация показана на рис. 6.3. Очевидно, что точка 
Up ближе к Uj, чем любая другая точка на сфере. Кроме 
того, беря Up в качестве полюса нашей сферы, мы видим, 
что все точки, имеющие фиксированный полярный угол 
Ф, находятся на одинаковом расстоянии от и j, причем это 
расстояние монотонно возрастает с ростом ф.

Таким образом, желая выделить на сфере сообщений 
область с заданной площадью, мы можем минимизиро­
вать ее момент инерции относительно Uj, располагая ее 
как можно ближе к полюсу. Тогда оптимальным видом 
области будет часть сферы, имеющая форму шапки, сим­
метричной относительно полярной оси. Если L велико,



то почти вся площадь поверхности ((L — 1)-мерного объ­
ема) такой области сосредоточена у самого края шапки, 
так что для оптимальной области значение <§Г2 пропор­
ционально квадрату расстояния от u j до края шапки.

Up: Полюс

Р и с .  6.3. Геометрическое изображение вида оптимальной области 
представляемой кодовым вектором.

Ясно, что эта величина минимальна, когда точка uj от­
стоит от центра сферы на расстоянии У г%— Ш2 (напом­
ним, что оптимальный вид области получен независимо 
от расположения u j на полярном радиусе). Итак, опти­
мальной формой изображаемой области является шар 
радиуса <S с центром в изображающей точке, находя­
щейся на расстоянии У г\ — <%2 от начала координат.

Последний этап нашего доказательства — нахождение 
с учетом оптимального вида изображаемых областей ми­
нимального их числа, необходимого в процессе кодирова­
ния. Поскольку Up имеет равномерное распределение на 
сфере сообщений, любая часть поверхности, за исключе­



нием, быть может, пренебрежимо малой доли, должна 
быть покрыта изображаемыми областями. Следователь­
но, число М требуемых областей ограничено снизу:
площадь сферы сообщений =  А ьг ^ 1 ^

^  М [площадь полярной шапки с диаметром
основания 28]; (6.12)

здесь A l — площадь L-мерной сферы единичного радиу­
са, а число областей М связано со скоростью передачи 
R равенством М =  22L. Поскольку площадь поверхности 
полярной шапки, очевидно, не превосходит площади 
сферы радиуса 8 ,  неравенство (6.12) можно заменить 
более грубым неравенством

а А ~ 1 <  = 2  RLA L&L~l.

Так как г0 асимптотически совпадает с а, после про­
стых преобразований получаем

&_^n-RLHL-1)
о ^

откуда при достаточно больших L следует, что

(6.13)

Это неравенство доказывает негативную часть теоремы 
кодирования.

При доказательстве позитивного утверждения теоре­
мы воспользуемся методом случайного кодирования. 
Суть метода состоит в том, что кодовые векторы выби­
раются случайным образом, причем так, что для любой 
фиксированной точки U вероятность не находиться вну­
три шара радиуса 8  с центром в одной из М — 2RL кодо­
вых точек пренебрежимо мала, если 8  >  \ f  d ( R ) .

Учитывая сделанные выше замечания относительно 
вида оптимальных областей и оптимального расположе­
ния кодовых векторов, выберем М — 2RL точек иь 112,
. . . ,  им независимо друг от друга в соответствии с рав­
номерным распределением на сфере радиуса V rl ~ & 2*



Рассмотрим произвольную точку ир, полученную про­
ектированием сообщения на сферу радиуса Уг \ — 
Оценим вероятность того, что внутри шара радиуса <§ 
с центром Up не найдется ни одного кодового вектора.

Р и с .  6.4. Иллюстрация построений, используемых для вычисления
Р*-

Обозначим эту вероятность через Pg. Для удобства вве­
дем обозначения

VL — объем L-мерного шара единичного радиуса,
Ль — площадь ((L — 1)-мерный объем) L-мерный 

сферы единичного радиуса.

На рис 6.4 показаны произвольное спроектированное 
сообщение ир и сфера радиуса <S с центром в точке ир.



Из этого рисунка и из вида распределения, с которым 
выбираются кодовые векторы, ясно, что

площадь сферической шапки радиуса ~1Л1 
Vг'о — с полярным углом 0О

р* =  

где

1

0О =  arctg
Vrt-<

М =  2r l .

(6.14)

(6.15)

Далее, как видно из рис. 6.4, площадь сферической 
шапки радиуса У г2й — W2 с полярным углом 0О ограни­
чена снизу площадью (L —  1)-мерного диска радиуса 
sin 0О V rl — S 2, которая равна

v L_ x (s in 0О =  v L_ t ( £  . (6.16)

Заметим, что

Vn=  j  Anr* -l d r * = ± A n.

Из (6.14), (6.16) и (6.17) имеем

А
( L - \ ) A L J1

(6.17)

(6.18)

Используя (6.17) и хорошо известное выражение для VL 
(см. [7]), находим

Ч -i Г (L/2 +  1)
( L - \ ) A l V n  LT ((L — l)/2 +  1)

Применяя формулу Стирлинга, получаем при больших L

ч-1
( L - \ ) A l L

Неравенство (6.18) вместе с (6.15) и (6.19) дает
’ \1-П2£Я

Р * <  1 VbiL £Г7

(6.19)

(6.20)



Пусть
a r = ( i  +  e )-£  у ' г щ

Тогда, согласно (6.11),

<ff =  (1 +  е) г02~к , 8 >  0. (6.21)

Так как Го асимптотически совпадает с а, то при больших 
L значение &2 близко к значению d, определяемому
(6.11). Подставляя (6.21) в (6.20), находим

P * ~ [ l  (\ +  s)L~ 'J * L , (6.22)

или (при больших L)

P g ~ e x p [ -  (i j l e)L2R 1. (6.23)
2 |^2 j iL( l  +  e )J  v

Итак, вероятность данной точке, лежащей на сфере 
сообщений, не попасть внутрь шара радиуса & с центром 
в одной из кодовых точек стремится к нулю, если <§ 
определяется соотношением (6.21) с е >  0.

Посмотрим теперь, в какой мере мы использовали 
предположение о гауссовости распределения случайного 
вектора U. При доказательстве негативного утверждения 
теоремы мы воспользовались сферической симметрией 
распределения U, и, следовательно, предположение о 
гауссовости здесь оказалось существенным. При доказа­
тельстве позитивной части теоремы мы опирались лишь 
на тот факт, что можно пренебречь ошибкой, связанной 
с проектированием вектора сообщений на сферу радиуса 
г0. Таким образом, здесь нам понадобилось лишь выпол­
нение неравенства (6.9).

Если распределение случайной величины U не яв­
ляется гауссовским, то соотношение (6.10) можно заме­
нить оценкой

E { | |  U p - U / | | 2} +  F  +  2roF,/2,
где

F =  E { ( | | U | | - r 0)2},

а г0 — среднее значение ||U||, отвечающее по-прежнему 
гауссовскому распределению. Следовательно, среднеква­



дратической ошибкой, вызванной проектированием век­
тора U на сферу радиуса г0, можно пренебречь, если V 
стремится к нулю при L —► оо.

З а д а ч а  6.2. Показать, что lim V =  0 для любой
L-> оо

случайной величины U с конечной дисперсией.
Теперь мы можем сформулировать следующее утвер­

ждение для случая передачи сообщений, имеющих конеч­
ную дисперсию.

Т е о р е м а  6.2. Пусть некоторая случайная величина 
имеет дисперсию а2. Рассмотрим блоковую передачу не­
зависимых случайных величин с тем же распределением , 
т. е. передачу вектора

U = ( £ /„  t / 2, . . . ,  t / L).

Тогда если L достаточно велико, то при скорости пере­
дачи R бит на случайную величину возможна блоковая 
передача со среднеквадратической ошибкой, сколь угод­
но близкой к а22~2Л.

Таким образом, среди всех распределений с конечной 
дисперсией а2 гауссовское распределение будет «наихуд­
шим» в том смысле, что скорость передачи при заданном 
искажении для гауссовских случайных величин служит 
верхней границей скорости при заданном искажении, от­
вечающей произвольному распределению с конечной дис­
персией. Это свойство, связанное со сферической симме­
трией гауссовского распределения, впервые было отме­
чено Шенноном [2] в 1948 г.

6.2. СВОЙСТВА ВЗАИМНОЙ ИНФОРМАЦИИ

Для нахождения функции скорости при заданном ис­
кажении в случае произвольного источника сообщений 
нам понадобятся некоторые определения теории инфор­
мации. Часть необходимых сведений мы постараемся 
вкратце изложить в этом разделе; читателю, интересую­
щемуся более полным обсуждением, мы предлагаем оз­
накомиться с книгами Галлагера [3, гл. 2] и Линекера 
[8, гл. 2, 3].



Всюду в этом разделе буквами С/, X, У и V будут 
обозначаться векторные случайные величины счетной 
размерности. Таким образом, X может быть как скаляр­
ной случайной величиной или конечномерным случайным 
вектором, так и сепарабельным случайным процессом 
(полем). Через SB мы будем обозначать отвечающее слу­
чайной величине X  пространство ее выборочных значе­
ний х.

Пусть &~х обозначает a -поле в пространстве SB, т. е. 
множество событий (подмножеств из SB), удовлетворяю­
щих следующим условиям:

1) ЗГХ не пусто, т. е. состоит хотя бы из одного мно­
жества;

2) дополнение любого множества из 8Гх, а также объ­
единение или пересечение любого счетного набора таких 
множеств принадлежат &~х.

Случайная величина X является функцией выбороч­
ной точки со, принадлежащей основному выборочному 
пространству Q. При этом исходная вероятностная мера, 
заданная на подмножествах из Q, порождает распреде­
ление вероятностей величины X , т. е. вероятностную 
меру — обозначим ее Р(-)>— заданную на подмноже­
ствах, или событиях, из 2ГХ. Эта функция множеств удо­
влетворяет равенствам P(G) =  1 и

р ( 0  £ * ) = 2 р (£*)>\k=\ / /5=1

где {Ен} — произвольная последовательность непересе- 
кающихся подмножеств, принадлежащих $ГХ. Функция 
множеств, удовлетворяющая последнему соотношению, 
называется счетно аддитивной.

В частном случае, когда X  — скалярная случайная 
величина, соответствующее распределение вероятностей 
определяется функцией распределения

Fx (x) =  Р {*(«>)<*};

в этом случае вероятность любого события Е, связанного 
С X , равна

? ( E ) = j d P ( w ) = j d F x (x).
и Е



Если функция Fx (x) дифференцируема по х (суще­
ствует производная Радона — Никодима меры Р*(я) от­
носительно меры Лебега на действительной прямой), то 
распределение вероятностей описывается функцией плот­
ности

fx (x ^ ~ ~ S x ^ х (х)>

Р ( E ) = j f x (x)dx.
Е

Предположим, что возможными распределениями ве­
личины X  являются две вероятностные меры Pj и Рг. 
Для любого события для которого Р2(£) Ф  О,
рассмотрим отношение

Р,(£)/Р2(£).

В дальнейшем мы ограничимся случаем, когда Р2(£)=£0 
для всех событий E ^ t F x , для которых Pi(£)=£0. То­
гда мы сможем рассмотреть «исчезающее» множество Е, 
т. е. последовательность все меньших и меньших событий, 
каждое из которых содержит выборочную точку х. Есте­
ственно возникает вопрос, будет ли при этом отношение

р ,(Я)/р 2(£)

сходиться к какому-нибудь пределу, который в этом слу­
чае представлял бы собой функцию от х> В действитель­
ности это так и будет, соответствующий предел обозна­
чается

и называется производной Радона — Никодима меры Pi 
относительно Рг. Можно также показать, что

P j( £ )=  J Л(*)с/Р2(*).
Е



Отметим, что если X — скалярная случайная величина, 
a Pi и Р2 определяются своими функциями плотности 
f l (x)  И f2(x),  то

В гл. 3 предел отношения правдоподобия Ль, р(й?) 
также представлял собой производную Радона — Нико­
дима меры, отвечающей W(t)  при значениях параметров 
6, р, относительно той же меры при 6 =  0. Эти два част­
ных случая более привычны, и читателю полезно убе­
диться в том, что определение Л в этих случаях совпа­
дает с общим определением Л, данным выше.

Хотя мы не требуем от читателя свободного владения 
понятием производной Радона — Никодима, нам при­
дется, к сожалению, пользоваться им в этом и в следую­
щем разделах. Тем, для кого это понятие ново, можно 
посоветовать при чтении этих разделов понимать под 
величиной Л отношение двух вероятностных плотностей. 
С подробным обсуждением относящихся сюда результа­
тов читатель может ознакомиться по любой книге, посвя­
щенной теории меры, или же по книге Лоэва [9, часть I].

Рассмотрим теперь две векторные случайные вели­
чины X  и У с совместным распределением Рxy ,  опреде­
ленным в пространстве соответствующих им значений. 
Пусть Е  и F — произвольные события соответственно в 
2ГХ и Произведение мер, отвечающих X и У, опреде­
ляется соотношением

где Рх и Ру — маргинальные распределения, соответ­
ствующие X  и У. В том случае, когда распределение слу­
чайных величин X и У характеризуется совместной плот* 
ностью вероятностей f x r { x y у),  введенное нами произве­
дение мер определяется плотностью f x { x ) f y ( y ) ,  где 
f x{x)  и f v i y )  — маргинальные плотности, получающиеся 
интегрированием f xY{x, y)  соответственно по у или по х .

Е Е

PXXY(EF) =  P X ( E ) P Y(F), (6.24)



Определим разбиение пространства 96 значений век­
тора X как произвольный конечный набор непересекаю- 
щихся множеств Е ь EN <=&~X, объединение которых 
совпадает с 96:

/1=1
Аналогично определяется разбиение пространства °Ц.

Зададим среднюю взаимную информацию между X и 
У соотношением

где верхняя грань берется по всевозможным разбиениям 
пространств 36 и °у .

Отметим важную характерную особенность определе­
ния взаимной информации, данного с помощью разбие­
ний пространств 86 и °у. Если величина I(X\  У) конечна, 
то она произвольно мало отличется от средней взаим­
ной информации двух дискретных случайных величин 
(аппроксимирующих X и У), и, следовательно, ей при­
сущи многие важные свойства, которыми обладает вели­
чина взаимной информации в дискретном случае. Труд­
ность, связанная с определением (6.26), состоит в том, 
что оно не дает алгоритма для вычисления 1(Х\ У). Од­
нако, как можно ожидать из внешнего вида формулы
(6.26), величину под знаком логарифма можно прибли­
женно заменить производной Радона — Никодима, а всю 
сумму можно приблизить интегралом. Этот факт дей­
ствительно можно обосновать, и мы приведем здесь сле­
дующий результат, принадлежащий Гельфанду и Яг- 
лому *).

Т е о р е м а  6.3. Пусть Р х х г Ф  0 для всех событий 
Е X F, принадлежащих @~хХУ1 для которых Рx y  Ф  0.
Тогда

I ( X ; Y ) =  |  \ п А х у (х, y ) d P XY(x, у), (6.27)

*) Доказательство см. в разд. 2.4 статьи Добрушина Р. Л., 
Общая формулировка основной теоремы Шеннона в теории инфор­
мации, УМН,  14, вып. 6 (1959), 3—104. — Прим. перев,

N

\ } Е п =  Ж. (6.25)

1 ( Х ; У) =  sup Р^к {EmFn) In
m, п

]/ 25 Д Сакрисов



где
(6.28)

В противном случае 1(Х\  У) =  оо.

Заметим, что если распределение случайных величин 
X и У задается совместной плотностью f x y ( x , y ) f то не­
сколько отпугивающая формула (6.27) принимает более 
простой вид

Перечислим некоторые свойства средней взаимной ин­
формации.

Это неравенство следует из определения и соответствую­
щего свойства количества информации между двумя дис­
кретными случайными величинами (см. Галлагер [3, тео­
рема 2.3.2]).

Это равенство непосредственно вытекает из определения. 
3) Пусть пара Х\, Х2 не зависит от пары Уi, У2. Тогда

Это равенство также следует из определения и из соот­
ношения

4) Пусть Z — измеримая функция от У, т. е. вероят­
ность, заданная на множествах из $ГУл определяет веро­
ятностную меру на 3TZ. Тогда

Равенство (6.33) верно в силу того, что любое разбиение, 
определяемое величинами У и Z, можно определить и

оо

I ( X , Y ) =  J  j  d x d y f x v (x, у) In
— оо

1) 1(Х\  У )>  0. (6.30)

2) 1(Х\  Y) =  1(Y; X). (6.31)

Р в д у ,^  (E 1E2F 1F2) =  Р а д  (EiE2) Ру,уг (F 1F2).

I ( X ; Y, Z) =  I(X;  Y) 
(заметим, что всегда 1{Х\ Y, Z ) ^ s  I (X; У)) и 

ЦХ;  Y ) > I ( X )  Z).

(6.33)

(6.34)



с помощью одной лишй величины У. (Аналогично дока­
зывается в общем случае соответствующее неравенство.) 
Неравенство (6.34) справедливо, поскольку любое раз­
биение, определяемое Z, можно определить с помощью 
У; равенство здесь выполняется в том случае, когда соот­
ветствие между У и Z взаимно однозначно.

5) Обозначим через I x y  случайную величину, полу­
чаемую при подстановке X и У вместо х  и у в функцию 
In \ х г { х , у ) .  Тогда

Е { | / * к | } < / №  У) +  !  =  Е{/*к} +  4 .  (6.35)

З а д а ч а  6.3. Доказать неравенство (6.35).

Опишем теперь специальный способ задания совмест­
ного распределения двух случайных величин (процессов) 
U и V, важный с точки зрения практики. Пусть величина 
U имеет распределение Ри{и) l) f порождаемое на выходе 
источника, и для любого значения и задано условное 
распределение P(v\u)  величины V (определяемое, на­
пример, переходной функцией канала). Снабдим распре­
деление источника индексом а, а переходное распределе­
ние— индексом у. Тогда совместное распределение вели­
чин U и V можно задать равенством

р UV (и> v) =  P y ( v \ и )  Р а (и). (6.36)
Заметим, что маргинальное распределение величины 1г 
зависит как от а, так и от у.

Исследуем свойства совместного распределения как 
функции от у при фиксированном а. Пусть, в частности, 
P Yl и P Y2 — два переходных распределения. Определим 
для любого 0, 0 0 ^  1, распределение P Y формулой

(v\u)  =  0PYl {v |и) +  (1 ~  0) PY2 (v  Iu). (6.37)

Тогда
Iay(U) V ) ^ Q l ayt(U; F) +  ( l - e ) / „ Vi(t/; V), (6.38)

*) Обозначение Ри(и) не вполне корректно, поскольку аргу­
ментом функции Pi/ ( ) является событие, т. е. подмножество из $Ги. 
Однако оно удобно, так как указывает, какой случайной величиной 
порождается a -поле, на котором рассматривается функция мно­
жеств Р( ).



где индексы ос, у при /  указывают, при каком совмест­
ном распределении величин U и V вычисляется взаим­
ная информация. Другими словами, средняя взаимная 
информация выпукла (вниз) как функция от у.

З а д а ч а  6.4. Доказать неравенство (6.38). [Указа­
ния. 1) Выберите надлежащее разбиение. 2) При N =  2 
воспользуйтесь неравенством

| г , 1 п ^ х г , + . . .  +  /-„) ш
n =l

справедливым для любых наборов неотрицательных чи­
сел г и и.]

Рассмотрим три случайные величины (процесса) X , 
Y и V и введем величину средней взаимной информации 
между X и Y при фиксированном значении у, принятом 
случайной величиной V. Считая P x y \ v  ( x , y \ v )  для про­
извольного v совместным распределением величин X и 
У, можно, как и выше, определить произведение соот­
ветствующих маргинальных распределений, а также про­
изводную Радона — Никодима

a F X X Y \ V

Тогда для каждого значения v мы получаем условную 
взаимную информацию

I ( X - , Y \ v ) =  J  In A xy i v (x, у  I v) dPxY \ v (x, У I v).
sexy

Усредненная по всевозможным значениям у, эта вели-, 
чина называется средней условной взаимной информа­
цией:

1 ( X ; Y \ V ) =  J  In Аху | v {x, у  | у) dPxrv (x, y,  v). (6.40)



Предположим на время, что X, Y и V — случайные 
величины, распределение которых задается плотностью 
f x r v ( x , y , v).  Тогда

d PXYV  __  1 х у у ( Х' У >®) __  f x y \ V  y \ v ) f v  ( v ) f x \ v  (x \ v ) __

d P X X Y V  ~~~* fx M  fvv (& °) ~~’ /у I V (y I ^  (v) fx M  fx \v °) _  

_  /jgy | У У I ° )  f x y ( x >v ) _  d P x y  1 v  d p x v

~  / * | у ( * И  /у | К (У I 0) ’ f o  M  / у  (o)  d ? X X Y \ V  * ’

(6.41)

Равенство между крайними членами, полученное в 
предположении существования совместной плотности, 
выполняется и в общем случае, когда X , Y и V — произ­
вольные векторные случайные величины счетной размер­
ности.

Беря логарифм и усредняя по мере Рхуу, получаем 
формулу Колмогорова

I (X; Г, V) =  I (X ; V) +  I (Х\ Y | V). (6.42)

Рассмотрим теперь случай, когда случайные вели­
чины (процессы) X, Y и V образуют цепь Маркова в том 
смысле, что при фиксированном значении средней край­
ние величины независимы, т. е.

P x v  | у (Е, F  I У) —  Р х \у ( Е \у) Ру | у ( F \у), E ^ l & ~ x> F ^ @ ~ v .

(6.43)

З а д а ч а  6.5. Показать, что если величины X, Y к V 
образуют цепь Маркова, то

/ ( * ;  К| У)  =  0. (6.44)

З а д а ч а  6.6. Пусть величины U, X, Y и V образуют
цепь Маркова в том смысле, что равенство (6.43) спра­
ведливо как для U9 X и К, так и для X, Y и V. Пока­
зать, что

/(С/; V ) ^ I ( X ;  Y). (6.45)

Этот результат известен под названием теоремы об­
работки данных.



6.3. СКОРОСТЬ ПРИ ЗАДАННОМ ИСКАЖЕНИИ 
И ТЕОРЕМА КОДИРОВАНИЯ ИСТОЧНИКОВ

Функция скорости при заданном искажении

Рассмотрим источник сообщений, выходом которого 
является случайная величина U с фиксированным рас­
пределением.

Пусть О — величина на выходе некоторого декоди­
рующего устройства, образующего каскадную цепь вме­
сте с кодирующим устройством и каналом связи. Обо­
значим через у переходное распределение величины О 
при заданном значении U =  и. Можно считать, что рас­
пределение величины О индуцируется некоторой пробной 
или гипотетической каскадной цепью.

Мы будем предполагать, что искажение, возникаю­
щее при передаче по каналу связи, измеряется расстоя­
нием й(и,й)  между величинами выходных сигналов ис­
точника и и декодирующего устройства й. В связи с этим 
введем количественную меру искажения, возникающего 
при передаче сообщений, как среднее значение случай­
ной величины D =  d(U,  О):

d =  Eay{D} =  f [ d(u,  H)dPay(u, й). (6.46)
°U x< U

Индексы а  и у указывают на то, что эта величина зави­
сит как от распределения источника ос, так и от переход­
ного распределения у.

Обозначим через Ta (d) множество переходных рас­
пределений у у для которых средняя величина искажения 
не превосходит заданного уровня d (мы считаем, что 
функция d(*,  •) неотрицательна):

Га (d) =  {у: Eav {d (и , U)) <  d}. (6.47)

Заметим, что средняя взаимная информация 
Iay(U\ О) между U и О также зависит от у. Принадле­
жащее Шеннону понятие функции скорости при задан­
ном искажении определяется формулой

R a ( d ) =  inf Iay(U\ U). (6.48)



Отметим, что Ra (d) зависит от 
распределения источника а, 
заданного допустимого уровня искажения d, 
расстояния d(- ,  •), определяющего меру искажения. 
Можно показать, что Ra (d) как функция от d вы­

пукла (вниз) и монотонно не возрастает.

З а д а ч а  6.7. Доказать это утверждение.

Обратная теорема кодирования

Важность функции Ra (d), определенной несколько 
формально, объясняется принадлежащей Шеннону тео­
ремой о кодировании источника. Эта теорема утвер­
ждает, что Ra (d) определяет минимальную пропускную 
способность канала, требуемую для передачи сообщений 
с уровнем искажения d . Мы посвятим доказательству 
этой теоремы оставшуюся часть раздела.

Ситуация, рассматриваемая нами, вместе с исполь­
зуемыми обозначениями представлена на рис. 6.5. При­
мем в качестве величины искажения при блоковом коди­
ровании L выходных символов источника, одновременно 
предъявляемых для кодирования (см. буфер на рис. 6.5), 
среднюю по блоку величину искажения d между выход­
ными сообщениями источника и декодирующего устрой­
ства:

L L

^  =  =  (6.49)
/ = 1  / = 1

L

d =  Еа 0 }  =  £  Еа {d (Uh Од). (6.50)
1=1

Если U — случайная величина, то U будет блоком из L 
экземпляров таких случайных величин; если же U — вы­
борочная функция случайного процесса продолжитель­
ностью Т с, то U — выборка случайного процесса дли­
тельностью LT  с.

Предположим, что последовательные символы U\% 
U2i . . . ,  поступающие на выход источника сообщений,



независимы и одинаково распределены. Сформулируем 
и докажем обратную теорему кодирования источника.

Т е о р е м а  6.4 (Шеннон). Рассмотрим блочное коди­
рование L выходных символов источника с целью пере­
дачи по дискретному (во времени) каналу с пропускной 
способностью С нат1) на одну передачу. Пусть N — число 
передач, имеющихся в нашем распоряжении за время,

Р и с .  6.5. Схематическое изображение кодирования источника

в течение которого источник вырабатывает L векторных 
сообщений. Тогда не существует каскадной цепи, со­
стоящей из кодирующего и декодирующего устройств и 
канала связи , для которой среднее искажение на сооб­
щение источника

L

е « р } = - [ 2 е 0 р ,}
i=i

*) Нат — единица информационной пропускной способности, 
получающаяся при использовании натуральных логарифмов для 
определения минимальной скорости, совместимой с надежной пере­
дачей информации; при использовании двоичных логарифмов ей со­
ответствует один бит.



не превосходит d0, где d0 — наибольшее решение урав­
нения

4 - с = я « ю > ) ,  (б-51)
а С — пропускная способность канала в каскаде.

Заметим, что это негативное утверждение теоремы 
кодирования выполняется независимо от

1) каких-либо предположений о виде кодирующего и 
декодирующего устройств (другими словами, бло­
ки этих устройств, изображенные на рис. 6.5, мо­
гут совершать произвольные операции над вели­
чинами, поступающими на их вход);

2) длины L блока кодирования;
3) вида канала, который может представлять собой 

как передающее устройство с шумами, так и бес­
шумное цифровое запоминающее устройство; не­
обходимо лишь, чтобы это устройство характери­
зовалось своей пропускной способностью.

Д о к а з а т е л ь с т в о  (Галлагер [3, гл. 9]). Для не­
которой пары измеримых функций f и g

X =  f (U ) ,  U = * ( Y ) .

Таким образом, в силу свойства 4) из предыдущего 
раздела

/ (U,  X; Y) =  / ( U;  Y ) > / ( U ;  U). (6.52)

Так как величины U, X и Y образуют цепь Маркова, то, 
учитывая формулу Колмогорова и равенство (6.44), 
имеем

/ ( U,  X; Y) =  / (X; Y) +  /(Y ; U |Х) =  /(Х ; Y).

Отсюда и из неравенства (6.52) получаем теорему об­
работки данных для величин U, X, Y, U:

/(X ; Y ) > / ( U ;  U). (6.53)

При N  независимых использованиях канала имеем

NC  > / ( Х ;  Y). (6.54)

0  Д . Сакрисон



Неравенства (6.53) и (6.54) вместе дают

N C > I ( U ,  б ) .  (6.55)
Вновь используя формулу Колмогорова, находим

/ ( U ;  0 ) =  2 / ( £ / * ;  б  \ и и . . . .  Ui-х),  (6.56)
/=1

где в силу той же формулы Колмогорова и независи­
мости величин Ui

I(Uf ,  U | t / „  . . . .  £/,_,) =

=  I(Uf,  U, Uu . . . ,  £ / ,_ , ) - / ( £ / , ;  Uu . . . .  £/,_,) =

=  /(£ /,; б ,  Uи . . . ,  £ / ,_ ,)> /(« / ,;  Ui). (6.57)
Из соотношений (6.55) — (6.57) следует, что

L
N C ^ ^ i I ( U i \  Ui).  (6.58)

/= 1
Полученное неравенство справедливо при любом сов­

местном распределении, в том числе при совместном рас­
пределении, задаваемом распределением источника а  
и произвольным переходным распределением у. Рас­
смотрим теперь произвольную каскадную цепь, состоя­
щую из кодирующего и* декодирующего устройств и ка­
нала связи, для которой средняя величина искажения 
не превосходит d. Пусть у/ — переходное распределение 
величины Oi при заданном значении Uiy индуцируемое 
рассматриваемым каскадом. Так как среднее искажение 
не превосходит d, то

Е {£>} =  Е I
■ ^ d ( U h Ut) \  =
/«1 j

L

=  T  S  Eab  <  d • (6 -59>
/=1

Обозначим через Ру(и\й)  переходное распределение
L

р * ( « 1 й ) = х 2 р^ м 1й)- (6*60)



Тогда
L

Eav =  2 ]  J d(u,  U)dPyt(u \U)dPa(u) =
'= 1 <Ux<ll 
L

(6-61)
/= 1

Таким образом, если некоторая каскадная цепь, состоя­
щая из кодирующего и декодирующего устройств и ка­
нала связи, приводит к среднему искажению, не пре­
восходящему d, то распределение у также должно при­
надлежать r a (d). В силу выпуклости (вниз) функции 
/ aY(U; О) (задача 6.4)

L

2  1аУ[ (Ut; и ,) >  LIay (U; О). (6.62)

Объединяя неравенства (6.58) и (6.62) и учитывая, что 
у е  r a (d), получаем

NC  >  LIay (U; U ) > L  inf / av (U; U) «  LRa (d). (6.63)
a (d)

Позитивное утверждение теоремы кодирования

Для доказательства позитивного утверждения тео­
ремы кодирования необходимо сделать некоторые пред­
положения о «хвостах» распределения величины U. Д о­
статочно удобным и содержательным предположением, 
такого рода является существование некоторой фиксиро­
ванной точки в области значений U, обозначим ее 0, для 
которой

Еa{d(U,  0)} <  оо. (6.64)

Негативная часть теоремы кодирования утверждает, 
что независимо от применяемых методов кодирования 
и декодирования, функция Ra (d) определяет минималь­
ную пропускную способность канала, при которой воз­
можен уровень искажения d. При доказательстве пози­
тивной части теоремы мы покажем, что с помощью си­
стемы импульсно-кодовой модуляции (ИКМ) можно



добиться передачи, при которой скорость сколь угодно 
близка к величине, определяемой функцией R a {d).

С помощью системы ИКМ проблема кодирования 
решается в два этапа. Если канал является случайным 
или содержит шумы, то сначала строится код, позволяю­
щий с пренебрежимо малой вероятностью ошибки пере­
давать по каналу цифровую информацию со скоростью, 
сколь угодно близкой к С. Мы не будем здесь касаться 
этой проблемы, отсылая читателя к гл. 5—8 книги Гал- 
лагера [3]. Таким образом, мы предполагаем, что в на­
шем распоряжении имеется канал связи, по которому 
можно надежно передавать цифровую информацию со 
скоростью, сколь угодно близкой к С.

Очевидно, что вторая задача, возникающая при ис­
пользовании метода ИКМ, заключается в нахождении 
способа эффективного представления величины U на 
выходе источника в цифровом или дискретном виде. 
Этой задачей мы сейчас и займемся.

Метод ее решения состоит в представлении источника 
(L, М ) -кодом, т. е. множеством из М  L-мерных векторов 
Ui, u2, . . . ,  и м. Кодирование источника осуществляется 
выбором М  кодовых слов (L-мерных векторов) и сопо­
ставлением с помощью некоторого устройства вектора и 
на выходе источника с кодовым словом um, для которого 
величина

L

d{ и, ll/я)== ~j~ d ш =  1, 2, . Ni,
/=i

минимальна. Отметим во избежание недоразумений, что 
мы здесь воспользовались одной и той же буквой для 
обозначения кодового слова, или L-вектора, (и) и от­
дельного выходного символа (и ). Метод декодирования 
состоит в сопоставлении индексу m величины um, кото­
рая и принимается за представление выхода источника.

Однако при доказательстве позитивной части тео­
ремы кодирования мы не будем для достижения эффек­
тивного представления строить фиксированный метод 
кодирования, соответствующий определенному выбору 
множества из М L-векторов. Вместо этого мы рассмо­
трим некоторую созокупность кодов и покажем, что



усредненное по этой совокупности качество кодирования 
можно сделать сколь угодно близким к величине, опре­
деляемой функцией R a {d). Отсюда будет следовать, что 
найдется по крайней мере один код, качество которого 
также будет оптимальным.

Для определения совокупности кодов введем распре­
деление в пространстве L-векторов. Положим

L

Ра(и) =  П Р «(И /), (6-65)1=1

P v(u| u)  =  n P v (%l«f),  (6-66)1=1

PaY(u, u) =  PY( u | u ) P a (u), (6.67)

Р а у  (2 )  =  J  Р * ( Й | « М Р а ( « ) ,  (6 -6 8 )
ш

L

P av (5) =  j  P Y(u |u) dPa(u) =  Д  Pav (й,). (6.69)

Рассмотрим множество кодов, т. е. наборов, состоя­
щих из М  кодовых слов, или L-векторов, порождаемое 
независимым выбором каждого кодового вектора со­
гласно распределению PaY(u). Тогда распределение слу­
чайной величины

L

D =  d ( U , u m) =  -j: '£ i d (Ul, и?), (6.70)
/= 1

где ш е { 1 ,  М} — индекс, минимизирующий
d(U,U/i),  зависит как от распределения источника ос, 
так и от распределения PaY(u), порождающего рассмат­
риваемое множество кодов. Заметим, что распределение 
именно этой величины (обозначим его Рс) определяет 
величину ошибки кодирования.

Найдем теперь связь между распределением вероят­
ностей Рс и вероятностной мерой PaY, согласно которой 
определяется наше множество кодов,



Л е м м а  6.1 (Галлагер [3, лемма 9.3.1]). Пусть R* и 
й* — произвольные положительные числа, а ау  — произ­
вольное распределение. Зададим множество

А  =  {и, и: / ау (и, и) >  L R ' или d (и, и) >  d'}. (6.71)

Тогда

Рс 0  >  d'} <  Рау (Л) +  exp { -  Me-***}. (6-72)

Д о к а з а т е л ь с т в о .  Мы следуем доказательству 
этой леммы, принадлежащему Галлагеру, обобщая лишь 
его с дискретного случая на произвольное измеримое 
пространство. Для произвольного вектора и определим 
Ли как множество векторов и, для которых и, и е Л :

А а = { и : / av(u, и) >  L R * и л и  d (и, и) >  d*) (6.73)

(заметим, что множество А и измеримо). Рассмотрим 
условную вероятность *)

P c{£> > d’ |u} =  P{d(u, um) > d \  m =  1, 2, . . . ,  М} =
м

=  J J p { d ( u ,  um) >  d ’} =
m=l

1 -  j  <*Pav(u)
M

Очевидно, что для любых u, u s  A cn 

A ay (u, u) <  eLR\  

так что из неравенства (6.74) следует, что

Р Д £ > > < Г |и } < 1 _  e-LR* J  a oy (u, й) dPay (a)

(6.74)

(6.75)

(6.76)

Воспользуемся неравенством

(1 — — х +  е - м*

*) Здесь и ниже через А с обозначено дополнение к множе­
ству А. — Прим. перев.



(см. Галлагер [3, (9.3.22), (9.3.23)]). Обозначив e~LR* 
через р, а, через х — интеграл в (6.76), из последнего не­
равенства получим

Р с{ 5 > с Г |и } <  J  Aav (и. «) dP ay (5) +  exp { -  M e -W ).
•̂ U

Интегрируя обе части этого неравенства по мере Pa (u) 
на множестве °U, находим

Рс0  >  <Г} <  J dP ay (u, u) +  exp{— Me~L**} =
A

=  P a¥ {Л} +  exp { -  Me-w*}- (6.72)

Покажем теперь, что величину U на выходе источ­
ника можно представить с точностью, произвольно мало 
отличающейся от d, так, что скорость создания цифровой 
информации будет сколь угодно близка к R(d) .  Приво­
димая ниже теорема, а также ее доказательство воспро­
изводятся из книги Галлагера [3].

Т е о р е м а  6.5 (Галлагер [3, теорема 9.6.2]). Пусть 
Ra ( d ) — скорость при заданном искажении, определяе­
мая распределением источника а. Тогда для любых d >  
> 0  и б >  0 существуют такое (достаточно большое) 
число L и такой (М  1, Ь)-код, что

M < ex p { L  [*„(<*) + 6]}  (6.77)

и
Ea { 5 } < d  +  6. (6.78)

Д о к а з а т е л ь с т в о  (Галлагер). Пусть yo— распре­
деление, принадлежащее r a (d) и такое, что

(6.79)



Рассмотрим множество (L,M)  -кодов, порождаемое рас­
пределением Рау,(й), и применим доказанную лемму, 
полагая

d'  =  d +  Y ,

R '  =  Ra (d) +  - j ,

М  =  ехр{ L [# o (<0+

Тогда, согласно лемме,

Р ,{ D >  d +  } <  P„Yo (А) +  exp { -  (6.80)

где
P„Yo (Л) =  Р ауо { /«Vo (u; п) >  L [Ra Сd) +  4 ]

ИЛИ +

<  Ра Vo { X  lay. (U; 5) >  [lay, (U , U) +  £■] } +

+  PaVo{ D > ( d  +  | ) } .  (6.81)

Используя независимость пар ( U i , O i ) , l =  1.........L, при
совместном распределении, описываемом соотношениями 
(6.65) — (6.69), получаем

L

j-/ayt(u; й) =  4 - 2 /а* ( И/’ “ *) (6-82)
1=1

И
L L

=  т 2 ^ ’ &г)’ (6-83)
1=1 1=1

причем правые части этих равенств являются суммами 
независимых одинаково распределенных случайных ве­
личин. Кроме того, в силу задачи 6.2

EavJI I a y J X j  +  IayA U ', U )  <  ОО,

EaYo {I (J =  EaYo № l }  ^  d  <  OO,



Таким образом, применяя слабый закон больших чи­
сел [10], убеждаемся, что величину P aYo {А} можно сде­
лать сколь угодно малой за счет выбора достаточно 
большого L. Учитывая неравенства (6.80) и (6.81), на­
ходим

Pf { D > d  +  | } < p ( L ) ,  (6.84)

где p(L) стремится к нулю при L - * o о.

З а м е ч а н и е .  Мы уже на полпути к завершению 
доказательства теоремы. Действительно, пусть В  — со­
бытие, состоящее в том, что D >  d +  6/2. Тогда, как мы 
показали, вероятность Р (В) можно сделать сколь угодно 
малой. Однако это не означает еще, что E{D} <  d  - f  fi, 
поскольку влияние «хвостов» распределения может ока­
заться существенным. Для завершения доказательства 
осталось учесть влияние этих «хвостов».

Из неравенства (6.84) вытекает, что

Eav. {5} < ( d + ! )  +  Pav, (В) Eav, Ф  I В). (6.85)

Эта оценка справедлива для кода, состоящего из М слу­
чайно выбранных L-векторов. Пополним множество слов 
этого кода, добавив к нему нулевой вектор. Если теперь 
при осуществлении события В величине на выходе ис­
точника поставить в соответствие добавленный нулевой 
вектор, то получим

ь
Рд* (В) ЕаУа Ф  I В) =  ±  p aVo (В) EaYo {d (U„ 0) 1 В}. (6.86)

Рассмотрим произвольную положительную случай­
ную величину V и произвольное множество В; выберем 
d0 так, чтобы

{ V > d 0}=D{B}.
Тогда

P ( f l ) E { V | B } =  j  t>dP(t>)< J vdP( v) .  (6 .8 7 )
В v^d9



Объединяя неравенства (6.86) и (6.87), находим, что 
при V =  d(U,  0)

Раъ(В)Еа ъ { Б \ В J vdP(v) .  (6.88)
v^d0

Так как Е {F} <  К0 <  то

Следовательно, правую часть неравенства (6.88) можно 
сделать меньше 6/2, если d0 взять достаточно большим. 
Выполнение этого условия можно обеспечить, положив L 
достаточно большим, поскольку p ( L ) ~ > 0  при L —► оо. 
Это замечание вместе с неравенством (6.85) завершает 
доказательство теоремы.

З а д а ч а  6.8. Предположим, что мы определили 
взаимную информацию по-иному, нежели в (6.26) или
(6.27), используя вместо In (Л) другую функцию g(A) .  
Если бы при этом новом определении оба утверждения 
(и позитивное, и негативное) теоремы кодирования вы­
полнялись с иной функцией R a {d), то мы получили бы 
две противоречащие друг другу теоремы. Проследить до­
казательство обоих утверждений теоремы кодирования 
и указать, где в • этом доказательстве оказался суще­
ственным однозначный выбор функции g(  ) =  In ( ) .

6.4. СКОРОСТЬ ПРИ ЗАДАННОМ ИСКАЖЕНИИ 
ДЛЯ ГАУССОВСКОГО СЛУЧАЙНОГО ПРОЦЕССА 

СО ВЗВЕШЕННОЙ КВАДРАТИЧЕСКОЙ МЕРОЙ ИСКАЖЕНИЯ

Вид скорости при заданном искажении известен лишь 
для немногих источников сообщений и ограниченного 
числа функций d(- ,  •). В этом разделе мы рассмотрим 
источник, представляющий наибольший интерес в при­
ложениях теории связи, а именно источник, выходом 
которого является гауссовский случайный процесс.

Другими словами, мы предполагаем, что U — выбо­
рочная функция гауссовского случайного процесса U(t)  
продолжительностью Т с, 0 ^  t ^  Т. Будем также счи­
тать, что процесс U(t)  стационарен, имеет нулевое ма­



тематическое ожидание и известную ковариационную 
функцию Ru (т) =  Е{Ut+xUt}-

Определим меру искажения, которую мы будем в 
дальнейшем рассматривать. Обозначим через А однород­
ную линейную систему, действующую в Ь2[О, Т\ с им­
пульсной переходной функцией a(t)  и частотной харак­
теристикой A( f ) .  Предположим, что a{t) Ф  0 лишь на 
некотором конечном отрезке [0, Та]. Определим взвешен­
ную ошибку между выборочной функцией U(t)  на вы­
ходе источника сообщений и ее аппроксимацией 0 ( t ):

Е ( t ) =  j  a ( t - s ) [ U ( s ) - U ( s ) ] d s ,  0 < t ^ T  +  Ta. (6.90)

Поскольку на отрезке Та ^  t ^  Т невозможны ложные 
переходные эффекты, определим среднее расхождение 
как

Весовая функция A(f )  была введена для того, чтобы 
приспособить меру искажения к учету субъективных 
оценок ошибки сигнала O(t).  Например, если u(t)  — 
сигнал, воспроизводящий музыкальное звучание, то 
естественно потребовать, чтобы величина | Л ( / ) | 2 была, 
грубо говоря, обратно пропорциональна S u (f), т. е. 
чтобы высокие звуки, имеющие обычно слабую мощ­
ность, звучали более отчетливо. С другой стороны, вне 
диапазона слышимости \А (f) | 2 может быстро спадать до 
нуля.

Если же u ( t ) — развертка телевизионного изображе­
ния, то, вероятно, следует предположить, что выбор a(t)  
должен способствовать аппроксимации как самого им­
пульса, так и его производной, чтобы, во-первых, улав­
ливать изменение интенсивности и, во-вторых, сохранить 
четкость изображения предметов. Функция | Л ( / ) | 2 мо­
жет, как и раньше, быстро спадать до нуля вне области 
разрешения применяемой оптической системы.

Опишем подход к нахождению R(d)  в рассматривае­
мом случае. Он состоит в таком представлении процесса

т

о

(6.91)

где Т' =  Т — Та.



0 <  / <  Г, счетным набором независимых гаус­
совских случайных величин, чтобы среднюю взвешенную 
ошибку можно было выразить через эти величины в 
«диагональном» виде.

Для этого определим линейные интегральные опера­
торы А и А* равенствами 

т
J a (t — s)u (s) d s y Ta ^  t ^  7\

[Au](t) =

[A*u](s) =

(6.92)

в остальных случаях,
т

|  a (t — s) и (t)dt,  0 <  s <  T,
(6.93)a

О в остальных случаях.

Зададим случайный процесс V(t) ,  Та ^  t ^  Т, положив
V(t) =  [AU](t). (6.94)

В введенных операторных обозначениях расхождение
(6.91) принимает вид

d =  E { y r M ( £ / - £ 7 ) | f r e.r ]} .  (6-91)

Обозначим через R v оператор A o R u oA*, т. е. инте­
гральный оператор в L2 [Та, Т] с ядром 

т т
Rv (ti — k)  =  j  ds{a (/, — Si) J ds2a (i2 — s2) Ru (st — s2) =

0 0 
~ E { V tlVt h  Ta ^ t u f2< 7 \  (6.95)

Поскольку процесс U(t)  стационарен в квадрате Та ^  
■^fi, t2- ^ T ,  функция R v зависит лишь от разности 
t\ — 12.

Рассмотрим базис разложения Карунена — Лоэва 
для V(t)  на [Га, Г], т. е. введем систему собственных 
функций и собственных значений уравнения 

т
/̂гф/г ( l̂) =  J  dt2R v (t{ t2) ф/f (t2)y Ta ^ t i ^ T .  (6.96)

т„



С помощью {щ} построим также систему функций для 
разложения U(t).  Рассмотрим оператор Л* о Л, действую­
щий из Ь2[О, Т] в Ь2[О, Т]. Этот оператор симметричен, и 
на множестве его значений можно определить оператор, 
обратный к нему. Имеем

=  -ц - А 'Я 0щ  =  -ц- A 'A R aA*(fk .

Таким образом, функция А*щ  принадлежит множеству 
значений оператора А* о А, и, следовательно, функции

0ft (s) =  [А* о А Г 1 Л*Ф* =  ±  ДиЛ*Фь (6.97)

k =  l, 2, . . . ,  s e [ 0 ,  Г],

принадлежат L2[0, Л- Заметим, что

[Л0*](О =  - 5 5 - [ ^ вЛ*ф*](О =  Ф*(О, / е [ Г 0, Т]. (6.98)

Возьмем теперь произвольную функцию и в области 
определения оператора А и положим

и(0 =  И «](/),

N

VN (t) =  2  v k<(k (t ), 
k—\

vk =  {v, Фй},
N

(s) =  2  vkBk (s), 0 <  s <  T.
k=\

В силу (6.98)
\ A u n \ (t) =  v N (t), 

а в силу полноты системы {ф/J в L2 [Та, Г]

О =  lirn || v — v N ||гг г] =  Нш || А (и — и„) | | г .  п . (6.99)N->00 Af—> ОО ■*

Итак, при взвешенном квадратическом критерии оши­
бок любую функцию в области определения оператора А 
можно представить с помощью набора {0ь}. Более того, 
если оператор А ограничен снизу (по норме) числом k, 
то в силу (6.99) uN сходится к и в смысле среднеквадра­



тической интегральной ошибки, и в этом случае функ­
ции 0& порождают область определения оператора А.

Рассуждая подобным образом, можно показать, что 
процесс на выходе источника представим в виде

N

lirn [ /w(s) =  lim 2  Vk®k(s), 0 < s < 7 \  (6.100)
M-> oo iV-> ОО k=l

где коэффициенты Vk определяются равенством
т

Vk = ( V ,  ф * )=  |  dtv( t )<fk (t).
Та

Полагая

^ « ) = 2 П ф * ( 0 ,  Ta ^ t ^ T ,
k = \

в силу разложения Карунена — Лоэва получаем 

V(f) =  I.i.m. ^ ( / ) * )  

равномерно для всех t ^ [ T a, Т]. Таким образом,

0 =  Iim Е {|| F  — V N ||fг п} =
N-*00 а J

=  lim Е {|| Л ([/ — UN) ||[г , л}- (6.101)
N->oo 1 а 1

Если оператор А ограничен снизу, то из (6.101) сле­
дует, что UN(s) сходится к U(s)  и в смысле среднеквад­
ратической интегральной ошибки.

Выразим величину искажения через координаты Vk. 
Для этого представим процесс источника и закодиро­
ванный процесс в виде

t/(s )  =  2  VkQk (s), U ( s ) = ^ V kQk (s), 0
1 k=\

l) Общепринятое обозначение для сходимости в среднеквадра­
тическом. — Прим. перев.



Согласно равенству Парсеваля,

d =  - ^ E l M ( £ / - £ / ) | f r e, rj} =

=  -р-Е { || V — V\ | г в, rj) =
оо

=  ± ^ { ( ¥ , - 9 ^ } .  (6.102)
k--~A

Заметим, что величины Vk независимы, так как они яв­
ляются коэффициентами разложения Карунена — Лоэва 
процесса V(t) .  Кроме того, они являются главными ося­
ми для функции искажения, как это следует из послед­
него равенства, поскольку в (6.102) о^утствуют пере­
крестные члены.

В разд. 6.2 мы видели, что скорость при заданном 
искажении для гауссовской случайной величины U со 
средним 0 и дисперсией X определяется равенством

1 КR (d) =  -j  log2 - j  (бит на случайную величину). (6.103)

З а д а ч а  6.9. Вывести (6.103) из определения R(d),  
данного в разд. 6.3, и найти распределение у, приводящее 
к этой функции R(d),  а также соответствующее рас­
пределение, индуцируемое на V. [Указание. Рассмотрите 
плотность f(u) и условную плотность f(u\H) распределе­
ния U и величины

оо

Н (U) =  — J duf(u)\ogf(u),
—  оо

оо оо

H(U \ 0)  =  — J dUf(U) J duf {и\й) log f (и\й).
— оо — оо

Имеем
/(С/; U) =  H ( U ) - H ( U \ U ) ,

откуда

inf Iay(U; U) =  H ( U ) —  sup H( U\ U) .
y ^ T a (d) v e r  Q (d)



Далее,
H ( U \ U )  =  H(U — U \ U ) ^ H ( U  —  U),

причем равенство возможно лишь в том случае, когда 
величины U — О и О независимы.]

Найдем теперь функцию скорости при заданном иска­
жении для U (t) , 0 ^  t ^  Т. Поскольку величины Vh не­
зависимы, то, применяя (6.56) и (6.57) к последователь­
ности {Va}, получаем

оо
/(V ; V ) >  S  l ( V k; Vk), (6.104)

fo=i

причем равенство выполняется, если величины Vk неза­
висимы. Таким образом, используя (6.102) и (6.103), на­
ходим

оо

/(V ; V ) > - I ] S l o s - j £ -  (6.105)
fc=i

причем равенство выполняется, если Vh — Vk являются 
независимыми гауссовскими случайными величинами с 
дисперсиями dk. Заметим, что <4 Ял, поскольку Vk 
можно воспроизвести со среднеквадратической ошибкой 
Яй, полагая Vk =  0 при нулевой скорости передачи. Итак, 
R J d ) — точная нижняя грань правой части неравен­
ства (6.105) при ограничениях

оо

0 d =  y r ^ i dk. (6.106)
k=\

З а д а ч а  6.10. Показать, что R a {d) определяется па­
раметрически уравнениями

d r { v )  =  -j7 v N ( \ i ) +  2
L k: J

(6.107)

Ra, T ' ( v )  =  -£ fT  2  1о& у -  бит/с, (6.108)
k: £̂>M<

где N ([a) — число тех k, для которых Я* >  ц.



Мы ввели здесь индекс Т' для указания того, что по­
лученная скорость относится к выборочной функции 
U (/) длительностью Т с. [Указание. Воспользуйтесь не­
равенством

\*=1 / А=1
причем равенство выполняется тогда и только тогда, ко­
гда все ak равны между собой.]

Уравнения (6.107) и (6.108) определяют в парамет­
рическом виде скорость при заданном искажении для 
выборки U(t)  длительностью Т с. Посмотрим, как ме­
няется R a,T'(d)  в зависимости от 7 '=  7'/ +  Та.

З а д а ч а  6.11. Показать, что для любого Г > 0  и 
целого N

Ra.NT' (d)<Ra.T' (d).  (6.109)

[Указание. Рассмотрите кодирование выборочных функ­
ций процесса U (t ) длительностью NT' +  Та и выборки 
продолжительностью V  +  Та =  Г.]

Неравенство (6.109) показывает, что Ra,T> монотонно 
не возрастает по Т’, когда Т', возрастая, пробегает мно­
жество точек, кратных любому фиксированному значе­
нию. Естественно предположить, что

lim Ra,r (d )  =  Ra (d) (6.110)
Т ' - *  оо

есть inf Ra,Tr (d). Это действительно так; интересую- 
т

щийся читатель может найти доказательство этого 
утверждения в книге Галлагера [3, дополнение 4А, лем­
ма 2].

Итак, предел (6.110) представляет собой скорость, 
достижимую при кодировании длинных сообщений U(t).  
Для ее оценки нам понадобится следующая теорема 
Каца, Мурдока и Сегё.

Т е о р е м а  6.6. Пусть %k,T' — собственные значения 
интегрального оператора с ядром R v (h — h)  на [0, Т'].



Предположим, что функция Rv ( ) ограничена, абсолютно 
итегрируема на (—оо, оо) и допускает действительное 
преобразование Фурье

Доказательство этой теоремы приведено в книге Гре- 
нандера и Сегё [И , разд. 8.6]. Мы воспользуемся следую­
щим вытекающим из нее результатом.

С л е д с т в и е  6.1. Пусть [а,Ь] — произвольный отре­
зок , не содержащий нуля , g ( k ) — непрерывная функция 
на [ауЬ\ Предположим, что мера Лебега множества 
{f: S v (f) =  а или S v (f) = b} равна 0. Тогда

Наметим достаточно простое доказательство этого 
утверждения.

Пусть %[a,b](k)— характеристическая функция мно­
жества [а, 6], т. е.

точек а и ft. Далее, при наших предположениях о R 0

00 ^  A'mln ^  S v {f) A'max ^  00 •

Построим на отрезке [A,mm, ^max] ДВЗ ПОЛИНОМа Р\  И P 2i 
ограничивающих функцию §(Я,)х[а,ь](Л,) сверху и снизу 
и произвольно близких друг к другу всюду, кроме окрест­

оо

S v ( f ) =  J  d x e - ^ ' R ^ x ) .

Тогда для любого целого р ^  1
оо оо

a<Sv (f)<b

1,
в остальных случаях.

Тогда функция х[а, ь] М  непрерывна всюду, кроме



ностей точек а и Ь. Применяя (6.111) к каждому сла­
гаемому построенных полиномов, находим

оо

| Л  [ $ v  (f )] d f  ^ lirn ^  y r  ^  g  ^
— oo k

oo

<  J P i l S A f W
— oo

Поскольку по условию S v (f) = a  и S v (f) = b  лишь на 
множестве меры 0, эти интегралы можно сделать сколь 
угодно близкими друг к другу. Отсюда следует (6.112).

Применяя (6.112) к параметрическим уравнениям для 
нахождения Ra, т' (d ), мы получим пару параметрических 
уравнений, определяющих предельное значение скорости 
при заданном искажении:

d (|i)  =  H J  d f +  f  S v (f)df,  (6.113)
S0 ( f) > M- Spf fXH

/?«(»*)= 4  J log2 df (бит/с)- (6.114)
sv If) > 4

Здесь
S 0( f ) =- Su ( f ) \A( f )? .  (6.115)

Заметим, что второе слагаемое в (6.113) возникает при 
применении следствия 6.1 к сумме

2  Л*.г' =  /?„ (0) — 2  А*.г'

с целью исключения собственных значений, находящихся 
в окрестности нуля.

Напомним, что справедливость негативного утвер­
ждения теоремы кодирования не зависела от длины бло­
ка и, следовательно, оно непосредственно применимо к 
величине Ra (d), являющейся пределом для Raj '  (d). Н а­
против, позитивное утверждение теоремы, связанное с 
указанием метода кодирования, применимо к ситуации, 
когда для кодирования предъявляются независимые оди­
наково распределенные случайные величины. К счастью,



равенство (6.112) показывает, что этого можно до­
биться. Рассмотрим коэффициенты V*, порождаемые 
процессом на отрезке [О, Т\  когда Т растет. Сгруппируем 
коэффициенты Vk в блоки, относя в п -й блок те из них, 
для которых

(X +  (п — 1) е <  %k <  ц. +  пг,

где г С ц  и п =  1, 2, (Атах — ц)/е. Полагая в 
(6.112) g(u)  =  1, а =  ц, +  (п — 1)е и р =  ц +  пг, полу­
чаем, что число коэффициентов в каждом блоке растет 
линейно по Т .  Таким образом можно образовать длин­
ные блоки из независимых гауссовских случайных ве­
личин, имеющих примерно одинаковую дисперсию, и эф­
фективно их закодировать') .

Метод построения разложения Карунена — Лоэва для 
процесса U(t)  большой длительности с последующим 
квантованием коэффициентов с помощью L-векторов 
весьма сложен, и, по-видимому, его реализация крайне 
трудна. Гоблик и Холзингер [12] провели интересное 
сравнение функции R a (d) со скоростью, достижимой 
практически более целесообразными субоптимальными 
методами кодирования гауссовских случайных величин.

Уравнения (6.113) и (6.114), определяющие скорость 
при заданном искажении для гауссовского случайного 
процесса, впервые были выведены Колмогоровым [13] 
для случая A (f) =  1 (интегрально-квадратическая ошиб­
ка). Для случая взвешенной ошибки эти уравнения впер­
вые вывел Пинскер [14]. Результаты Пинскера были 
обобщены Добрушиным и Цыбаковым в работе [15]. Ана­
логичные результаты были независимо получены в ра­
ботах [16, 17].

Столь же большой интерес, как и гауссовскому про­
цессу, уделялся гауссовскому случайному полю U (х , у ) , 
представляющему собой некоторое плоское изображе­
ние. Если поле U стационарно со спектральной функцией 
S u (fx,fy) и мы рассматриваем весовую функцию с дву-

‘) В действительности нет необходимости прибегать к доволь­
но сложной процедуре объединения в блоки случайных величин 
с примерно равными дисперсиями. Как показано Галлагером [3, 
разд. 9.7], можно эффективно кодировать блоки и таких независи­
мых гауссовских случайных величин, дисперсии которых различны.



мерным преобразованием A( f x, f y), то уравнения (6.113), 
(6.114) принимают вид

d(n)  =  (X J  dfx dfy +  J  S a (fx, fy) dfx dfy ,
sv(fx' sv(fx’

(6.116)

— т  f log, l 'J> dfx dfj/ (бит на едВ'
Ч « Л > > .  й

ницу площади), (6.117)
где

SAf x ,  fy) = \ A ( f x, fe) ? S u (fx, fy). (6.118)

Вывод этих соотношений аналогичен выводу в слу­
чае временного процесса с учетом разложения Каруне­
н а — Лоэва для двумерного случайного поля

оо

V(x,  у) =  2  Vk<pk (x, у),
&=1

где Е {FI} =  %ь — собственные значения, отвечающие 
ядру R 0(x, у) в прямоугольнике. Теорема Каца, Мур- 
дока и Сегё применима также и в ^-мерном случае [18]; 
отсюда и вытекают уравнения (6.116), (6.117). В изо­
тропном случае, когда R v (x, у) зависит лишь от 
У х 2-\-у2, S v (fx, fy) можно представить как функцию 
лишь от v75f. и соотношения (6.116), (6.117) преобра­
зуются к виду, содержащему обычные интегралы. Под­
робности см. в работе [19].

З а д а ч а  6.12. Рассмотрим два источника сообще­
ний с распределениями оы и а 2. Пусть соответствующими 
функциями скорости при заданном искажении будут 
Rai(d) и Ra2 (d). Рассмотрим общее кодирующее устрой­
ство, с помощью которого сообщения каждого источни­
ка могут передаваться при уровне искажения, не пре­
восходящем d. Найти нижнюю и верхнюю границы 
скорости, необходимой для такого кодирующего устрой­
ства. Выводы должны быть четкими и обоснованными на 
каждом шаге; одни лишь правдоподобные рассуждения 
недостаточны.



6.5. ГРАНИЦЫ ПЕРЕДАЧИ ПО АДДИТИВНОМУ 
ГАУССОВСКОМУ КАНАЛУ

Вернемся к задаче, рассматривавшейся в гл. 3—5, 
т. е. к задаче передачи сообщений по аддитивному гаус­
совскому каналу.

Предположим сначала, что в течение каждых Т с мы 
можем передавать сигнал, имеющий полосу частот W , 
и произведение полосы на время равно N =  2WT. Как 
и в гл. 4, допустим, что энергия передаваемого сигнала 
не должна превышать Е , а аддитивный шум в канале 
белый гауссовский, со спектральной плотностью No/2. 
Можно показать [1, часть IV], что пропускная способ­
ность такого канала равна

С =  4 г  log2 [l +  дг (Д,/2у ] (бит на сигнал длитель­
ностью Т с). (6.119)

Если по рассматриваемому каналу передается последо­
вательность независимых гауссовских случайных вели­
чин с дисперсией а2 при скорости одна случайная ве­
личина в Г с, го минимальное среднеквадратическое 
искажение d0 можно найти, приравнивая С в (6.119) к
функции Ra (d),  определяемой формулой (6.103) (с за­
меной Я на о2):

T log2. d 7  =  T Iog2 [* +  N (N012) ] '

Таким образом,

‘' • = “г [ 1 + т е л Г -  <6-120)
Если этот результат выразить в терминах отношения 

выходного сигнала к шуму, то мы получим границу

Ф„<*-[‘+(£ 1 Л Г -
где

( Z L - v m  <6-122>
есть отношение сигнал/шум на входе канала.



Если бы вместо гауссовских случайных величин мы 
рассмотрели передачу последовательности независимых 
случайных величин, равномерно распределенных на 
[— м0/2, и0/2], то для Ra (do) мы имели бы границу [1, 
часть V]

(6.123)

Приравнивая R a (d0) к пропускной способности в (6.119) 
и производя преобразования, находим

Заметим, что при значениях (SA/Пкан, много больших 
М, отношение (SA/T)Bbix в обоих неравенствах (6.12) и
(6.124) растет как N-я степень ( S / j f ) KaiU в отличие от ли ­
нейного роста (SA/*9)»*» для ЛК)бого фиксированного ме­
тода модуляции в надпороговой области. Заметим так­
же, что границы (6.121) и (6.124) имеют тот же вид, 
что и граница плотной упаковки, обсуждавшаяся в 
эазд. 4.3, отличаясь от нее лишь множителями при

1 +  (S /^ )KaH- j f Y  • На самом деле если (4.29) и (4.30)
объединить с (4.39), то можно показать, что все эти 
множители весьма близки друг к другу.

Важный результат теории скорости при заданном 
искажении состоит в том, что она позволяет взглянуть 
на структуру, а также оценить сложность близких к опти­
мальным методов передачи. Однако ее основное значе­
ние заключается в описании точных границ качества 
передачи (6.121) и (6.124), позволяющих производить 
абсолютное сравнение существующих и предлагаемых 
систем с оптимальными системами, имеющими, быть 
может, высокую сложность. Такое сравнение было про­
ведено Зейдманом [20] для системы время-импульсной 
модуляции (ВИМ ), использующей сигнал (sinco/)/T с 
произведением полосы на время, равным N  =  40. Полу­
ченные результаты применимы также и к задаче радио­
локационного измерения дальности при том же виде



сигналов. Эти результаты представлены на рис. 6.6, где 
приводятся

Р и с .  6.6. Сравнение кривой скорости при заданном искажении 
(пропускной способности канала) с качеством время-импульсной

модуляции.

1) граница скорости при заданном искажении (гра­
ница пропускной способности канала);

2) верхние границы Баранкина, Крамера — Рао и 
Зива — Закаи;

3) нижняя граница Зейдмана [21];



4) приближенная граница Возенкрафта — Джекобса, 
упомянутая в гл. 4.

Кривая, характеризующая качество произвольной си­
стемы с N —  40, должна проходить ниже кривой скоро­
сти при заданном искажении. Любая же кривая, отно­
сящаяся к время-импульсной модуляции, проходит выше 
границы Зейдмана и ниже всех трех верхних границ.

На рисунке видно, что ниже порога наиболее точной 
является граница Зива — Закаи, а выше порога — гра­
ница Крамера — Рао. Ниже порога граница Баранкина 
хуже границы Зива — Закаи и даже границы скорости 
при заданном искажении. По-видимому, есть основание 
опираться и на приближенный анализ Возенкрафта — 
Джекобса, который, согласно их сообщению, подтвер­
ждается проведенными измерениями.

Сравнение кривой Возенкрафта — Джекобса с кривой 
скорости при заданном искажении показывает, что ниже 
порога для системы ВИМ требуется примерно на 7 дб 
больше мощности передачи, чем ее затрачивает опти­
мальная система с тем же отношением сигнал/шум. Од­
нако выше порога это различие быстро возрастает. Та­
ким образом, выше порога система ВИМ, по-видимому, 
для эффективной связи непригодна.

Границу скорости при заданном искажении (пропуск­
ной способности) можно также использовать для опре­
деления точности, с которой можно передать гауссов­
ский случайный процесс по аддитивному гауссовскому 
каналу. Пропускная способность гауссовского канала 
с шириной полосы частот Wc, мощностным ограничением 
Рс и спектральной плотностью аддитивного шума N 0/2 
равна [1, часть IV]

З а д а ч а  6.13. Показать, что для гауссовского про­
цесса, спектральная плотность которого имеет вид

C —  We log2[ 1 +  J ; No] бит/с. (6.125)

I f \ < W u, 
\ f \ > W u, (6.126)



скорость передачи при искажении, определяемом инте­
грально-квадратической ошибкой, равна

Ra (d) =  Wtt log2 (PJd)  бит/с. (6.127)

Для нахождения минимальной интегрально-квадра­
тической погрешности, с которой такой процесс можно 
передать по гауссовскому каналу, приравняем (6.122) и 
(6.127). Тогда

+  ~ m i;]  J  ' =

- [ 1 + ( ^ U W - <«-ш >
Неравенство (6.128) представляет интерес лишь в 

связи с видом его зависимости от {S/ J f )Kан и W J W U. Это 
связано с тем, что процесс с постоянной ограниченной 
полосой частот плохо описывает большинство реальных 
физических источников.

Для семейства гауссовских процессов со спектром 
Буттерворта численная оценка Pu/d0 скорости при иска­
жении, определяемом интегрально-квадратической ошиб­
кой, была получена Гобликом. По поводу кривых, опи­
санных Гобликом, отсылаем читателя к его статье [22].

Как было указано в гл. 5, результаты Гоблика были 
использованы Ван Трисом [23] для сравнительного изу­
чения качества систем импульсной модуляции с опти­
мальным предыскажением для каналов с бесконечной 
полосой пропускания.
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