Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /var/www/www-root/data/www/koob-files.ru/index.php on line 394
Головоломки. Задачи. Фокусы. Развлечения (Перельман Я.И.) — страница 49

Головоломки. Задачи. Фокусы. Развлечения

Страница: 1 ... 4445464748495051525354
Четырьмя четверками (68)
Который год? (69)

Будет только один такой год в XX веке: 1961-й.

В зеркале (70)

Единственные цифры, которые не искажаются в зеркале, — это 1, 0 и 8. Значит, искомый год может содержать в себе только такие цифры. Кроме того, мы знаем, что это один из годов XIX века, т. е. что первые его две цифры 18.

Легко сообразить теперь, какой это год: 1818-й. В зеркале 1818 год превратится в 8181-й: это ровно в 4 1/2 раза больше, чем 1818:

1818 ? 41/2 = 8181.

Других решений задача не имеет.

Какие числа? (71)

Ответ прост: 1 и 7. Других таких чисел нет.

Сложить и перемножить (72)

Таких чисел сколько угодно:

3 ? 1 = 3,

3 + 1 = 4,

10 ? 1 = 10,

10 + 1 = 11,

и вообще всякая пара целых чисел, из которых одно — единица.

Это потому, что от прибавления единицы число увеличивается, а от умножения на единицу остается без перемены.

Столько же (73)

Числа эти 2 и 2. Других целых чисел с такими свойствами нет.

Три числа (74)

1, 2 и 3 дают при перемножении и при сложении одно и то же:

1 + 2 + 3 = 6; 1 ? 2 ? 3 = 6.

Умножение и деление (76)

Таких чисел очень много. Например:

2: 1 = 2;

2 ? 1 = 2;

7: 1 = 7;

7 ? 1 = 7;

43: 1 = 43;

43 ? 1 = 43.

Вдесятеро больше (76)

Вот еще четыре пары таких чисел:

11 и 110; 14 и 35; 15 и 30; 20 и 20.

В самом деле:

11 ? 110 = 1210;

15 ? 30 = 450;

11 + 110 = 121;

15 + 30 = 45;

14 ? 35 = 490;

20 ? 20 = 400;

14 + 35 = 49;

20 + 20 = 40.

Других решений задача не имеет. Довольно хлопотливо разыскивать решения вслепую. Знание начатков алгебры значительно облегчает дело и дает возможность не только отыскать все решения, но и удостовериться, что больше пяти решений задача не имеет.

На что он множил? (77)

Рассуждаем так. Цифра 6 получилась от сложения колонки из двух цифр, из которых нижняя может быть либо 0, либо 5. Но если нижняя 0, то верхняя 6. А может ли верхняя цифра быть 6? Пробуем: оказывается, чему бы ни равнялась вторая цифра множителя, никак не получается 6 на предпоследнем месте первого частного произведения. Значит, нижняя цифра предпоследней колонки должна быть 5; тогда над ней стоит 1.

Теперь легко восстановить часть стертых цифр:

Последняя цифра множителя должна быть больше 4, иначе первое частное произведение не будет состоять из четырех цифр. Это не может быть цифра 5 (не получается 1 на предпоследнем мосте). Пробуем 6 — годится. Имеем:

— 49 —
Страница: 1 ... 4445464748495051525354