Логика случая

Страница: 1 ... 236237238239240241242243244245246 ... 370

Следовательно, хотя происхождение трансляции в принципе и не является неотъемлемой частью вопроса о происхождении жизни (поскольку обитатели мира РНК должны считаться полноценными формами жизни), на практике два этих вопроса связаны прочной и, вероятно, неразразрывной связью. В этой главе мы обсудим загадку происхождения репликации и трансляции. Поскольку механизмы трансляции универсально сохраняются, этот вопрос следует считать ключевым в проблеме происхождения жизни.

Вопрос о происхождении жизни по природе своей не может быть только биологическим, поскольку до того, как возникла жизнь (даже в простейшем ее воплощении), существовала «предбиологическая» химия, которая должна рассматриваться с точек зрения химии, геохимии и геофизики. Данные этих областей обширны и сложны и в основном лежат за пределами моей профессиональной компетенции. Поэтому здесь мы приведем лишь краткий обзор, подчеркивающий наиболее важные результаты.

Наконец, не без понятной робости, мы коснемся чрезвычайно общих аспектов вероятности «уникальных событий» в рамках современных космологических теорий. Это рассуждение позволит нам, по крайней мере, выработать определенные идеи касательно распространенности жизни в космосе.

Происхождение репликации и трансляции и мир РНК

Цикл Дарвина – Эйгена

Главной целью разработанной Манфредом Эйгеном теории самореплицирующихся систем было построение простой модели, объясняющей происхождение биологической информации и, следовательно, самой жизни. Теория Эйгена вскрыла существование фундаментального предела, ограничивающего достоверность репликации (порог Эйгена ): если произведение частоты ошибок (мутаций) и информационной емкости системы (размер генома) ниже порога Эйгена, происходит стабильное наследование и, следовательно, эволюция; если же эта величина выше порога, то мутационная катастрофа и вымирание неизбежны (Eigen, 1971). Порог Эйгена лежит где-то в интервале от 1 до 10 мутаций на цикл репликации (Tejero et. al., 2011), но, каков бы он ни был, для стабильного поддержания репликации, что является необходимым условием начала биологической эволюции, система должна непрерывно оставаться над этим порогом (см. рис. 12-1а ). Само происхождение первых организмов создает по меньшей мере видимость парадокса, поскольку для репликации необходима некоторая минимальная сложность, а репликация с высокой точностью требует кодирования еще большего объема информации (Penny, 2005). В то же время уровень точности репликации в данной точке эволюционной траектории ограничивает объем информации, которая может быть закодирована в геноме. Таким образом, на первый взгляд рост сложности генома представляется невозможным. Однако комбинация естественного отбора и генетического дрейфа превращает этот, казалось бы, порочный круг в (казалось бы) бесконечную спираль возрастающей сложности (цикл Дарвина – Эйгена в терминологии Д. Пенни; Penny, 2005). Даже малые приобретения в точности репликации идут системе на пользу, хотя бы потому, что они увеличивают число жизнеспособных копий генома и тем понижают репродукционные издержки. Сам по себе большой геном является скорее обузой для системы из-за высоких репродукционных издержек. Однако умеренное увеличение генома, такое как дупликация частей генома или рост вследствие рекомбинации, способно закрепляться в малых популяциях. Репликаторы, обладающие достаточно высокой точностью, могут использовать этот случайно закрепленный и изначально бесполезный генетический материал для эволюции новых функций, не срываясь при этом с «обрыва Эйгена» (рис. 12-1б ). Среди этих новых, улучшающих приспособленность функций будут и повышающие точность репликации, что позволяет затем увеличить объем кодируемой информации. Таким образом, цикл Дарвина – Эйгена повторяет себя в спиральной прогрессии, приводя к непрерывному увеличению размера генома (рис. 12-1а ).

— 241 —
Страница: 1 ... 236237238239240241242243244245246 ... 370